JP7082321B2 - Dephosphorization method of hot metal - Google Patents

Dephosphorization method of hot metal Download PDF

Info

Publication number
JP7082321B2
JP7082321B2 JP2019157540A JP2019157540A JP7082321B2 JP 7082321 B2 JP7082321 B2 JP 7082321B2 JP 2019157540 A JP2019157540 A JP 2019157540A JP 2019157540 A JP2019157540 A JP 2019157540A JP 7082321 B2 JP7082321 B2 JP 7082321B2
Authority
JP
Japan
Prior art keywords
hot metal
slag
treatment
mass
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019157540A
Other languages
Japanese (ja)
Other versions
JP2021036063A (en
Inventor
雄一 影山
真一 赤井
秀光 根岸
正洋 仲
渉 藤堂
涼 川畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2019157540A priority Critical patent/JP7082321B2/en
Publication of JP2021036063A publication Critical patent/JP2021036063A/en
Application granted granted Critical
Publication of JP7082321B2 publication Critical patent/JP7082321B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

本発明は、溶銑中に含まれる燐を除去する際に、精錬剤(フラックス)に蛍石を使用せずに、溶銑の脱燐を効率良く行う技術である。 INDUSTRIAL APPLICABILITY The present invention is a technique for efficiently dephosphorizing hot metal without using fluorite as a refining agent (flux) when removing phosphorus contained in hot metal.

溶銑には珪素や燐、硫黄などの不純物が多量に含まれており、鉄鋼材料の精錬プロセスにおいて、転炉での負荷軽減や製鋼スラグの発生量の低減、製鋼コストの削減の観点から、脱炭処理の前工程として、溶銑に脱珪・脱燐・脱硫処理を施す、いわゆる溶銑予備処理が盛んにおこなわれている。この溶銑予備処理は、高炉から出銑された溶銑が、出銑樋や傾注樋に存在する間、または、転炉や溶銑鍋、混銑車に収容された後に、精錬剤として石灰系フラックス、酸化剤、及び/又はソーダ灰系フラックス等を、キャリア・ガスに酸素又は窒素を用いて、溶銑中に吹込むことで行われる。具体的には、溶銑中の珪素(Si)や燐(P)を酸化し、生成する酸化物(SiOやP)をスラグ中に吸収し、または、硫化物(CaSやNaS)をスラグに吸収して行われる。 Hot metal contains a large amount of impurities such as silicon, phosphorus, and sulfur, and in the refining process of steel materials, it is removed from the viewpoint of reducing the load in the converter, reducing the amount of steelmaking slag generated, and reducing the steelmaking cost. As a pre-process for charcoal treatment, so-called hot metal pretreatment, in which hot metal is desiliconized, dephosphorized, and desulfurized, is actively performed. In this hot metal pretreatment, the hot metal ejected from the blast furnace is used as a refining agent for lime-based flux and oxidation while it is present in the hot metal iron and the pouring iron, or after it is stored in the converter, hot metal pot, and torpedo wagon. It is carried out by blowing an agent and / or a soda ash-based flux or the like into a hot metal using oxygen or nitrogen as a carrier gas. Specifically, it oxidizes silicon (Si) and phosphorus (P) in hot metal and absorbs the generated oxides (SiO 2 and P 2 O 5 ) into the slag, or absorbs sulfides (CaS and Na 2 ). It is performed by absorbing S) into slag.

かかる溶銑予備処理のうち、特に脱燐を行なうに際しては、溶銑中へ酸化剤を投入して、燐を酸化物としてスラグ中へ除去しているが、燐の酸化物は酸性を示すことから従来は、形成されるスラグの塩基度(CaOとSiOとの質量比であり、C/Sと略す)が2.0以上と高くするように石灰系フラックスが吹き込まれることが多かった。ところが、塩基度の高いスラグは溶融温度が高く、溶銑予備処理中に溶銑温度が降下すると、スラグの粘度が高くなるため、吹込まれたCaOの滓化が不十分となり、脱燐利用効率が低くなる傾向があった。そのため、溶銑の脱燐を極低P濃度域まで行なわせようとすると、精錬剤を過剰に使用することになり、スラグ量が増えるばかりでなく、精錬コストやスラグ処理コストの増大を招くという問題があった。また、脱燐処理後の溶銑温度の更なる低下も生じていた。 Among such hot metal pretreatments, especially when dephosphorization is performed, an oxidizing agent is added to the hot metal to remove phosphorus as an oxide into the slag. However, since the phosphorus oxide is acidic, it has been conventionally used. In many cases, a lime-based flux was blown so that the basicity of the formed slag (the mass ratio of CaO and SiO 2 and abbreviated as C / S) was as high as 2.0 or more. However, slag with high basicity has a high melting temperature, and if the hot metal temperature drops during the hot metal pretreatment, the viscosity of the slag becomes high, so that the slag that has been blown in is insufficiently slagged and the dephosphorization utilization efficiency is low. There was a tendency to become. Therefore, if the hot metal is dephosphorized to the extremely low P concentration range, the refining agent will be used excessively, which not only increases the amount of slag but also increases the refining cost and the slag processing cost. was there. In addition, the hot metal temperature after the dephosphorization treatment was further lowered.

そこで、極低燐を目標とする脱燐処理では、CaOの滓化を促進してフラックス量を減らすため、蛍石(CaF)などのハロゲン化物を添加することで、脱燐能力とスラグ溶融を両立させ、高い脱燐速度を極低燐領域まで維持するという手法がとられてきた。しかしながら、この蛍石等のハロゲン化物の添加は、形成されるスラグ中のフッ素(F)含有量等を高めることになる。近年、スラグは土木、建築用資材の原料として有効に利用されるようになってきているところ、環境問題に対する社会的関心が高まる中、フッ素の溶出が問題となる用途への使用は制限されており、蛍石などのハロゲン化物を使用しない操業が求められている。また、スラグ中のフッ素等ハロゲンは、予備処理に使用する容器の耐火物の溶損も促進する効果を有するため、予備処理設備の長寿命化の観点からもハロゲン化物を用いない方が好ましい。さらに、蛍石を使用しないことは、精錬剤コストの面からも望ましい。そこで、スラグの脱燐能力と溶融率(滓化率)を共に上げるための種々の方法が提案されている。 Therefore, in the dephosphorization treatment aiming at extremely low phosphorus, in order to promote the slagging of CaO and reduce the amount of flux, a halide such as fluorite (CaF 2 ) is added to dephosphorize and melt the slag. The method of maintaining a high dephosphorization rate up to the extremely low phosphorus region has been adopted. However, the addition of a halide such as fluorite will increase the fluorine (F) content and the like in the formed slag. In recent years, slag has come to be effectively used as a raw material for civil engineering and building materials, but as social interest in environmental problems increases, its use in applications where the elution of fluorine is a problem is restricted. Therefore, there is a demand for operations that do not use halides such as fluorite. Further, since halogens such as fluorine in the slag have an effect of accelerating the melting of the refractory of the container used for the pretreatment, it is preferable not to use a halide from the viewpoint of extending the life of the pretreatment equipment. Furthermore, it is desirable not to use fluorite from the viewpoint of refining agent cost. Therefore, various methods for increasing both the dephosphorization capacity of slag and the melting rate (slagging rate) have been proposed.

例えば、特許文献1には、蛍石を使用せずに溶銑を脱燐処理する技術を開示している。その技術は、操業開始前より予めスラグ中の塩基度C/Sを2.0~2.5と比較的高く維持し、溶銑中Si濃度を0.03質量%以下に低減させると共に、その後もスラグ塩基度C/Sを常時2.0~2.5の範囲に維持して操業するものである。 For example, Patent Document 1 discloses a technique for dephosphorizing hot metal without using fluorite. The technology keeps the basicity C / S in the slag relatively high at 2.0 to 2.5 in advance from before the start of operation, reduces the Si concentration in the hot metal to 0.03% by mass or less, and even after that. The slag basicity C / S is always maintained in the range of 2.0 to 2.5 for operation.

特開昭63-223114号公報Japanese Unexamined Patent Publication No. 63-223114

しかしながら、前記従来の技術には、未だ解決すべき以下のような問題があった。
特許文献1に記載の技術では、溶銑温度が低い場合において処理中の排滓性が悪化し、精錬炉内のスラグが固化ひいては滓化不良が発生してしまうという課題があった。つまり、酸化剤によって脱燐を進行させた処理末期においては溶銑温度1260℃以下まで低下する場合があり、その際には精錬剤は十分に滓化しない、かつスラグ液相率が低くなりスラグの流動性を損ねる。その結果、脱燐処理中の排滓性が悪くなりスラグが固化、ひいては滓化不良を起こすことが多く操業が不安定であった。
However, the conventional technique still has the following problems to be solved.
The technique described in Patent Document 1 has a problem that when the hot metal temperature is low, the slag during the treatment is deteriorated, the slag in the smelting furnace is solidified, and the slag is poorly formed. That is, in the final stage of treatment in which dephosphorization is promoted by an oxidizing agent, the hot metal temperature may drop to 1260 ° C. or lower. Impairs liquidity. As a result, the slag during the dephosphorization treatment deteriorated, the slag solidified, and in turn, poor slag formation often occurred, and the operation was unstable.

酸化脱燐反応は、下記化学式1で表される。式(a)中[P]は溶鉄中に溶解している燐を、(FeO)はスラグ中の酸化鉄を、(P)はスラグ中の酸化燐を表す。 The oxidative dephosphorization reaction is represented by the following chemical formula 1. In the formula (a), [P] represents phosphorus dissolved in molten iron, (FeO) represents iron oxide in slag, and (P 2 O 5 ) represents phosphorus oxide in slag.

Figure 0007082321000001
Figure 0007082321000001

この脱燐反応のギブス自由エネルギーΔGおよび平衡定数Kは下記数式1で表される。式(1)中、Tは、たとえば、脱燐処理終了時の溶鉄温度[K]を、aは、化学物質iの活量を、Rは気体定数(8.314m・kg・s-2・K-1・mol-1)を表す。 The Gibbs free energy ΔGO and the equilibrium constant K P of this dephosphorylation reaction are expressed by the following mathematical formula 1. In the formula (1), T is, for example, the molten iron temperature [K] at the end of the dephosphorization treatment, ai is the activity of the chemical substance i, and R is the gas constant (8.314 m 2 · kg · s . 2 · K -1 · mol -1 ).

Figure 0007082321000002
Figure 0007082321000002

脱燐反応の平衡式については多くの報告があるが、燐分配比L=(質量%P)/[質量%P]として、Healyによるりん分配推定式は、下記数式2で表される。式(2)中、(質量%X)は、物質Xのスラグ中の質量百分率を、[質量%M]は、物質Mの溶鉄中の質量百分率を表す。この式(2)より、定性的には、スラグ中CaO濃度が高い、つまり塩基度C/Sが高いほど、処理温度が低いほど燐分配比Lが大きくなり、溶銑中の平衡脱P濃度が下がることがわかる。一方で、スラグ中のCaO濃度が上昇するに従いスラグの融点が上昇し、脱燐処理温度範囲で液相率が低下し、スラグの滓化性に劣ることが知られている。また、スラグの液相率の低下は、スラグ固化と呼ぶ、混銑車からの排滓が困難になるという現象を引き起こす。これまで、上記の高いスラグ脱燐能と容易なスラグ滓化性を両立するスラグ組成は具体的には明示されていない。 There are many reports on the equilibrium formula of the dephosphorization reaction, but the phosphorus distribution estimation formula by Hairy is expressed by the following formula 2 with the phosphorus distribution ratio LP = (mass% P ) / [mass% P]. In the formula (2), (mass% X) represents the mass percentage of the substance X in the slag, and [mass% M] represents the mass percentage of the substance M in the molten iron. From this equation (2), qualitatively, the higher the CaO concentration in the slag, that is, the higher the basicity C / S and the lower the treatment temperature, the larger the phosphorus distribution ratio LP, and the equilibrium de- P concentration in the hot metal. You can see that is going down. On the other hand, it is known that as the CaO concentration in the slag increases, the melting point of the slag rises, the liquid phase ratio decreases in the dephosphorization treatment temperature range, and the slag slag is inferior. In addition, the decrease in the liquid phase ratio of slag causes a phenomenon called slag solidification, in which it becomes difficult to remove the slag from the torpedo wagon. So far, the slag composition that achieves both the above-mentioned high slag dephosphorylation ability and easy slag slag slag slaging property has not been specifically specified.

Figure 0007082321000003
Figure 0007082321000003

本発明は上記事情に鑑みてなされたものであり、その目的とするところは、蛍石等のハロゲン化物を用いることなく、溶銑を脱燐処理し、低いP濃度の溶銑(例えばP濃度0.010質量%以下)を工業的に安定して溶製する方法であり、具体的には、溶銑温度とスラグ塩基度を管理し、スラグの流動性を損ねず滓化不良を抑止し効率よく脱燐でき、且つ安定した操業が可能な溶銑の脱燐方法を提供することを目的としている。 The present invention has been made in view of the above circumstances, and an object thereof is to dephosphorize the hot metal without using a halide such as fluorite, and to perform a low P concentration hot metal (for example, P concentration 0. (010% by mass or less) is an industrially stable method for melting, specifically, the hot metal temperature and slag basicity are controlled, the fluidity of the slag is not impaired, fluorite failure is suppressed, and efficient removal is performed. It is an object of the present invention to provide a method for dephosphorizing hot metal that can be phosphorused and can be operated stably.

前記課題を解決し上記の目的を実現するため開発した本発明は、下記の要旨構成に示すとおりである。即ち、本発明は、精錬容器内に保持した溶銑に石灰系フラックスおよび酸化剤を含む精錬剤(ハロゲン化物を除く)を吹き込み、溶銑を脱燐処理する方法において、処理終了時の温度を1200℃以上1260℃以下の範囲とし、処理終了時のスラグの塩基度を1.0以上1.8以下の範囲に調整する、ここでスラグの塩基度とはCaOとSiOとの質量比であることを特徴とする溶銑の脱燐処理方法を提案する。 The present invention developed to solve the above problems and realize the above object is as shown in the following gist structure. That is, the present invention is a method in which a refining agent containing a lime-based flux and an oxidizing agent (excluding halides) is blown into the hot metal held in the refining container to dephosphorize the hot metal, and the temperature at the end of the treatment is 1200 ° C. The temperature should be in the range of 1260 ° C. or lower , and the basicity of the slag at the end of the treatment should be adjusted to the range of 1.0 or more and 1.8 or less . Here, the basicity of the slag is the mass ratio of CaO and SiO 2 . We propose a method for dephosphorizing hot metal, which is characterized by the above.

なお、本発明に係る上記溶銑の脱燐処理方法については、
a.前記酸化剤は、CaOを10質量%以上20質量%以下の範囲で含み、SiOを5質量%以上10質量%以下の範囲で含み、かつ、質量比でCaO/SiOが1.2以上2.2以下の範囲にあること、
b.前記精錬容器が混銑車であること、
などがより好ましい解決手段になり得るものと考えられる。
Regarding the method for dephosphorizing the hot metal according to the present invention,
a. The oxidizing agent contains CaO in the range of 10% by mass or more and 20% by mass or less, SiO 2 in the range of 5% by mass or more and 10% by mass or less, and CaO / SiO 2 in the mass ratio of 1.2 or more. Being in the range of 2.2 or less,
b. The refining container is a torpedo wagon,
Etc. may be a more preferable solution.

以上説明したように、本発明に依れば、蛍石等のハロゲン化物を含まない精錬剤を用いて、処理終了時の溶銑温度とスラグ塩基度を管理し、脱燐処理時のスラグの脱燐能力の維持とスラグの滓化促進を両立させることができ、溶銑P濃度を0.010質量%以下まで工業的に安定的に溶製することができる。 As described above, according to the present invention, a slag-free refining agent such as fluorite is used to control the hot metal temperature and slag basicity at the end of the treatment, and to remove slag during the dephosphorization treatment. It is possible to maintain the phosphorus capacity and promote slag slag at the same time, and it is possible to industrially and stably smelt the hot metal P concentration to 0.010% by mass or less.

本発明の一実施形態に用いる溶銑予備処理設備を示す模式図である。It is a schematic diagram which shows the hot metal pretreatment equipment used for one Embodiment of this invention. 上記実施形態で用いる混銑車を傾転させて連続排滓している状態を示すA-A’視断面模式図である。FIG. 3 is a schematic cross-sectional view taken along the line AA'showing a state in which the torpedo wagon used in the above embodiment is tilted and continuously discharged. 処理終了時の溶銑温度とスラグ塩基度C/Sが処理後P濃度に与える影響を示すグラフである。It is a graph which shows the influence which the hot metal temperature and the slag basicity C / S at the end of a treatment have on the P concentration after a treatment.

添付した図面を参照しつつ、本発明を具体化した実施の形態について説明する。図1は本発明の一実施形態に用いる溶銑予備処理設備を示す模式図である。本発明の方法を、精錬容器としての輸送容器に混銑車1を用いて実施する場合について説明する。図2は、混銑車1を傾転させて連続排滓している状態を示すA-A’視断面模式図である。 An embodiment embodying the present invention will be described with reference to the attached drawings. FIG. 1 is a schematic view showing a hot metal pretreatment facility used in one embodiment of the present invention. A case where the method of the present invention is carried out by using a torpedo wagon 1 as a transport container as a refining container will be described. FIG. 2 is a schematic cross-sectional view taken along the line AA'showing a state in which the torpedo wagon 1 is tilted and continuously discharged.

混銑車1の容器10には、高炉から出銑された溶銑2が収容されている。この溶銑2は、鋳床脱珪等の脱珪処理が事前に施されていてもよい。混銑車が予備処理設備に搬送された後、または、搬送される前に、混銑車2の容器10を所定の角度に傾転させる。容器10を傾転させる角度は、図2に示すように容器10の炉口からスラグ3が排出される角度であって、かつ、溶銑2が排出されない程度に傾けた角度である。 The hot metal 2 taken out from the blast furnace is housed in the container 10 of the torpedo wagon 1. The hot metal 2 may be previously subjected to a desiliconization treatment such as desiliconization of the cast bed. After the torpedo wagon is transported to the pretreatment equipment or before being transported, the container 10 of the torpedo wagon 2 is tilted at a predetermined angle. As shown in FIG. 2, the angle at which the container 10 is tilted is an angle at which the slag 3 is discharged from the furnace opening of the container 10 and an angle at which the hot metal 2 is not discharged.

本発明に係る溶銑の脱燐方法では、図1に示すように混銑車1の容器10を精錬容器として、炉口100からインジェクションランス4を溶銑2中に浸漬し、精錬剤をキャリアガス7で搬送して、所定時間にわたり吹き込むものである。それにより、溶銑2中のSiおよびPは、酸化されてスラグ3に移行し、溶銑の脱珪、脱燐が施される。特に、低燐領域の脱燐反応は、吹き込まれた脱燐剤のトランジトリ反応がスラグ-メタルの界面反応より支配的になると考えられている。つまり、溶銑上に存在するトップスラグは脱燐剤が一度捕捉したPを保持する(すなわちスラグから溶銑への復Pを起さない)役割を担うことになる。 In the method for dephosphorizing hot metal according to the present invention, as shown in FIG. 1, the container 10 of the hot metal wheel 1 is used as a refining container, the injection lance 4 is immersed in the hot metal 2 from the furnace port 100, and the refining agent is used in the carrier gas 7. It is transported and blown over a predetermined time. As a result, Si and P in the hot metal 2 are oxidized and transferred to the slag 3, and the hot metal is desiliconized and dephosphorized. In particular, in the dephosphorization reaction in the low phosphorus region, it is considered that the transient reaction of the injected dephosphorizing agent becomes dominant over the interfacial reaction of slag-metal. That is, the top slag present on the hot metal plays a role of retaining the P once captured by the dephosphorizing agent (that is, does not cause the return P from the slag to the hot metal).

精錬剤としては、酸化剤6を用い、必要に応じて石灰系フラックス5を添加する。酸化剤6としては、焼結鉱や製鉄所内集塵ダスト、製鉄所内発生スラッジ等が好適に使用できる。さらに、CaOを10質量%以上20質量%以下の範囲で含み、SiOを5質量%以上10質量%以下の範囲で含み、かつ、質量比でCaO/SiOが1.2以上2.2以下の範囲にあることが好ましい。また、石灰系フラックス5としては焼石灰粉、製鋼スラグ等が好適に使用できる。 As the refining agent, an oxidizing agent 6 is used, and a lime-based flux 5 is added as needed. As the oxidizing agent 6, sinter, dust collected in the steelworks, sludge generated in the steelworks, and the like can be preferably used. Further, CaO is contained in the range of 10% by mass or more and 20% by mass or less, SiO 2 is contained in the range of 5% by mass or more and 10% by mass or less, and CaO / SiO 2 is 1.2 or more and 2.2 by mass ratio. It is preferably in the following range. Further, as the lime-based flux 5, burnt lime powder, steelmaking slag and the like can be preferably used.

本発明では、予備処理前または予備処理途中の溶銑2のSi濃度[質量%]およびP濃度[質量%]を分析し、同じく溶銑の温度[℃]を測定し、目標とする予備処理後の溶銑のSi濃度およびP濃度まで処理するのに必要な酸素量[Nm]を求める。ここで、求めた酸素量を推定必要酸素量[Nm]と呼称することとし、推定必要酸素量[Nm]は、用いる予備処理設備の諸条件において経験的な脱燐酸素効率[%]を用いて求めてもよい。求めた推定必要酸素量[Nm]を用いて、処理後の溶銑温度[℃]を推定する。ここで、求められた溶銑温度を推定最終溶銑温度と呼称することとする。推定最終溶銑温度は、目標とする予備処理後の溶銑Si濃度およびP濃度に応じて、必要な酸化剤の添加量およびその酸化剤が含有するFeOやFeの分解吸熱反応に基づいた熱収支から推定する。 In the present invention, the Si concentration [mass%] and the P concentration [mass%] of the hot metal 2 before or during the pretreatment are analyzed, and the temperature [° C.] of the hot metal is also measured, and after the target pretreatment. Obtain the amount of oxygen [Nm 3 ] required for processing to the Si concentration and P concentration of the hot metal. Here, the obtained oxygen amount is referred to as an estimated required oxygen amount [Nm 3 ], and the estimated required oxygen amount [Nm 3 ] is an empirical dephosphorylation oxygen efficiency [%] under various conditions of the pretreatment equipment used. It may be obtained by using. Using the obtained estimated required oxygen amount [Nm 3 ], the hot metal temperature [° C.] after the treatment is estimated. Here, the obtained hot metal temperature is referred to as an estimated final hot metal temperature. The estimated final hot metal temperature was based on the required amount of the oxidizing agent added and the decomposition heat absorption reaction of FeO and Fe 2 O 3 contained in the oxidizing agent, depending on the hot metal Si concentration and the P concentration after the target pretreatment. Estimated from the heat balance.

次いで、処理後のスラグ塩基度を調整する。まず上記で決定した酸化剤の必要量から酸化剤に含有されるCaOおよびSiOの供給量が推定される。また、溶銑中Siの酸化物としてのSiOの供給量は、処理前溶銑Si濃度と目標処理後Si濃度から推定することができる。これにより処理後スラグの塩基度C/Sが推定される。上記で推定した処理後スラグ塩基度C/Sが1.0より低い場合には石灰系フラックス5を添加して1.0以上となるように調整する。一方、推定した処理後スラグ塩基度C/Sが1.8より高い場合には、含有CaOが比較的低いスラッジ等を酸化剤6として使用したり、酸素ガスを使用したりすることで処理後スラグ塩基度C/Sが1.8以下となるように調整する。従来のスラグ塩基度が1.8を超えるような条件での脱燐処理する場合、1260℃以下のような低温領域では脱燐速度が急激に低下してしまっていたが、本発明では、処理後スラグ塩基度C/Sを1.0~1.8の範囲に調整することで、1260℃以下のような低温であっても脱燐が進行することが分かった。 Then, the slag basicity after the treatment is adjusted. First, the supply amounts of CaO and SiO 2 contained in the oxidizing agent are estimated from the required amount of the oxidizing agent determined above. Further, the supply amount of SiO 2 as an oxide of Si in the hot metal can be estimated from the hot metal Si concentration before the treatment and the Si concentration after the target treatment. As a result, the basicity C / S of the treated slag is estimated. If the post-treatment slag basicity C / S estimated above is lower than 1.0 , a lime-based flux 5 is added to adjust the slag basicity to 1.0 or higher. On the other hand, when the estimated post-treatment slag basicity C / S is higher than 1.8 , sludge or the like having a relatively low CaO content can be used as the oxidizing agent 6 or oxygen gas can be used after the treatment. Adjust so that the slag basicity C / S is 1.8 or less . In the conventional dephosphorization treatment under conditions where the slag basicity exceeds 1.8, the dephosphorization rate has dropped sharply in a low temperature region such as 1260 ° C. or lower, but in the present invention, the dephosphorization rate has dropped sharply. By adjusting the post-treatment slag basicity C / S to the range of 1.0 to 1.8, it was found that dephosphorization proceeds even at a low temperature such as 1260 ° C. or lower.

もちろん、酸化剤種の選択や、酸素ガスや石灰系フラックス5の選択、酸化剤6の添加量は、処理中に溶銑のSi濃度やP濃度を分析したり、溶銑温度を測定したりして、都度調整してもよい。 Of course, the selection of the oxidant type, the selection of oxygen gas and lime-based flux 5, and the amount of the oxidant 6 added can be determined by analyzing the Si concentration and P concentration of the hot metal during the treatment and measuring the hot metal temperature. , May be adjusted each time.

図3に処理後溶銑温度と処理後スラグ塩基度が、処理後溶銑のP濃度に与える影響をグラフで示す。図3中、処理後溶銑P濃度が0.004質量%以下を○印でプロットし、0.004質量%超え0.010質量%以下を△印でプロットし、0.010質量%超えを×印でプロットした。図3から明らかなように処理後溶銑温度を1180℃以上1300℃未満の範囲内とし、かつ、処理後スラグ塩基度が0.7以上2.1以下の範囲とすることで、処理後溶銑P濃度が0.010質量%以下という低P濃度の溶銑が溶製可能である。また、図3から明らかなように処理後溶銑温度を1200℃以上1260℃以下の範囲内とし、かつ、処理後スラグ塩基度が1.0以上1.8以下の範囲とすることで、処理後溶銑P濃度が0.004質量%以下という極めて低いP濃度の溶銑が溶製可能である。一方、処理後溶銑温度が1180℃未満となる場合、または処理後スラグ塩基度が2.1を超える場合には、スラグの融点が溶銑温度より高位であり、スラグは十分に滓化せずに処理後溶銑P濃度が0.010質量%超えとなる場合がある。また、溶銑温度が1300℃以上の場合には、高温すぎてスラグの脱燐能が低下し、または、処理後スラグ塩基度が0.7未満となる場合には、スラグ中CaO濃度が低すぎてスラグの脱燐能が不足してしまい、処理後溶銑P濃度が0.010質量%超えとなる。 FIG. 3 is a graph showing the effects of the post-treatment hot metal temperature and the post-treatment slag basicity on the P concentration of the post-treatment hot metal. In FIG. 3, the treated hot metal P concentration of 0.004% by mass or less is plotted with a circle, the amount of more than 0.004% by mass of 0.010% by mass or less is plotted with a triangle, and the value of more than 0.010% by mass is ×. Plotted with marks. As is clear from FIG. 3, the post-treatment hot metal temperature is within the range of 1180 ° C. or higher and lower than 1300 ° C., and the post-treatment slag basicity is within the range of 0.7 or higher and 2.1 or lower. It is possible to melt hot metal having a low P concentration of 0.010% by mass or less. Further, as is clear from FIG. 3, the hot metal temperature after the treatment is set within the range of 1200 ° C. or higher and 1260 ° C. or lower, and the post-treatment slag basicity is set within the range of 1.0 or higher and 1.8 ° C. or lower. It is possible to melt hot metal having an extremely low P concentration of 0.004% by mass or less. On the other hand, when the hot metal temperature after the treatment is less than 1180 ° C., or when the basicity of the slag after the treatment exceeds 2.1, the melting point of the slag is higher than the hot metal temperature, and the slag is not sufficiently slagged. After the treatment, the hot metal P concentration may exceed 0.010% by mass. Further, when the hot metal temperature is 1300 ° C. or higher, the slag dephosphorization ability is lowered due to the high temperature, or when the slag basicity after the treatment is less than 0.7, the CaO concentration in the slag is too low. As a result, the dephosphorization ability of the slag becomes insufficient, and the hot metal P concentration after the treatment exceeds 0.010% by mass.

以上述べたように、本発明により最終溶銑温度が低い場合においてもスラグ固化に起因する滓化不良もしくはスラグ中のCaO濃度が不足することはなく、溶銑の脱燐処理が安定して実施できるようになった。 As described above, according to the present invention, even when the final hot metal temperature is low, the hot metal dephosphorization treatment can be stably carried out without slag solidification resulting in poor slag or insufficient CaO concentration in the slag. Became.

精錬容器として、混銑車1を用い、400tの溶銑2を収容した。図1の設備構成にて、図2に示す混銑車の容器を傾転させた状態で、キャリアガスとして窒素ガスあるいは酸素ガスを用い、石灰系フラックスと酸化剤を混合した精錬剤をインジェクションランスから溶銑内に吹き込んだ。このとき、酸化剤はCaOを11質量%含み、SiOを6質量%含む焼結鉱(CaOとSiOとの質量比が1.83)を使用した。処理終了判定は、目標とするSi濃度を0.02質量%、P濃度を0.010質量%とした前提で前記推定必要酸素量を算出し、酸化剤もしくはキャリアガスによって前記推定必要酸素量を供給し終わるまでとした。その結果、処理時間は80分以上100分以下の範囲となった。各種処理条件および結果を表1に示す。これらの実施例については上記実施の形態と同様に溶銑搬送容器として混銑車1を用いて、溶銑2の予備処理を行った。処理No.1-は、本発明の処理後スラグ塩基度C/Sおよび溶銑温度の条件を満たす。処理No.-26は処理後スラグ塩基度C/Sまたは溶銑温度が本発明の範囲外にある。 A torpedo wagon 1 was used as a refining container, and 400 tons of hot metal 2 was accommodated. In the equipment configuration shown in FIG. 1, with the container of the torpedo wagon shown in FIG. 2 tilted, nitrogen gas or oxygen gas is used as the carrier gas, and a refining agent mixed with a lime-based flux and an oxidizing agent is injected from the injection lance. It was blown into the hot metal. At this time, the oxidizing agent used was a sintered ore containing 11% by mass of CaO and 6% by mass of SiO 2 (mass ratio of CaO to SiO 2 was 1.83). In the treatment end determination, the estimated required oxygen amount is calculated on the assumption that the target Si concentration is 0.02% by mass and the P concentration is 0.010% by mass, and the estimated required oxygen amount is determined by an oxidizing agent or a carrier gas. Until the supply was finished. As a result, the processing time was in the range of 80 minutes or more and 100 minutes or less. Table 1 shows various processing conditions and results. For these examples, the hot metal 2 was pretreated by using the hot metal wheel 1 as the hot metal transport container in the same manner as in the above embodiment. Processing No. 1-5 satisfy the conditions of the post-treatment slag basicity C / S and the hot metal temperature of the present invention . Processing No. In 6-26, the post-treatment slag basicity C / S or hot metal temperature is outside the range of the present invention.

Figure 0007082321000004
Figure 0007082321000004

処理No.1~5は、本発明法に従い、処理終了時の溶銑温度を1200~1260℃の範囲とし、スラグ塩基度を1.0~1.8の範囲に調整した。その結果、処理後溶銑P濃度は0.004質量%以下となった。処理No.6-9は、処理前Siが低く、処理後溶銑温度が1180℃以上1200℃以下の範囲となった。処理No.10~14は処理後温度が1270~1290℃の範囲となった。処理No.15~18は、CaOフラックスの添加量が少なく、処理後スラグ塩基度が0.7~0.9の範囲となった。処理No.19~22は、CaOフラックスの添加量が多く、処理後スラグ塩基度が1.9~2.1の範囲となった。その結果、処理No.6~22は、処理後P濃度が、0.005~0.010質量%の範囲となった。
処理No.23-25は、処理後スラグ塩基度または溶銑温度が発明範囲を外れたため、処理後P濃度が0.010質量%超えとなった。
Processing No. In 1 to 5, the hot metal temperature at the end of the treatment was set to the range of 1200 to 1260 ° C., and the slag basicity was adjusted to the range of 1.0 to 1.8 according to the method of the present invention. As a result, the hot metal P concentration after the treatment was 0.004% by mass or less. Processing No. In 6-9, the Si before the treatment was low, and the hot metal temperature after the treatment was in the range of 1180 ° C. or higher and 1200 ° C. or lower. Processing No. The temperature after treatment of 10 to 14 was in the range of 1270 to 1290 ° C. Processing No. In Nos. 15 to 18, the amount of CaO flux added was small, and the slag basicity after the treatment was in the range of 0.7 to 0.9. Processing No. In 19 to 22, the amount of CaO flux added was large, and the slag basicity after treatment was in the range of 1.9 to 2.1. As a result, the processing No. In 6 to 22, the P concentration after the treatment was in the range of 0.005 to 0.010% by mass.
Processing No. In 23-25, the post-treatment slag basicity or the hot metal temperature was out of the invention range, so that the post-treatment P concentration exceeded 0.010% by mass.

本発明によれば、上記例示した混銑車に限らず、精錬容器に脱燐剤を吹き込んで溶銑を脱燐処理する方法に適用可能である。本発明によれば、以降の工程での脱燐処理を軽減する極低P濃度の溶銑を溶製することが可能となる。 According to the present invention, it is applicable not only to the above-exemplified torpedo wagon but also to a method of blowing a dephosphorizing agent into a refining container to dephosphorize the hot metal. According to the present invention, it is possible to melt a hot metal having an extremely low P concentration that reduces the dephosphorization treatment in the subsequent steps.

1 混銑車(精錬容器)
10 容器
100 炉口
2 溶銑
3 スラグ
4 インジェクションランス
5 石灰系フラックス
6 酸化剤
7 キャリアガス
1 Torpedo wagon (refining container)
10 Container 100 Furnace 2 Hot metal 3 Slag 4 Injection lance 5 Lime-based flux 6 Oxidizing agent 7 Carrier gas

Claims (3)

精錬容器内に保持した溶銑に石灰系フラックスおよび酸化剤を含む精錬剤(ハロゲン化物を除く)を吹き込み、溶銑を脱燐処理する方法において、処理終了時の温度を1200℃以上1260℃以下の範囲とし、処理終了時のスラグの塩基度を1.0以上1.8以下の範囲に調整する、ここでスラグの塩基度とはCaOとSiOとの質量比であることを特徴とする溶銑の脱燐処理方法。 In a method of dephosphorizing the hot metal by blowing a refining agent (excluding halides) containing lime-based flux and an oxidizing agent into the hot metal held in the smelting container, the temperature at the end of the treatment is in the range of 1200 ° C. or higher and 1260 ° C. or lower . The basicity of the slag at the end of the treatment is adjusted to a range of 1.0 or more and 1.8 or less . Here, the basicity of the slag is the mass ratio of CaO and SiO 2 . Dephosphorization method. 前記酸化剤は、CaOを10質量%以上20質量%以下の範囲で含み、SiOを5質量%以上10質量%以下の範囲で含み、かつ、質量比でCaO/SiOが1.2以上2.2以下の範囲にあることを特徴とする請求項1に記載の溶銑の脱燐処理方法。 The oxidizing agent contains CaO in the range of 10% by mass or more and 20% by mass or less, SiO 2 in the range of 5% by mass or more and 10% by mass or less, and CaO / SiO 2 in the mass ratio of 1.2 or more. 2.2 The method for dephosphorizing hot metal according to claim 1, which is in the range of 2.2 or less. 前記精錬容器が混銑車であることを特徴とする請求項1または2に記載の溶銑の脱燐処理方法。 The method for dephosphorizing hot metal according to claim 1 or 2, wherein the smelting container is a torpedo wagon.
JP2019157540A 2019-08-30 2019-08-30 Dephosphorization method of hot metal Active JP7082321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019157540A JP7082321B2 (en) 2019-08-30 2019-08-30 Dephosphorization method of hot metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019157540A JP7082321B2 (en) 2019-08-30 2019-08-30 Dephosphorization method of hot metal

Publications (2)

Publication Number Publication Date
JP2021036063A JP2021036063A (en) 2021-03-04
JP7082321B2 true JP7082321B2 (en) 2022-06-08

Family

ID=74716310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019157540A Active JP7082321B2 (en) 2019-08-30 2019-08-30 Dephosphorization method of hot metal

Country Status (1)

Country Link
JP (1) JP7082321B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002129219A (en) 2000-10-24 2002-05-09 Nippon Steel Corp Method for dephosphorizing molten iron
JP2013167010A (en) 2012-02-17 2013-08-29 Nippon Steel & Sumitomo Metal Corp Dephosphorization treatment method for molten iron
JP2015160981A (en) 2014-02-27 2015-09-07 Jfeスチール株式会社 Preliminary treatment method for molten pig iron
JP2018035376A (en) 2016-08-29 2018-03-08 Jfeスチール株式会社 Hot metal dephosphorization method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3503176B2 (en) * 1994-03-31 2004-03-02 Jfeスチール株式会社 Hot metal dephosphorizer for injection

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002129219A (en) 2000-10-24 2002-05-09 Nippon Steel Corp Method for dephosphorizing molten iron
JP2013167010A (en) 2012-02-17 2013-08-29 Nippon Steel & Sumitomo Metal Corp Dephosphorization treatment method for molten iron
JP2015160981A (en) 2014-02-27 2015-09-07 Jfeスチール株式会社 Preliminary treatment method for molten pig iron
JP2018035376A (en) 2016-08-29 2018-03-08 Jfeスチール株式会社 Hot metal dephosphorization method

Also Published As

Publication number Publication date
JP2021036063A (en) 2021-03-04

Similar Documents

Publication Publication Date Title
JP5408369B2 (en) Hot metal pretreatment method
JP6164151B2 (en) Method for refining molten iron using a converter-type refining furnace
JP4742740B2 (en) Method for melting low-sulfur steel
JP6984731B2 (en) How to remove phosphorus from hot metal
JP4848757B2 (en) Hot metal dephosphorization method
JP5408379B2 (en) Hot metal pretreatment method
JP5983492B2 (en) Hot metal pretreatment method
JP4499969B2 (en) Desulfurization method by ladle refining of molten steel
JP7082321B2 (en) Dephosphorization method of hot metal
JP5061545B2 (en) Hot metal dephosphorization method
JP4765374B2 (en) Desulfurization treatment method for chromium-containing hot metal
JP2008063645A (en) Steelmaking method
JP2006265623A (en) Method for pre-treating molten iron
JP2008184648A (en) Method for desiliconizing and dephosphorizing molten pig iron
CN113832282A (en) Vanadium-containing molten iron desulfurization method
JP4695312B2 (en) Hot metal pretreatment method
JP7082320B2 (en) Dephosphorization method of hot metal
JP2021059759A (en) Production method of ultra-low sulfur stainless steel
JP7107292B2 (en) Hot metal dephosphorization treatment method
JP7095668B2 (en) Pretreatment method for hot metal
JP2011058046A (en) Method for dephosphorizing molten iron
JPH05156338A (en) Method for reusing low phosphorus converter slag
JP3574690B2 (en) Hot metal desulfurization method
JP2017171975A (en) Dephosphorization agent for molten pig iron and dephosphorization method
JP2002146422A (en) Method for dephosphorizing molten iron by which erosion of refractory hardly occurs

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220510

R150 Certificate of patent or registration of utility model

Ref document number: 7082321

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150