JP2007154313A - Method for dephosphorizing molten iron - Google Patents

Method for dephosphorizing molten iron Download PDF

Info

Publication number
JP2007154313A
JP2007154313A JP2006303675A JP2006303675A JP2007154313A JP 2007154313 A JP2007154313 A JP 2007154313A JP 2006303675 A JP2006303675 A JP 2006303675A JP 2006303675 A JP2006303675 A JP 2006303675A JP 2007154313 A JP2007154313 A JP 2007154313A
Authority
JP
Japan
Prior art keywords
oxygen source
hot metal
dephosphorization
gas
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006303675A
Other languages
Japanese (ja)
Other versions
JP5087905B2 (en
Inventor
Yuichi Uchida
祐一 内田
Masaru Washio
勝 鷲尾
Akihiko Inoue
明彦 井上
Yasunori Muraki
靖徳 村木
Yasuo Kishimoto
康夫 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006303675A priority Critical patent/JP5087905B2/en
Publication of JP2007154313A publication Critical patent/JP2007154313A/en
Application granted granted Critical
Publication of JP5087905B2 publication Critical patent/JP5087905B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform a dephosphorization with the same degree of dephosphorizing efficiency and iron yield as the conventional method, with little lime consumption without using flux containing fluorine, when molten iron is dephosphorized. <P>SOLUTION: In the method for dephosphorizing the molten iron: a dephosphorization refining agent composed mainly of CaO is added; gaseous oxygen source and solid oxygen source as the oxygen source are supplied; the dephosphorization refining agent composed mainly of CaO is reduced to slag; and the dephosphorization is applied to the molten iron. In the dephosphorizing method, at least a part of the solid oxygen source is supplied on the molten iron surface at the same position as the position for supplying the gaseous oxygen source by using a carrier gas. At this time, on the molten iron surface supplying the gaseous oxygen source, the dephosphorization-refining agent composed of CaO is supplied, or it is desirable to use any one or more kinds among sintered ore, mill scale, sand iron, collected dust, iron ore, having ≤1mm grain size as the solid oxygen source. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、溶銑の脱燐処理方法に関し、詳しくは、脱燐精錬剤の滓化を促進させるための媒溶剤としてフッ素源を使用しなくても高い鉄歩留まりで効率良く溶銑を脱燐処理する方法に関するものである。   The present invention relates to a hot metal dephosphorization method, and more particularly, to efficiently remove hot metal with high iron yield without using a fluorine source as a solvent for accelerating the hatching of a dephosphorizing refining agent. It is about the method.

高炉溶銑を用いる製鋼プロセスにおいては、転炉で脱炭吹錬する前に、溶銑中に含有されるSi及びPの大半を酸素ガスや固体の酸化鉄を用いて酸化除去する溶銑脱燐処理、或いは溶銑中に含有されるSを脱硫剤によって還元雰囲気下で除去する溶銑脱硫処理などの、所謂、溶銑予備処理が一般的に行われている。近年、鉄鋼製品に要求される品質要求は以前にも増して厳格になり、今まで以上に燐濃度の低減が求められるようになっている。この品質要求に応えるには、溶銑予備処理のうちで特に脱燐処理を行う溶銑量を従来以上に増加することや、脱燐処理後の燐濃度を安定して下げることが必要である。   In the steelmaking process using blast furnace hot metal, hot metal dephosphorization treatment in which most of Si and P contained in the hot metal are oxidized and removed using oxygen gas or solid iron oxide before decarburization blowing in the converter. Alternatively, so-called hot metal preliminary treatment such as hot metal desulfurization treatment in which S contained in the hot metal is removed under a reducing atmosphere by a desulfurizing agent is generally performed. In recent years, quality requirements for steel products have become more stringent than ever, and a reduction in phosphorus concentration has been demanded more than ever. In order to meet this quality requirement, it is necessary to increase the amount of hot metal to be dephosphorized in the hot metal pretreatment more than before and to stably reduce the phosphorus concentration after dephosphorization.

ところで、昨今の地球温暖化に代表される環境影響に対応すべく、製鋼工程におけるスラグ排出量の削減が必須となっている。溶銑の脱燐処理においてスラグの排出量を削減するためには、溶融して脱燐用精錬剤として機能するスラグ(「脱燐精錬用スラグ」)となる脱燐精錬剤の投入量を低減することが必要である。溶銑の脱燐処理において、脱燐精錬剤の主体は石灰であり、上記の品質要求に応えるとともにスラグ排出量を削減するためには、石灰の使用量を低減しつつ、必要脱燐量を維持する技術、即ち、少ない石灰の使用量で効率良く脱燐処理する技術が必要となる。   By the way, in order to cope with the environmental impact represented by recent global warming, it is essential to reduce the amount of slag discharged in the steelmaking process. In order to reduce the amount of slag discharged in the hot metal dephosphorization process, the amount of dephosphorization agent that is melted to function as a dephosphorization refining agent (“slag for dephosphorization refining”) is reduced. It is necessary. In hot metal dephosphorization, the main dephosphorizing agent is lime. In order to meet the above quality requirements and reduce slag discharge, the amount of lime used is reduced while maintaining the required dephosphorization amount. Therefore, a technology for efficiently dephosphorizing with a small amount of lime is required.

脱燐処理において、滓化しない石灰は脱燐反応に寄与しないことから、石灰の使用量を削減するためには、添加した石灰の滓化を促進させることが重要となる。従来、石灰を始めとするスラグの滓化能力に優れた滓化促進用の媒溶剤としてホタル石が知られており、脱燐処理においてもホタル石が用いられてきた。しかし近年、環境規制の強化に伴い、ホタル石に代表されるフッ素を含む媒溶剤の使用が制限されるようになり、そのため、ホタル石を使用しなくても石灰による脱燐反応を促進させる手段が検討され、多数の提案がなされている。   In the dephosphorization treatment, lime that does not hatch does not contribute to the dephosphorization reaction. Therefore, in order to reduce the amount of lime used, it is important to promote the hatching of the added lime. Conventionally, fluorite has been known as a medium solvent for promoting hatching which is excellent in hatching ability of slag including lime, and fluorite has been used also in dephosphorization treatment. However, in recent years, with the tightening of environmental regulations, the use of a solvent medium containing fluorine typified by fluorite has been restricted. Therefore, a means for promoting the dephosphorization reaction by lime without using fluorite. Has been studied and a number of proposals have been made.

そのなかの1つの手段として、ホタル石の代替として他の媒溶剤を滓化促進剤として用いる技術が提案されている。例えば、特許文献1には、溶銑の脱炭精錬或いは脱燐処理において、ホタル石の代替として酸化アルミニウムを含有する媒溶剤を使用する方法が提案されている。   As one of the means, a technique using another solvent as a hatching accelerator as a substitute for fluorite has been proposed. For example, Patent Document 1 proposes a method of using a medium solvent containing aluminum oxide as a substitute for fluorite in decarburization refining or dephosphorization of hot metal.

しかしながら、特許文献1においてホタル石代替として提案された酸化アルミニウムは、スラグの滓化は促進させるが、スラグの粘度を高める作用を有している。このため、酸化アルミニウムの使用量が多いと脱燐処理後、スラグを反応容器から排滓する際に、スラグが炉内に付着して残留する場合が発生する。これにより、次チャージの脱燐処理時に残留スラグ中の燐が溶銑に戻る、所謂「復燐」が発生し、次チャージの脱燐処理に悪影響を及ぼすという問題があった。更に、スラグの粘度が高いことに起因して、スラグ中に多くの粒鉄が捕捉され、この粒鉄がスラグ排出時に炉外に持ち出されて鉄歩留りを低下させるという問題もあった。
特開2002−309312号公報
However, aluminum oxide proposed as a substitute for fluorite in Patent Document 1 promotes the hatching of slag, but has the effect of increasing the viscosity of slag. For this reason, when there is much usage-amount of aluminum oxide, when removing slag from a reaction container after a dephosphorization process, the case where slag adheres and remains in a furnace generate | occur | produces. As a result, the so-called “recovery” occurs in which the phosphorus in the residual slag returns to the hot metal during the dephosphorization process of the next charge, which has a problem of adversely affecting the dephosphorization process of the next charge. Furthermore, due to the high viscosity of the slag, there is a problem that a large amount of granular iron is trapped in the slag, and this granular iron is taken out of the furnace when the slag is discharged to reduce the iron yield.
JP 2002-309212 A

本発明は上記事情に鑑みてなされたもので、その目的とするところは、溶銑を脱燐処理するに当たり、フッ素を含有する媒溶剤を使用しなくても、少ない石灰の使用量で、従来と同等の脱燐効率及び鉄歩留りで脱燐処理することができる、従来提案されているよりも有利な溶銑の脱燐処理方法を提供することである。   The present invention has been made in view of the above circumstances, and the purpose of the present invention is to reduce the amount of lime used in the conventional method without using a solvent containing fluorine when dephosphorizing the hot metal. It is an object of the present invention to provide a hot metal dephosphorization method that is more advantageous than conventionally proposed, and is capable of dephosphorization with the same dephosphorization efficiency and iron yield.

上記課題を解決するための第1の発明に係る溶銑の脱燐処理方法は、CaOを主体とする脱燐精錬剤を添加し、酸素源として気体酸素源及び固体酸素源を供給して、添加したCaOを主体とする脱燐精錬剤を滓化させてスラグとなし、溶銑に対して脱燐処理を施す、溶銑の脱燐処理方法において、前記気体酸素源が供給されている場所と同一場所の溶銑浴面に、前記固体酸素源の少なくとも一部を、搬送ガスを用いて供給することを特徴とするものである。   The hot metal dephosphorization processing method according to the first aspect of the present invention for solving the above problems comprises adding a dephosphorizing refining agent mainly composed of CaO, supplying a gaseous oxygen source and a solid oxygen source as an oxygen source, and adding In the molten iron dephosphorization method, the dephosphorizing agent mainly composed of CaO is hatched to form slag, and the dephosphorization treatment is performed on the molten iron. The same location where the gaseous oxygen source is supplied At least a part of the solid oxygen source is supplied to the hot metal bath surface using a carrier gas.

第2の発明に係る溶銑の脱燐処理方法は、第1の発明において、前記気体酸素源及び固体酸素源をそれぞれ独立して供給するための少なくとも2つの供給系統を有するランスを用いて、前記気体酸素源及び固体酸素源を供給することを特徴とするものである。   The hot metal dephosphorization method according to the second aspect of the present invention is the method of using the lance having at least two supply systems for independently supplying the gaseous oxygen source and the solid oxygen source in the first aspect of the invention. A gaseous oxygen source and a solid oxygen source are supplied.

第3の発明に係る溶銑の脱燐処理方法は、第2の発明において、前記CaOを主体とする脱燐精錬剤を、前記気体酸素源の供給系統を通じて気体酸素源とともに溶銑浴面に供給することを特徴とするものである。   According to a third aspect of the present invention, there is provided a hot metal dephosphorization method according to the second aspect of the present invention, wherein the dephosphorizing refining agent mainly composed of CaO is supplied to the hot metal bath surface along with the gaseous oxygen source through the gaseous oxygen source supply system. It is characterized by this.

第4の発明に係る溶銑の脱燐処理方法は、第1ないし第3の発明の何れかにおいて、前記固体酸素源は、粒度が1mm以下の焼結鉱、ミルスケール、集塵ダスト、砂鉄、鉄鉱石のうちの何れか1種または2種以上であることを特徴とするものである。   In any one of the first to third inventions, the hot metal dephosphorization method according to the fourth invention is characterized in that the solid oxygen source is sintered ore having a particle size of 1 mm or less, mill scale, dust collection dust, iron sand, It is any one or two or more of iron ores.

第5の発明に係る溶銑の脱燐処理方法は、第1ないし第4の発明の何れかにおいて、前記固体酸素源の搬送用ガスが、空気、還元性ガス、炭酸ガス、非酸化性ガス、希ガスのうちの何れか1種または2種以上の気体であり、且つ、前記気体酸素源よりも酸素濃度が低いことを特徴とするものである。   The hot metal dephosphorization processing method according to a fifth aspect of the present invention is the hot metal dephosphorization method according to any one of the first to fourth aspects, wherein the transport gas of the solid oxygen source is air, reducing gas, carbon dioxide gas, non-oxidizing gas, It is any one kind or two or more kinds of rare gases, and has an oxygen concentration lower than that of the gaseous oxygen source.

本発明によれば、溶銑の脱燐処理の際に、気体酸素源を供給している溶銑の浴面と同一場所の溶銑浴面に固体酸素源を搬送用ガスとともに供給するので、固体酸素源の溶融が迅速化されて、脱燐精錬用スラグの酸素ポテンシャルが迅速に上昇し、当該スラグの脱燐能力が向上する。スラグの脱燐能力が向上することにより、フッ素を含有する媒溶剤を使用しなくてもまた、従来に比べて少ない石灰の使用量であっても、また更に、鉄歩留り向上のために脱燐精錬用スラグの塩基度(CaO/SiO2 )を従来に比べて低下させたり、脱燐処理後の溶銑温度を従来に比べて上昇させたりしても、脱燐反応は阻害されず、効率良く溶銑を脱燐処理することができる。また、固体酸素源の搬送用ガスとして、空気、還元性ガス、炭酸ガス、非酸化性ガス、希ガスなどの気体酸素源に比べて酸素濃度の低い気体を使用しているので、気体酸素源と溶湯面との衝突部つまり火点の酸素分圧が低下し、脱炭反応を抑えて脱燐反応を促進させることができる。 According to the present invention, during the hot metal dephosphorization process, the solid oxygen source is supplied together with the carrier gas to the hot metal bath surface at the same location as the hot metal bath surface supplying the gaseous oxygen source. As a result, the oxygen potential of the dephosphorization slag is rapidly increased, and the dephosphorization ability of the slag is improved. By improving the dephosphorization ability of slag, dephosphorization can be achieved even without using a solvent containing fluorine, even when the amount of lime used is smaller than before, and to improve iron yield. Even if the basicity (CaO / SiO 2 ) of the smelting slag is lowered as compared with the conventional one or the hot metal temperature after the dephosphorizing treatment is raised compared with the conventional one, the dephosphorization reaction is not hindered and efficient. The hot metal can be dephosphorized. In addition, a gas having a lower oxygen concentration than a gaseous oxygen source such as air, reducing gas, carbon dioxide gas, non-oxidizing gas, or rare gas is used as a transport gas for the solid oxygen source. The oxygen partial pressure at the collision portion, that is, the hot spot of the molten metal surface is lowered, and the dephosphorization reaction can be promoted by suppressing the decarburization reaction.

以下、本発明を具体的に説明する。   The present invention will be specifically described below.

溶銑の脱燐処理は、トーピードカーや溶銑鍋などの溶銑搬送容器、或いは転炉などの精錬炉を反応容器として用い、CaOを主体とする脱燐精錬剤と、酸素ガスなどの気体酸素源及び固体の酸化鉄などの固体酸素源とを、溶銑に添加して、溶銑中の燐を気体酸素源及び固体酸素源によって酸化し、生成した燐酸化物を、CaOを主体とする脱燐精錬剤などからなる脱燐精錬用スラグに取り込み、溶銑中の燐を除去するという方法で行われている。気体酸素源及固体酸素源は、まとめて酸素源と呼ばれる。   The hot metal dephosphorization process uses a hot metal transport container such as a torpedo car or hot metal pan, or a refining furnace such as a converter as a reaction vessel, a dephosphorizing refining agent mainly composed of CaO, a gaseous oxygen source such as oxygen gas, and a solid A solid oxygen source such as iron oxide is added to the hot metal, phosphorus in the hot metal is oxidized by a gaseous oxygen source and a solid oxygen source, and the resulting phosphor oxide is obtained from a dephosphorizing refining agent mainly composed of CaO. It is carried out by the method of removing the phosphorus in the hot metal by taking it into the dephosphorizing slag. Gaseous oxygen sources and solid oxygen sources are collectively referred to as oxygen sources.

原理的に考えれば、脱燐反応に関して、固体酸素源は気体酸素源に比して効率が高い。これは、脱燐反応が熱力学的には低温ほど有利であることに由来する。溶銑に酸素源を投入すると脱炭及び脱燐が起こるが、気体酸素源を投入した場合は脱炭発熱による温度上昇が起き、一方、固体酸素源を投入した場合は固体酸素源の分解時に吸熱を伴うため、温度上昇が抑制される。つまり、固体酸素源を使用することにより、脱燐反応に有利な温度に維持される。但し、脱燐反応の促進のためには、固体酸素源が溶融できる程度の温度条件は必要である。また、固体酸素源は、溶融後にFeOとなり、脱燐反応に寄与する、脱燐精錬用スラグ中のFeO成分を増加させる機能を有しており、前記温度上昇の抑制効果と相俟って脱燐反応を促進させている。   In principle, solid oxygen sources are more efficient than gaseous oxygen sources for dephosphorization reactions. This is because the dephosphorization reaction is thermodynamically more advantageous at lower temperatures. When an oxygen source is added to the hot metal, decarburization and dephosphorization occur. However, when a gaseous oxygen source is added, the temperature rises due to decarburization heat generation. On the other hand, when a solid oxygen source is added, an endotherm is generated during decomposition of the solid oxygen source. Therefore, the temperature rise is suppressed. That is, by using a solid oxygen source, a temperature advantageous for the dephosphorization reaction is maintained. However, in order to promote the dephosphorization reaction, a temperature condition that can melt the solid oxygen source is necessary. Further, the solid oxygen source has a function of increasing the FeO component in the dephosphorization slag, which becomes FeO after melting and contributes to the dephosphorization reaction. Promotes the phosphorus reaction.

従来、固体酸素源は、反応容器の上方に設置されたホッパーから脱燐処理中に落下投入されるのが一般的であった。この場合に固体酸素源は、排気系統に吸引されないようにするため、数mm〜数十mmの粒状または塊状のものが使用されていた。粒状または塊状の固体酸素源は反応容器内に投入されても直ちには溶融せず、脱燐処理終了時点まで残留する場合もある。また、固体酸素源が溶融することによってスラグ中のFeOが上昇するが、スラグ中のFeOは溶銑中の炭素と反応して還元されることから、固体酸素源の溶融速度とFeOの還元速度とが同等の場合には、スラグ中のFeO濃度は上昇しない。つまり、スラグ中のFeOの還元速度よりも固体酸素源の溶融速度を速くしなければ、スラグ中の酸素ポテンシャルは上昇せず、脱燐速度の向上は望めない。   Conventionally, the solid oxygen source has been generally dropped and introduced from a hopper installed above the reaction vessel during the dephosphorization process. In this case, in order to prevent the solid oxygen source from being sucked into the exhaust system, a granular or lump of several mm to several tens mm has been used. The granular or lump solid oxygen source does not melt immediately when it is put into the reaction vessel, and may remain until the end of the dephosphorization treatment. In addition, FeO in the slag rises as the solid oxygen source melts, but the FeO in the slag reacts with the carbon in the hot metal and is reduced, so the melting rate of the solid oxygen source and the reduction rate of FeO Are equivalent, the FeO concentration in the slag does not increase. That is, unless the melting rate of the solid oxygen source is increased faster than the reduction rate of FeO in the slag, the oxygen potential in the slag does not increase, and an improvement in the dephosphorization rate cannot be expected.

本発明においては、気体酸素源が供給されている場所と同一場所の溶銑浴面に、つまり気体酸素源が溶銑浴面と衝突する場所に、空気、還元性ガス、炭酸ガス、非酸化性ガス、希ガスなどを搬送用ガスとして用い、この搬送用ガスとともに固体酸素源を供給する。ここで、還元性ガスとは、プロパンガスなどの炭化水素系ガス及びCOガスであり、非酸化性ガスとは、窒素ガスなどの酸化能力のないガスであり、希ガスとはArガスやHeガスなどの不活性ガスである。溶銑浴面において、気体酸素源が溶銑浴面と衝突する場所(「火点」という)は、気体酸素源と溶銑中の炭素との反応によって高温になっており、そこに供給された固体酸素源は迅速に溶融し、スラグ中のFeO成分を増加させる。これにより、スラグの酸素ポテンシャルが上昇し、つまり脱燐反応に最適なスラグが迅速に形成され、少ないスラグ量であっても、また高温下であっても脱燐処理が可能となる。   In the present invention, air, reducing gas, carbon dioxide gas, non-oxidizing gas is applied to the hot metal bath surface where the gaseous oxygen source is supplied, i.e., where the gaseous oxygen source collides with the hot metal bath surface. A rare gas or the like is used as a carrier gas, and a solid oxygen source is supplied together with the carrier gas. Here, the reducing gas is a hydrocarbon gas such as propane gas and CO gas, the non-oxidizing gas is a gas having no oxidizing ability such as nitrogen gas, and the rare gas is Ar gas or He. An inert gas such as a gas. On the hot metal bath surface, the location where the gaseous oxygen source collides with the hot metal bath surface (referred to as “fire point”) is heated by the reaction between the gaseous oxygen source and the carbon in the hot metal, and the solid oxygen supplied to the hot oxygen bath surface. The source melts quickly and increases the FeO component in the slag. As a result, the oxygen potential of the slag rises, that is, the slag optimum for the dephosphorization reaction is rapidly formed, and the dephosphorization process is possible even at a small amount of slag and at a high temperature.

ここで、本発明でいう、「気体酸素源が供給されている場所と同一場所の溶銑浴面」とは、供給される気体酸素源が最初に溶銑に接触する面のことである。例えば、上吹きランスから気体酸素源を供給する場合には、上吹きランスから噴射される気体酸素源が溶銑浴面に衝突する位置つまり火点であり、気体酸素源をインジェクションランス或いは羽口を用いて溶銑中へインジェクションする(吹き込む)場合には、気体酸素源がインジェクションランス或いは羽口の出口で溶銑に侵入する面(この場合も「火点」と定義する)となる。   Here, the "hot metal bath surface at the same location as the place where the gaseous oxygen source is supplied" as used in the present invention is a surface where the supplied gaseous oxygen source first contacts the molten iron. For example, when supplying a gaseous oxygen source from an upper blowing lance, the gaseous oxygen source injected from the upper blowing lance is a position where the gaseous oxygen source collides with the hot metal bath surface, that is, a fire point, and the gaseous oxygen source is inserted into an injection lance or tuyere. When it is used to inject (blow) into the hot metal, it becomes a surface where the gaseous oxygen source enters the hot metal at the injection lance or the exit of the tuyere (also defined as “fire point” in this case).

尚、固体酸素源には微量の金属鉄を含むものがあり、純酸素気流中では燃焼して設備に損害を与える恐れがある。固体酸素源を空気よりも酸素濃度の低い搬送用ガスで搬送することは、事故回避という工業的な観点からも有効である。   Some solid oxygen sources contain a small amount of metallic iron, which may burn in a pure oxygen stream and damage equipment. Carrying the solid oxygen source with a carrier gas having a lower oxygen concentration than air is also effective from the industrial viewpoint of avoiding accidents.

本発明においては、CaOを主体とする脱燐精錬剤はホッパーなどから気体酸素源とは別個に投入してもよい。しかし本発明の好ましい態様においては、気体酸素源とともにCaOを主体とする脱燐精錬剤を溶銑浴面に供給する。つまり火点に、更に、CaOを主体とする脱燐精錬剤を固体酸素源と同時に供給するので、これにより、CaOを主体とする脱燐精錬剤自体も高温雰囲気下で加熱されることから、溶融・スラグ化をより一層迅速にすることができる。つまり、脱燐反応をより一層促進させることができる。   In the present invention, the dephosphorizing refining agent mainly composed of CaO may be added separately from the gaseous oxygen source from a hopper or the like. However, in a preferred embodiment of the present invention, a dephosphorizing refining agent mainly composed of CaO is supplied to the hot metal bath surface together with a gaseous oxygen source. That is, since the dephosphorizing refining agent mainly composed of CaO is supplied simultaneously with the solid oxygen source to the fire point, the dephosphorizing refining agent itself mainly composed of CaO is also heated in a high temperature atmosphere. Melting and slag can be made even faster. That is, the dephosphorization reaction can be further promoted.

本発明で使用する、CaOを主体とする脱燐精錬剤とは、CaOを含有し、本件の意図する脱燐処理ができるものであれば特にCaOの含有量に制約はない。通常は、CaO単独からなるものや、またはCaOを50質量%以上含有し、必要に応じてその他の成分を含有するものである。   The dephosphorizing refining agent mainly composed of CaO used in the present invention is not particularly limited as long as it contains CaO and can be dephosphorized as intended. Usually, it consists of CaO alone, or contains 50 mass% or more of CaO, and contains other components as necessary.

その他の成分としては一般に滓化促進剤が挙げられる。即ち、本願は滓化促進剤の低減或いは省略を可能とする技術ではあるものの、滓化促進剤を添加して更に滓化効率を改善することを禁じるものではない。滓化促進剤としては、特に、CaOの融点を下げて滓化を促進させる作用のある酸化チタンや酸化アルミニウム(Al23 )を含有する物質が挙げられ、これらを使用することが好ましい。中でもスラグ粘度の観点からは酸化チタンの添加が好ましい。また、ホタル石などのフッ素含有物質も滓化促進剤として使用可能である。但し、スラグを廃棄処分などにする際に、スラグからのフッ素の溶出量を抑えて環境を保護する観点から、フッ素含有物質は媒溶剤として使用しないことが好ましい。フッ素が不純物成分として不可避的に混入した物質については使用しても構わない。当然、酸化チタンを含有する物質や酸化アルミニウムを含有する物質を用いる場合も、この観点からフッ素を含まないものであることが好ましい。 As other components, hatching accelerators are generally used. That is, although the present application is a technique that enables reduction or omission of a hatching accelerator, it does not prohibit further improvement of hatching efficiency by adding a hatching accelerator. As the hatching accelerator, in particular, a substance containing titanium oxide or aluminum oxide (Al 2 O 3 ) having an action of promoting the hatching by lowering the melting point of CaO can be mentioned, and these are preferably used. Among these, addition of titanium oxide is preferable from the viewpoint of slag viscosity. Fluorine-containing materials such as fluorite can also be used as hatching accelerators. However, it is preferable not to use a fluorine-containing substance as a solvent from the viewpoint of protecting the environment by suppressing the amount of fluorine eluted from the slag when the slag is disposed of. A substance in which fluorine is inevitably mixed as an impurity component may be used. Of course, when using a substance containing titanium oxide or a substance containing aluminum oxide, it is preferable from this point of view that it does not contain fluorine.

CaOを主体とする脱燐精錬剤の具体例としては、安価でしかも脱燐能に優れることから生石灰、石灰石を使用することが好ましい。また、軽焼ドロマイトや脱燐処理後の溶銑を次工程の転炉で脱炭精錬した際に発生するスラグ(「脱炭滓」ともいう)を、CaOを主体とする脱燐精錬剤として使用することもできる。脱炭滓は、CaOを主成分としており、しかも燐含有量が少ないことから、CaOを主体とする脱燐精錬剤として十分に利用することができる。   As a specific example of the dephosphorization refining agent mainly composed of CaO, it is preferable to use quick lime or limestone because it is inexpensive and has excellent dephosphorization ability. Also, slag generated when decarburizing and refining light burned dolomite and hot metal after dephosphorization treatment in the converter of the next process is used as a dephosphorizing refining agent mainly composed of CaO. You can also The decarburized soot is mainly composed of CaO and has a low phosphorus content, and therefore can be sufficiently used as a dephosphorizing refining agent mainly composed of CaO.

本発明で使用する気体酸素源としては、酸素ガス(工業用純酸素を含む)、空気、酸素富化空気、酸素ガスと不活性ガスとの混合ガスなどを使用することができる。通常の脱燐処理の場合には、他のガスを使用した場合に比べて脱燐反応速度が速いことから、酸素ガスを使用することが好ましい。混合ガスの場合は、脱燐反応速度を確保するために、酸素濃度を空気よりも高くすることが好ましい。   As the gaseous oxygen source used in the present invention, oxygen gas (including industrial pure oxygen), air, oxygen-enriched air, a mixed gas of oxygen gas and inert gas, and the like can be used. In the case of normal dephosphorization treatment, it is preferable to use oxygen gas because the dephosphorization reaction rate is faster than when other gases are used. In the case of a mixed gas, the oxygen concentration is preferably higher than that of air in order to ensure the dephosphorization reaction rate.

また、本発明で使用する固体酸素源としては、鉄鉱石の焼結鉱、ミルスケール、集塵ダスト、砂鉄、鉄鉱石などを使用することができる。集塵ダストとは、高炉、転炉、焼結工程において排気ガスから回収される、鉄分を含むダストである。固体酸素源の溶融化を促進させる観点から、固体酸素源は粒径1mm以下の粉粒体であることが好ましい。粒径が1mmを超えるものは、迅速な溶融が困難であり、スラグのFeO成分の上昇が得られにくい。ここで、粒径が1mm以下とは、目開き寸法が1mmの篩分器を通過するという意味であり、目開き寸法が1mmの篩分器を通過する限り、長径が1mmを超える紡錘形であっても構わない。尚、取扱いの観点から、粒径は1μm以上が好ましい。   In addition, as the solid oxygen source used in the present invention, iron ore sintered ore, mill scale, dust collection dust, iron sand, iron ore and the like can be used. Dust collection dust is dust containing iron that is recovered from exhaust gas in a blast furnace, converter, and sintering process. From the viewpoint of promoting melting of the solid oxygen source, the solid oxygen source is preferably a granular material having a particle size of 1 mm or less. When the particle size exceeds 1 mm, rapid melting is difficult, and it is difficult to increase the FeO component of the slag. Here, the particle size of 1 mm or less means that the particle size passes through a sieving machine with an opening size of 1 mm, and the spindle has a spindle shape with a major axis exceeding 1 mm as long as it passes through a sieving machine with an opening size of 1 mm. It doesn't matter. From the viewpoint of handling, the particle size is preferably 1 μm or more.

上記の固体酸素源のなかで、砂鉄及び微粉の鉄鉱石は、発生形態として1mm以下の微粉であり、粉砕処理を必要としないことから特に好適である。このうち、砂鉄は、固体酸素源として機能するのみならず、酸化チタンを含有していることからCaOを主体とする脱燐精錬剤の滓化促進剤としての機能も備えており、特に好適である。   Among the above solid oxygen sources, iron sand and fine iron ore are particularly preferable because they are fine powders of 1 mm or less in generation form and do not require pulverization. Among these, iron sand not only functions as a solid oxygen source, but also has a function as a hatching accelerator of a dephosphorizing refining agent mainly composed of CaO because it contains titanium oxide, and is particularly suitable. is there.

酸化チタンは脱燐処理時のスラグ組成においては酸性酸化物として作用し、脱燐精錬剤の主体であるCaOを滓化する効果に優れている。つまり、酸化チタンを含有する砂鉄を添加することで、CaOを主体とする脱燐精錬剤の滓化が促進されて脱燐反応が促進される。また、酸化チタンは、CaOを主体とする脱燐精錬剤からなるスラグの粘度を低下させる作用があり、これにより、脱燐処理後、反応容器からのスラグの排出が容易になるという効果を奏する。このため、スラグ排出後の反応容器内のスラグ残留量は無視できるほど少なくなり、次チャージの脱燐処理においては、復燐などによって脱燐反応が阻害されることはなく、効率良く脱燐処理することができる。   Titanium oxide acts as an acidic oxide in the slag composition during the dephosphorization treatment, and is excellent in the effect of hatching CaO, which is the main component of the dephosphorization refining agent. That is, by adding sand iron containing titanium oxide, hatching of a dephosphorizing refining agent mainly composed of CaO is promoted, and a dephosphorization reaction is promoted. Titanium oxide has the effect of lowering the viscosity of slag composed of a dephosphorizing refining agent mainly composed of CaO, and this has the effect of facilitating the discharge of slag from the reaction vessel after the dephosphorization treatment. . For this reason, the amount of slag remaining in the reaction vessel after slag discharge is negligibly small. In the dephosphorization process of the next charge, the dephosphorization reaction is not hindered by dephosphorization and the dephosphorization process is efficiently performed. can do.

スラグ中の酸化チタンの量は、TiO2 換算で10質量%以下が好適である。10質量%を超えると、主成分であるCaOの比率が低下するので、脱燐能力の改善効果が相殺され、添加の効果を低下させてしまう。一方、スラグの粘度低下などの上記の効果を確実に享受するためには、酸化チタンの量はTiO2換算で1質量%以上が好ましい。ここで、TiO2 換算の意味は、酸化チタンにはTiO、TiO2 、Ti23 、Ti35 の形態があり、これらのTi分をTiO2 に換算して表示するという意味である。 The amount of titanium oxide in the slag is preferably 10% by mass or less in terms of TiO 2 . If it exceeds 10% by mass, the ratio of CaO as the main component is reduced, so the effect of improving the dephosphorization ability is offset and the effect of addition is reduced. On the other hand, the amount of titanium oxide is preferably 1% by mass or more in terms of TiO 2 in order to surely enjoy the above effects such as a decrease in the viscosity of slag. Here, the meaning in terms of TiO 2 means that titanium oxide has the forms of TiO, TiO 2 , Ti 2 O 3 , and Ti 3 O 5 , and these Ti contents are converted into TiO 2 for display. .

脱燐処理に使用する反応容器は特別な制約はなく、溶銑鍋や装入鍋などの取鍋型容器、トーピードカー、転炉型容器などを用いることができる。本発明の脱燐処理においては、脱燐反応を推進するために、酸素源として気体酸素源及び固体酸素源の双方を供給する。このうち気体酸素源は、上吹きランスによる上吹きや、インジェクションランスまたは羽口などによる溶銑中へのインジェクション或いは底吹きなどの任意の方法により、供給することができるが、固体酸素源は、気体酸素源が供給されている場所と同一場所の溶銑浴面に供給する必要があり、従って、気体酸素源が上吹きされている場合には、固体酸素源も上方から気体酸素源の溶銑浴面での衝突面に供給し、気体酸素源がインジェクションされている場合には、同様に固体酸素源と同一箇所からインジェクションして供給する。   The reaction vessel used for the dephosphorization treatment is not particularly limited, and a ladle type vessel such as a hot metal ladle or a charging ladle, a torpedo car, a converter type vessel or the like can be used. In the dephosphorization process of the present invention, both a gaseous oxygen source and a solid oxygen source are supplied as oxygen sources in order to promote the dephosphorization reaction. Of these, the gaseous oxygen source can be supplied by any method such as top blowing with an upper blowing lance, injection into hot metal with an injection lance or tuyere, or bottom blowing. It is necessary to supply to the hot metal bath surface in the same place as the location where the oxygen source is supplied. Therefore, when the gaseous oxygen source is blown up, the solid oxygen source must also be fed from above. In the case where the gaseous oxygen source is injected, the same is injected and supplied from the same location as the solid oxygen source.

また、本発明の脱燐処理においては、CaOを主体とする脱燐精錬剤も気体酸素源が供給されている場所と同一場所の溶銑浴面に供給することが好ましく、このようにして気体酸素源及び固体酸素源、更にはCaOを主体とする脱燐精錬剤を供給するためには、例えば、これらを供給する上吹きランスまたはインジェクションランス若しくは羽口に、少なくとも2つの供給系統を設置し、そのうちの1つの供給系統からCaOを主体とする脱燐精錬剤を気体酸素源とともに供給し、他の1つの供給系統から固体酸素源を前述した搬送用ガスとともに供給することにより、上記添加条件を達成することができる。供給手段は、上吹きランス、インジェクションランス、羽口などどのような手段であっても構わないが、操作が容易であることから、上吹きランスから供給することが好ましい。   In the dephosphorization treatment of the present invention, the dephosphorization refining agent mainly composed of CaO is also preferably supplied to the hot metal bath surface at the same location as the location where the gaseous oxygen source is supplied. In order to supply a source and a solid oxygen source, and further a dephosphorizing refining agent mainly composed of CaO, for example, at least two supply systems are installed in an upper blowing lance or an injection lance or tuyere for supplying them, By supplying a dephosphorization refining agent mainly composed of CaO together with a gaseous oxygen source from one of the supply systems, and supplying a solid oxygen source together with the above-described carrier gas from the other supply system, Can be achieved. The supply means may be any means such as an upper blowing lance, injection lance, tuyere, etc. However, it is preferable to supply from the upper blowing lance because it is easy to operate.

上吹きランスが、少なくとも2つの供給系統を有し、そのうち1系統から気体酸素源を供給し、別の1系統から固体酸素源を搬送用ガスとともに火点に向けて供給することで、固体酸素源は火点に供給されることになる。固体酸素源は、気体酸素源に比べて酸素濃度の低い搬送用ガスで供給されるので、その部分の温度が過剰に上昇することもなく、固体酸素源の良好な反応性によって、脱燐が促進される。このような構成としては、例えば、上吹きランスを少なくとも二重管構造として一方を酸素ガスの流路、他方を固体酸素源及び搬送用ガスの流路とし、気体酸素源を、ランス中心軸を中心とした同心円上に配されたノズル孔から供給し、一方、固体酸素源及び搬送用ガスを、ランス中心軸上に配されたノズル孔から供給する方法を採用することができる。また、ランス中心軸を中心とした同心円上に複数のノズル孔を配し、交互の孔から気体酸素源、及び、固体酸素源を供給するようにしてもよい。   The top blow lance has at least two supply systems, one of which supplies a gaseous oxygen source and the other one supplies a solid oxygen source together with the carrier gas toward the fire point, thereby providing solid oxygen. The source will be supplied to the fire point. Since the solid oxygen source is supplied with a carrier gas having a lower oxygen concentration than the gaseous oxygen source, the temperature of the portion does not increase excessively, and the good reactivity of the solid oxygen source prevents dephosphorization. Promoted. As such a configuration, for example, the upper blowing lance is at least a double tube structure, one is a flow path for oxygen gas, the other is a flow path for solid oxygen source and carrier gas, and the gaseous oxygen source is centered on the lance central axis. A method of supplying from a nozzle hole arranged on a concentric circle at the center while supplying a solid oxygen source and a carrier gas from a nozzle hole arranged on the center axis of the lance can be adopted. Also, a plurality of nozzle holes may be arranged on a concentric circle with the lance center axis as the center, and the gaseous oxygen source and the solid oxygen source may be supplied from the alternate holes.

供給すべき固体酸素源の全てを、気体酸素源が供給されている場所と同一場所の溶銑浴面に供給する必要はなく、固体酸素源の一部のみを気体酸素源が供給されている場所と同一場所の溶銑浴面に供給しても構わない。但し、気体酸素源が供給されている場所と同一場所の溶銑浴面に供給する固体酸素源が少ないと、前述したスラグ中FeO成分の上昇が少ないので、これを防止するために、設備仕様に応じて、スラグ中FeO成分の上昇が十分となる量を下限とすればよい。また、上限としては、設備仕様に応じて抜熱が過大とならない量に抑制すればよい。例えば、100〜350トン程度の容器で脱燐処理する場合には、気体酸素源の酸素ガス純分1m3 に対し、気体酸素源が供給されている場所と同一場所に供給する固体酸素源を0.1kg以上2kg以下の範囲で添加することが好ましい。0.1kg未満では本発明で期待する効果が十分に得られず、一方、2kgを越えると固体酸素源源の供給面における抜熱が大きくなり、スラグの滓化が不十分となって脱燐能力を低下させてしまう。 It is not necessary to supply all of the solid oxygen source to be supplied to the hot metal bath surface where the gaseous oxygen source is supplied, and only a part of the solid oxygen source is supplied with the gaseous oxygen source. You may supply to the hot metal bath surface of the same place. However, if there is a small amount of solid oxygen source supplied to the hot metal bath surface in the same place where the gaseous oxygen source is supplied, the increase in the FeO component in the slag will be small. Accordingly, an amount that sufficiently increases the FeO component in the slag may be set as the lower limit. Moreover, as an upper limit, what is necessary is just to suppress to the quantity which does not become excessive heat removal according to equipment specifications. For example, when dephosphorization is performed in a container of about 100 to 350 tons, a solid oxygen source supplied to the same location as the location where the gaseous oxygen source is supplied with respect to 1 m 3 of pure oxygen gas of the gaseous oxygen source. It is preferable to add in the range of 0.1 kg or more and 2 kg or less. If the amount is less than 0.1 kg, the effect expected in the present invention cannot be sufficiently obtained. On the other hand, if the amount exceeds 2 kg, the heat removal on the supply surface of the solid oxygen source is increased, and the slag is insufficiently hatched to remove phosphorus. Will be reduced.

気体酸素源が供給されている溶銑の浴面と同一場所以外の場所に供給する固体酸素源は、上置き添加、インジェクション添加など適宜の方法で供給すればよい。同様に、気体酸素源が供給されている溶銑と同一場所以外の場所にCaOを主体とする脱燐精錬剤を供給する場合にも、上置き添加、インジェクション添加など適宜の方法で供給すればよい。CaOを主体とする脱燐精錬剤も滓化を促進させる観点から1mm以下が好ましく、特に気体酸素源が供給されている溶銑の浴面に供給する場合にその影響が大きくなる。   What is necessary is just to supply the solid oxygen source supplied to places other than the same place as the bath surface of the hot metal to which the gaseous oxygen source is supplied by an appropriate method such as top addition or injection addition. Similarly, when supplying a dephosphorizing refining agent mainly composed of CaO to a place other than the same place as the hot metal to which the gaseous oxygen source is supplied, it may be supplied by an appropriate method such as top addition or injection addition. . The dephosphorizing refining agent mainly composed of CaO is also preferably 1 mm or less from the viewpoint of promoting hatching, and the influence is particularly great when it is supplied to the hot metal bath surface to which a gaseous oxygen source is supplied.

尚、気体酸素源を使用した場合には、酸化反応熱によって溶銑温度は上昇し、固体酸素源を使用した場合には、固体酸素源自体の顕熱、潜熱及び分解熱が酸化反応熱よりも大きいために溶銑温度は降下する。従って、気体酸素源と固体酸素源との使用比率は、上記の範囲を維持しつつ、溶銑の処理前後の温度に応じて設定することとする。また、脱燐反応を効率的に行うためには溶銑を撹拌することが好ましく、この撹拌としては、一般にインジェクションランスや炉底に埋め込まれたノズルなどを利用したガス撹拌を行えばよい。   When a gaseous oxygen source is used, the hot metal temperature rises due to the oxidation reaction heat. When a solid oxygen source is used, the sensible heat, latent heat, and decomposition heat of the solid oxygen source itself are higher than the oxidation reaction heat. Because it is large, the hot metal temperature drops. Therefore, the use ratio of the gaseous oxygen source and the solid oxygen source is set according to the temperature before and after the hot metal treatment while maintaining the above range. Further, in order to efficiently perform the dephosphorization reaction, it is preferable to stir the hot metal. As this stirring, generally, gas stirring using an injection lance or a nozzle embedded in the furnace bottom may be performed.

脱燐精錬用スラグとしては、スラグ中のFeO濃度が10質量%以上30質量%以下の範囲が好適であるので、スラグ中のFeO濃度がこの範囲を維持できるように、固体酸素源の供給量を調整することが好ましい。スラグ中のFeO濃度が10質量%未満の場合には、スラグの酸素ポテンシャルが低く、脱燐効率が悪く、一方、スラグ中のFeO濃度が30質量%を超えると、脱燐反応に必要なCaOを薄めてしまうことになり脱燐能力を低下させてしまう。   As the dephosphorizing slag, the FeO concentration in the slag is preferably in the range of 10% by mass to 30% by mass. Therefore, the supply amount of the solid oxygen source is maintained so that the FeO concentration in the slag can maintain this range. Is preferably adjusted. When the FeO concentration in the slag is less than 10% by mass, the oxygen potential of the slag is low and the dephosphorization efficiency is poor. On the other hand, when the FeO concentration in the slag exceeds 30% by mass, the CaO necessary for the dephosphorization reaction is obtained. Will reduce the dephosphorization ability.

このようにして溶銑の脱燐処理を行うことにより、フッ素含有物質を滓化促進用の媒溶剤として使用しなくても、従来と同様の脱燐速度を維持して脱燐処理することが可能となる。その結果、環境へのフッ素漏洩の対策を採らないままでスラグを再利用することができ、環境負荷を回避することが可能となる。また、脱燐処理温度を高めても従来と同等の脱燐量を維持することが可能であり、この場合には、脱燐処理における鉄歩留りを高位にすることができ、工業上有益な効果がもたらされる。   By performing dephosphorization of the hot metal in this manner, it is possible to perform dephosphorization while maintaining the same dephosphorization rate as before without using a fluorine-containing material as a medium solvent for promoting hatching. It becomes. As a result, the slag can be reused without taking measures for fluorine leakage to the environment, and the environmental load can be avoided. In addition, even if the dephosphorization temperature is increased, it is possible to maintain the same dephosphorization amount as in the past. In this case, the iron yield in the dephosphorization process can be increased, which is an industrially beneficial effect. Is brought about.

高炉から出銑した溶銑を高炉鋳床で脱珪処理した後、300トン容量の転炉に搬送し、この転炉で合計4回の脱燐処理を実施(本発明例1〜4)した。脱燐処理前の溶銑の燐濃度は0.12質量%に統一し、脱燐処理後の溶銑の燐濃度は0.020質量%以下、鉄歩留りは98%以上を目標とした。鉄歩留り(η)は、転炉内に装入した溶銑の質量(W0 )とスクラップの質量(Ws )との総質量(W0+Ws )に対して脱燐処理後に出湯した溶銑の質量(W)を百分率で表示(η=100W/(W0 +Ws ))して求めた。 The hot metal discharged from the blast furnace was desiliconized in the blast furnace casting floor, and then transferred to a 300-ton capacity converter, and a total of four dephosphorization processes were performed in the converter (Invention Examples 1 to 4). The phosphorus concentration of the hot metal before the dephosphorization treatment was unified to 0.12% by mass, the phosphorus concentration of the hot metal after the dephosphorization treatment was set to 0.020% by mass or less, and the iron yield was set to 98% or more. The iron yield (η) is the amount of hot metal discharged after dephosphorization relative to the total mass (W 0 + W s ) of the mass (W 0 ) of the hot metal charged in the converter and the mass (W s ) of the scrap. The mass (W) was calculated as a percentage (η = 100 W / (W 0 + W s )).

脱燐処理は、冷却水の給排水系統以外に、分離した2つの供給系統を有し、1つの供給系統から酸素ガスと生石灰粉とを供給し、他の供給系統から窒素ガスを搬送用ガスとして粉体の固体酸素源を供給する上吹きランスを用いて行った。2つの供給系統は上吹きランスの先端部まで分離しているが、固体酸素源及び生石灰はランス先端から噴出した後は混合して同一浴面上に供給されるようになっている。ホタル石などのフッ素を含有する物質は添加しないで処理した。つまり、1mm以下の生石灰粉と、粉状の固体酸素源と、酸素ガスのみを供給して脱燐処理した。   The dephosphorization process has two separate supply systems in addition to the cooling water supply and drainage system, supplies oxygen gas and quicklime powder from one supply system, and uses nitrogen gas from the other supply system as a carrier gas. This was carried out using an upper blowing lance that supplied a solid oxygen source of powder. The two supply systems are separated to the tip of the top blowing lance, but the solid oxygen source and quicklime are mixed and supplied onto the same bath surface after being ejected from the tip of the lance. It processed without adding fluorine-containing substances such as fluorite. That is, dephosphorization treatment was performed by supplying only quicklime powder of 1 mm or less, a powdered solid oxygen source, and oxygen gas.

固体酸素源としては、粉状の鉄鉱石(平均粒度50μm)、砂鉄(平均粒度100μm)、ミルスケール(平均粒度500μm)、鉄鉱石の焼結鉱(平均粒度100μm)のうちの何れか1種を用い、溶銑浴面に吹き付けた。酸素ガスの送酸条件は15000〜25000Nm3 /hrとした。酸素原単位は、脱珪に必要な酸素を除いて12Nm3/tとした。 As the solid oxygen source, any one of powdered iron ore (average particle size 50 μm), iron sand (average particle size 100 μm), mill scale (average particle size 500 μm), iron ore sintered ore (average particle size 100 μm) Was sprayed onto the hot metal bath surface. The oxygen gas sending conditions were 15000 to 25000 Nm 3 / hr. The oxygen basic unit was 12 Nm 3 / t excluding oxygen necessary for desiliconization.

また、比較例として、粒状の鉄鉱石(平均粒度20mm)を炉上ホッパーから上置き投入した脱燐処理も実施した。比較例のその他の脱燐処理条件は本発明例に準じて行った。表1に、本発明例及び比較例における脱燐処理前後の溶銑成分並びに操業条件を示す。   In addition, as a comparative example, a dephosphorization treatment was performed in which granular iron ore (average particle size 20 mm) was placed and put in from the furnace hopper. Other dephosphorization treatment conditions in the comparative example were performed in accordance with the examples of the present invention. Table 1 shows the hot metal components and operating conditions before and after the dephosphorization treatment in the examples of the present invention and the comparative examples.

Figure 2007154313
Figure 2007154313

表1に示すように、上吹きランスからの酸素ガスの吹き付け面に固体酸素源を供給した全ての本発明例において、脱燐処理後の溶銑中燐濃度は、0.020質量%以下になり、且つ、鉄歩留りは98%以上となった。これに対して、比較例では、脱燐処理後の溶銑中燐濃度が0.020質量%より高いか、鉄歩留りが98%を下回り、両者が両立しないことが確認できた。   As shown in Table 1, in all the examples of the present invention in which the solid oxygen source was supplied to the blowing surface of the oxygen gas from the top blowing lance, the phosphorus concentration in the hot metal after the dephosphorization treatment was 0.020% by mass or less. And the iron yield was 98% or more. On the other hand, in the comparative example, the phosphorus concentration in the hot metal after the dephosphorization treatment was higher than 0.020% by mass, or the iron yield was lower than 98%, and it was confirmed that both were incompatible.

高炉から出銑した溶銑を高炉鋳床で脱珪した後、300トン容量の転炉に搬送し、この転炉で合計10回の脱燐処理を、実施例1で使用した上吹きランスを用いて実施(本発明例11〜20)した。脱燐処理後の溶銑の燐濃度は0.020質量%以下、鉄歩留りは98%以上を目標とした。鉄歩留りは実施例1と同一の計算方法で求めた。   The hot metal discharged from the blast furnace is desiliconized in the blast furnace casting floor, and then transferred to a 300-ton capacity converter. A total of 10 dephosphorization treatments are performed in this converter using the top blow lance used in Example 1. (Invention Examples 11 to 20). The phosphorus concentration in the hot metal after the dephosphorization treatment was set to 0.020% by mass or less, and the iron yield was set to 98% or more. The iron yield was determined by the same calculation method as in Example 1.

固体酸素源としては、平均粒度100μmの砂鉄を用いた。この砂鉄は、搬送用ガスによる上吹きランスからの供給と、炉上ホッパーからの上置き投入とを併用した。また、CaOを主体とする脱燐精錬剤としては、気体酸素源の供給系統から供給する生石灰粉(平均粒径1mm以下)と、炉上ホッパーから上置き投入する塊状石灰(平均径約10mm)とを併用し、スラグの塩基度(スラグ中CaO成分とSiO2 成分との重量比)を調整した。尚、本発明例19については、気体酸素源の供給系統から生石灰粉を供給せず、炉上ホッパーから塊状石灰のみを上置き投入した。更に、本発明例20については、気体酸素源の供給系統から生石灰粉に加えて石灰石粉(平均粒径1mm以下)を供給した。 As the solid oxygen source, iron sand having an average particle size of 100 μm was used. This iron sand was used in combination with the supply from the top blowing lance by the carrier gas and the top loading from the furnace hopper. Moreover, as a dephosphorizing refining agent mainly composed of CaO, quick lime powder (average particle diameter of 1 mm or less) supplied from a gaseous oxygen source supply system, and massive lime (average diameter of about 10 mm) to be placed on top from a furnace hopper And the basicity of slag (weight ratio of CaO component and SiO 2 component in slag) was adjusted. In addition, with respect to Inventive Example 19, quick lime powder was not supplied from the supply system of the gaseous oxygen source, and only massive lime was placed on top from the furnace hopper. Furthermore, about this invention example 20, in addition to the quick lime powder from the supply system of the gaseous oxygen source, limestone powder (average particle size of 1 mm or less) was supplied.

また、比較例11〜14として、固体酸素源(砂鉄)を上吹きランスから供給しない場合についても脱燐処理を行った。比較例のその他の脱燐処理条件は本発明例に準じて行った。表2に、本発明例及び比較例における脱燐処理前後の溶銑成分ならびに操業条件を示す。   Moreover, the dephosphorization process was performed also about the case where a solid oxygen source (sand iron) is not supplied from an upper blowing lance as Comparative Examples 11-14. Other dephosphorization treatment conditions in the comparative example were performed in accordance with the examples of the present invention. Table 2 shows the hot metal components and operating conditions before and after the dephosphorization treatment in the present invention example and the comparative example.

Figure 2007154313
Figure 2007154313

表2に示すように、固体酸素源の一部を上置き投入とした場合でも、本発明例においては、脱燐処理後の溶銑中燐濃度が0.020質量%以下になり、且つ、鉄歩留りは98%以上となった。これに対して、比較例では、脱燐処理後の溶銑中燐濃度:0.020質量%以下と、鉄歩留り:98%以上とを、両立させることはできなかった。   As shown in Table 2, even when a part of the solid oxygen source is placed on top, in the present invention example, the phosphorus concentration in the hot metal after the dephosphorization treatment is 0.020% by mass or less, and iron Yield was over 98%. On the other hand, in the comparative example, the phosphorus concentration in the hot metal after the dephosphorization treatment: 0.020% by mass or less and the iron yield: 98% or more could not be made compatible.

高炉から出銑した溶銑を高炉鋳床で脱珪した後、300トン容量の転炉に搬送し、この転炉で合計2回の脱燐処理を実施(本発明例31〜32)した。底吹きガスとして、転炉炉底に設けた二重管構造の羽口の内管から撹拌用ガスとして酸素ガスを溶銑1トン当たり約0.8Nm3 /minの流量で吹き込み、また、外管からは羽口冷却用のプロパンガスを吹き込みながら、実施例1で使用した上吹きランスを用いて脱燐処理を実施した。固体酸素源としては、平均粒度500μmのミルスケールを用いた。脱燐処理後の溶銑の燐濃度は0.020質量%以下、鉄歩留りは98%以上を目標とした。鉄歩留りは実施例1と同一の計算方法で求めた。表3に、本発明例における脱燐処理前後の溶銑成分ならびに操業条件を示す。 The hot metal discharged from the blast furnace was desiliconized in the blast furnace casting floor, and then transferred to a 300-ton capacity converter, and dephosphorization treatment was carried out twice in total (Invention Examples 31 to 32). As bottom blowing gas, oxygen gas was blown in as a stirring gas from the inner tube of the double tube structure tuyeres provided at the bottom of the converter furnace, at a flow rate of about 0.8 Nm 3 / min per ton of hot metal. The dephosphorization treatment was carried out using the top blowing lance used in Example 1 while blowing propane gas for cooling the tuyere. As the solid oxygen source, a mill scale having an average particle size of 500 μm was used. The phosphorus concentration in the hot metal after the dephosphorization treatment was set to 0.020% by mass or less, and the iron yield was set to 98% or more. The iron yield was determined by the same calculation method as in Example 1. Table 3 shows the hot metal components and operating conditions before and after the dephosphorization treatment in the examples of the present invention.

Figure 2007154313
Figure 2007154313

表3に示すように、撹拌用ガスとして酸素ガスを羽口から吹き込んだ場合でも、本発明例においては、脱燐処理後の溶銑中燐濃度が0.020質量%以下になり、且つ、鉄歩留りは98%以上となった。   As shown in Table 3, even when oxygen gas was blown from the tuyere as the stirring gas, in the present invention example, the phosphorus concentration in the hot metal after dephosphorization was 0.020 mass% or less, and iron Yield was over 98%.

Claims (5)

CaOを主体とする脱燐精錬剤を添加し、酸素源として気体酸素源及び固体酸素源を供給して、添加したCaOを主体とする脱燐精錬剤を滓化させてスラグとなし、溶銑に対して脱燐処理を施す、溶銑の脱燐処理方法において、前記気体酸素源が供給されている場所と同一場所の溶銑浴面に、前記固体酸素源の少なくとも一部を、搬送ガスを用いて供給することを特徴とする、溶銑の脱燐処理方法。   A dephosphorizing refining agent mainly composed of CaO is added, a gaseous oxygen source and a solid oxygen source are supplied as an oxygen source, and the dephosphorizing refining agent mainly composed of CaO is hatched to form slag. In the hot metal dephosphorization method for performing dephosphorization treatment on the hot metal bath, at least a part of the solid oxygen source is transferred to the hot metal bath surface in the same place as the place where the gaseous oxygen source is supplied using a carrier gas. A method for dephosphorizing hot metal, which comprises supplying the hot metal. 前記気体酸素源及び固体酸素源をそれぞれ独立して供給するための少なくとも2つの供給系統を有するランスを用いて、前記気体酸素源及び固体酸素源を供給することを特徴とする、請求項1に記載の溶銑の脱燐処理方法。   The gas oxygen source and the solid oxygen source are supplied using a lance having at least two supply systems for independently supplying the gaseous oxygen source and the solid oxygen source, respectively. The hot metal dephosphorization processing method of description. 前記CaOを主体とする脱燐精錬剤を、前記気体酸素源の供給系統を通じて気体酸素源とともに溶銑浴面に供給することを特徴とする、請求項2に記載の溶銑の脱燐処理方法。   3. The hot metal dephosphorization method according to claim 2, wherein the dephosphorizing agent mainly composed of CaO is supplied to the hot metal bath surface along with the gaseous oxygen source through the gaseous oxygen source supply system. 前記固体酸素源は、粒度が1mm以下の焼結鉱、ミルスケール、集塵ダスト、砂鉄、鉄鉱石のうちの何れか1種または2種以上であることを特徴とする、請求項1ないし請求項3の何れか1つに記載の溶銑の脱燐処理方法。   The solid oxygen source is one or more of sintered ore having a particle size of 1 mm or less, mill scale, dust collection dust, iron sand, and iron ore. Item 4. The hot metal dephosphorization method according to any one of Items 3 to 4. 前記固体酸素源の搬送用ガスが、空気、還元性ガス、炭酸ガス、非酸化性ガス、希ガスのうちの何れか1種または2種以上の気体であり、且つ、前記気体酸素源よりも酸素濃度が低いことを特徴とする、請求項1ないし請求項4の何れか1つに記載の溶銑の脱燐処理方法。   The gas for transporting the solid oxygen source is any one or more of air, reducing gas, carbon dioxide gas, non-oxidizing gas, and rare gas, and more than the gaseous oxygen source. The method for dephosphorizing hot metal according to any one of claims 1 to 4, wherein the oxygen concentration is low.
JP2006303675A 2005-11-09 2006-11-09 Hot metal dephosphorization method Active JP5087905B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006303675A JP5087905B2 (en) 2005-11-09 2006-11-09 Hot metal dephosphorization method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005324253 2005-11-09
JP2005324253 2005-11-09
JP2006303675A JP5087905B2 (en) 2005-11-09 2006-11-09 Hot metal dephosphorization method

Publications (2)

Publication Number Publication Date
JP2007154313A true JP2007154313A (en) 2007-06-21
JP5087905B2 JP5087905B2 (en) 2012-12-05

Family

ID=38239042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006303675A Active JP5087905B2 (en) 2005-11-09 2006-11-09 Hot metal dephosphorization method

Country Status (1)

Country Link
JP (1) JP5087905B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079258A (en) * 2007-09-26 2009-04-16 Jfe Steel Kk Dephosphorizing method for molten iron
JP2009203538A (en) * 2008-02-29 2009-09-10 Jfe Steel Corp Method for refining molten pig iron
JP2010095785A (en) * 2008-10-20 2010-04-30 Sumitomo Metal Ind Ltd Method for dephosphorizing molten iron
JP2017141496A (en) * 2016-02-12 2017-08-17 新日鐵住金株式会社 Dephosphorization method of molten iron
JP2020033596A (en) * 2018-08-29 2020-03-05 日本製鉄株式会社 Method for refining molten iron
JP2021036062A (en) * 2019-08-30 2021-03-04 Jfeスチール株式会社 Dephosphorization treatment method for molten iron
CN113337673A (en) * 2021-04-21 2021-09-03 新疆八一钢铁股份有限公司 Preparation method of converter steelmaking efficient dephosphorization agent

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6082606A (en) * 1983-10-13 1985-05-10 Sumitomo Metal Ind Ltd Method for dephosphorizing molten iron
JP2003328023A (en) * 2002-05-16 2003-11-19 Jfe Steel Kk Method for manufacturing low-phosphorus molten pig iron
JP2004307940A (en) * 2003-04-08 2004-11-04 Nippon Steel Corp Method for dephosphorizing molten iron using alumina with torpedo car
JP2005187912A (en) * 2003-12-26 2005-07-14 Jfe Steel Kk Method for preliminarily treating molten pig iron

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6082606A (en) * 1983-10-13 1985-05-10 Sumitomo Metal Ind Ltd Method for dephosphorizing molten iron
JP2003328023A (en) * 2002-05-16 2003-11-19 Jfe Steel Kk Method for manufacturing low-phosphorus molten pig iron
JP2004307940A (en) * 2003-04-08 2004-11-04 Nippon Steel Corp Method for dephosphorizing molten iron using alumina with torpedo car
JP2005187912A (en) * 2003-12-26 2005-07-14 Jfe Steel Kk Method for preliminarily treating molten pig iron

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079258A (en) * 2007-09-26 2009-04-16 Jfe Steel Kk Dephosphorizing method for molten iron
JP2009203538A (en) * 2008-02-29 2009-09-10 Jfe Steel Corp Method for refining molten pig iron
JP2010095785A (en) * 2008-10-20 2010-04-30 Sumitomo Metal Ind Ltd Method for dephosphorizing molten iron
JP2017141496A (en) * 2016-02-12 2017-08-17 新日鐵住金株式会社 Dephosphorization method of molten iron
JP2020033596A (en) * 2018-08-29 2020-03-05 日本製鉄株式会社 Method for refining molten iron
JP7107099B2 (en) 2018-08-29 2022-07-27 日本製鉄株式会社 Hot metal refining method
JP2021036062A (en) * 2019-08-30 2021-03-04 Jfeスチール株式会社 Dephosphorization treatment method for molten iron
JP7082320B2 (en) 2019-08-30 2022-06-08 Jfeスチール株式会社 Dephosphorization method of hot metal
CN113337673A (en) * 2021-04-21 2021-09-03 新疆八一钢铁股份有限公司 Preparation method of converter steelmaking efficient dephosphorization agent

Also Published As

Publication number Publication date
JP5087905B2 (en) 2012-12-05

Similar Documents

Publication Publication Date Title
TWI473883B (en) Converter steelmaking method
JP5087905B2 (en) Hot metal dephosphorization method
JP2013167015A (en) Method for preliminary treatment of molten iron
JP4977874B2 (en) Hot metal dephosphorization method
JP4848757B2 (en) Hot metal dephosphorization method
JP5181520B2 (en) Hot metal dephosphorization method
JP2004190101A (en) Method for pre-treating molten iron
JP5867520B2 (en) Hot metal pretreatment method
JP2018178260A (en) Converter steelmaking process
JP5408379B2 (en) Hot metal pretreatment method
JP4977870B2 (en) Steel making method
JP5471151B2 (en) Converter steelmaking method
KR101001078B1 (en) Method of hot metal dephosphorization treatment
JP6773135B2 (en) How to dephosphorize hot metal
JP5272378B2 (en) Hot metal dephosphorization method
JP5098518B2 (en) Hot phosphorus dephosphorization method
JP4904858B2 (en) Hot metal dephosphorization method
JP4779464B2 (en) Method for producing low phosphorus hot metal
JP5358975B2 (en) Hot metal refining method
JP5266700B2 (en) Hot metal dephosphorization method
JP5435106B2 (en) Hot metal dephosphorization method
JP4513340B2 (en) Hot metal dephosphorization method
JP2011214023A (en) Dephosphorization method for hot metal
JP6760399B2 (en) Hot metal dephosphorization method and refining agent
JP4701752B2 (en) Hot metal pretreatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100519

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120814

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120827

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5087905

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250