JP7082320B2 - Dephosphorization method of hot metal - Google Patents

Dephosphorization method of hot metal Download PDF

Info

Publication number
JP7082320B2
JP7082320B2 JP2019157535A JP2019157535A JP7082320B2 JP 7082320 B2 JP7082320 B2 JP 7082320B2 JP 2019157535 A JP2019157535 A JP 2019157535A JP 2019157535 A JP2019157535 A JP 2019157535A JP 7082320 B2 JP7082320 B2 JP 7082320B2
Authority
JP
Japan
Prior art keywords
hot metal
slag
dephosphorization treatment
dephosphorization
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019157535A
Other languages
Japanese (ja)
Other versions
JP2021036062A (en
Inventor
雄一 影山
真一 赤井
秀光 根岸
正洋 仲
渉 藤堂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2019157535A priority Critical patent/JP7082320B2/en
Publication of JP2021036062A publication Critical patent/JP2021036062A/en
Application granted granted Critical
Publication of JP7082320B2 publication Critical patent/JP7082320B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

本発明は、溶銑を転炉で吹錬する前に行う溶銑の予備処理方法に関し、特に精錬剤(フラックス)として蛍石等のハロゲン化物を使用せずに、溶銑の脱燐を効率良く行う溶銑の脱燐処理方法に関するものである。 The present invention relates to a method for pretreating hot metal before blowing the hot metal in a converter. In particular, the hot metal efficiently dephosphorizes the hot metal without using a halide such as fluorite as a refining agent (flux). It is related to the dephosphorization treatment method.

高炉から出銑した溶銑には、珪素や燐、硫黄などの不純物が多量に含まれている。そこで、近年では、溶銑を転炉で酸素吹錬して溶鋼とするにあたり、転炉での負荷軽減や製鋼スラグの発生量の低減、製鋼コストの削減の観点から、酸素吹錬の前工程として、溶銑に脱珪・脱燐・脱硫処理を施す、いわゆる「溶銑予備処理」が盛んに行われている。この溶銑予備処理は、高炉から出銑された溶銑が、出銑樋や傾注樋に存在する間、または、転炉や溶銑鍋、混銑車に収容された後に、石灰系フラックスや酸化剤、ソーダ灰系フラックス等の精錬剤を、キャリアガスに酸素や窒素ガス等を用いて、溶銑中に吹込むことで行われる。これにより、溶銑中の珪素(Si)や燐(P)を酸化して生成した酸化物(SiOやP)や、硫黄(S)が精錬剤と反応して生成した硫化物(CaSやNaS)をスラグ中に吸収して除去する。 The hot metal from the blast furnace contains a large amount of impurities such as silicon, phosphorus, and sulfur. Therefore, in recent years, when the hot metal is oxygen-blown in a converter to make molten steel, it has been used as a pre-process for oxygen blowing from the viewpoint of reducing the load in the converter, reducing the amount of steelmaking slag generated, and reducing the steelmaking cost. , So-called "hot metal pretreatment", in which hot metal is desiliconized, dephosphorized, and desulfurized, is actively performed. This hot metal pretreatment is performed while the hot metal ejected from the blast furnace is present in the hot metal iron or tilting pig iron, or after being housed in a converter, hot metal pot, or torpedo wagon, lime-based flux, oxidizing agent, and soda. This is done by blowing a refining agent such as an ash-based flux into the hot metal using oxygen, nitrogen gas, or the like as the carrier gas. As a result, oxides (SiO 2 and P 2 O 5 ) produced by oxidizing silicon (Si) and phosphorus (P) in the hot metal and sulfides produced by the reaction of sulfur (S) with the refining agent (Sulfur) (SiO 2 and P 2 O 5). CaS and Na 2S) are absorbed into the slag and removed.

斯かる溶銑予備処理のうち、脱燐処理は、精錬容器内の溶銑中に酸化剤を投入して燐を酸化物Pとし、これを溶銑の溶銑上部に生成させたスラグ中に取り込むことで、脱燐を行っている。しかし、燐の酸化物は、酸性を示すことから、従来は、溶銑の上部に形成されるスラグ(トップスラグ)の塩基度(CaOとSiOの質量比であり、以降、「C/S」とも表す)が2.0以上となるように石灰系フラックスを吹き込んでいた。 Among such hot metal pretreatments, in the dephosphorization treatment, an oxidizing agent is put into the hot metal in the refining vessel to convert phosphorus into an oxide P2 O5 , which is incorporated into the slag generated in the upper part of the hot metal of the hot metal. Therefore, dephosphorization is performed. However, since the oxide of phosphorus is acidic, the basicity of the slag (top slag) formed on the upper part of the hot metal (the mass ratio of CaO and SiO 2 is the mass ratio, and thereafter, "C / S". The lime-based flux was blown so that (also referred to as) was 2.0 or more.

ところが、スラグの塩基度C/Sが高くなると、スラグの溶融温度が高くなるため、予備処理中に溶銑温度が低下してくると、スラグの粘度が上昇し、溶銑中に吹込まれたCaOの滓化が不十分となり、CaOの脱燐利用効率が低下する。そのため、溶銑脱燐を十分に行わせようとするときは、石灰系フラックスを過剰に投入することになり、スラグ量が増加するばかりでなく、精錬剤コスト、スラグ処理コストの増大を招くという問題があった。また、脱燐処理後の溶銑温度のさらなる低下も招いていた。 However, when the basicity C / S of the slag is high, the melting temperature of the slag is high. Therefore, when the hot metal temperature is lowered during the pretreatment, the viscosity of the slag is increased and the CaO blown into the hot metal Slagging becomes insufficient, and the efficiency of CaO dephosphorization utilization decreases. Therefore, when trying to sufficiently perform hot metal dephosphorization, an excessive amount of lime-based flux is added, which not only increases the amount of slag, but also increases the cost of the refining agent and the cost of slag processing. was there. In addition, the hot metal temperature after the dephosphorization treatment was further lowered.

そこで、極低燐を目標とする脱燐処理では、CaOの滓化を促進してフラックス量を減らすため、蛍石(CaF)等のハロゲン化物を添加し、低融点のスラグを形成し、フラックスの滓化促進と脱燐能力の確保を図る手法が多用されてきた。 Therefore, in the dephosphorization treatment aiming at extremely low phosphorus, a halide such as fluorite (CaF 2 ) is added to promote the slagging of CaO and reduce the amount of flux, and slag having a low melting point is formed. Techniques for promoting flux slag and ensuring dephosphorization capacity have been widely used.

しかし、近年、スラグは、土木、建築用資材等の原料として有効利用されているが、蛍石の添加は、生成するスラグ中の弗素(F)濃度を高めることとなるため、弗素の溶出等が環境上規制されるような使用先への利用はできないといった問題があり、蛍石を含まないスラグを用いる脱燐処理技術の開発が望まれている。また、スラグ中の弗素は、溶銑予備処理に使用する容器の耐火物の溶損も促進するため、予備処理設備の長寿命化の観点からは望ましくない。さらに、蛍石は、精錬剤コストの面からも使用しない方が望ましい。 However, in recent years, slag has been effectively used as a raw material for civil engineering, building materials, etc., but the addition of fluorite increases the concentration of fluorine (F) in the slag produced, so that fluorine elution, etc. However, there is a problem that it cannot be used in places where it is environmentally regulated, and it is desired to develop a dephosphorization treatment technique using slag that does not contain fluorite. Further, the fluorine in the slag also promotes the melting of the refractory material of the container used for the hot metal pretreatment, which is not desirable from the viewpoint of extending the life of the pretreatment equipment. Furthermore, it is desirable not to use fluorite in terms of refining agent cost.

そこで、蛍石等のハロゲン化物を添加しない脱燐技術が提案されている。例えば、特許文献1には、溶銑予備処理において精錬剤として酸化鉄と生石灰とを吹き込み、スラグの塩基度C/Sを2.0~2.5と比較的高めに維持して溶銑のSi濃度を0.03質量%以下に低減する脱珪を行うとともに、引き続き、スラグの塩基度C/Sを2.0~2.5の範囲に維持して操業する、蛍石を使用しない溶銑の予備処理方法が提案されている。 Therefore, a dephosphorization technique that does not add a halide such as fluorite has been proposed. For example, in Patent Document 1, iron oxide and fresh lime are blown as refining agents in the hot metal pretreatment, and the basicity C / S of slag is maintained at a relatively high level of 2.0 to 2.5, and the Si concentration of the hot metal is maintained. Preliminary hot metal without fluorite, which is operated while maintaining the basicity C / S of slag in the range of 2.0 to 2.5 while performing desiliconization to reduce the amount to 0.03% by mass or less. A processing method has been proposed.

特開昭63-223114号公報Japanese Unexamined Patent Publication No. 63-223114

しかしながら、上記特許文献1の技術は、溶銑温度が低い場合には、処理中の精錬容器内のスラグが固化して滓化不良を引き起こしたり、スラグの排滓性が悪化したりするという問題がある。つまり、酸化剤の添加によって脱燐を進行させる溶銑処理末期には、溶銑温度が1260℃以下まで低下することがあり、斯かるときは、精錬剤が十分に滓化せず、スラグの液相率が低下するため、スラグが固化して流動性が悪化し、溶銑処理中のスラグ排滓性が悪くなり、安定操業が妨げられるという問題がある。 However, the technique of Patent Document 1 has a problem that when the hot metal temperature is low, the slag in the refining container being processed solidifies and causes poor slag, or the slag slag removal property deteriorates. be. That is, at the end of the hot metal treatment in which dephosphorization is promoted by the addition of an oxidizing agent, the hot metal temperature may drop to 1260 ° C. or lower. Since the rate decreases, there is a problem that the slag solidifies and the fluidity deteriorates, the slag discharge property during the hot metal treatment deteriorates, and stable operation is hindered.

ところで、スラグの脱燐能は、溶銑中のP濃度に対するスラグ中のP濃度の質量比であるP分配比L(=(%P)/[%P])で表され、このP分配比Lを推定する式については、多くの報告があるが、下記(2)式で表されるHealyの式がよく知られている。

Figure 0007082320000001
ここで、L=Pの分配比=(%P)/[%P]
(%P)=スラグ中のP濃度(質量%)
[%P]=溶銑中のP濃度(質量%)
(%T.Fe)=スラグ中のトータル鉄濃度(質量%)
(%CaO)=スラグ中のCaO濃度(質量%)
T:溶銑の絶対温度(K)
この(2)式から、定性的には、スラグ中のCaO濃度が高い、すなわち、塩基度C/Sが高いほど、また、溶銑温度Tが低いほど、燐分配比Lが大きくなり、溶銑とスラグ間の平衡P濃度が低下する(脱燐が進行する)ことがわかる。 By the way, the dephosphorization ability of slag is represented by the P distribution ratio LP (= (% P ) / [% P]), which is the mass ratio of the P concentration in the slag to the P concentration in the hot metal, and this P distribution ratio. There are many reports on the formula for estimating LP , but the formula of Health expressed by the following formula (2) is well known.
Record
Figure 0007082320000001
Here, L P = distribution ratio of P = (% P) / [% P]
(% P) = P concentration in slag (mass%)
[% P] = P concentration in hot metal (mass%)
(% T.Fe) = total iron concentration in slag (% by mass)
(% CaO) = CaO concentration in slag (% by mass)
T: Absolute temperature of hot metal (K)
From this equation (2), qualitatively, the higher the CaO concentration in the slag, that is, the higher the basicity C / S , and the lower the hot metal temperature T, the larger the phosphorus distribution ratio LP, and the hot metal. It can be seen that the equilibrium P concentration between the slag and the slag decreases (dephosphorization progresses).

先述したように、スラグ中のCaO濃度が上昇すると、スラグの融点が上昇するため、溶銑温度が低下する脱燐処理末期においては、スラグの液相率が低下し、滓化性が低下するため、脱燐能が低下したり、スラグが固化してスラグの排滓性が悪化したりするという問題が発生する。しかし、従来の溶銑予備処理技術においては、スラグ脱燐能とスラグ滓化性を両立するスラグ組成は具体的に明示されていない。 As described above, when the CaO concentration in the slag increases, the melting point of the slag increases, so that the liquid phase ratio of the slag decreases and the slag property decreases at the end of the dephosphorization treatment when the hot metal temperature decreases. , The dephosphorization ability is lowered, and the slag is solidified to deteriorate the slag scavenging property. However, in the conventional hot metal pretreatment technique, the slag composition that achieves both slag dephosphorylation ability and slag slag slag slaging property is not specifically specified.

本発明は、従来技術が抱える上記の問題点に鑑みてなされたものであり、その目的は、精錬剤として蛍石等のハロゲン化物を使用せずに、滓化不良を抑止し、効率良く脱燐でき、安定した操業が可能な溶銑の脱燐処理方法を提案することにある。 The present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to suppress a slagging defect and efficiently remove the halide without using a halide such as fluorite as a refining agent. The purpose is to propose a method for dephosphorizing hot metal that can be phosphorused and can be operated stably.

発明者らは、上記課題を達成するため、酸化剤で溶銑の脱燐を行なう際の操業条件について鋭意研究を重ねた。その結果、脱燐処理終了時の溶銑温度に応じて脱燐処理終了時のスラグ塩基度を適正範囲に調整すると同時に、平均粒径を適正範囲に制御した酸化剤を使用することで、上記課題を解決できることを見出し、本発明を開発するに至った。 In order to achieve the above-mentioned problems, the inventors have conducted extensive research on the operating conditions for dephosphorizing the hot metal with an oxidizing agent. As a result, by adjusting the slag basicity at the end of the dephosphorization treatment to an appropriate range according to the hot metal temperature at the end of the dephosphorization treatment and at the same time using an oxidizing agent in which the average particle size is controlled within the appropriate range, the above-mentioned problems can be solved. We have found that we can solve the problem, and have developed the present invention.

すなわち、本発明は、精錬容器内に収容した溶銑に石灰系フラックスおよび酸化剤を含む精錬剤を吹き込んで溶銑を脱燐処理する方法において、上記酸化剤として平均粒径が40~100μmのものを使用し、脱燐処理終了時の溶銑温度を1260℃以下とし、上記石灰系フラックスの溶銑内への吹き込みを、溶銑温度が1260℃以上のときに行い、脱燐処理終了時のスラグの塩基度Bが、脱燐処理終了時の溶銑温度Tとの関係において、下記(1)式;
(8.01×10-5×T-0.1899×T+113.95)×0.71≦B≦8.01×10-5×T-0.1899×T+113.95・・・(1)
を満たすよう制御することを特徴とする、ハロゲン化物を用いない溶銑の脱燐処理方法。ここで、上記平均粒径とはメジアン粒径のことをいい、粒径分布は、自動篩振とう機を用いた篩分析によって測定することができる。篩分析により各粒径の篩目を通過した量の質量百分率(%)を縦軸に、粒径を対数目盛の横軸にしてプロットしたグラフにおいて、質量百分率50%に当る粒径を読みとってメジアン粒径とする。篩分析に用いる篩目はJIS Z 8801で規定されるもの等を使用すればよいが、これに限るものではない。また、上記塩基度とは、スラグ中のSiOに対するCaOの質量比のことをいう。
That is, the present invention is a method for dephosphorizing the hot metal by blowing a refining agent containing a lime-based flux and an oxidizing agent into the hot metal contained in the refining container, wherein the hot metal has an average particle size of 40 to 100 μm. In use, the hot metal temperature at the end of the dephosphorization treatment is set to 1260 ° C. or lower, and the above-mentioned lime-based flux is blown into the hot metal when the hot metal temperature is 1260 ° C. or higher, and the basicity of the slag at the end of the dephosphorization treatment is performed. In relation to the hot metal temperature T at the end of the dephosphorization treatment, B is the following equation (1);
(8.01 × 10-5 × T 2 −0.1899 × T + 113.95) × 0.71 ≦ B ≦ 8.01 × 10-5 × T 2 −0.1899 × T + 113.95 ... (1) )
A method for dephosphorizing hot metal without using a halide, which is characterized by controlling so as to satisfy the above conditions. Here, the average particle size refers to the median particle size, and the particle size distribution can be measured by sieving analysis using an automatic sieving machine. In a graph plotted with the mass percentage (%) of the amount passed through the mesh of each particle size on the vertical axis and the particle size on the horizontal axis of the logarithmic scale by sieve analysis, read the particle size corresponding to the mass percentage of 50%. The median particle size. As the sieve mesh used for the sieve analysis, those specified in JIS Z8801 or the like may be used, but the mesh size is not limited to this. The basicity is the mass ratio of CaO to SiO 2 in the slag.

本発明の上記溶銑の脱燐処理方法は、上記石灰系フラックスの溶銑内への吹き込みを、溶銑温度が1260℃以上のときに行うことを特徴とする。 The method for dephosphorizing the hot metal of the present invention is characterized in that the lime-based flux is blown into the hot metal when the hot metal temperature is 1260 ° C. or higher.

また、本発明の上記溶銑の脱燐処理方法に用いる上記酸化剤は、CaOを10~20質量%の範囲で含有することを特徴とする。 Further, the oxidizing agent used in the method for dephosphorizing hot metal of the present invention is characterized by containing CaO in the range of 10 to 20% by mass.

また、本発明の上記溶銑の脱燐処理方法における上記精錬容器は、混銑車の輸送容器であることを特徴とする。 Further, the smelting container in the method for dephosphorizing hot metal of the present invention is characterized by being a transport container for a torpedo wagon.

本発明によれば、脱燐処理終了時の溶銑温度Tに応じて、脱燐処理終了時のスラグ塩基度Bを適正範囲に制御するとともに、酸化剤の平均粒径を適正化したので、溶銑温度が低下したときでも、蛍石等のハロゲン化物を用いることなく、溶銑の脱燐処理を効率よく行うことが可能となる。 According to the present invention, the slag basicity B at the end of the dephosphorization treatment is controlled within an appropriate range according to the hot metal temperature T at the end of the dephosphorization treatment, and the average particle size of the oxidizing agent is optimized. Even when the temperature drops, it is possible to efficiently perform the dephosphorization treatment of the hot metal without using a halide such as fluorite.

混銑車を用いた溶銑予備処理設備の一例を示す模式図である。It is a schematic diagram which shows an example of the hot metal pretreatment equipment using a torpedo wagon. 図1の溶銑予備処理設備において、混銑車の輸送容器を傾転させて排滓している状態を示す模式図である。It is a schematic diagram which shows the state which the transport container of a torpedo wagon is tilted and discharged in the hot metal pretreatment facility of FIG. 脱燐処理終了時の溶銑温度Tとスラグ塩基度Bが脱燐処理後の溶銑中のP濃度に及ぼす影響を示すグラフである。It is a graph which shows the influence of the hot metal temperature T and the slag basicity B at the end of dephosphorization treatment on the P concentration in hot metal after dephosphorization treatment. 酸化剤の平均粒径が脱燐処理後の溶銑中のP濃度に及ぼす影響を示すグラフである。6 is a graph showing the effect of the average particle size of the oxidizing agent on the P concentration in the hot metal after the dephosphorization treatment.

図面を参照しつつ、本発明の溶銑脱燐処理方法について説明する。
図1は、混銑車の輸送容器を精錬容器として用いる溶銑予備処理設備の一例を示す模式図である。混銑車1は、高炉から出銑した溶銑3を輸送容器2に収容して次工程の製鋼工場まで搬送するものであり、上記溶銑3は、高炉から出銑された後、Si濃度をある程度まで低減する鋳床脱珪等の脱珪処理が施されたたものであってもよい。
The hot metal dephosphorization treatment method of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic view showing an example of a hot metal pretreatment facility that uses a transport container of a torpedo wagon as a refining container. The torpedo wagon 1 accommodates the hot metal 3 from the blast furnace in the transport container 2 and transports it to the steelmaking factory in the next process. It may be one that has been subjected to desiliconization treatment such as desiliconization of the cast bed to reduce it.

混銑車1の輸送容器2を精錬容器として用いて溶銑の脱燐処理を行う場合には、まず、混銑車1を予備処理設備に搬送し、輸送容器2を、図2に示したように、輸送容器2の炉口5からスラグ4が排出する角度、かつ、溶銑3が排出しない角度まで傾転させる。なお、輸送容器2は、予備処理設備に搬送する前に傾転させておいてもよい。混銑車の台車は、輸送容器を図2のように傾転させることのできる駆動部を有しているので、特に好適に使用できる。 When the hot metal dephosphorization treatment is performed using the transport container 2 of the torpedo wagon 1 as a refining container, first, the torpedo wagon 1 is transported to a pretreatment facility, and the transport container 2 is transferred to the pretreatment facility, as shown in FIG. Tilt the container 2 to an angle at which the slag 4 is discharged from the furnace port 5 and at an angle at which the hot metal 3 is not discharged. The transport container 2 may be tilted before being transported to the pretreatment equipment. Since the carriage of the torpedo wagon has a drive unit capable of tilting the transport container as shown in FIG. 2, it can be used particularly preferably.

そして、脱燐処理は、図1に示したように、輸送容器2の炉口5からインジェクションランス6を介して溶銑3中に酸化剤7および/または石灰系フラックス8を含む精錬剤を、キャリアガス9を用いて所定時間にわたって吹き込むことで行う。このときの脱燐反応は、溶銑中に吹き込まれた精錬剤が浮上中に起こす反応(トランジトリー反応)の方が、スラグ-メタル間の反応(パーマネント反応)より支配的であると考えられており、溶銑3中のSiおよびPは、浮上中に酸化剤により酸化されてSiO、Pとなり、浮上してトップスラグ4(単に「スラグ」とも称する)中に移行し、脱珪、脱燐される。溶銑上に生成したスラグ4は、SiO、Pを多く含んでいるため、図2に示したように、輸送容器2を傾転させてスラグ4を排滓しながら、脱燐処理を連続して行う。 Then, as shown in FIG. 1, the dephosphorization treatment carries a refining agent containing an oxidizing agent 7 and / or a lime-based flux 8 in the hot metal 3 from the hearth 5 of the transport container 2 via the injection lance 6. This is performed by blowing the gas 9 over a predetermined time. As for the dephosphorization reaction at this time, the reaction (transition reaction) caused by the refining agent blown into the hot metal during floating is considered to be more dominant than the reaction between the slag and the metal (permanent reaction). The Si and P in the hot metal 3 are oxidized by an oxidizing agent during levitation to become SiO 2 , P 2 O 5 , levy and migrate into the top slag 4 (also simply referred to as “slag”) to desiliconize. , Dephosphorized. Since the slag 4 produced on the hot metal contains a large amount of SiO 2 and P 2 O 5 , as shown in FIG. 2, the transport container 2 is tilted to remove the slag 4 while dephosphorizing. In succession.

ここで、上記精錬剤中に含まれる酸化剤7としては、焼結鉱や製鉄所内で発生した集塵ダスト、スラッジ等を好適に用いることがでる。また、酸化剤7の添加のみでの脱燐処理を行えるようにする観点から、CaOを10~20質量%の範囲で含有するものであることが好ましい。CaOの含有量が10質量%未満では、溶銑中のSi濃度が高い場合(例えば0.6質量%以上である場合)には、脱燐に先立って多量のSiOが生成するため、スラグ塩基度Bが(1)式を満たすよう制御するときに、石灰系フラックスの使用量が多くなって溶銑温度の低下が大きくなることがあり、脱燐処理後の溶銑中の燐濃度を極低燐にする場合には不利となる。一方、CaOが20質量%を超えると、溶銑中のSi濃度が低い場合(例えば0.2質量%以下である場合)には、CaOの供給量が過剰となり、スラグ塩基度Bが(1)式を満たすように制御するときには、やはり脱燐処理後の溶銑中の燐濃度を極低燐にする場合には不利になることがある。好ましくは14~18質量%の範囲である。また、石灰系フラックス8としては、焼石灰粉や製鋼スラグ等を好適に用いることができる。 Here, as the oxidizing agent 7 contained in the refining agent, sinter, dust collected dust generated in a steel mill, sludge, or the like can be preferably used. Further, from the viewpoint of enabling the dephosphorization treatment only by adding the oxidizing agent 7, it is preferable that CaO is contained in the range of 10 to 20% by mass. When the CaO content is less than 10% by mass, when the Si concentration in the hot metal is high (for example, when it is 0.6% by mass or more), a large amount of SiO 2 is generated prior to dephosphorization, so that the slag base is used. When the degree B is controlled so as to satisfy the equation (1), the amount of lime-based flux used may increase and the temperature of the hot metal may decrease significantly, so that the phosphorus concentration in the hot metal after the dephosphorization treatment is extremely low. It will be disadvantageous if you do. On the other hand, when CaO exceeds 20% by mass, when the Si concentration in the hot metal is low (for example, when it is 0.2% by mass or less), the supply amount of CaO becomes excessive and the slag basicity B becomes (1). When controlling so as to satisfy the formula, it may be disadvantageous when the phosphorus concentration in the hot metal after the dephosphorization treatment is set to extremely low phosphorus. It is preferably in the range of 14 to 18% by mass. Further, as the lime-based flux 8, burnt lime powder, steelmaking slag, or the like can be preferably used.

発明者らは、脱燐処理終了時のスラグ塩基度C/Sと溶銑温度Tが、脱燐処理後の溶銑中のP濃度に及ぼす影響を調査するため、上記で説明した混銑車の輸送容器を精錬容器として用いる溶銑の脱燐処理実験を行った。この際、混銑車の輸送容器に収容される溶銑量は400tとし、脱燐処理条件を表1に示したように変化させて、脱燐処理終了時の溶銑温度T、スラグ塩基度B、スラグ固化の有無および脱燐処理終了後の溶銑中のP濃度を調査し、その結果を表1中に併記した。なお、脱燐処理中に溶銑中に吹き込む精錬剤は、溶銑温度は1260℃以上においては、酸化剤7と石灰系フラックスを、1260℃未満においては酸化剤のみとした。 In order to investigate the effects of the slag basicity C / S and the hot metal temperature T at the end of the dephosphorization treatment on the P concentration in the hot metal after the dephosphorization treatment, the inventors have described the above-mentioned transport container for the torpedo wagon. Was used as a refining container for dephosphorization of hot metal. At this time, the amount of hot metal contained in the transport container of the torpedo wagon is 400 tons, and the dephosphorization treatment conditions are changed as shown in Table 1, and the hot metal temperature T, slag basicity B, and slag at the end of the dephosphorization treatment are changed. The presence or absence of solidification and the P concentration in the hot metal after the dephosphorization treatment were investigated, and the results are also shown in Table 1. The refining agent blown into the hot metal during the dephosphorization treatment was an oxidizing agent 7 and a lime-based flux when the hot metal temperature was 1260 ° C. or higher, and only an oxidizing agent when the hot metal temperature was lower than 1260 ° C.

Figure 0007082320000002
Figure 0007082320000002

図3は、脱燐処理終了時の溶銑温度Tとスラグ塩基度Bが脱燐処理後の溶銑中のP濃度に及ぼす影響を示したグラフであり、P濃度が0.010質量%を超えるものを×印または△印で、0.010質量%以下のものを〇印で示した。この図から、脱燐処理終了時のスラグ塩基度Bが、溶銑温度Tとの関係において、下記(1)式;
(8.01×10-5×T-0.1899×T+113.95)×0.71≦B≦8.01×10-5×T-0.1899×T+113.95 ・・・(1)
で規定される範囲内において、脱燐処理後の溶銑中のP濃度が0.010質量%以下となっていることがわかる。
FIG. 3 is a graph showing the effects of the hot metal temperature T and the slag basicity B at the end of the dephosphorization treatment on the P concentration in the hot metal after the dephosphorization treatment, in which the P concentration exceeds 0.010% by mass. Are indicated by x or Δ, and those with 0.010% by mass or less are indicated by ◯. From this figure, the slag basicity B at the end of the dephosphorization treatment is the following equation (1) in relation to the hot metal temperature T;
(8.01 × 10-5 × T 2 −0.1899 × T + 113.95) × 0.71 ≦ B ≦ 8.01 × 10-5 × T 2 −0.1899 × T + 113.95 ・ ・ ・ (1) )
It can be seen that the P concentration in the hot metal after the dephosphorization treatment is 0.010% by mass or less within the range specified in 1.

この理由は、スラグ塩基度Bが高く、(1)式の右辺を外れる場合には、表1からわかるように、スラグが固化して滓化不良が発生し、スラグの脱燐能が低下したためであると考えられる。一方、スラグ塩基度Bが低く、(1)式の左辺を外れる場合には、スラグの固化は認められないものの、CaOの不足によるスラグ塩基度の低下により脱燐能が低下したためであると考えられる。そこで、本発明においては、脱燐処理終了時のスラグ塩基度Bを、脱燐後の溶銑温度Tとの関係において、上記(1)式を満たすよう調整することとした。 The reason for this is that when the slag basicity B is high and it deviates from the right side of Eq. Is considered to be. On the other hand, when the slag basicity B is low and deviates from the left side of the equation (1), solidification of the slag is not observed, but it is considered that the dephosphorization ability is lowered due to the decrease in the slag basicity due to the lack of CaO. Be done. Therefore, in the present invention, the slag basicity B at the end of the dephosphorization treatment is adjusted so as to satisfy the above equation (1) in relation to the hot metal temperature T after dephosphorization.

しかしながら、図3からわかるように、脱燐処理終了時のスラグ塩基度Bが、脱燐処理終了時の溶銑温度Tとの関係において、上記(1)式を満たしている場合でも、脱燐処理後の溶銑中のP濃度が0.010質量%以下とならない事例(図3中に△印で表示したもの)が存在している。そこで、この原因を調査したところ、脱燐剤として添加している酸化剤7の平均粒径が大きく影響していることが明らかとなった。 However, as can be seen from FIG. 3, even when the slag basicity B at the end of the dephosphorization treatment satisfies the above equation (1) in relation to the hot metal temperature T at the end of the dephosphorization treatment, the dephosphorization treatment is performed. There is a case (indicated by Δ in FIG. 3) in which the P concentration in the subsequent hot metal does not become 0.010% by mass or less. Therefore, as a result of investigating the cause, it became clear that the average particle size of the oxidizing agent 7 added as the dephosphorizing agent had a great influence.

図4は、(1)式を満たす事例における酸化剤の平均粒径と脱炭処理後の溶銑中のP濃度との関係を示したものである。この図から、脱燐処理後の溶銑中のP濃度を0.010質量%以下に低減するためには、脱燐処理終了時の溶銑温度Tとスラグ塩基度Bが上記(1)式を満たすことに加えて、平均粒径が100μm以下の酸化剤を使用することが必要であることがわかった。この理由は、酸化剤の平均粒径が100μmより大きくなると、メタルとの反応界面積が小さくなり、酸化剤が溶銑中を浮上する際のトランジトリー反応が低下したり、滓化性が低下したりするためと考えられる。ただし、酸化剤の反応面積を大きくするためには、酸化剤の平均粒径は小さいほど好ましいが、40μm未満になるとキャリアガスで搬送する際、搬送系統の閉塞を起こし易くなるので好ましくない。そこで、本発明では、酸化剤の平均粒径は40~100μmの範囲のものを使用することとする。好ましくは40~80μmの範囲である。ここで、上記平均粒径とはメジアン粒径である。 FIG. 4 shows the relationship between the average particle size of the oxidizing agent and the P concentration in the hot metal after the decarburization treatment in the case where the formula (1) is satisfied. From this figure, in order to reduce the P concentration in the hot metal after the dephosphorization treatment to 0.010% by mass or less, the hot metal temperature T and the slag basicity B at the end of the dephosphorization treatment satisfy the above equation (1). In addition, it was found that it is necessary to use an oxidizing agent having an average particle size of 100 μm or less. The reason for this is that when the average particle size of the oxidant is larger than 100 μm, the reaction boundary area with the metal becomes smaller, the transition reaction when the oxidant floats in the hot metal, and the slagging property are lowered. It is thought that this is to be done. However, in order to increase the reaction area of the oxidant, it is preferable that the average particle size of the oxidant is small, but if it is less than 40 μm, it is not preferable because the transport system is likely to be clogged when transported by the carrier gas. Therefore, in the present invention, the average particle size of the oxidizing agent is in the range of 40 to 100 μm. It is preferably in the range of 40 to 80 μm. Here, the average particle size is the median particle size.

ここで、脱燐処理終了時の溶銑温度Tとスラグ塩基度Bが上記した(1)式を満たすよう調整する方法について説明する。
まず、脱燐処理終了時の溶銑温度Tは、予備処理前または予備処理途中の溶銑温度、Si濃度およびP濃度を実測し、これに、目標とするSi濃度、P濃度を達成するのに必要な酸化剤の添加量およびその酸化剤が含有するFeO,Feの分解吸熱反応に基づいた熱収支から推定する。この温度を「推定最終溶銑温度」という。また、その際に必要な酸化剤の添加量は、Siの酸化反応に必要な酸素量、Pの酸化反応に必要な酸素量から推定する。
Here, a method of adjusting the hot metal temperature T and the slag basicity B at the end of the dephosphorization treatment so as to satisfy the above-mentioned equation (1) will be described.
First, the hot metal temperature T at the end of the dephosphorization treatment is necessary to measure the hot metal temperature, Si concentration and P concentration before or during the pretreatment, and to achieve the target Si concentration and P concentration. It is estimated from the heat balance based on the amount of the oxidant added and the decomposition heat absorption reaction of FeO and Fe 2 O3 contained in the oxidant. This temperature is called the "estimated final hot metal temperature". Further, the amount of the oxidizing agent added at that time is estimated from the amount of oxygen required for the oxidation reaction of Si and the amount of oxygen required for the oxidation reaction of P.

次いで、上記のようにして得た推定最終溶銑温度に応じて、脱燐処理終了時のスラグ塩基度Bが(1)式を満たすようスラグ塩基度を調整する。ここで、上記スラグ塩基度の調整は、精錬剤として添加する酸化剤7中に含まれるCaOによっても可能であるが、主として石灰系フラックス8の添加によって行う。 Next, the slag basicity is adjusted so that the slag basicity B at the end of the dephosphorization treatment satisfies the equation (1) according to the estimated final hot metal temperature obtained as described above. Here, the adjustment of the slag basicity can be performed by CaO contained in the oxidizing agent 7 added as a refining agent, but mainly by adding the lime-based flux 8.

ただし、この石灰系フラックス8は、溶銑温度が1260℃以上の間に添加するのが好ましい。溶銑温度が1260℃未満に低下すると、酸化剤7に比べてCaO含有率が高いが故に融点が高い石灰系フラックス8が十分に滓化されなくなるため、スラグ固化が発生し易くなったり、CaOの脱燐利用効率が低下するようになるからである。したがって、1260℃未満の温度で脱燐処理を継続して行う場合には、CaOを10~20質量%含有する酸化剤のみを吹き込むようにするのが好ましい。これにより、溶銑温度が1260℃未満の低温となっても、スラグの固化を招くことなく、脱燐処理を行うことができる。なお、石灰系フラックスの吹き込みを停止する温度は、好ましくは1270℃以上である。 However, this lime-based flux 8 is preferably added while the hot metal temperature is 1260 ° C. or higher. When the hot metal temperature is lowered to less than 1260 ° C., the lime-based flux 8 having a high melting point because the CaO content is higher than that of the oxidizing agent 7 is not sufficiently slag-solidified, and slag solidification is likely to occur. This is because the efficiency of dephosphorization utilization will decrease. Therefore, when the dephosphorization treatment is continuously performed at a temperature of less than 1260 ° C., it is preferable to inject only an oxidizing agent containing 10 to 20% by mass of CaO. As a result, even if the hot metal temperature becomes a low temperature of less than 1260 ° C., the dephosphorization treatment can be performed without causing solidification of the slag. The temperature at which the blowing of the lime-based flux is stopped is preferably 1270 ° C. or higher.

もちろん、上記推定最終溶銑温度は、脱燐処理中の溶銑温度を測定することで変更してもよい。また、スラグ塩基度の調整は、脱燐処理中のスラグ塩基度、溶銑温度を実測して確認してもよいが、輸送容器内の推定スラグ量や溶銑成分、造滓剤の添加量、酸化剤の添加量、排滓量に基づいた物質収支や熱収支から塩基度や溶銑温度を推定してもよい。 Of course, the estimated final hot metal temperature may be changed by measuring the hot metal temperature during the dephosphorization treatment. The slag basicity may be adjusted by actually measuring the slag basicity and the hot metal temperature during the dephosphorization treatment, but the estimated slag amount in the transport container, the hot metal component, the amount of the slag-forming agent added, and the oxidation The basicity and hot metal temperature may be estimated from the substance balance and the heat balance based on the amount of the agent added and the amount of slag discharged.

以上説明した本発明によれば、脱硫処理終了時の溶銑温度が1260未満に低下した場合においても、スラグ固化に起因する滓化不良やスラグ中のCaO濃度が不足することはなく、溶銑の脱燐処理を安定して実施することができる。 According to the present invention described above, even when the hot metal temperature at the end of the desulfurization treatment is lowered to less than 1260, there is no slag solidification due to slag solidification and the CaO concentration in the slag is not insufficient, and the hot metal is removed. The phosphorus treatment can be stably carried out.

石灰系フラックスの溶銑中への吹込を停止する温度(吹込停止温度)と、酸化剤のCaO含有量が脱燐処理後の溶銑中のP濃度に及ぼす影響を調査するため、前述した実験と同じように、混銑車の輸送容器を精錬容器として用いた溶銑の脱燐処理実験を行った。この際、混銑車の輸送容器に収容される溶銑量は400tとし、脱燐処理条件を表2に示したように変化させて、脱燐処理終了時の溶銑温度T、スラグ塩基度B、スラグ固化の有無および脱燐処理終了後の溶銑中のP濃度を調査した。なお、脱燐処理終了時のスラグ塩基度Bと溶銑温度Tとの関係は、すべて(1)式を満たす条件とし、かつ、酸化剤は、平均粒径が40~100μmのものを使用した。 Same as the above-mentioned experiment to investigate the effect of the temperature at which the lime-based flux is stopped from being blown into the hot metal (the temperature at which the lime-based flux is stopped) and the CaO content of the oxidizing agent on the P concentration in the hot metal after dephosphorization. As described above, a dephosphorization treatment experiment of hot metal was conducted using the transport container of the torpedo wagon as a refining container. At this time, the amount of hot metal contained in the transport container of the torpedo wagon is 400 tons, and the dephosphorization treatment conditions are changed as shown in Table 2, and the hot metal temperature T, slag basicity B, and slag at the end of the dephosphorization treatment are changed. The presence or absence of solidification and the P concentration in the hot metal after the completion of the dephosphorization treatment were investigated. The relationship between the slag basicity B and the hot metal temperature T at the end of the dephosphorization treatment was all under the condition of satisfying the equation (1), and the oxidizing agent used had an average particle size of 40 to 100 μm.

上記実験結果を表2中に併記した。この結果から、溶銑中への石灰系フラックスの吹込を停止したときの溶銑温度(吹込停止温度)が1260℃を下回った場合には、脱燐処理終了後のスラグ中に若干固化しているように見える粒状のものが生じる場合もあったが(このスラグ固化の程度を表2中には「軽微」で示した)、脱燐処理後の溶銑中のP濃度は0.010質量%以下まで低減できることがわかった。また、CaO含有量が10~20質量%の範囲を外れる酸化剤を使用した場合でも、脱燐処理終了後のスラグに若干固化しているように見える場合もあったが(このスラグ固化の程度も表2中には「軽微」で示した)、やはり、脱燐処理後の溶銑中のP濃度を0.010質量%以下まで低減できることがわかった。 The above experimental results are also shown in Table 2. From this result, when the hot metal temperature (blowing stop temperature) when the blowing of the lime-based flux into the hot metal is stopped is lower than 1260 ° C., it seems that it is slightly solidified in the slag after the dephosphorization treatment is completed. (The degree of solidification of this slag is indicated by "slight" in Table 2), but the P concentration in the hot metal after dephosphorization treatment is up to 0.010% by mass or less. It turned out that it can be reduced. Further, even when an oxidizing agent having a CaO content outside the range of 10 to 20% by mass was used, it sometimes seemed to be slightly solidified in the slag after the dephosphorization treatment was completed (degree of this slag solidification). (Shown as "slight" in Table 2), it was also found that the P concentration in the hot metal after the dephosphorization treatment can be reduced to 0.010% by mass or less.

以上説明したように、脱燐処理終了時のスラグ塩基度Bと溶銑温度Tとが、先述した(1)式を満たす条件とし、かつ、酸化剤として平均粒径が40~100μmのものを使用することで、安定して脱燐処理を施すことができ、脱燐処理後の溶銑中のP濃度を0.010質量%以下までより確実に低減できることが確認された。 As described above, the slag basicity B and the hot metal temperature T at the end of the dephosphorization treatment are conditions that satisfy the above-mentioned equation (1), and an oxidant having an average particle size of 40 to 100 μm is used. It was confirmed that the dephosphorization treatment can be stably performed and the P concentration in the hot metal after the dephosphorization treatment can be more reliably reduced to 0.010% by mass or less.

Figure 0007082320000003
Figure 0007082320000003

1:混銑車(精錬容器)
2:輸送容器(精錬容器)
3:溶銑
4:スラグ(トップスラグ)
5:炉口
6:インジェクションランス
7:酸化剤
8:石灰系フラックス
9:キャリアガス
1: Torpedo wagon (refining container)
2: Transport container (refining container)
3: Hot metal 4: Slag (top slag)
5: Furnace mouth 6: Injection lance 7: Oxidizing agent 8: Lime-based flux 9: Carrier gas

Claims (3)

精錬容器内に収容した溶銑に石灰系フラックスおよび酸化剤を含む精錬剤を吹き込んで溶銑を脱燐処理する方法において、
上記酸化剤として平均粒径が40~100μmのものを使用し、
脱燐処理終了時の溶銑温度を1260℃以下とし、上記石灰系フラックスの溶銑内への吹き込みを、溶銑温度が1260℃以上のときに行い、
脱燐処理終了時のスラグの塩基度B(-)が、脱燐処理終了時の溶銑温度T(℃)との関係において、下記(1)式を満たすことを特徴とする、ハロゲン化物を用いない溶銑の脱燐処理方法。ここで、上記平均粒径とは、メジアン粒径のことを、また、上記塩基度とは、スラグ中のSiOに対するCaOの質量比のことをいう。

(8.01×10-5×T-0.1899×T+113.95)×0.71≦B≦8.01×10-5×T-0.1899×T+113.95 ・・・(1)
In a method of dephosphorizing the hot metal by blowing a refining agent containing a lime-based flux and an oxidizing agent into the hot metal contained in the refining container.
As the oxidizing agent, one having an average particle size of 40 to 100 μm is used.
The hot metal temperature at the end of the dephosphorization treatment was set to 1260 ° C. or lower, and the above-mentioned lime-based flux was blown into the hot metal when the hot metal temperature was 1260 ° C. or higher.
A halide is used, characterized in that the basicity B (-) of the slag at the end of the dephosphorization treatment satisfies the following equation (1) in relation to the hot metal temperature T (° C.) at the end of the dephosphorylation treatment. How to dephosphorize not hot metal. Here, the average particle size means the median particle size, and the basicity means the mass ratio of CaO to SiO 2 in the slag.
Note (8.01 x 10-5 x T 2-0.1899 x T + 113.95) x 0.71 ≤ B ≤ 8.01 x 10-5 x T 2-0.1899 x T + 113.95 ... ( 1)
上記酸化剤は、CaOを10~20質量%の範囲で含有することを特徴とする請求項1に記載の溶銑の脱燐処理方法。 The method for dephosphorizing hot metal according to claim 1, wherein the oxidizing agent contains CaO in the range of 10 to 20% by mass. 上記精錬容器は、混銑車の輸送容器であることを特徴とする請求項1または2に記載の溶銑の脱燐処理方法。 The method for dephosphorizing hot metal according to claim 1 or 2 , wherein the smelting container is a transport container for a torpedo wagon.
JP2019157535A 2019-08-30 2019-08-30 Dephosphorization method of hot metal Active JP7082320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019157535A JP7082320B2 (en) 2019-08-30 2019-08-30 Dephosphorization method of hot metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019157535A JP7082320B2 (en) 2019-08-30 2019-08-30 Dephosphorization method of hot metal

Publications (2)

Publication Number Publication Date
JP2021036062A JP2021036062A (en) 2021-03-04
JP7082320B2 true JP7082320B2 (en) 2022-06-08

Family

ID=74716319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019157535A Active JP7082320B2 (en) 2019-08-30 2019-08-30 Dephosphorization method of hot metal

Country Status (1)

Country Link
JP (1) JP7082320B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001040409A (en) 1999-07-30 2001-02-13 Nippon Steel Corp Method for dephosphorizing molten iron
JP2007154313A (en) 2005-11-09 2007-06-21 Jfe Steel Kk Method for dephosphorizing molten iron
JP2008138281A (en) 2006-11-09 2008-06-19 Jfe Steel Kk Molten iron dephosphorization treatment method
JP2018035376A (en) 2016-08-29 2018-03-08 Jfeスチール株式会社 Hot metal dephosphorization method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3503176B2 (en) * 1994-03-31 2004-03-02 Jfeスチール株式会社 Hot metal dephosphorizer for injection

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001040409A (en) 1999-07-30 2001-02-13 Nippon Steel Corp Method for dephosphorizing molten iron
JP2007154313A (en) 2005-11-09 2007-06-21 Jfe Steel Kk Method for dephosphorizing molten iron
JP2008138281A (en) 2006-11-09 2008-06-19 Jfe Steel Kk Molten iron dephosphorization treatment method
JP2018035376A (en) 2016-08-29 2018-03-08 Jfeスチール株式会社 Hot metal dephosphorization method

Also Published As

Publication number Publication date
JP2021036062A (en) 2021-03-04

Similar Documents

Publication Publication Date Title
JP5408369B2 (en) Hot metal pretreatment method
JP5954551B2 (en) Converter steelmaking
KR101689633B1 (en) Low cost making of a low carbon, low sulfur, and low nitrogen steel using conventional steelmaking equipment
JP6164151B2 (en) Method for refining molten iron using a converter-type refining furnace
JP5573424B2 (en) Desulfurization treatment method for molten steel
JP5950133B2 (en) Hot metal pretreatment method
RU2608865C2 (en) Method of desulphurising steel
JP4848757B2 (en) Hot metal dephosphorization method
US4600434A (en) Process for desulfurization of ferrous metal melts
JP5408379B2 (en) Hot metal pretreatment method
JP5061545B2 (en) Hot metal dephosphorization method
JP7082320B2 (en) Dephosphorization method of hot metal
JP4765374B2 (en) Desulfurization treatment method for chromium-containing hot metal
JP6773135B2 (en) How to dephosphorize hot metal
JP2006265623A (en) Method for pre-treating molten iron
JP4695312B2 (en) Hot metal pretreatment method
JP7082321B2 (en) Dephosphorization method of hot metal
JPH09235611A (en) Production of extra-low sulfur pure iron having high cleanliness
JP2021059759A (en) Production method of ultra-low sulfur stainless steel
JP7107292B2 (en) Hot metal dephosphorization treatment method
JP4214894B2 (en) Hot metal pretreatment method
JP2002146422A (en) Method for dephosphorizing molten iron by which erosion of refractory hardly occurs
JP4360239B2 (en) Method for desulfurization of molten steel in vacuum degassing equipment
RU1790609C (en) Method of charging burden materials into blasting furnace
JP2006241535A (en) Method for preliminarily treating molten pig iron

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220510

R150 Certificate of patent or registration of utility model

Ref document number: 7082320

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150