JP7082078B2 - Extraction solvent removal method in extraction equipment and extraction equipment - Google Patents

Extraction solvent removal method in extraction equipment and extraction equipment Download PDF

Info

Publication number
JP7082078B2
JP7082078B2 JP2019049798A JP2019049798A JP7082078B2 JP 7082078 B2 JP7082078 B2 JP 7082078B2 JP 2019049798 A JP2019049798 A JP 2019049798A JP 2019049798 A JP2019049798 A JP 2019049798A JP 7082078 B2 JP7082078 B2 JP 7082078B2
Authority
JP
Japan
Prior art keywords
extraction
tank
extract
dimethyl ether
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019049798A
Other languages
Japanese (ja)
Other versions
JP2020151615A (en
Inventor
悟史 篠原
章悟 鈴木
昭吾 鳥井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Albion Co Ltd
Original Assignee
Albion Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Albion Co Ltd filed Critical Albion Co Ltd
Priority to JP2019049798A priority Critical patent/JP7082078B2/en
Publication of JP2020151615A publication Critical patent/JP2020151615A/en
Application granted granted Critical
Publication of JP7082078B2 publication Critical patent/JP7082078B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Extraction Or Liquid Replacement (AREA)

Description

本発明は、抽出装置および抽出装置における抽出溶媒除去方法に関する。 The present invention relates to an extraction device and a method for removing an extraction solvent in the extraction device.

従来、抽出溶媒として液化ジメチルエーテルを用いる抽出方法が特許文献1に提案されている。かかる特許文献1では、水分及び油分を含有する対象材料に対して飽和量の水分が溶存する液化ジメチルエーテルを接触させて液化ジメチルエーテルと油分との混合物、並びに脱油された対象材料を得ることが開示されている。 Conventionally, Patent Document 1 has proposed an extraction method using liquefied dimethyl ether as an extraction solvent. Patent Document 1 discloses that a liquefied dimethyl ether in which a saturated amount of water is dissolved is brought into contact with a target material containing water and oil to obtain a mixture of the liquefied dimethyl ether and oil, and a deoiled target material. Has been done.

また、特許文献2には、抽出溶媒として用いた液化ジメチルエーテルの抽出後の生体内成分からの除去について、蒸発乾固(凍結乾燥、噴霧乾燥など)を行う技術が開示されている。 Further, Patent Document 2 discloses a technique for performing evaporation to dryness (freeze-drying, spray-drying, etc.) for removal of liquefied dimethyl ether used as an extraction solvent from in vivo components after extraction.

ところで、特許文献2に開示の蒸発乾固によれば、確かに抽出後の生体内成分からジメチルエーテルを除去することが可能であるが、ジメチルエーテルの除去に長い時間を要することになる。 By the way, according to the evaporative dry matter disclosed in Patent Document 2, it is certainly possible to remove dimethyl ether from the components in the living body after extraction, but it takes a long time to remove dimethyl ether.

しかしながら、長い時間をかけて抽出後の生体内成分からジメチルエーテル除去を行う場合、抽出後の生体内成分について、大気開放下(減圧下も含む)に置かない、UV(紫外線:ultraviolet)に当てないなどの管理が難しくなる、という問題が生じる。生体内成分は、大気開放下(減圧下も含む)に置かれてしまうと、成分の一部が揮発、または酸化してしまう。また、生体内成分は、UVに当たってしまうと、成分の一部が分解してしまう。 However, when dimethyl ether is removed from the in-vivo components after extraction over a long period of time, the in-vivo components after extraction are not placed under open air (including under reduced pressure) and are not exposed to UV (ultraviolet). There is a problem that it becomes difficult to manage such things. If the components in the living body are placed under open air (including under reduced pressure), some of the components will volatilize or oxidize. In addition, when the in-vivo component is exposed to UV, a part of the component is decomposed.

本発明は、上記に鑑みてなされたものであって、蒸発乾固に比べて速く抽出溶媒を除去することで、生体内成分が揮発、分解することを抑制し、より生体内に存在していた生体内成分を得ることを目的とする。 The present invention has been made in view of the above, and by removing the extraction solvent faster than the evaporative dryness, it is possible to suppress the volatilization and decomposition of the components in the living body, and the present invention is more present in the living body. The purpose is to obtain in-vivo components.

上述した課題を解決し、目的を達成するために、本発明は、溶媒を用いて、生体原料から生体組織由来の抽出物を抽出する抽出装置において、前記抽出物と、前記生体組織から前記抽出物を抽出した抽出残渣との少なくとも何れか一方から前記抽出溶媒を除去する除去手段を有し、前記除去手段は、前記抽出物と前記抽出残渣との少なくとも何れか一方を振動させる、ことを特徴とする。 In order to solve the above-mentioned problems and achieve the object, the present invention is an extraction device for extracting an extract derived from a biological tissue from a biological raw material using a solvent, the extract and the extraction from the biological tissue. It is characterized by having a removing means for removing the extraction solvent from at least one of the extraction residue from which the substance is extracted, and the removing means vibrates at least one of the extract and the extraction residue. And.

本発明によれば、蒸発乾固に比べて速く抽出溶媒を除去することができ、生体内成分が揮発、分解することを抑制し、より生体内に存在していた生体内成分を得ることができる、という効果を奏する。 According to the present invention, the extraction solvent can be removed faster than the evaporative dry solid, the in vivo component can be suppressed from volatilizing and decomposing, and the in vivo component that was present in the living body can be obtained. It has the effect of being able to do it.

図1は、実施形態に係る抽出装置の一例を示す模式図である。FIG. 1 is a schematic diagram showing an example of an extraction device according to an embodiment. 図2は、生体原料の抽出物及び抽出残渣の製造方法の一例を示すフローチャートである。FIG. 2 is a flowchart showing an example of a method for producing an extract of a biomaterial and an extraction residue. 図3は、実施例に係る抽出装置の一例を示す模式図である。FIG. 3 is a schematic diagram showing an example of the extraction device according to the embodiment. 図4は、超音波振動を加えた抽出液の除去時間と除去率の関係を示す図である。FIG. 4 is a diagram showing the relationship between the removal time and the removal rate of the extract to which ultrasonic vibration is applied.

以下に添付図面を参照して、抽出装置および抽出装置における抽出溶媒除去方法の実施の形態を詳細に説明する。 Hereinafter, embodiments of the extraction device and the extraction solvent removal method in the extraction device will be described in detail with reference to the accompanying drawings.

図1は、実施形態に係る抽出装置100の一例を示す模式図である。なお、図1は、抽出装置100を理解することができる程度に、構成要素の形状、大きさ及び配置を概略的に示すものに過ぎない。 FIG. 1 is a schematic diagram showing an example of an extraction device 100 according to an embodiment. Note that FIG. 1 merely schematically shows the shape, size, and arrangement of the components so that the extraction device 100 can be understood.

抽出装置100は、飽和量以下の補助溶媒が添加された抽出溶媒である液化ジメチルエーテル2を貯蔵する貯槽1と、生体原料7を液化ジメチルエーテル2と接触させる抽出槽6と、抽出槽6から導出された液体を分離する分離槽11と、貯槽1から抽出槽6へ液化ジメチルエーテル2を送液するポンプ3とを有している。抽出槽6には、フィルタ8が上流側及び下流側に設置されている。 The extraction device 100 is derived from a storage tank 1 for storing the liquefied dimethyl ether 2 which is an extraction solvent to which an auxiliary solvent having a saturation amount or less is added, an extraction tank 6 for bringing the biological raw material 7 into contact with the liquefied dimethyl ether 2, and an extraction tank 6. It has a separation tank 11 for separating the liquid, and a pump 3 for sending the liquefied dimethyl ether 2 from the storage tank 1 to the extraction tank 6. In the extraction tank 6, filters 8 are installed on the upstream side and the downstream side.

上記貯槽1に貯蔵される液化ジメチルエーテル2は、ジメチルエーテルを飽和蒸気圧以上にすることにより、液体状態とされるものであるが、飽和量以下の水やアルコール等の補助溶媒が添加されたものであることが好ましい。ここで補助溶媒の添加量は、液化ジメチルエーテル中への飽和量以下が好ましく、より具体的には液化ジメチルエーテル2に対して7質量%以下であることが好ましい。補助溶媒を加えることにより、液化ジメチルエーテルの溶解度や極性といった溶媒特性を変化させることができる。 The liquefied dimethyl ether 2 stored in the storage tank 1 is brought into a liquid state by adjusting the dimethyl ether to a saturated vapor pressure or higher, but is added with an auxiliary solvent such as water or alcohol having a saturated amount or less. It is preferable to have. Here, the amount of the auxiliary solvent added is preferably not more than the saturation amount in the liquefied dimethyl ether, and more specifically, more preferably 7% by mass or less with respect to the liquefied dimethyl ether 2. By adding an auxiliary solvent, the solvent characteristics such as the solubility and polarity of the liquefied dimethyl ether can be changed.

また抽出装置100は、液化ジメチルエーテル2を導出又は導入する導管5,10,12,14,16,19,20,23、各槽内の気圧を調節し、液化ジメチルエーテル2の導出及び導入を制御するバルブ4,9,13,15,21,22,25,26,27、背圧弁18、逆止弁24を有している。抽出槽6及び分離槽11は、液化ジメチルエーテル2の液体状態を維持するため、温度については1~40℃に調整することができ、圧力については0.2~5MPaに調整することができる。また、ガス検知装置28が、導管14に接続されている。 Further, the extraction device 100 controls the derivation and introduction of the liquefied dimethyl ether 2 by adjusting the air pressure in each of the conduits 5, 10, 12, 14, 16, 19, 20, 23 for deriving or introducing the liquefied dimethyl ether 2. It has valves 4, 9, 13, 15, 21, 22, 25, 26, 27, a back pressure valve 18, and a check valve 24. In the extraction tank 6 and the separation tank 11, the temperature can be adjusted to 1 to 40 ° C. and the pressure can be adjusted to 0.2 to 5 MPa in order to maintain the liquid state of the liquefied dimethyl ether 2. Further, the gas detection device 28 is connected to the conduit 14.

上記抽出装置100において、貯槽1から抽出槽6に液化ジメチルエーテル2を導入するポンプ3、バルブ4,27及び導管5が、送液手段として機能する。抽出槽6は、接触手段として機能する。抽出槽6から液化ジメチルエーテル2を導出させる導管10,12、背圧弁18及びバルブ13,15,21が、導出手段として機能する。また分離槽11は、分離手段として機能する。導管14に接続された凝縮器17は、凝縮手段として機能する。分離槽11に接続された導管12及びバルブ22は、気化手段として機能する。貯槽1は、貯蔵手段として機能する。導管19,20は、供給手段として機能する。 In the extraction device 100, the pump 3, the valves 4, 27, and the conduit 5 for introducing the liquefied dimethyl ether 2 from the storage tank 1 to the extraction tank 6 function as liquid feeding means. The extraction tank 6 functions as a contact means. The conduits 10, 12, the back pressure valve 18 and the valves 13, 15, 21 for eliciting the liquefied dimethyl ether 2 from the extraction tank 6 function as the eliciting means. The separation tank 11 also functions as a separation means. The condenser 17 connected to the conduit 14 functions as a condensing means. The conduit 12 and the valve 22 connected to the separation tank 11 function as vaporization means. The storage tank 1 functions as a storage means. The conduits 19 and 20 function as supply means.

抽出装置100は、各槽内の温度及び気圧を検知する温度計及び圧力計、各槽内における撹拌を実施するための撹拌機、各槽内及び導管内における例えば酸素等の活性ガスをパージするための例えば窒素等の不活性ガスを流通させる装置等の任意の構成要素をさらに含むものである。 The extraction device 100 purges a thermometer and a pressure gauge that detect the temperature and atmospheric pressure in each tank, a stirrer for performing stirring in each tank, and an active gas such as oxygen in each tank and a conduit. It further comprises any component, such as a device for circulating an inert gas such as nitrogen.

図1に示すように、抽出槽6は、振動発生装置29と、温度制御装置30とを備えている。 As shown in FIG. 1, the extraction tank 6 includes a vibration generator 29 and a temperature control device 30.

振動発生装置29は、除去手段として機能するものであって、抽出槽6に対する超音波照射によって超音波振動を伝える。なお、除去手段として機能する振動発生装置29は、抽出溶媒の突沸を防ぐために、振動周波数を調整可能としている。また、振動発生装置29は、超音波照射によって超音波振動を伝えるものに限られない。例えば、振動発生装置29は、抽出槽6を揺れ動かしたり回転させたりして振動を発生させるものであってもよい。また、振動発生装置29による振動は、周期的でなくてもよい。 The vibration generator 29 functions as a removing means, and transmits ultrasonic vibrations by irradiating the extraction tank 6 with ultrasonic waves. The vibration generator 29, which functions as a removing means, can adjust the vibration frequency in order to prevent bumping of the extraction solvent. Further, the vibration generator 29 is not limited to the one that transmits ultrasonic vibration by ultrasonic irradiation. For example, the vibration generator 29 may be one that generates vibration by shaking or rotating the extraction tank 6. Further, the vibration by the vibration generator 29 does not have to be periodic.

温度制御装置30は、温度制御手段として機能するものであって、抽出槽6からの抽出液や抽出残渣の温度を制御する。温度制御装置30は、例えば冷却装置やヒータなどであって、抽出槽6からの抽出液や抽出残渣の温度を一定に保つ。例えば、超音波照射を続けると組織の温度上昇が生じ、その結果、成分の分解、変性に繋がることになる。これを防ぐために、温度制御装置30によって定温度状況下に維持する。また、抽出残渣の凍結による組織損傷や熱変性を防止することもできる。 The temperature control device 30 functions as a temperature control means, and controls the temperature of the extract and the extraction residue from the extraction tank 6. The temperature control device 30 is, for example, a cooling device or a heater, and keeps the temperature of the extract liquid and the extraction residue from the extraction tank 6 constant. For example, continuous ultrasonic irradiation causes the temperature of the tissue to rise, which leads to decomposition and denaturation of the components. In order to prevent this, the temperature control device 30 maintains the temperature under a constant temperature condition. In addition, it is possible to prevent tissue damage and heat denaturation due to freezing of the extraction residue.

また、図1に示すように、分離槽11は、温度制御装置31と、振動発生装置32と、除去具合検知装置33とを備えている。 Further, as shown in FIG. 1, the separation tank 11 includes a temperature control device 31, a vibration generator 32, and a removal condition detection device 33.

振動発生装置32は、除去手段として機能するものであって、分離槽11に対する超音波照射によって超音波振動を伝える。なお、除去手段として機能する振動発生装置32は、抽出溶媒の突沸を防ぐために、振動周波数を調整可能としている。また、振動発生装置32は、超音波照射によって超音波振動を伝えるものに限られない。例えば、振動発生装置32は、分離槽11を揺れ動かしたり回転させたりして振動を発生させるものであってもよい。また、振動発生装置32による振動は、周期的でなくてもよい。 The vibration generator 32 functions as a removing means, and transmits ultrasonic vibration by irradiating the separation tank 11 with ultrasonic waves. The vibration generator 32, which functions as a removing means, can adjust the vibration frequency in order to prevent bumping of the extraction solvent. Further, the vibration generator 32 is not limited to the one that transmits ultrasonic vibration by ultrasonic irradiation. For example, the vibration generator 32 may be one that generates vibration by shaking or rotating the separation tank 11. Further, the vibration by the vibration generator 32 does not have to be periodic.

温度制御装置31は、温度制御手段として機能するものであって、分離槽11からの抽出液の温度を制御する。温度制御装置31は、例えば冷却装置などであって、抽出槽6からの抽出液の温度を一定に保つ。例えば、超音波照射を続けると組織の温度上昇が生じ、その結果、成分の分解、変性に繋がることになる。これを防ぐために、温度制御装置31によって定温度状況下に維持する。 The temperature control device 31 functions as a temperature control means, and controls the temperature of the extract from the separation tank 11. The temperature control device 31 is, for example, a cooling device, and keeps the temperature of the extract from the extraction tank 6 constant. For example, continuous ultrasonic irradiation causes the temperature of the tissue to rise, which leads to decomposition and denaturation of the components. In order to prevent this, the temperature control device 31 maintains the temperature under a constant temperature condition.

除去具合検知装置33は、分離槽11の重量変化を測定する。除去具合検知装置33は、抽出溶媒である液化ジメチルエーテルの除去具合を検知する除去具合検知手段として機能する。これは、必要以上の処理時間をかけないようにするためである。なお、除去具合検知装置33は、分離槽11の重量変化を測定するものに限るものではなく、ガス検知などにより抽出溶媒である液化ジメチルエーテルの除去具合を検知するものであってもよい。 The removal condition detecting device 33 measures the weight change of the separation tank 11. The removal condition detecting device 33 functions as a removal condition detecting means for detecting the removal condition of the liquefied dimethyl ether which is an extraction solvent. This is to avoid taking more processing time than necessary. The removal condition detection device 33 is not limited to measuring the weight change of the separation tank 11, and may detect the removal condition of the liquefied dimethyl ether as the extraction solvent by gas detection or the like.

図2は、生体原料の抽出物及び抽出残渣の製造方法の一例を示すフローチャートである。 FIG. 2 is a flowchart showing an example of a method for producing an extract of a biomaterial and an extraction residue.

生体原料の抽出物及び抽出残渣の製造方法は、図2に示すように、抽出工程(ステップS101)と、分離工程(ステップS102)と、抽出物濃縮工程(ステップS103)と、抽出残渣生成工程(ステップS104)とを含むものである。 As shown in FIG. 2, the method for producing the extract and the extraction residue of the biological raw material includes an extraction step (step S101), a separation step (step S102), an extract concentration step (step S103), and an extraction residue generation step. (Step S104) and the like.

以下においては、上記抽出装置100の動作を説明しながら生体原料から抽出される抽出物及び抽出残渣の製造方法の各工程を説明する。 In the following, each step of the method for producing an extract and an extraction residue extracted from a biomaterial will be described while explaining the operation of the extraction device 100.

まず、抽出槽6に動植物組織7を導入する。このとき、バルブ4、9、13、15、21、22、25、26、27は、閉状態である。 First, the animal and plant tissue 7 is introduced into the extraction tank 6. At this time, the valves 4, 9, 13, 15, 21, 22, 25, 26, and 27 are in the closed state.

ここで、貯槽1に液化ジメチルエーテル2が十分に貯蔵されていない場合は、バルブ25を閉、バルブ26を開状態とし、導管20を経由して、貯槽1に液化ジメチルエーテル2を供給した後、バルブ26を閉状態とする。なお、貯槽1の圧力をジメチルエーテルの飽和蒸気圧以上にすることにより、液化ジメチルエーテル2が生成される。 Here, when the liquefied dimethyl ether 2 is not sufficiently stored in the storage tank 1, the valve 25 is closed, the valve 26 is opened, the liquefied dimethyl ether 2 is supplied to the storage tank 1 via the conduit 20, and then the valve. 26 is closed. The liquefied dimethyl ether 2 is produced by setting the pressure of the storage tank 1 to be equal to or higher than the saturated vapor pressure of dimethyl ether.

(抽出工程(ステップS101))
次に、バルブ27、4、9、13、15、21を開状態とし、背圧弁18を所定圧力に設定し加圧ポンプ3により、貯槽1内の液化ジメチルエーテル2を所定時間抽出槽6に導出することで動植物組織7の抽出液が分離槽11に導入され、抽出残渣としての動植物組織7が抽出槽6に残る。その後、バルブ9、13、15、21を閉とする。
(Extraction step (step S101))
Next, the valves 27, 4, 9, 13, 15, and 21 are opened, the back pressure valve 18 is set to a predetermined pressure, and the liquefied dimethyl ether 2 in the storage tank 1 is led out to the extraction tank 6 for a predetermined time by the pressurizing pump 3. By doing so, the extract of the animal and plant tissue 7 is introduced into the separation tank 11, and the animal and plant tissue 7 as an extraction residue remains in the extraction tank 6. After that, the valves 9, 13, 15 and 21 are closed.

(分離工程(ステップS102)、抽出物濃縮工程(ステップS103))
次に、バルブ22、25を開とし、振動発生装置32で抽出液に超音波による振動を加えることで、液化ジメチルエーテル2が溶解した抽出液からジメチルエーテルが分離される。
(Separation step (step S102), extract concentration step (step S103))
Next, the valves 22 and 25 are opened, and the vibration generator 32 applies ultrasonic vibration to the extract to separate the dimethyl ether from the extract in which the liquefied dimethyl ether 2 is dissolved.

振動発生装置32で抽出液に超音波照射による超音波振動を伝えている間は、温度制御装置31により抽出液の温度が1から40℃の範囲の任意の温度に制御されることが好ましい。抽出液から分離された液化ジメチルエーテル2は、凝縮器17に導入される。その結果、分離されたジメチルエーテルは凝縮される。その結果、生成した液化ジメチルエーテル2を再度抽出溶媒として循環再利用することができる。 While the vibration generator 32 transmits ultrasonic vibration due to ultrasonic irradiation to the extract, it is preferable that the temperature of the extract is controlled to an arbitrary temperature in the range of 1 to 40 ° C. by the temperature control device 31. The liquefied dimethyl ether 2 separated from the extract is introduced into the condenser 17. As a result, the separated dimethyl ether is condensed. As a result, the produced liquefied dimethyl ether 2 can be recycled and reused as an extraction solvent again.

このように液化ジメチルエーテル2を再度抽出溶媒として循環再利用させることにより、低コスト化を図るとともに、分解や酸化の防止、ガス引火の防止が可能になる。 By circulating and reusing the liquefied dimethyl ether 2 as an extraction solvent again in this way, it is possible to reduce the cost, prevent decomposition and oxidation, and prevent gas ignition.

除去具合検知装置33により重量変化が無くなった時点で液化ジメチルエーテル2の除去の完了とし、バルブ22、25を閉とする。また、ガス検知装置28により液化ジメチルエーテル2が検知されなくなった時点で液化ジメチルエーテル2の除去の完了としてもよい。 When the weight change disappears by the removal condition detecting device 33, the removal of the liquefied dimethyl ether 2 is completed, and the valves 22 and 25 are closed. Further, the removal of the liquefied dimethyl ether 2 may be completed when the liquefied dimethyl ether 2 is no longer detected by the gas detection device 28.

(抽出残渣生成工程(ステップS104))
次に、バルブ13、25を開とし、振動発生装置29で抽出残渣に超音波による振動を加えることで、液化ジメチルエーテル2が含侵した抽出残渣からジメチルエーテルが分離される。
(Extraction residue generation step (step S104))
Next, the valves 13 and 25 are opened, and the vibration generator 29 applies ultrasonic vibration to the extraction residue to separate dimethyl ether from the extraction residue impregnated by the liquefied dimethyl ether 2.

このように超音波による振動で生じる抽出残渣中の圧力差により、液化ジメチルエーテル2の大気への放出が促進され短時間に抽出残渣に含侵した液化ジメチルエーテル2を除去することができる。このため抽出残渣が酸素に触れることによる劣化の少なく、かつ液化ガスの除去された安全性の高い抽出残渣を効率よく製造することができる。 As described above, the pressure difference in the extraction residue generated by the vibration caused by ultrasonic waves promotes the release of the liquefied dimethyl ether 2 into the atmosphere, and the liquefied dimethyl ether 2 impregnated in the extraction residue can be removed in a short time. Therefore, it is possible to efficiently produce a highly safe extraction residue from which the liquefied gas has been removed with little deterioration due to the extraction residue coming into contact with oxygen.

振動発生装置29で抽出残渣に超音波照射によって超音波振動を伝えている間は、温度制御装置30により抽出残渣の温度が1から40℃の範囲の任意の温度に制御されることが好ましい。抽出残渣の温度が1℃より低い温度では水分の凍結により抽出残渣である細胞組織が損傷を受けてしまう。抽出残渣の温度が40℃より高い温度では抽出残渣である細胞組織のたんぱく質に変性が生じて損傷を受けてしまう。分離された液化ジメチルエーテル2は、凝縮器17に導入される。その結果、分離されたジメチルエーテルは凝縮される。その結果、生成した液化ジメチルエーテル2を再度抽出溶媒として循環再利用することができる。 While the vibration generator 29 transmits ultrasonic vibration to the extraction residue by ultrasonic irradiation, it is preferable that the temperature of the extraction residue is controlled to an arbitrary temperature in the range of 1 to 40 ° C. by the temperature control device 30. If the temperature of the extraction residue is lower than 1 ° C., the cell tissue of the extraction residue will be damaged by freezing of water. If the temperature of the extraction residue is higher than 40 ° C., the protein of the cell tissue, which is the extraction residue, is denatured and damaged. The separated liquefied dimethyl ether 2 is introduced into the condenser 17. As a result, the separated dimethyl ether is condensed. As a result, the produced liquefied dimethyl ether 2 can be recycled and reused as an extraction solvent again.

このように液化ジメチルエーテル2を再度抽出溶媒として循環再利用させることにより、低コスト化を図るとともに、分解や酸化の防止、ガス引火の防止が可能になる。 By circulating and reusing the liquefied dimethyl ether 2 as an extraction solvent again in this way, it is possible to reduce the cost, prevent decomposition and oxidation, and prevent gas ignition.

なお、抽出槽6内の抽出残渣としての動植物組織7には振動が伝わりにくいため、振動発生装置32の振動エネルギーを大きくするようにしてもよい。また、エバポレータで減圧することによって、液化ジメチルエーテル2を積極的に気化させるようにしてもよい。 Since vibration is difficult to be transmitted to the animal and plant tissue 7 as the extraction residue in the extraction tank 6, the vibration energy of the vibration generator 32 may be increased. Further, the liquefied dimethyl ether 2 may be positively vaporized by reducing the pressure with an evaporator.

ガス検知装置28により液化ジメチルエーテル2が検知されなくなった時点で液化ジメチルエーテル2の除去の完了とする。 When the liquefied dimethyl ether 2 is no longer detected by the gas detection device 28, the removal of the liquefied dimethyl ether 2 is completed.

なお、上記の操作は、生体内成分の酸化や分解を防ぐため、不活性ガス雰囲気維持装置101により不活性ガス雰囲気中で行ってもよい。 The above operation may be performed in the inert gas atmosphere by the inert gas atmosphere maintaining device 101 in order to prevent oxidation and decomposition of the components in the living body.

このように本実施の形態によれば、抽出液や抽出残渣に対して振動(例えば、超音波など)を与えることによって、抽出溶媒として用いた液化ガス(液化ジメチルエーテル)を除去する。これにより、蒸発乾固に比べて速く液化ガス(液化ジメチルエーテル)を除去することができる。その結果、生体内成分が揮発、分解することを抑制し、より生体内に存在していた生体内成分を得ることができる。 As described above, according to the present embodiment, the liquefied gas (liquefied dimethyl ether) used as the extraction solvent is removed by applying vibration (for example, ultrasonic waves) to the extract and the extraction residue. This makes it possible to remove the liquefied gas (liquefied dimethyl ether) faster than the evaporated dry solid. As a result, it is possible to suppress the volatilization and decomposition of the in-vivo component, and to obtain the in-vivo component that was more present in the living body.

なお本明細書および特許請求の範囲において、生体原料とは、細胞が細胞壁を有する植物、菌類、古細菌、真正細菌、もしくは細胞が細胞壁を有しない動物のいずれかを由来とする原料を意味する。このとき、植物由来原料の場合は、葉、枝、樹木、花弁、茎、根、果肉、果皮及び種子の少なくとも1つを由来とする原料であり、動物由来原料の場合は、ヒトまたは異種哺乳動物由来の皮膚、血管、心臓弁膜、角膜、羊膜、硬膜等を含む軟組織またはその一部、心臓、腎臓、肝臓、膵臓、脳等を含む臓器またはその一部、骨、軟骨、腱またはその一部等の少なくとも1つである動物由来原料である。生体組織とは細胞壁を有する植物、菌類、古細菌、真正細菌、もしくは細胞壁を有しない動物のいずれかから得られる組織のことを意味する。 In the present specification and claims, the biological raw material means a raw material derived from any of plants, fungi, paleobacteria, eubacteria, or animals in which cells do not have a cell wall. .. At this time, in the case of plant-derived raw materials, the raw materials are derived from at least one of leaves, branches, trees, petals, stems, roots, fruit flesh, peels and seeds, and in the case of animal-derived raw materials, humans or heterologous mammals. Soft tissue or part thereof including skin, blood vessels, heart valve membrane, corneal membrane, sheep membrane, hard membrane, etc. derived from animals, organs or part thereof including heart, kidney, liver, pancreas, brain, etc., bone, cartilage, tendon or its part. It is an animal-derived raw material that is at least one such as a part. Living tissue means tissue obtained from any of plants, fungi, archaea, eubacteria, or animals having no cell wall.

なお本明細書および特許請求の範囲において、液化ガスとは、常温常圧(0℃、1atm(0.101325MPa)で気体である物質の液化物である。 In the present specification and claims, the liquefied gas is a liquefied substance which is a gas at normal temperature and pressure (0 ° C., 1 atm (0.101325 MPa)).

液化ガスとしては、生体組織から生体成分を抽出することが可能であれば、特に限定されないが、ジメチルエーテル、エチルメチルエーテル、ホルムアルデヒド、ケテン、アセトアルデヒド、プロパン、ブタン、液化石油ガス等が挙げられ、二種以上を併用してもよい。これらの中でも、比較的低温低圧で液化する点で、エチルメチルエーテル、ジメチルエーテルが好ましく、ジメチルエーテルが特に好ましい。 The liquefied gas is not particularly limited as long as it is possible to extract biological components from biological tissues, and examples thereof include dimethyl ether, ethyl methyl ether, formaldehyde, ketene, acetaldehyde, propane, butane, and liquefied petroleum gas. Seeds or more may be used together. Among these, ethyl methyl ether and dimethyl ether are preferable, and dimethyl ether is particularly preferable, in terms of liquefaction at a relatively low temperature and low pressure.

ジメチルエーテルは、1~40℃、0.2~5MPa程度で液化するため、装置のコストが安価となる。また、液化ジメチルエーテルは、常温常圧下で容易に気化することから、抽出液及び抽出残渣に残留しにくい。 Since dimethyl ether is liquefied at 1 to 40 ° C. and about 0.2 to 5 MPa, the cost of the apparatus is low. Further, since the liquefied dimethyl ether is easily vaporized under normal temperature and pressure, it does not easily remain in the extract and the extraction residue.

以下において、実施例を参照して本実施形態をより具体的に説明するが、本実施形態は、実施例に限定されない。 Hereinafter, the present embodiment will be described in more detail with reference to Examples, but the present embodiment is not limited to the Examples.

[実施例1]
図3に示す抽出装置を用いて、植物原料の抽出物及び抽出残渣の製造方法を実施し、抽出物及び抽出残渣を生成した。なお、植物原料としてマカダミアナッツを用いた。
[Example 1]
Using the extraction device shown in FIG. 3, a method for producing an extract and an extraction residue of a plant raw material was carried out to produce an extract and an extraction residue. Macadamia nuts were used as a plant material.

具体的には、フィルタ55,58が上流側及び下流側に設置されている抽出槽56に、マカダミアナッツ57を載置した。続いて、バルブ53を閉状態にし、シリンジポンプ50に補助溶媒を添加したジメチルエーテル51を充填して、0.7MPaとして液化させた。分離槽62を予めジメチルエーテルで置換し、バルブ53,54,59,60,61を閉状態とした。なお、補助溶媒として水を用いた。 Specifically, macadamia nuts 57 were placed in the extraction tanks 56 in which the filters 55 and 58 were installed on the upstream side and the downstream side. Subsequently, the valve 53 was closed, the syringe pump 50 was filled with dimethyl ether 51 to which an auxiliary solvent was added, and the syringe pump 50 was liquefied at 0.7 MPa. The separation tank 62 was replaced with dimethyl ether in advance, and the valves 53, 54, 59, 60 and 61 were closed. Water was used as an auxiliary solvent.

次に、背圧弁63の設定圧力を0.7MPaとし、バルブ53,54,59,60を開状態とし、シリンジポンプ50で液化ジメチルエーテルを供給した。液化ジメチルエーテルで抽出槽56が満たされたところで、シリンジポンプ50を停止させ、バルブ54,59を閉状態とすることで、マカダミアナッツ57を液化ジメチルエーテルに浸漬させて混合液とした。 Next, the set pressure of the back pressure valve 63 was set to 0.7 MPa, the valves 53, 54, 59, and 60 were opened, and the liquefied dimethyl ether was supplied by the syringe pump 50. When the extraction tank 56 was filled with liquefied dimethyl ether, the syringe pump 50 was stopped and the valves 54 and 59 were closed to immerse the macadamia nuts 57 in liquefied dimethyl ether to prepare a mixed solution.

そして、バルブ54,59を開状態とし、シリンジポンプ50で液化ジメチルエーテルを再度供給し、流量を2.5mL/minに調整して、混合液(抽出液)を分離槽62で回収した。 Then, the valves 54 and 59 were opened, the liquefied dimethyl ether was supplied again by the syringe pump 50, the flow rate was adjusted to 2.5 mL / min, and the mixed solution (extract) was recovered in the separation tank 62.

次に、上記の操作により得た抽出液の液化ガス(液化ジメチルエーテル)を除去した。具体的には、抽出液が入った分離槽62を介して抽出液に対して28kHzの振動を加えた。所定時間毎の重量変化を測定し、重量変化が無くなった時点で、液化ガス(液化ジメチルエーテル)の除去の完了とした。 Next, the liquefied gas (liquefied dimethyl ether) of the extract obtained by the above operation was removed. Specifically, a vibration of 28 kHz was applied to the extract via the separation tank 62 containing the extract. The weight change was measured at predetermined time intervals, and when the weight change disappeared, the removal of the liquefied gas (liquefied dimethyl ether) was completed.

超音波振動を加えた抽出液は、超音波振動を加えない抽出液に比べて短時間で、液化ガス(液化ジメチルエーテル)の除去が完了した。 The removal of the liquefied gas (liquefied dimethyl ether) was completed in a shorter time in the extract to which ultrasonic vibration was applied than in the extract to which no ultrasonic vibration was applied.

[実施例2]
実施例1と同様に、図3に示す抽出装置を用いて、マカダミアナッツからの抽出液を得た。
[Example 2]
An extract from macadamia nuts was obtained using the extraction device shown in FIG. 3 in the same manner as in Example 1.

次に、上記の操作により得た抽出液の液化ガス(液化ジメチルエーテル)を除去した。具体的には、抽出液が入った分離槽62を介して抽出液に45kHzの振動を加えた。所定時間毎の重量変化を測定し、重量変化が無くなった時点で、液化ガス(液化ジメチルエーテル)の除去の完了とした。 Next, the liquefied gas (liquefied dimethyl ether) of the extract obtained by the above operation was removed. Specifically, a vibration of 45 kHz was applied to the extract via the separation tank 62 containing the extract. The weight change was measured at predetermined time intervals, and when the weight change disappeared, the removal of the liquefied gas (liquefied dimethyl ether) was completed.

超音波振動を加えた抽出液は、超音波振動を加えない抽出液に比べて短時間で、液化ガス(液化ジメチルエーテル)の除去が完了した。 The removal of the liquefied gas (liquefied dimethyl ether) was completed in a shorter time in the extract to which ultrasonic vibration was applied than in the extract to which no ultrasonic vibration was applied.

[実施例3]
実施例1と同様に、図3に示す抽出装置を用いて、マカダミアナッツからの抽出液を得た。
[Example 3]
An extract from macadamia nuts was obtained using the extraction device shown in FIG. 3 in the same manner as in Example 1.

次に、上記の操作により得た抽出液の液化ガス(液化ジメチルエーテル)を除去した。具体的には、抽出液が入った分離槽62を介して抽出液に100kHzの振動を加えた。所定時間毎の重量変化を測定し、重量変化が無くなった時点で、液化ガス(液化ジメチルエーテル)の除去の完了とした。 Next, the liquefied gas (liquefied dimethyl ether) of the extract obtained by the above operation was removed. Specifically, a vibration of 100 kHz was applied to the extract via the separation tank 62 containing the extract. The weight change was measured at predetermined time intervals, and when the weight change disappeared, the removal of the liquefied gas (liquefied dimethyl ether) was completed.

ここで、図4は超音波振動を加えた抽出液の除去時間と除去率の関係を示す図である。なお、比較例として超音波振動を加えない抽出液の除去時間と除去率の関係も示す。図4に示すように、超音波振動を加えた抽出液は、超音波振動を加えない抽出液に比べて短時間で、液化ガス(液化ジメチルエーテル)の除去が完了した。 Here, FIG. 4 is a diagram showing the relationship between the removal time and the removal rate of the extract to which ultrasonic vibration is applied. As a comparative example, the relationship between the removal time and the removal rate of the extract to which ultrasonic vibration is not applied is also shown. As shown in FIG. 4, the extract to which ultrasonic vibration was applied completed the removal of the liquefied gas (liquefied dimethyl ether) in a shorter time than the extract to which ultrasonic vibration was not applied.

[実施例4]
マカダミアナッツの代わりにブタ大動脈を用いる点以外は実施例1と同様にして、図3に示す抽出装置を用いて、ブタ大動脈からの抽出液を得た。
[Example 4]
An extract from the porcine aorta was obtained using the extraction device shown in FIG. 3 in the same manner as in Example 1 except that the porcine aorta was used instead of the macadamia nuts.

次に、上記の操作により得た抽出液の液化ガス(液化ジメチルエーテル)を除去した。具体的には、抽出液が入った分離槽62を介して抽出液に超音波振動を加えた。所定時間毎の重量変化を測定し、重量変化が無くなった時点で、液化ガス(液化ジメチルエーテル)の除去の完了とした。 Next, the liquefied gas (liquefied dimethyl ether) of the extract obtained by the above operation was removed. Specifically, ultrasonic vibration was applied to the extract via the separation tank 62 containing the extract. The weight change was measured at predetermined time intervals, and when the weight change disappeared, the removal of the liquefied gas (liquefied dimethyl ether) was completed.

超音波振動を加えた抽出液は、超音波振動を加えない抽出液に比べて短時間で、液化ガス(液化ジメチルエーテル)の除去が完了した。 The removal of the liquefied gas (liquefied dimethyl ether) was completed in a shorter time in the extract to which ultrasonic vibration was applied than in the extract to which no ultrasonic vibration was applied.

[実施例5]
マカダミアナッツの代わりにバラ花弁を用いる点以外は実施例1と同様にして、図3に示す抽出装置を用いて、バラ花弁からの抽出液を得た。
[Example 5]
An extract from rose petals was obtained using the extraction device shown in FIG. 3 in the same manner as in Example 1 except that rose petals were used instead of macadamia nuts.

次に、上記の操作により得た抽出液の液化ガス(液化ジメチルエーテル)を除去した。具体的には、抽出液が入った分離槽62を介して抽出液に超音波振動を加えた。所定時間毎の重量変化を測定し、重量変化が無くなった時点で、液化ガス(液化ジメチルエーテル)の除去の完了とした。 Next, the liquefied gas (liquefied dimethyl ether) of the extract obtained by the above operation was removed. Specifically, ultrasonic vibration was applied to the extract via the separation tank 62 containing the extract. The weight change was measured at predetermined time intervals, and when the weight change disappeared, the removal of the liquefied gas (liquefied dimethyl ether) was completed.

超音波振動を加えた抽出液は、超音波振動を加えない抽出液に比べて短時間で、液化ガス(液化ジメチルエーテル)の除去が完了した。 The removal of the liquefied gas (liquefied dimethyl ether) was completed in a shorter time in the extract to which ultrasonic vibration was applied than in the extract to which no ultrasonic vibration was applied.

[実施例6]
マカダミアナッツの代わりにクロモジを用いる点以外は実施例1と同様にして、図3に示す抽出装置を用いて、クロモジからの抽出液を得た。
[Example 6]
An extract from Kuro-moji was obtained using the extraction device shown in FIG. 3 in the same manner as in Example 1 except that Kuro-moji was used instead of macadamia nuts.

次に、上記の操作により得た抽出液の液化ガス(液化ジメチルエーテル)を除去した。具体的には、抽出液が入った分離槽62を介して抽出液に超音波振動を加えた。所定時間毎の重量変化を測定し、重量変化が無くなった時点で、液化ガス(液化ジメチルエーテル)の除去の完了とした。 Next, the liquefied gas (liquefied dimethyl ether) of the extract obtained by the above operation was removed. Specifically, ultrasonic vibration was applied to the extract via the separation tank 62 containing the extract. The weight change was measured at predetermined time intervals, and when the weight change disappeared, the removal of the liquefied gas (liquefied dimethyl ether) was completed.

超音波振動を加えた抽出液は、超音波振動を加えない抽出液に比べて短時間で、液化ガス(液化ジメチルエーテル)の除去が完了した。 The removal of the liquefied gas (liquefied dimethyl ether) was completed in a shorter time in the extract to which ultrasonic vibration was applied than in the extract to which no ultrasonic vibration was applied.

[実施例7]
図3に示す抽出装置を用いて、マカダミアナッツからの抽出残渣を得た。具体的には、フィルタ55,58が上流側及び下流側に設置されている抽出槽56に、マカダミアナッツ57を載置した。続いて、バルブ53を閉状態にし、シリンジポンプ50に補助溶媒を添加したジメチルエーテル51を充填して、0.7MPaとして液化させた。分離槽62を予めジメチルエーテルで置換し、バルブ53,54,59,60,61を閉状態とした。なお、補助溶媒として水を用いた。
[Example 7]
An extraction residue from macadamia nuts was obtained using the extraction device shown in FIG. Specifically, macadamia nuts 57 were placed in the extraction tanks 56 in which the filters 55 and 58 were installed on the upstream side and the downstream side. Subsequently, the valve 53 was closed, the syringe pump 50 was filled with dimethyl ether 51 to which an auxiliary solvent was added, and the syringe pump 50 was liquefied at 0.7 MPa. The separation tank 62 was replaced with dimethyl ether in advance, and the valves 53, 54, 59, 60 and 61 were closed. Water was used as an auxiliary solvent.

次に、背圧弁63の設定圧力を0.7MPaとし、バルブ53,54,59,60を開状態とし、シリンジポンプ50で液化ジメチルエーテルを供給した。液化ジメチルエーテルで抽出槽56が満たされたところで、シリンジポンプ50を停止させ、バルブ54,59を閉状態とすることで、マカダミアナッツ57を液化ジメチルエーテルに浸漬させて混合液とした。 Next, the set pressure of the back pressure valve 63 was set to 0.7 MPa, the valves 53, 54, 59, and 60 were opened, and the liquefied dimethyl ether was supplied by the syringe pump 50. When the extraction tank 56 was filled with liquefied dimethyl ether, the syringe pump 50 was stopped and the valves 54 and 59 were closed to immerse the macadamia nuts 57 in liquefied dimethyl ether to prepare a mixed solution.

そして、バルブ54,59を開状態とし、シリンジポンプ50で液化ジメチルエーテルを再度供給し、流量を2.5mL/minに調整して、混合液(抽出液)を分離槽62で回収した。 Then, the valves 54 and 59 were opened, the liquefied dimethyl ether was supplied again by the syringe pump 50, the flow rate was adjusted to 2.5 mL / min, and the mixed solution (extract) was recovered in the separation tank 62.

次に、上記の操作により得た抽出残渣の液化ガス(液化ジメチルエーテル)を除去した。具体的には、抽出残渣が入った抽出槽56を介して抽出残渣に超音波による振動を加えた。所定時間毎の重量変化を測定し、重量変化が無くなった時点で、液化ガス(液化ジメチルエーテル)の除去の完了とした。 Next, the liquefied gas (liquefied dimethyl ether) of the extraction residue obtained by the above operation was removed. Specifically, vibration by ultrasonic waves was applied to the extraction residue through the extraction tank 56 containing the extraction residue. The weight change was measured at predetermined time intervals, and when the weight change disappeared, the removal of the liquefied gas (liquefied dimethyl ether) was completed.

超音波振動を加えた抽出残渣は、超音波振動を加えない抽出残渣に比べて短時間で、液化ガス(液化ジメチルエーテル)の除去が完了した。 The extraction residue to which ultrasonic vibration was applied completed the removal of the liquefied gas (liquefied dimethyl ether) in a shorter time than the extraction residue to which ultrasonic vibration was not applied.

[実施例8]
マカダミアナッツの代わりにブタ大動脈を用いる点以外は実施例7と同様にして、図3に示す抽出装置を用いて、ブタ大動脈からの抽出残渣を得た。
[Example 8]
An extraction residue from the porcine aorta was obtained using the extraction device shown in FIG. 3 in the same manner as in Example 7 except that the porcine aorta was used instead of the macadamia nuts.

次に、上記の操作により得た抽出残渣の液化ガス(液化ジメチルエーテル)を除去した。具体的には、抽出残渣が入った抽出槽56を介して抽出残渣に超音波振動を加えた。所定時間毎の重量変化を測定し、重量変化が無くなった時点で、液化ガス(液化ジメチルエーテル)の除去の完了とした。 Next, the liquefied gas (liquefied dimethyl ether) of the extraction residue obtained by the above operation was removed. Specifically, ultrasonic vibration was applied to the extraction residue via the extraction tank 56 containing the extraction residue. The weight change was measured at predetermined time intervals, and when the weight change disappeared, the removal of the liquefied gas (liquefied dimethyl ether) was completed.

超音波振動を加えた抽出残渣は、超音波振動を加えない抽出残渣に比べて短時間で、液化ガス(液化ジメチルエーテル)の除去が完了した。 The extraction residue to which ultrasonic vibration was applied completed the removal of the liquefied gas (liquefied dimethyl ether) in a shorter time than the extraction residue to which ultrasonic vibration was not applied.

[実施例9]
マカダミアナッツの代わりにバラ花弁を用いる点以外は実施例7と同様にして、図3に示す抽出装置を用いて、バラ花弁からの抽出残渣を得た。
[Example 9]
Extraction residue from rose petals was obtained using the extraction device shown in FIG. 3 in the same manner as in Example 7 except that rose petals were used instead of macadamia nuts.

次に、上記の操作により得た抽出残渣の液化ガス(液化ジメチルエーテル)を除去した。具体的には、抽出残渣が入った抽出槽56を介して抽出残渣に超音波振動を加えた。所定時間毎の重量変化を測定し、重量変化が無くなった時点で、液化ガス(液化ジメチルエーテル)の除去の完了とした。 Next, the liquefied gas (liquefied dimethyl ether) of the extraction residue obtained by the above operation was removed. Specifically, ultrasonic vibration was applied to the extraction residue via the extraction tank 56 containing the extraction residue. The weight change was measured at predetermined time intervals, and when the weight change disappeared, the removal of the liquefied gas (liquefied dimethyl ether) was completed.

超音波振動を加えた抽出残渣は、超音波振動を加えない抽出残渣に比べて短時間で、液化ガス(液化ジメチルエーテル)の除去が完了した。 The extraction residue to which ultrasonic vibration was applied completed the removal of the liquefied gas (liquefied dimethyl ether) in a shorter time than the extraction residue to which ultrasonic vibration was not applied.

[実施例10]
マカダミアナッツの代わりにクロモジを用いる点以外は実施例7と同様にして、図3に示す抽出装置を用いて、クロモジからの抽出残渣を得た。
[Example 10]
An extraction residue from Kuro-moji was obtained using the extraction device shown in FIG. 3 in the same manner as in Example 7 except that Kuro-moji was used instead of macadamia nuts.

次に、上記の操作により得た抽出残渣の液化ガス(液化ジメチルエーテル)を除去した。具体的には、抽出残渣が入った抽出槽56を介して抽出残渣に超音波振動を加えた。所定時間毎の重量変化を測定し、重量変化が無くなった時点で、液化ガス(液化ジメチルエーテル)の除去の完了とした。 Next, the liquefied gas (liquefied dimethyl ether) of the extraction residue obtained by the above operation was removed. Specifically, ultrasonic vibration was applied to the extraction residue via the extraction tank 56 containing the extraction residue. The weight change was measured at predetermined time intervals, and when the weight change disappeared, the removal of the liquefied gas (liquefied dimethyl ether) was completed.

超音波振動を加えた抽出残渣は、超音波振動を加えない抽出残渣に比べて短時間で、液化ガス(液化ジメチルエーテル)の除去が完了した。 The extraction residue to which ultrasonic vibration was applied completed the removal of the liquefied gas (liquefied dimethyl ether) in a shorter time than the extraction residue to which ultrasonic vibration was not applied.

100 抽出装置
29、32 除去手段
30、31 温度制御手段
33 除去具合検知手段
100 Extractor 29, 32 Removal means 30, 31 Temperature control means 33 Removal condition detection means

特開2010-240609号公報Japanese Unexamined Patent Publication No. 2010-24609 特開2001-106636号公報Japanese Unexamined Patent Publication No. 2001-106636

Claims (8)

抽出溶媒を用いて、生体原料から生体組織由来の抽出物を抽出する抽出装置であって
前記生体原料を前記抽出溶媒と接触させる抽出槽と、
前記抽出槽から導出された抽出液から前記抽出溶媒を分離する分離槽と、
前記抽出槽に対する超音波照射により、前記抽出液の導出後に前記抽出槽に残った抽出残渣に対して超音波振動を伝えて、前記抽出残渣から前記抽出溶媒を除去する第1の振動発生装置を備える
抽出装置。
An extraction device that extracts an extract derived from a biological tissue from a biological raw material using an extraction solvent.
An extraction tank that brings the biomaterial into contact with the extraction solvent,
A separation tank that separates the extraction solvent from the extract derived from the extraction tank, and
A first vibration generator for removing the extraction solvent from the extraction residue by transmitting ultrasonic vibration to the extraction residue remaining in the extraction tank after the extraction of the extract by ultrasonic irradiation to the extraction tank. Prepare
Extractor.
前記分離槽に対する超音波照射により、前記分離槽内の前記抽出液に対して超音波振動を伝えて、前記抽出液から前記抽出溶媒を除去する第2の振動発生装置を更に備える、
請求項1に記載の抽出装置。
A second vibration generator is further provided, which transmits ultrasonic vibration to the extract in the separation tank by ultrasonic irradiation to the separation tank and removes the extraction solvent from the extract.
The extraction device according to claim 1.
前記抽出槽の重量変化を測定することにより、前記抽出溶媒の除去具合を検知する除去具合検知手段を更に備える、
請求項1または2に記載の抽出装置。
Further provided with a removal condition detecting means for detecting the removal condition of the extraction solvent by measuring the weight change of the extraction tank .
The extraction device according to claim 1 or 2 .
前記抽出槽及び分離槽から除去された前記抽出溶媒を再度抽出溶媒として循環再利用させる、
請求項に記載の抽出装置。
The extraction solvent removed from the extraction tank and the separation tank is recycled and reused as an extraction solvent.
The extraction device according to claim 2 .
前記第1の振動発生装置は、前記超音波振動周波数を調整可能である、
請求項1ないしのいずれか一項に記載の抽出装置。
The first vibration generator can adjust the frequency of the ultrasonic vibration.
The extraction device according to any one of claims 1 to 4 .
前記抽出残渣の温度制御を行う温度制御手段を更に備える、
請求項1ないしのいずれか一項に記載の抽出装置。
Further provided with a temperature control means for controlling the temperature of the extraction residue .
The extraction device according to any one of claims 1 to 5 .
抽出溶媒を用いて、生体原料から生体組織由来の抽出物を抽出する抽出溶媒除去方法であって、
抽出槽で前記生体原料を前記抽出溶媒と接触させる工程と、
分離槽で前記抽出槽から導出された抽出液から前記抽出溶媒を分離する工程と、
前記抽出槽に対する超音波照射により、前記抽出液の導出後に前記抽出槽に残った抽出残渣に対して超音波振動を伝えて、前記抽出残渣から前記抽出溶媒を除去する工程を含
抽出溶媒除去方法。
It is an extraction solvent removal method for extracting an extract derived from a biological tissue from a biomaterial using an extraction solvent.
The step of bringing the biomaterial into contact with the extraction solvent in the extraction tank, and
A step of separating the extraction solvent from the extraction liquid derived from the extraction tank in the separation tank, and
A step of transmitting ultrasonic vibration to the extraction residue remaining in the extraction tank after the extraction of the extract by ultrasonic irradiation to the extraction tank to remove the extraction solvent from the extraction residue.
Extraction solvent removal method.
抽出溶媒を用いて、生体原料から生体組織由来の抽出物を抽出した抽出残渣を製造する抽出残渣製造方法であって、It is an extraction residue production method for producing an extraction residue obtained by extracting an extract derived from a biological tissue from a biological raw material using an extraction solvent.
抽出槽で前記生体原料を前記抽出溶媒と接触させる工程と、The step of bringing the biomaterial into contact with the extraction solvent in the extraction tank, and
分離槽で前記抽出槽から導出された抽出液から前記抽出溶媒を分離する工程と、A step of separating the extraction solvent from the extraction liquid derived from the extraction tank in the separation tank, and
前記抽出槽に対する超音波照射により、前記抽出液の導出後に前記抽出槽に残った抽出残渣に対して超音波振動を伝えて、前記抽出残渣から前記抽出溶媒を除去する工程を含む、It comprises a step of transmitting ultrasonic vibration to the extraction residue remaining in the extraction tank after the extraction of the extract by ultrasonic irradiation to the extraction tank to remove the extraction solvent from the extraction residue.
抽出残渣製造方法。Extraction residue production method.
JP2019049798A 2019-03-18 2019-03-18 Extraction solvent removal method in extraction equipment and extraction equipment Active JP7082078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019049798A JP7082078B2 (en) 2019-03-18 2019-03-18 Extraction solvent removal method in extraction equipment and extraction equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019049798A JP7082078B2 (en) 2019-03-18 2019-03-18 Extraction solvent removal method in extraction equipment and extraction equipment

Publications (2)

Publication Number Publication Date
JP2020151615A JP2020151615A (en) 2020-09-24
JP7082078B2 true JP7082078B2 (en) 2022-06-07

Family

ID=72556969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019049798A Active JP7082078B2 (en) 2019-03-18 2019-03-18 Extraction solvent removal method in extraction equipment and extraction equipment

Country Status (1)

Country Link
JP (1) JP7082078B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230115380A (en) * 2022-01-26 2023-08-03 (주)인벤티지랩 Solvent removing apparatus and method of manufacturing microsphere using the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001000964A (en) 1999-06-22 2001-01-09 Japan Atom Energy Res Inst Removing method of organic solvent from aqueous phase by ultrasonic wave
JP2007118005A (en) 2006-11-06 2007-05-17 Choonpa Jozosho Kk Ultrasonic solution separator
JP2008049220A (en) 2006-08-22 2008-03-06 National Institute Of Advanced Industrial & Technology Method and device for separating particle
JP2011031170A (en) 2009-07-31 2011-02-17 Central Res Inst Of Electric Power Ind Organic matter extraction method, manufacturing method for organic matter, device assembly for organic matter extraction and method for treating wet material
JP2013071903A (en) 2011-09-27 2013-04-22 Univ Of Tokushima Blood sugar level improving composition by citrus sudachi aromatic component
JP2018186796A (en) 2017-05-11 2018-11-29 株式会社リコー Method for producing decellularized tissue, decellularized tissue, and device for producing decellularized tissue

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58152472A (en) * 1982-03-08 1983-09-10 Masanao Hirose Ultrasonic treatment process for diluted alcohol solution

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001000964A (en) 1999-06-22 2001-01-09 Japan Atom Energy Res Inst Removing method of organic solvent from aqueous phase by ultrasonic wave
JP2008049220A (en) 2006-08-22 2008-03-06 National Institute Of Advanced Industrial & Technology Method and device for separating particle
JP2007118005A (en) 2006-11-06 2007-05-17 Choonpa Jozosho Kk Ultrasonic solution separator
JP2011031170A (en) 2009-07-31 2011-02-17 Central Res Inst Of Electric Power Ind Organic matter extraction method, manufacturing method for organic matter, device assembly for organic matter extraction and method for treating wet material
JP2013071903A (en) 2011-09-27 2013-04-22 Univ Of Tokushima Blood sugar level improving composition by citrus sudachi aromatic component
JP2018186796A (en) 2017-05-11 2018-11-29 株式会社リコー Method for producing decellularized tissue, decellularized tissue, and device for producing decellularized tissue

Also Published As

Publication number Publication date
JP2020151615A (en) 2020-09-24

Similar Documents

Publication Publication Date Title
JP7031138B2 (en) Decellularized tissue manufacturing method and decellularized tissue manufacturing equipment
JP5319371B2 (en) Oil component extraction method and method for producing oily material
JP7082078B2 (en) Extraction solvent removal method in extraction equipment and extraction equipment
HRP20100609T1 (en) Vacuum sterilization process and device
JP5699358B2 (en) Method for producing an extract from material and apparatus for realizing the method
JP2013518714A5 (en)
JP2007105081A (en) Cell removal processing of viable tissue for transplantation by supercritical carbon dioxide
CN109621008A (en) A kind of Acellular nerve graft and preparation method thereof
KR102154923B1 (en) Apparatus and method for crystallizing and supercritical drying of culture fluid
JP2020150831A (en) Enzyme treating device, enzyme treating method and extraction device
JP5241064B2 (en) Extraction method of plant tissue components
JP7213639B2 (en) Method for producing extract of biological material and extraction residue
JP7213040B2 (en) Liquid manufacturing method and liquid manufacturing apparatus
WO2019176958A1 (en) Method of producing extract and extraction residue of biological material, extract, and extraction residue
JP2023041718A (en) Production method of extraction residue of organism raw material
JP2020005622A (en) Method for producing decellularized tissues, and apparatus for producing decellularized tissues
JP2019154349A (en) Animal or plant tissue, cell breaking method for animal or plant tissue, and cell breaking device for animal or plant tissue
US20200002669A1 (en) Decellularized tissue producing method and decellularized tissue producing apparatus
JP2020006130A (en) Method for producing decellularized tissue
CA3094044C (en) Method of producing extract and extraction residue of biological material, extract, and extraction residue
US20220132895A1 (en) Procedure for selective extraction of active principled and/or oleoresins from vegetable material and related system
JP4367864B1 (en) Collection method of animal tissue constituents
JP2021147332A (en) Sterilant, sterilization method and sterilization device
JPH02292216A (en) Removal of solvent of drugs by extraction with supercritical carbon dioxide gas
WO2020004491A1 (en) Liquid production method and liquid production device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200331

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220405

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220526

R150 Certificate of patent or registration of utility model

Ref document number: 7082078

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150