JP2020005622A - Method for producing decellularized tissues, and apparatus for producing decellularized tissues - Google Patents

Method for producing decellularized tissues, and apparatus for producing decellularized tissues Download PDF

Info

Publication number
JP2020005622A
JP2020005622A JP2018165407A JP2018165407A JP2020005622A JP 2020005622 A JP2020005622 A JP 2020005622A JP 2018165407 A JP2018165407 A JP 2018165407A JP 2018165407 A JP2018165407 A JP 2018165407A JP 2020005622 A JP2020005622 A JP 2020005622A
Authority
JP
Japan
Prior art keywords
tissue
producing
liquid
decellularized
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2018165407A
Other languages
Japanese (ja)
Inventor
悟史 篠原
Satoshi Shinohara
悟史 篠原
章悟 鈴木
Shogo Suzuki
章悟 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to US16/449,935 priority Critical patent/US20200002669A1/en
Priority to EP19182121.4A priority patent/EP3586885A1/en
Publication of JP2020005622A publication Critical patent/JP2020005622A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

To provide methods for producing decellularized tissues, which can efficiently produce decellularized tissues.SOLUTION: A method for producing a decellularized tissue comprises: a step (S1) of degrading DNA contained in living tissue in which cells are destroyed, using a first processing solution; a step (S2) of delipidating the biological tissue in which the DNA has been degraded, using a second processing solution; and a step (S3) of washing the delipidated living tissue, using a third processing solution, at least one of the step (S1), the step (S2), and the step (S3) being carried out by a flow system.SELECTED DRAWING: Figure 1

Description

本発明は、脱細胞化組織の製造方法及び脱細胞化組織の製造装置に関する。   The present invention relates to a method for producing a decellularized tissue and an apparatus for producing a decellularized tissue.

再生医療において、患者の欠損した器官を再生するための支持組織として、ヒトまたは異種哺乳動物の生体組織から、細胞質成分、細胞質ゾル成分、細胞骨格、細胞膜成分等の細胞成分が除去されている脱細胞化組織が再移植されている。脱細胞化組織は、エラスチン、コラーゲン(I型、IV型等)、ラミニン等の細胞外マトリックス成分を主成分とする。   In regenerative medicine, as a supporting tissue for regenerating a defective organ of a patient, a cellular tissue such as a cytoplasmic component, a cytosolic component, a cytoskeleton, or a cell membrane component is removed from a living tissue of a human or a heterologous mammal. Cellular tissue has been reimplanted. The decellularized tissue has as its main component an extracellular matrix component such as elastin, collagen (type I, type IV, etc.), laminin and the like.

特許文献1には、ポリエチレングリコール水溶液を用いて、生体組織の細胞を破壊する工程と、DNaseを用いて、細胞が破壊された生体組織に含まれるDNAを分解させる工程と、PBSを用いて、DNAが分解した生体組織を洗浄する工程を含む脱細胞化組織の製造方法が開示されている(例えば、特許文献1参照)。   Patent Literature 1 discloses a process of destroying cells in a living tissue using an aqueous solution of polyethylene glycol, a process of decomposing DNA contained in the living tissue in which the cells have been destroyed by using DNase, and a process of using PBS. A method for producing a decellularized tissue including a step of washing a living tissue in which DNA has been degraded is disclosed (for example, see Patent Document 1).

しかしながら、細胞が破壊された生体組織に含まれるDNAを分解させる工程と、PBSを用いて、DNAが分解した生体組織を洗浄する工程に長時間を要するため、脱細胞化組織を効率的に製造することができないという問題がある。   However, it takes a long time to degrade DNA contained in living tissue in which cells have been destroyed and to wash the living tissue in which DNA has been degraded using PBS, so that decellularized tissue can be efficiently produced. There is a problem that you can not.

本発明は、脱細胞化組織を効率的に製造することが可能な脱細胞化組織の製造方法及び脱細胞化組織の製造装置を提供することを目的とする。   An object of the present invention is to provide a method for producing a decellularized tissue and an apparatus for producing a decellularized tissue, which can efficiently produce a decellularized tissue.

本発明の一態様は、脱細胞化組織の製造方法において、第一の処理液を用いて、細胞が破壊されている生体組織に含まれるDNAを分解する第一の工程と、第二の処理液を用いて、該DNAが分解された生体組織を脱脂する第二の工程と、第三の処理液を用いて、該脱脂された生体組織を洗浄する第三の工程を含み、前記第一の工程、前記第二の工程及び前記第三の工程の少なくとも一つが流通式で実施される。   One embodiment of the present invention provides a method for producing a decellularized tissue, wherein a first treatment solution is used to degrade DNA contained in living tissue in which cells have been destroyed, and a second treatment A second step of delipidating the living tissue in which the DNA has been decomposed using a liquid, and a third step of washing the delipidated living tissue using a third treatment liquid, And at least one of the second step and the third step is carried out in a flow-through manner.

本発明の他の一態様は、脱細胞化組織の製造装置において、第一の処理液を用いて、細胞が破壊されている生体組織に含まれるDNAを分解する第一の手段と、第二の処理液を用いて、該DNAが分解された生体組織を脱脂する第二の手段と、第三の処理液を用いて、該脱脂された生体組織を洗浄する第三の手段を含み、前記第一の手段、前記第二の手段及び前記第三の手段の少なくとも一つが流通式である。   Another embodiment of the present invention provides a device for producing a decellularized tissue, wherein the first treatment solution is used to degrade DNA contained in living tissue in which cells have been destroyed, A second means for delipidating the biological tissue in which the DNA has been decomposed using the treatment liquid, and a third means for washing the delipidated biological tissue using the third treatment liquid, At least one of the first means, the second means, and the third means is of a flow type.

本発明の一態様によれば、脱細胞化組織を効率的に製造することが可能な脱細胞化組織の製造方法及び脱細胞化組織の製造装置を提供することができる。   According to one aspect of the present invention, it is possible to provide a method for producing a decellularized tissue and an apparatus for producing the decellularized tissue, which can efficiently produce the decellularized tissue.

本実施形態の脱細胞化組織の製造方法の一例を示すフローチャートである。It is a flowchart which shows an example of the manufacturing method of the decellularized tissue of this embodiment. 本実施形態の脱細胞化組織の製造装置の一例を示す概略図である。It is the schematic which shows an example of the manufacturing apparatus of the decellularized tissue of this embodiment. 実施例の細胞破壊装置を示す概略図である。It is the schematic which shows the cell disruption apparatus of an Example. 実施例の脱細胞化組織の製造装置を示す概略図である。It is the schematic which shows the manufacturing apparatus of the decellularized tissue of an Example.

以下、本発明の実施形態を図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(脱細胞化組織の製造方法)
図1に、本実施形態の脱細胞化組織の製造方法の一例を示す。
(Method for producing decellularized tissue)
FIG. 1 shows an example of a method for producing a decellularized tissue according to the present embodiment.

脱細胞化組織の製造方法は、第一の処理液を用いて、細胞が破壊されている生体組織に含まれるDNAを分解する工程(S1)と、第二の処理液を用いて、DNAが分解された生体組織を脱脂する工程(S2)と、第三の処理液を用いて、脱脂された生体組織を洗浄する工程(S3)を含み、工程(S1)、工程(S2)及び工程(S3)の少なくとも一つが流通式で実施される。このため、脱細胞化組織を効率的に製造することができる。   The method for producing a decellularized tissue includes a step (S1) of decomposing DNA contained in living tissue in which cells have been destroyed using a first treatment liquid, and a step of decomposing DNA using a second treatment liquid. The method includes a step (S2) of delipidating the decomposed living tissue and a step (S3) of washing the delipidated living tissue using the third treatment liquid, and includes the steps (S1), (S2), and ( At least one of S3) is performed in a flow-through manner. For this reason, a decellularized tissue can be efficiently produced.

本明細書及び特許請求の範囲において、流通式とは、処理液が接触槽に流入し、接触槽から流出する過程で生体組織に対して処理液による処理を実施する方式、すなわち、処理液が接触槽を流通する過程で生体組織に対して処理液による処理を実施する方式である。   In the present specification and the claims, the flow system is a system in which a treatment liquid is subjected to treatment with a treatment liquid on a living tissue in a process in which the treatment liquid flows into and out of the contact tank. In this method, a living tissue is treated with a treatment liquid in the course of flowing through the contact tank.

工程(S1)では、例えば、酵素又は界面活性剤を含む液体を、細胞が破壊されている生体組織に接触させて、細胞が破壊されている生体組織に含まれるDNAを分解させる。   In the step (S1), for example, a liquid containing an enzyme or a surfactant is brought into contact with a living tissue in which cells have been destroyed to degrade DNA contained in the living tissue in which cells have been destroyed.

酵素としては、特に限定されないが、DNase(例えば、DNaseI)、トリプシン等が挙げられる。   Examples of the enzyme include, but are not particularly limited to, DNase (for example, DNase I), trypsin, and the like.

界面活性剤としては、特に限定されないが、イオン系界面活性剤(例えば、ドデシル硫酸ナトリウム(SDS))、非イオン系界面活性剤(例えば、Triton X−100)等が挙げられる。   Although it does not specifically limit as a surfactant, An ionic surfactant (for example, sodium dodecyl sulfate (SDS)), a nonionic surfactant (for example, Triton X-100) etc. are mentioned.

DNaseとしては、例えば、DNaseI等が挙げられる。   Examples of DNase include DNaseI.

液体としては、生理的に適合すれば、特に限定されないが、生理食塩水、PBS(リン酸緩衝化生理食塩水)等の水を主溶媒とする液体が挙げられ、二種以上を併用してもよい。これらの中でも、生理食塩水が好ましい。   The liquid is not particularly limited as long as it is physiologically compatible. Examples of the liquid include liquids containing water as a main solvent such as physiological saline and PBS (phosphate-buffered physiological saline). Is also good. Of these, physiological saline is preferred.

DNaseを含む液体を、細胞が破壊されている生体組織に接触させる方法としては、特に限定されないが、細胞が破壊されている生体組織を、DNaseを含む液体と混合して撹拌する方法、細胞が破壊されている生体組織に、DNaseを含む液体を流通させる方法等が挙げられる。これらの中でも、効率的にDNAを分解させることが可能な点で、細胞が破壊されている生体組織に、DNaseを含む液体を流通させる方法が好ましい。   The method of bringing the liquid containing DNase into contact with the living tissue in which the cells are destroyed is not particularly limited, and the method of mixing the living tissue in which the cells are destroyed with the liquid containing DNase and stirring the mixture may be used. A method of flowing a liquid containing DNase through a broken living tissue may be used. Among them, a method of flowing a liquid containing DNase through a living tissue in which cells are destroyed is preferable in that DNA can be efficiently degraded.

なお、細胞が破壊されている生体組織を、DNaseを含む液体と混合して撹拌する場合、DNaseを含む液体を適宜交換してもよい。   When the living tissue in which cells are destroyed is mixed with a liquid containing DNase and stirred, the liquid containing DNase may be appropriately replaced.

DNaseを含む液体を、細胞が破壊されている生体組織に接触させる環境の温度は、4〜40℃であることが好ましい。DNaseを含む液体を、細胞が破壊されている生体組織に接触させる環境の温度が4℃以上であると、生体組織に含まれる細胞外マトリックスの氷結晶による損傷を抑制することができ、40℃以下であると、生体組織に含まれるタンパク質の変性を抑制することができる。   The temperature of the environment in which the liquid containing DNase is brought into contact with the living tissue in which the cells are destroyed is preferably 4 to 40 ° C. When the temperature of the environment in which the liquid containing DNase is brought into contact with the living tissue in which the cells are destroyed is 4 ° C. or more, damage caused by ice crystals of the extracellular matrix contained in the living tissue can be suppressed, and the temperature of 40 ° C. The following conditions can suppress the denaturation of the protein contained in the living tissue.

また、DNaseを含む液体を、細胞が破壊されている生体組織に接触させる環境の温度は、25〜37℃であることがより好ましい。一般的に、DNaseは、25〜37℃の範囲で高い活性を示し、効率的にDNAを分解することができる。   Further, the temperature of the environment in which the liquid containing DNase is brought into contact with the living tissue in which the cells are destroyed is more preferably 25 to 37 ° C. Generally, DNase shows high activity in the range of 25 to 37 ° C, and can efficiently degrade DNA.

工程(S2)では、例えば、工程(S1)により、DNAが分解した生体組織を、有機溶媒を含む液体と接触させて、DNAが分解した生体組織を脱脂する。   In the step (S2), for example, the living tissue in which the DNA has been decomposed in step (S1) is brought into contact with a liquid containing an organic solvent to defatt the living tissue in which the DNA has been decomposed.

本明細書及び特許請求の範囲において、脱脂とは、生体組織より脂溶性成分を除去することである。   In the present specification and claims, defatting refers to removing fat-soluble components from living tissue.

有機溶媒としては、DNAが分解した生体組織を脱脂することが可能な生理的に許容し得る有機溶媒であれば、特に限定されないが、エタノール等が挙げられ、二種以上を併用してもよい。これらの中でも、生体組織に無害な点で、エタノールが好ましい。   The organic solvent is not particularly limited as long as it is a physiologically acceptable organic solvent capable of defatting the biological tissue in which DNA has been decomposed, and includes ethanol and the like, and two or more kinds may be used in combination. . Among them, ethanol is preferred because it is harmless to living tissues.

液体としては、生理的に適合すれば、特に限定されないが、生理食塩水、PBS(リン酸緩衝化生理食塩水)等の水を主溶媒とする液体が挙げられ、二種以上を併用してもよい。これらの中でも、生理食塩水が好ましい。   The liquid is not particularly limited as long as it is physiologically compatible. Examples of the liquid include liquids containing water as a main solvent such as physiological saline and PBS (phosphate-buffered physiological saline). Is also good. Of these, physiological saline is preferred.

DNAが分解した生体組織を、有機溶媒を含む液体と接触させる方法としては、特に限定されないが、DNAが分解した生体組織を、有機溶媒を含む液体と混合して撹拌する方法、DNAが分解した生体組織に、有機溶媒を含む液体を流通させる方法等が挙げられる。これらの中でも、効率的に脱脂することが可能な点で、DNAが分解した生体組織に、有機溶媒を含む液体を流通させる方法が好ましい。   The method for bringing the biological tissue in which the DNA is degraded into contact with a liquid containing an organic solvent is not particularly limited, but a method in which the biological tissue in which the DNA is decomposed is mixed with a liquid containing an organic solvent and agitated, A method of flowing a liquid containing an organic solvent through a living tissue may be used. Among these, a method of flowing a liquid containing an organic solvent through a living tissue in which DNA has been degraded is preferable because it can be efficiently defatted.

なお、DNAが分解した生体組織を、有機溶媒を含む液体と混合して撹拌する場合、有機溶媒を含む液体を適宜交換してもよい。   When the living tissue in which the DNA is decomposed is mixed with a liquid containing an organic solvent and stirred, the liquid containing the organic solvent may be appropriately replaced.

DNAが分解した生体組織を、有機溶媒を含む液体と接触させる環境の温度は、4〜40℃であることが好ましい。DNAが分解した生体組織を、有機溶媒を含む液体と接触させる環境の温度が4℃以上であると、生体組織に含まれる細胞外マトリックスの氷結晶による損傷を抑制することができ、40℃以下であると、生体組織に含まれるタンパク質の変性を抑制することができる。   The temperature of the environment in which the living tissue in which the DNA has been degraded is brought into contact with a liquid containing an organic solvent is preferably 4 to 40 ° C. When the temperature of the environment in which the living tissue in which the DNA is degraded is brought into contact with a liquid containing an organic solvent is 4 ° C. or higher, damage caused by ice crystals of the extracellular matrix contained in the living tissue can be suppressed, and 40 ° C. or lower. In this case, denaturation of a protein contained in a living tissue can be suppressed.

なお、工程(S1)と工程(S2)を同時に実施してもよいし、工程(S1)と工程(S2)の順序を逆にしてもよい。   Step (S1) and step (S2) may be performed simultaneously, or the order of step (S1) and step (S2) may be reversed.

工程(S3)では、例えば、工程(S2)により、脱脂された生体組織を液体と接触させて、脱脂された生体組織を洗浄する。   In the step (S3), for example, the delipidated living tissue is brought into contact with a liquid in the step (S2) to wash the delipidated living tissue.

本明細書及び特許請求の範囲において、洗浄とは、生体組織から水溶性成分を除去することである。   In the present specification and claims, washing refers to removing water-soluble components from living tissue.

液体としては、生理的に適合すれば、特に限定されないが、生理食塩水、PBS(リン酸緩衝化生理食塩水)等の水を主溶媒とする液体が挙げられ、二種以上を併用してもよい。これらの中でも、生理食塩水が好ましい。   The liquid is not particularly limited as long as it is physiologically compatible. Examples of the liquid include liquids containing water as a main solvent such as physiological saline and PBS (phosphate-buffered physiological saline). Is also good. Of these, physiological saline is preferred.

脱脂された生体組織を液体と接触させる方法としては、特に限定されないが、脱脂された生体組織を液体と混合して撹拌する方法、脱脂された生体組織に液体を流通させる方法等が挙げられる。これらの中でも、効率的に洗浄することが可能な点で、脱脂された生体組織に液体を流通させる方法が好ましい。   The method of bringing the delipidated living tissue into contact with the liquid is not particularly limited, and examples thereof include a method of mixing and stirring the delipidated living tissue with the liquid, a method of flowing the liquid through the delipidated living tissue, and the like. Among these, a method of flowing a liquid through a delipidated living tissue is preferable because it can be efficiently washed.

なお、DNAが分解した生体組織を液体と混合して撹拌する場合、液体を適宜交換してもよい。   When the living tissue in which the DNA has been decomposed is mixed with a liquid and stirred, the liquid may be appropriately replaced.

脱脂された生体組織を液体と接触させる環境の温度は、4〜40℃であることが好ましい。脱脂された生体組織を液体と接触させる環境の温度が4℃以上であると、生体組織に含まれる細胞外マトリックスの氷結晶による損傷を抑制することができ、40℃以下であると、生体組織に含まれるタンパク質の変性を抑制することができる。   The temperature of the environment in which the delipidated living tissue is brought into contact with the liquid is preferably 4 to 40 ° C. When the temperature of the environment in which the delipidated living tissue is brought into contact with the liquid is 4 ° C. or more, damage due to ice crystals of the extracellular matrix contained in the living tissue can be suppressed. Can suppress denaturation of the protein contained in.

また、本実施形態の脱細胞化組織の製造方法は、細胞が破壊されている生体組織に含まれるDNAを分解させる工程の前工程として、生体組織の細胞膜成分を溶解し、生体組織の細胞を破壊する工程を更に含んでいてもよい。   Further, the method for producing a decellularized tissue according to the present embodiment includes dissolving a cell membrane component of the living tissue, and dissolving the cells of the living tissue as a step prior to the step of decomposing DNA contained in the living tissue in which the cells are destroyed. The method may further include a breaking step.

(生体組織の細胞破壊方法)
生体組織の細胞破壊方法としては、特に限定されないが、液化ガスを含む液体と生体組織を接触させる方法、機械的方法(超音波、マイクロビーズ、凍結等)(例えば、特表2016−523541号公報)、化学的方法(酸、アルカリ、界面活性剤等)、機械的方法と化学的方法を組み合わせる方法がある、超臨界二酸化炭素を生体組織に浸透させる方法(例えば、特開平6−218036号公報)等が挙げられる。これらの中でも、脱細胞化組織に、実質的に損傷がなく、液化ガスが残留しにくくなる点で、液化ガスを含む液体と生体組織を接触させる方法が好ましい。
(Method of destroying cells in living tissue)
The method for disrupting cells of a living tissue is not particularly limited, but a method of contacting a living tissue with a liquid containing a liquefied gas, a mechanical method (ultrasonic waves, microbeads, freezing, etc.) (for example, JP-T-2006-523541) ), Chemical methods (acids, alkalis, surfactants, etc.), methods combining mechanical methods and chemical methods, and methods of permeating supercritical carbon dioxide into living tissues (for example, JP-A-6-218036) ) And the like. Among them, a method of contacting a liquid containing a liquefied gas with a living tissue is preferable, since the decellularized tissue is not substantially damaged and the liquefied gas hardly remains.

ここで、液化ガスを含む液体は、細胞膜成分を溶解するため、生体組織の細胞を破壊することができる。   Here, the liquid containing the liquefied gas dissolves cell membrane components, and thus can destroy cells of a living tissue.

本明細書及び特許請求の範囲において、液化ガスとは、常温常圧(0℃、1atm(0.101325MPa)で気体である物質の液化物である。   In the present specification and claims, the liquefied gas is a liquefied substance that is a gas at normal temperature and normal pressure (0 ° C., 1 atm (0.101325 MPa)).

液化ガスとしては、生体組織の細胞を破壊することが可能であれば、特に限定されないが、ジメチルエーテル、エチルメチルエーテル、ホルムアルデヒド、ケテン、アセトアルデヒド、プロパン、ブタン、液化石油ガス等が挙げられ、二種以上を併用してもよい。これらの中でも、比較的低温低圧で液化する点で、エチルメチルエーテル、ジメチルエーテルが好ましく、ジメチルエーテルが特に好ましい。   The liquefied gas is not particularly limited as long as it can destroy cells of a living tissue, and includes dimethyl ether, ethyl methyl ether, formaldehyde, ketene, acetaldehyde, propane, butane, liquefied petroleum gas, and the like. The above may be used in combination. Among these, ethyl methyl ether and dimethyl ether are preferable, and dimethyl ether is particularly preferable, in that liquefaction is performed at a relatively low temperature and low pressure.

ジメチルエーテルは、1〜40℃、0.2〜5MPa程度で液化するため、装置のコストが安価となる。また、液化ジメチルエーテルは、常温常圧下で容易に気化することから、脱細胞化組織に残留しにくい。   Since dimethyl ether is liquefied at 1 to 40 ° C. and about 0.2 to 5 MPa, the cost of the apparatus is reduced. In addition, liquefied dimethyl ether is easily vaporized at normal temperature and normal pressure, and therefore hardly remains in the decellularized tissue.

液化ガスを含む液体と生体組織を接触させる場合は、液化ガスの液体状態を維持するため、気密状態の抽出槽内等の飽和蒸気圧以上の環境下で実施される。   When a living body tissue is brought into contact with a liquid containing a liquefied gas, the liquid state of the liquefied gas is maintained in an environment having a saturated vapor pressure or higher, such as in an airtight extraction tank, in order to maintain the liquid state.

液化ガスを含む液体と生体組織を接触させる方法としては、特に限定されないが、液化ガスを含む液体に生体組織を浸漬する方法、生体組織に液化ガスを含む液体を流通させる方法等が挙げられる。これらの中でも、効率的に細胞を破壊することが可能な点で、生体組織に液化ガスを含む液体を流通させる方法が好ましい。   The method of bringing the liquid containing the liquefied gas into contact with the living tissue is not particularly limited, and examples thereof include a method of immersing the living tissue in the liquid containing the liquefied gas and a method of flowing the liquid containing the liquefied gas through the living tissue. Among these, a method of flowing a liquid containing a liquefied gas through a living tissue is preferable because cells can be efficiently destroyed.

液化ガスを含む液体は、溶媒をさらに含んでいてもよい。   The liquid containing the liquefied gas may further contain a solvent.

溶媒としては、特に限定されないが、エタノール、水、生理食塩水、PBS(リン酸緩衝化生理食塩水)等が挙げられ、二種以上を併用してもよい。   Although it does not specifically limit as a solvent, Ethanol, water, physiological saline, PBS (phosphate buffered physiological saline) etc. are mentioned, You may use 2 or more types together.

溶媒の添加量は、液化ガス中の溶解度以下となるようにすることが好ましい。これにより、液化ガスを含む液体を均一にすることができる。   It is preferable that the amount of the solvent added be equal to or less than the solubility in the liquefied gas. Thereby, the liquid containing the liquefied gas can be made uniform.

液化ガスの温度は、1〜40℃であることが好ましく、10〜30℃であることがさらに好ましい。   The temperature of the liquefied gas is preferably 1 to 40C, more preferably 10 to 30C.

液化ガスの圧力は、0.2〜5MPaであることが好ましく、0.3〜0.7MPaの範囲内であることがさらに好ましい。   The pressure of the liquefied gas is preferably from 0.2 to 5 MPa, and more preferably from 0.3 to 0.7 MPa.

生体組織を液化ガスを含む液体に接触させた後、常温常圧に戻すと、液化ガスは、気化するため、液化ガスを簡便に除去することができる。   When the living tissue is brought into contact with a liquid containing a liquefied gas and then returned to normal temperature and normal pressure, the liquefied gas is vaporized, so that the liquefied gas can be easily removed.

なお、生体組織を液化ガスを含む液体に接触させる工程を複数回繰り返してもよい。   The step of bringing the living tissue into contact with the liquid containing the liquefied gas may be repeated a plurality of times.

(生体組織)
生体組織としては、細胞壁を有する植物、菌類、古細菌、真正細菌、もしくは細胞壁を有しない動物のいずれかから得られる組織のことを意味する。特に限定されないが、葉、枝、樹木、花弁、茎、根、果肉、果皮及び種子や、ヒトまたは異種哺乳動物由来の皮膚、血管、心臓弁膜、角膜、羊膜、硬膜等を含む軟組織またはその一部、心臓、腎臓、肝臓、膵臓、脳等を含む臓器またはその一部等、骨、軟骨、腱またはその一部等が挙げられる。
(Living tissue)
Biological tissue means a tissue obtained from any of plants, fungi, archaea, eubacteria, or animals without a cell wall having a cell wall. Although not particularly limited, leaves, branches, trees, petals, stems, roots, pulp, pericarp, and seeds, and human or xenogeneic mammal-derived skin, blood vessels, heart valves, cornea, amniotic membrane, dura mater, and the like, or soft tissues thereof A part thereof includes an organ including a heart, a kidney, a liver, a pancreas, a brain, or a part thereof, and a bone, a cartilage, a tendon, a part thereof, and the like.

(脱細胞化組織の製造装置)
本実施形態の脱細胞化組織の製造装置は、第一の処理液を用いて、細胞が破壊されている生体組織に含まれるDNAを分解する第一の手段と、第二の処理液を用いて、DNAが分解された生体組織を脱脂する第二の手段と、第三の処理液を用いて、脱脂された生体組織を洗浄する第三の手段を含み、第一の手段、第二の手段及び第三の手段の少なくとも一つが流通式であれば、特に限定されない。
(Decellularized tissue manufacturing equipment)
The apparatus for producing a decellularized tissue of the present embodiment uses a first processing solution, a first means for decomposing DNA contained in living tissue in which cells are destroyed, and a second processing solution. And a second means for delipidating the biological tissue in which the DNA has been degraded, and a third means for washing the delipidated biological tissue using a third treatment solution, wherein the first means and the second means There is no particular limitation as long as at least one of the means and the third means is of a flow type.

本実施形態の脱細胞化組織の製造装置は、第一の処理液を貯蔵する第一の貯蔵手段と、第二の処理液を貯蔵する第二の貯蔵手段と、第三の処理液を貯蔵する第三の貯蔵手段を更に含むことが好ましい。また、本実施形態の脱細胞化組織の製造装置は、第一の貯蔵手段から接触槽に第一の処理液を送液する第一の送液手段と、第二の貯蔵手段から接触槽に第二の処理液を送液する第二の送液手段と、第三の貯蔵手段から接触槽に第三の処理液を送液する第三の送液手段を更に含むことが好ましい。   The apparatus for producing a decellularized tissue of the present embodiment includes a first storage unit that stores a first processing solution, a second storage unit that stores a second processing solution, and a third storage solution. It is preferable to further include a third storage means. The apparatus for producing a decellularized tissue according to the present embodiment includes a first liquid supply unit that supplies the first processing liquid from the first storage unit to the contact tank, and a second tank from the second storage unit. It is preferable to further include a second liquid sending means for sending the second processing liquid, and a third liquid sending means for sending the third processing liquid from the third storage means to the contact tank.

また、本実施形態の脱細胞化組織の製造装置は、液化ガスを含む液体を用いて、生体組織の細胞を破壊する細胞破壊手段と、液化ガスを含む液体を貯蔵する第四の貯蔵手段と、第四の貯蔵手段から接触槽に液化ガスを含む液体を送液する第四の送液手段を更に含むことが好ましい。この場合、細胞破壊手段は、流通式であることが好ましい。   Further, the apparatus for producing a decellularized tissue of the present embodiment uses a liquid containing a liquefied gas, a cell destruction means for destroying cells of a living tissue, and a fourth storage means for storing a liquid containing a liquefied gas. Preferably, the apparatus further includes a fourth liquid sending means for sending a liquid containing a liquefied gas from the fourth storage means to the contact tank. In this case, it is preferable that the cell disrupting means is of a flow type.

また、本実施形態の脱細胞化組織の製造装置は、送液された各処理液と、細胞が破壊されている生体組織を接触させる接触手段と、細胞が破壊されている生体組織と接触した処理液を回収する回収手段と、回収された処理液に混入した夾雑物を除去する分離手段と、回収手段から分離手段に処理液を送液する第五の送液手段を更に有することが好ましい。   Further, the apparatus for producing a decellularized tissue according to the present embodiment is in contact with each of the supplied treatment liquids, the contact means for bringing the living tissue in which the cells are destroyed into contact, and the living tissue in which the cells are destroyed. It is preferable that the apparatus further includes a recovery unit that recovers the processing liquid, a separation unit that removes contaminants mixed in the recovered processing liquid, and a fifth liquid transmission unit that transmits the processing liquid from the recovery unit to the separation unit. .

また、本実施形態の脱細胞化組織の製造装置は、内部の温度を検知して調整する温度検知調整手段をさらに有することが好ましい。   Further, it is preferable that the apparatus for producing a decellularized tissue of the present embodiment further includes a temperature detection adjusting unit that detects and adjusts the internal temperature.

図2に、本実施形態の脱細胞化組織の製造装置の一例を示す。   FIG. 2 shows an example of an apparatus for producing a decellularized tissue according to the present embodiment.

脱細胞化組織の製造装置100は、第一の処理液を貯蔵するタンク1と、第二の処理液を貯蔵するタンク5と、第三の処理液を貯蔵するタンク1'と、液化ガスを含む液体を貯蔵するタンク1''を有する。また、脱細胞化組織の製造装置100は、第一の処理液を送液する加圧式ポンプ3(例えば、シリンジポンプ)と、第二の処理液を送液するポンプ6(例えば、プランジャーポンプ)と、第三の処理液を送液する加圧式ポンプ3'(例えば、シリンジポンプ)と、液化ガスを含む液体を送液する加圧式ポンプ3''(例えば、シリンジポンプ)を有する。   The decellularized tissue manufacturing apparatus 100 includes a tank 1 for storing a first processing liquid, a tank 5 for storing a second processing liquid, a tank 1 ′ for storing a third processing liquid, and a liquefied gas. It has a tank 1 '' for storing the liquid to be contained. Further, the decellularized tissue manufacturing apparatus 100 includes a pressurized pump 3 (for example, a syringe pump) for sending a first treatment liquid and a pump 6 (for example, a plunger pump) for sending a second treatment liquid. ), A pressurized pump 3 ′ (for example, a syringe pump) for sending a third processing liquid, and a pressurized pump 3 ″ (for example, a syringe pump) for sending a liquid containing a liquefied gas.

また、脱細胞化組織の製造装置100は、送液された各処理液と、細胞が破壊されている生体組織9を接触させる接触槽8と、細胞が破壊されている生体組織9と接触した各処理液を回収する回収槽11を有する。   In addition, the decellularized tissue manufacturing apparatus 100 was brought into contact with the contact bath 8 for contacting each of the supplied treatment liquids, the living tissue 9 in which the cells were destroyed, and the living tissue 9 in which the cells were destroyed. It has a collection tank 11 for collecting each processing solution.

接触槽8中を流通する処理液の流通速度は、接触槽8の壁面付近と中央部とで速度が均一とならず、抽出効率が抑制されてしまうことがある。そこで、接触槽8の上流側の端面に、接触槽8の壁面付近から中央部に生じる速度分布の均一化を促進する部材を有していてもよい。   The flow rate of the processing liquid flowing through the contact tank 8 may not be uniform between the vicinity of the wall surface of the contact tank 8 and the central portion, and the extraction efficiency may be suppressed. Therefore, a member that promotes uniformity of the velocity distribution generated from the vicinity of the wall surface of the contact tank 8 to the center thereof may be provided on the end face on the upstream side of the contact tank 8.

接触槽8の壁面付近から中央部に生じる速度分布の均一化を促進する部材としては、特に限定されないが、速度分布の均一化の効率の点から、微小孔を有する多孔質の部材が好ましい。   A member that promotes uniformity of the velocity distribution generated from the vicinity of the wall surface of the contact tank 8 to the central portion is not particularly limited, but a porous member having micropores is preferable from the viewpoint of the efficiency of uniformity of the velocity distribution.

さらに、脱細胞化組織の製造装置100は、回収された各処理液中に混入した夾雑物を除去する分離手段15、15'、16を有する。   Further, the decellularized tissue manufacturing apparatus 100 includes separation means 15, 15 ', and 16 for removing contaminants mixed in each of the collected processing solutions.

また、脱細胞化組織の製造装置100は、夾雑物が除去された第一の処理液をタンク1に送液する、夾雑物が除去された第二の処理液をタンク5に送液する、夾雑物が除去された第三の処理液をタンク1'に送液する、又は、気化した液化ガスを凝縮器15''に輸送するポンプ12(例えば、プランジャーポンプ)を有する。   In addition, the decellularized tissue manufacturing apparatus 100 sends the first processing solution from which impurities are removed to the tank 1 and sends the second processing solution from which impurities are removed to the tank 5; It has a pump 12 (for example, a plunger pump) for sending the third processing liquid from which impurities have been removed to the tank 1 'or for transporting the vaporized liquefied gas to the condenser 15' '.

さらに、脱細胞化組織の製造装置100は、内部の温度を検知して調整する温度検知調整手段17を有する。   Further, the decellularized tissue manufacturing apparatus 100 includes a temperature detection adjusting unit 17 that detects and adjusts the internal temperature.

また、脱細胞化組織の製造装置100は、バルブ2、2'、2''、4、4'、4''、7、10、13、14、14'、14''と、背圧弁18と、を有する。   The decellularized tissue manufacturing apparatus 100 includes valves 2, 2 ′, 2 ″, 4, 4 ′, 4 ″, 7, 10, 13, 14, 14 ′, 14 ″ and a back pressure valve 18. And

次に、脱細胞化組織の製造装置100を用いて、脱細胞化組織を製造する方法を説明する。   Next, a method for manufacturing a decellularized tissue using the decellularized tissue manufacturing apparatus 100 will be described.

まず、工程(S1)では、接触槽8に、細胞が破壊されている生体組織9を導入し、タンク1内に、第一の処理液を充填する。次に、バルブ2、4、7、10を開状態とし、その他のバルブを閉状態とした後、タンク1内に充填された第一の処理液を、加圧式ポンプ3を用いて、接触槽8に流通させる。細胞が破壊されている生体組織9は、例えば、DNaseの作用により、DNAが分解される。次に、DNAの分解物を含む第一の処理液が回収槽11で回収される。このとき、加圧式ポンプを用いることで、気泡が入りやすい水を主溶媒とする第一の処理液のキャビテーションの発生を防ぐことができる。   First, in the step (S1), the living tissue 9 in which cells are destroyed is introduced into the contact tank 8, and the tank 1 is filled with the first treatment liquid. Next, after the valves 2, 4, 7, and 10 are opened and the other valves are closed, the first processing liquid filled in the tank 1 is supplied to the contact tank using the pressurized pump 3. 8 The DNA of the living tissue 9 in which the cells are destroyed is decomposed by the action of DNase, for example. Next, the first treatment liquid containing the decomposed product of DNA is collected in the collection tank 11. At this time, by using a pressurized pump, it is possible to prevent cavitation of the first processing liquid having water as a main solvent into which air bubbles easily enter.

次に、バルブ14を開状態とし、その他のバルブを閉状態とした後、回収されたDNAの分解物を含む第一の処理液を、ポンプ12を用いて、タンク1に送液する。このとき、DNAの分解物は、分離手段15により、除去されるため、夾雑物が除去された第一の処理液をタンク1で回収することができる。タンク1で回収される第一の処理液は、そのまま再度、接触槽8に流通させ、細胞が破壊されている生体組織9のDNA分解に用いることができる。このため、第一の処理液を交換したり、追加したりせずに、少量の第一の処理液でDNAを分解することができる。   Next, after the valve 14 is opened and the other valves are closed, the first processing liquid containing the recovered DNA degradation product is sent to the tank 1 using the pump 12. At this time, since the decomposed product of the DNA is removed by the separation means 15, the first processing liquid from which the contaminants have been removed can be collected in the tank 1. The first treatment liquid collected in the tank 1 is again passed through the contact tank 8 as it is, and can be used for DNA degradation of the living tissue 9 in which cells have been destroyed. Therefore, the DNA can be decomposed with a small amount of the first processing solution without replacing or adding the first processing solution.

工程(S2)では、タンク5内に、第二の処理液を充填する。次に、バルブ7、10を開状態とし、その他のバルブを開状態とした後、タンク5内に充填された第二の処理液を、ポンプ6を用いて、接触槽8に流通させ、DNAが分解された生体組織9を脱脂し、除去された脂質を含む第二の処理液が回収槽11で回収される。次に、バルブ14を開状態とし、その他のバルブを閉状態とした後、回収された脂質を含む第二の処理液を、ポンプ12を用いて、タンク5に送液する。このとき、脂質は、分離手段16により、除去されるため、夾雑物が除去された第二の処理液をタンク5で回収することができる。タンク5で回収される第二の処理液は、そのまま再度、接触槽8に流通させ、DNAが分解された生体組織9の脱脂に用いることができる。このため、第二の処理液を交換したり、追加したりせずに、少量の第二の処理液で脱脂することができる。   In the step (S2), the tank 5 is filled with the second processing liquid. Next, after the valves 7 and 10 are opened and the other valves are opened, the second treatment liquid filled in the tank 5 is circulated to the contact tank 8 using the pump 6, The biological tissue 9 in which is decomposed is degreased, and the second treatment liquid containing the removed lipid is collected in the collection tank 11. Next, after the valve 14 is opened and the other valves are closed, the second processing liquid containing the collected lipid is sent to the tank 5 using the pump 12. At this time, since the lipid is removed by the separation means 16, the second treatment liquid from which the contaminants have been removed can be collected in the tank 5. The second treatment liquid collected in the tank 5 can be again passed through the contact tank 8 as it is, and used for defatting the biological tissue 9 in which the DNA has been decomposed. Therefore, degreasing can be performed with a small amount of the second processing liquid without replacing or adding the second processing liquid.

工程(S3)では、タンク1'内に、第三の処理液を充填する。次に、バルブ2'、4'、7、10を開状態とし、その他のバルブを開状態とした後、タンク1'内に充填された第三の処理液を、加圧式ポンプ3'を用いて、接触槽8に流通させ、脱脂された生体組織9を洗浄し、除去された水溶性化合物を含む第三の処理液が回収槽11で回収される。このとき、加圧式ポンプを用いることで、気泡が入りやすい水を主溶媒とする第三の処理液のキャビテーションの発生を防ぐことができる。次に、バルブ14'を開状態とし、その他のバルブを閉状態とした後、回収された水溶性化合物を含む第三の処理液を、ポンプ12を用いて、タンク1'に送液する。このとき、水溶性化合物は、分離手段15'により、除去されるため、夾雑物が除去された第三の処理液をタンク1'で回収することができる。タンク1'で回収された第三の処理液は、そのまま再度、接触槽8に流通させ、脱脂された生体組織9の洗浄に用いることができる。このため、第三の処理液を交換したり、追加したりせずに、少量の第三の処理液で洗浄することができる。   In the step (S3), the third processing liquid is filled in the tank 1 '. Next, after the valves 2 ', 4', 7, and 10 are opened and the other valves are opened, the third processing liquid filled in the tank 1 'is discharged using the pressurized pump 3'. Then, the delipidated biological tissue 9 is circulated through the contact tank 8 and washed, and the third treatment liquid containing the removed water-soluble compound is collected in the collection tank 11. At this time, by using a pressurized pump, it is possible to prevent the cavitation of the third processing liquid having water as a main solvent, in which air bubbles easily enter. Next, after the valve 14 'is opened and the other valves are closed, the third processing liquid containing the recovered water-soluble compound is sent to the tank 1' using the pump 12. At this time, since the water-soluble compound is removed by the separation means 15 ', the third treatment liquid from which impurities have been removed can be collected in the tank 1'. The third treatment liquid collected in the tank 1 'can be again passed through the contact tank 8 as it is, and used for washing the delipidized living tissue 9. Therefore, it is possible to wash with a small amount of the third processing liquid without replacing or adding the third processing liquid.

また、脱細胞化組織の製造装置100は、後述するように、液化ガスを含む液体を用いて、生体組織の細胞を破壊することができる。液化ガスを含む液体を用いて、細胞を破壊する場合には、液化ガスを含む液体が気化することで、生体組織に乾燥によるダメージが生じるおそれがある。液化ガスを含む液体を送液する際には、加圧式ポンプ3''を用いるが、背圧弁18により圧力を調整することができるため、液化ガスを含む液体の気化の調節、抑制が可能となり、乾燥による生体組織へのダメージを低減することができる。   In addition, the decellularized tissue manufacturing apparatus 100 can destroy cells of a living tissue using a liquid containing a liquefied gas, as described later. When cells are destroyed using a liquid containing a liquefied gas, the liquid containing the liquefied gas is vaporized, which may cause damage to the living tissue due to drying. When sending the liquid containing the liquefied gas, the pressurized pump 3 ″ is used. However, since the pressure can be adjusted by the back pressure valve 18, the vaporization of the liquid containing the liquefied gas can be adjusted and suppressed. In addition, it is possible to reduce damage to living tissues due to drying.

なお、細胞破壊、DNA分解、脱脂及び洗浄を、以下の操作により、流通式で、連続的に実施することができる。   In addition, cell destruction, DNA degradation, defatting, and washing can be continuously performed in a flow-through manner by the following operations.

まず、接触槽8内に生体組織9を導入する。次に、タンク1''内に、液化ガスを含む液体を充填し、タンク1内に、第一の処理液を充填し、タンク5内に、第二の処理液を充填し、タンク1'内に、第三の処理液を充填する。次に、バルブ2''、4''、7、10を開状態とし、背圧弁18を所定の圧力に調整し、その他のバルブを閉状態とした後、タンク1''内に充填された液化ガスを含む液体を加圧式ポンプ3''により送液する。次に、加圧式ポンプ3''を停止し、バルブ2''、4''を閉状態とし、送液を終了する。次に、バルブ19を開状態として、液化ガスの飽和蒸気圧未満とすることにより、バルブ4''とバルブ14''の間に存在する液化ガスを気化させる。このとき、必要に応じて、ポンプを用いて、気化したジメチルエーテルを排出してもよい。また、バルブ19を開状態とする代わりに、バルブ14''を開状態として、気化した液化ガスを、ポンプ12を用いて、凝縮器15''に輸送して、液化させ、再利用してもよい。次に、バルブ2、4、7、10を開状態とし、その他のバルブを閉状態とした後、タンク1内に充填された第一の処理液を加圧式ポンプ3により送液する。このとき、背圧弁18の設定圧力を上記の所定の圧力から徐々に大気圧へ減圧することで、接触槽8内に残留する液化ガスの気化の抑制が可能となり、乾燥による生体組織9へのダメージを低減することができる。次に、加圧式ポンプ3を停止し、バルブ2、4を閉状態とし、送液を終了する。次に、タンク5内に充填された第二の処理液を、ポンプ6により送液する。次に、ポンプ6を停止し、送液を終了する。次に、バルブ2'、4'を開状態とし、タンク1'内に充填された第三の処理液を加圧式ポンプ3'により送液する。次に、加圧式ポンプ3'を停止し、バルブ2'、4'、7、10を閉状態とし、送液を終了する。   First, the living tissue 9 is introduced into the contact tank 8. Next, the tank 1 ″ is filled with a liquid containing a liquefied gas, the tank 1 is filled with a first processing liquid, the tank 5 is filled with a second processing liquid, and the tank 1 ′ is filled. Is filled with a third processing solution. Next, after the valves 2 ″, 4 ″, 7, and 10 were opened, the back pressure valve 18 was adjusted to a predetermined pressure, and the other valves were closed, the tank 1 ″ was filled. The liquid containing the liquefied gas is sent by the pressurized pump 3 ″. Next, the pressurizing pump 3 ″ is stopped, the valves 2 ″, 4 ″ are closed, and the liquid feeding is terminated. Next, the liquefied gas existing between the valve 4 ″ and the valve 14 ″ is vaporized by setting the valve 19 to the open state and making the pressure lower than the saturated vapor pressure of the liquefied gas. At this time, if necessary, the vaporized dimethyl ether may be discharged using a pump. Instead of opening the valve 19, the valve 14 '' is opened, and the vaporized liquefied gas is transported to the condenser 15 '' using the pump 12, liquefied, and reused. Is also good. Next, after the valves 2, 4, 7, and 10 are opened and the other valves are closed, the first processing liquid filled in the tank 1 is sent by the pressurized pump 3. At this time, by gradually reducing the set pressure of the back pressure valve 18 from the above-mentioned predetermined pressure to the atmospheric pressure, it becomes possible to suppress the vaporization of the liquefied gas remaining in the contact tank 8 and to dry the living tissue 9 by drying. Damage can be reduced. Next, the pressurizing pump 3 is stopped, the valves 2 and 4 are closed, and the liquid feeding is terminated. Next, the second processing liquid filled in the tank 5 is sent by the pump 6. Next, the pump 6 is stopped, and the liquid feeding ends. Next, the valves 2 'and 4' are opened, and the third processing liquid filled in the tank 1 'is sent by the pressurized pump 3'. Next, the pressurizing pump 3 'is stopped, the valves 2', 4 ', 7, and 10 are closed, and the liquid feeding is terminated.

以上のように、細胞破壊、DNA分解、脱脂及び洗浄を、流通式で、連続的に実施することで、処理時間を短縮することができる。   As described above, the processing time can be shortened by continuously performing cell destruction, DNA degradation, defatting, and washing in a flow system.

以下に、本発明の実施例を説明するが、本発明は、実施例に限定されない。   Hereinafter, embodiments of the present invention will be described, but the present invention is not limited to the embodiments.

[実施例1]
(ブタ由来の大動脈の細胞破壊)
図3に示す細胞破壊装置を用いて、ブタ由来の大動脈組織55の細胞を破壊した。
[Example 1]
(Destruction of swine-derived aorta cells)
The cells of the aortic tissue 55 derived from pigs were destroyed using the cell disruption apparatus shown in FIG.

具体的には、抽出槽54に、ブタ由来の大動脈組織55を仕込んだ。次に、分離槽60を予めジメチルエーテルで置換し、バルブ52、53、56、58、59を閉状態とした。次に、背圧弁57の設定圧力を0.7MPaとし、バルブ52、53、56、58を開状態とし、ポンプ51を用いて、液化ジメチルエーテルを流通させ、液化ジメチルエーテルで抽出槽54が満たされたところで、バルブ53、56を閉状態とし、ブタ由来の大動脈組織55を液化ジメチルエーテルに浸漬し、リン脂質等の細胞膜成分を抽出した。次に、バルブ53、56を開状態とし、液化ジメチルエーテルの流量を1mL/minに調整して、抽出液を分離槽60で回収した。次に、バルブ58を閉状態とし、分離槽60を装置から取り外し、ドラフト内で大気圧として、液化ジメチルエーテルを揮発させた。   Specifically, swine-derived aortic tissue 55 was charged into the extraction tank 54. Next, the separation tank 60 was replaced with dimethyl ether in advance, and the valves 52, 53, 56, 58, and 59 were closed. Next, the set pressure of the back pressure valve 57 was set to 0.7 MPa, the valves 52, 53, 56, and 58 were opened, and liquefied dimethyl ether was passed using the pump 51, and the extraction tank 54 was filled with liquefied dimethyl ether. By the way, the valves 53 and 56 were closed, and the aortic tissue 55 derived from pig was immersed in liquefied dimethyl ether to extract cell membrane components such as phospholipids. Next, the valves 53 and 56 were opened, the flow rate of liquefied dimethyl ether was adjusted to 1 mL / min, and the extract was collected in the separation tank 60. Next, the valve 58 was closed, the separation tank 60 was removed from the apparatus, and the liquefied dimethyl ether was volatilized at atmospheric pressure in the fume hood.

上記の操作により、液化ジメチルエーテル60mLとブタ由来の大動脈組織55を接触させた後、バルブ53を閉状態とし、バルブ56、58、59を開状態とし、抽出槽54内の圧力を大気圧とし、抽出槽54内の液化ジメチルエーテルを揮発させて排気した。その結果、細胞が破壊されたブタ由来の大動脈組織を得た。   By the above operation, after contacting 60 mL of liquefied dimethyl ether with the aortic tissue 55 derived from pig, the valve 53 is closed, the valves 56, 58, and 59 are opened, and the pressure in the extraction tank 54 is set to atmospheric pressure. The liquefied dimethyl ether in the extraction tank 54 was volatilized and exhausted. As a result, swine-derived aortic tissue in which cells were destroyed was obtained.

(細胞が破壊されたブタ由来の大動脈組織のDNA分解、脱脂及び洗浄)
図4に示す脱細胞化組織の製造装置を用いて、細胞が破壊されたブタ由来の大動脈組織66のDNA分解、脱脂及び洗浄を流通式で実施した。
(DNA degradation, delipidation and washing of aortic tissue derived from swine from which cells were destroyed)
Using the apparatus for producing a decellularized tissue shown in FIG. 4, DNA degradation, defatting, and washing of the aortic tissue 66 derived from pigs in which cells were destroyed were carried out in a flow-through manner.

具体的には、接触槽65に、細胞が破壊されたブタ由来の大動脈組織66を仕込んだ。次に、タンク61内に、0.2mg/mLのDNaseI(ロシュ・ダイアグノスティックス社製)、0.05MのMgCl(和光純薬工業社製)を含む生理食塩水を充填し、バルブ62、64、67を開状態とし、バルブ71を閉状態とした。次に、タンク61内に充填したDNaseI、MgClを含む生理食塩水を、シリンジポンプ63を用いて、1mL/minで接触槽65に流通させ、細胞が破壊されたブタ由来の大動脈組織66に含まれるDNAを分解させ、DNAの分解物を回収槽68で回収した。 Specifically, a swine-derived aortic tissue 66 in which cells were destroyed was charged into the contact tank 65. Next, the tank 61 is filled with a physiological saline solution containing 0.2 mg / mL of DNase I (manufactured by Roche Diagnostics) and 0.05 M of MgCl 2 (manufactured by Wako Pure Chemical Industries, Ltd.). 62, 64, and 67 were opened, and the valve 71 was closed. Next, a physiological saline solution containing DNase I and MgCl 2 filled in the tank 61 was circulated through the contact tank 65 at a rate of 1 mL / min by using the syringe pump 63 to pass the swine-derived aortic tissue 66 in which the cells were destroyed. The contained DNA was decomposed, and the decomposed DNA was recovered in the recovery tank 68.

次に、タンク69内に、80体積%のエタノールを含む生理食塩水を充填し、バルブ62、64を閉状態とし、バルブ67、71を開状態とした。次に、タンク69内に充填したエタノールを含む生理食塩水を、プランジャーポンプ70を用いて、1mL/minで接触槽65に流通させ、DNAが分解したブタ由来の大動脈組織66を脱脂し、除去された脂質を回収槽68で回収した。   Next, the tank 69 was filled with physiological saline containing 80% by volume of ethanol, the valves 62 and 64 were closed, and the valves 67 and 71 were opened. Next, the physiological saline containing ethanol filled in the tank 69 is passed through the contact tank 65 at 1 mL / min using the plunger pump 70 to defatte the pig-derived aortic tissue 66 in which the DNA has been degraded, The removed lipid was collected in the collection tank 68.

次に、タンク69内から、エタノールを含む生理食塩水を排出した後、タンク69内に、生理食塩水を充填した。次に、タンク69内に充填した生理食塩水を、プランジャーポンプ70を用いて、1mL/minで接触槽65に流通させ、脱脂されたブタ由来の大動脈組織66を洗浄し、除去された抽出物を回収槽68で回収した。その結果、ブタ由来の大動脈組織の脱細胞化組織を得た。   Next, after the physiological saline containing ethanol was discharged from the tank 69, the physiological saline was filled into the tank 69. Next, the physiological saline filled in the tank 69 is circulated through the contact tank 65 at 1 mL / min using the plunger pump 70 to wash the defatted swine-derived aortic tissue 66 and remove the removed porcine aortic tissue 66. The material was collected in the collection tank 68. As a result, a decellularized tissue of swine-derived aortic tissue was obtained.

[比較例1]
細胞が破壊されたブタ由来の大動脈組織66のDNA分解、脱脂及び洗浄をバッチ式で実施した、即ち、各処理液と混合して振とうした以外は、実施例1と同様にして、ブタ由来の大動脈組織の脱細胞化組織を得た。
[Comparative Example 1]
The DNA degradation, delipidation and washing of the aortic tissue 66 derived from pigs in which the cells were destroyed were performed in a batch system, that is, except that they were mixed with each treatment solution and shaken in the same manner as in Example 1. Of the aortic tissue was obtained.

表1に、ブタ由来の大動脈組織の脱細胞化組織及び未処理のブタ由来の大動脈組織の乾燥質量あたりのDNA量を示す。   Table 1 shows the amount of DNA per dry mass of the decellularized tissue of the aortic tissue derived from pig and the untreated aortic tissue of the pig.

Figure 2020005622
ここで、DNAは、フェノール・クロロホルム抽出により、ブタ由来の大動脈組織の脱細胞化組織及び未処理のブタ由来の大動脈組織から抽出した。また、DNA量は、Quant−iT PicoGreen dsDNA Assay Kitを用いて、2本鎖のDNA量を定量した。
Figure 2020005622
Here, DNA was extracted from porcine-derived aortic tissue derived from swine-derived aortic tissue and untreated swine-derived aortic tissue by phenol-chloroform extraction. The amount of double-stranded DNA was quantified using Quant-iT PicoGreen dsDNA Assay Kit.

表1から、実施例1のブタ由来の大動脈組織の脱細胞化組織は、乾燥質量あたりのDNA量が少なく、脱細胞化組織を効率的に製造できることがわかる。   From Table 1, it can be seen that the decellularized tissue of the aortic tissue derived from pig in Example 1 has a small amount of DNA per dry mass and can efficiently produce the decellularized tissue.

これに対して、比較例1のブタ由来の大動脈組織の脱細胞化組織は、細胞が破壊されたブタ由来の大動脈組織66のDNA分解、脱脂及び洗浄を流通式で実施していないため、乾燥質量あたりのDNA量が多く、脱細胞化組織を効率的に製造することができない。   In contrast, the decellularized tissue of the pig-derived aortic tissue of Comparative Example 1 was dried since the DNA degradation, defatting and washing of the pig-derived aortic tissue 66 in which the cells were destroyed were not carried out in a flow-through manner. Since the amount of DNA per mass is large, decellularized tissue cannot be produced efficiently.

[実施例2]
脱脂及び洗浄をバッチ式で実施した以外は、実施例1と同様にして、ブタ由来の大動脈組織の脱細胞化組織を得た。
[Example 2]
A decellularized tissue of swine-derived aortic tissue was obtained in the same manner as in Example 1 except that the degreasing and washing were performed in a batch manner.

具体的には、DNAが分解したブタ由来の大動脈組織66を、80体積%のエタノールを含む生理食塩水に入れた後、振とうさせ、脱脂した。また、脱脂されたブタ由来の大動脈組織66を、生理食塩水に入れた後、振とうさせ、洗浄した。   Specifically, the pig-derived aortic tissue 66 in which DNA had been degraded was placed in a physiological saline solution containing 80% by volume of ethanol, and then shaken and defatted. The defatted swine-derived aortic tissue 66 was placed in physiological saline, shaken, and washed.

[実施例3]
DNA分解及び洗浄をバッチ式で実施した以外は、実施例1と同様にして、ブタ由来の大動脈組織の脱細胞化組織を得た。
[Example 3]
A decellularized tissue of swine-derived aortic tissue was obtained in the same manner as in Example 1, except that the DNA degradation and washing were performed in a batch system.

具体的には、細胞が破壊されたブタ由来の大動脈組織66を、0.2mg/mLのDNaseI(ロシュ・ダイアグノスティックス社製)、0.05MのMgCl(和光純薬工業社製)を含む生理食塩水に入れた後、振とうさせ、細胞が破壊されたブタ由来の大動脈組織66に含まれるDNAを分解させた。また、脱脂されたブタ由来の大動脈組織66を、生理食塩水に入れた後、振とうさせ、洗浄した。 Specifically, swine-derived aortic tissue 66 in which cells were destroyed was treated with 0.2 mg / mL of DNase I (manufactured by Roche Diagnostics) and 0.05 M MgCl 2 (manufactured by Wako Pure Chemical Industries). After that, the cells were shaken to decompose DNA contained in a pig-derived aortic tissue 66 in which cells were destroyed. The defatted swine-derived aortic tissue 66 was placed in physiological saline, shaken, and washed.

[実施例4]
DNA分解及び脱脂をバッチ式で実施した以外は、実施例1と同様にして、ブタ由来の大動脈組織の脱細胞化組織を得た。
[Example 4]
A decellularized tissue of swine-derived aortic tissue was obtained in the same manner as in Example 1, except that DNA degradation and delipidation were performed in a batch system.

具体的には、細胞が破壊されたブタ由来の大動脈組織66を、0.2mg/mLのDNaseI(ロシュ・ダイアグノスティックス社製)、0.05MのMgCl(和光純薬工業社製)を含む生理食塩水に入れた後、振とうさせ、細胞が破壊されたブタ由来の大動脈組織66に含まれるDNAを分解させた。また、DNAが分解したブタ由来の大動脈組織66を、80体積%のエタノールを含む生理食塩水に入れた後、振とうさせ、脱脂した。 Specifically, swine-derived aortic tissue 66 in which cells were destroyed was treated with 0.2 mg / mL of DNase I (manufactured by Roche Diagnostics) and 0.05 M MgCl 2 (manufactured by Wako Pure Chemical Industries). After that, the cells were shaken to decompose DNA contained in a pig-derived aortic tissue 66 in which cells were destroyed. Further, the aortic tissue 66 derived from pigs in which DNA was degraded was placed in a physiological saline solution containing 80% by volume of ethanol, and then shaken and defatted.

表2に、ブタ由来の大動脈組織の脱細胞化組織のDNA残存量、脂質残存量及び水溶性化合物残存量を示す。   Table 2 shows the amount of residual DNA, the amount of remaining lipid, and the amount of remaining water-soluble compound in the decellularized tissue of aortic tissue derived from pig.

Figure 2020005622
実施例1のブタ由来の大動脈組織の脱細胞化組織は、DNA残存量と同様にして、脱脂残存量及び水溶性化合物残存量も、比較例1のブタ由来の大動脈組織の脱細胞化組織よりも少なくなる。
Figure 2020005622
The decellularized tissue of the swine-derived aortic tissue in Example 1 was also similar to the DNA-remaining amount in that the remaining amount of defatted and the remaining amount of the water-soluble compound were the same as those of the decellularized tissue of the swine-derived aortic tissue of Comparative Example 1. Is also reduced.

実施例2のブタ由来の大動脈組織の脱細胞化組織は、DNA分解を流通式で実施し、脱脂及び洗浄をバッチ式で実施したため、DNA残存量が、比較例1のブタ由来の大動脈組織の脱細胞化組織よりも少なくなる。   The decellularized tissue of the swine-derived aortic tissue in Example 2 was subjected to DNA degradation in a flow-through manner, and the degreasing and washing were performed in a batch manner. Less than decellularized tissue.

実施例3のブタ由来の大動脈組織の脱細胞化組織は、脱脂を流通式で実施し、DNA分解及び洗浄をバッチ式で実施したため、脂質残存量が、比較例1のブタ由来の大動脈組織の脱細胞化組織よりも少なくなる。   The decellularized tissue of the swine-derived aortic tissue in Example 3 was subjected to defatting in a flow-through manner, and the DNA degradation and washing were performed in a batch manner. Less than decellularized tissue.

実施例4のブタ由来の大動脈組織の脱細胞化組織は、洗浄を流通式で実施し、DNA分解及び脱脂をバッチ式で実施したため、水溶性化合物残存量が、比較例1のブタ由来の大動脈組織の脱細胞化組織よりも少なくなる。   The decellularized tissue of the swine-derived aortic tissue of Example 4 was washed by a flow-through method, and the DNA degradation and defatting were performed by a batch method. Tissue is less decellularized than tissue.

以上のことから、DNA分解、脱脂及び洗浄の少なくとも一つの工程を流通式で実施すると、脱細胞化組織を効率的に製造できることがわかる。   From the above, it can be seen that when at least one of the steps of DNA degradation, defatting, and washing is carried out by a flow system, a decellularized tissue can be efficiently produced.

1、1'、1''、5 タンク
2、2'、2''、4、4'、4''、7、10、13、14、14'、14''、19 バルブ
18 背圧弁
3、3'、3'' 加圧式ポンプ
6、12 ポンプ
8 接触槽
9 生体組織
11 回収槽
15、15'、16 分離手段
15'' 凝縮器
17 温度検知調整手段
100 脱細胞化組織の製造装置
1, 1 ', 1 ", 5 tank 2, 2', 2", 4, 4 ', 4 ", 7, 10, 13, 14, 14, 14', 14", 19 Valve 18 Back pressure valve 3 3 ', 3''pressurized pump 6, 12 pump 8 contact tank 9 living tissue 11 recovery tank 15, 15', 16 separation means 15 '' condenser 17 temperature detection adjustment means 100 decellularized tissue manufacturing apparatus

特表2005−531355号公報Japanese Patent Publication No. 2005-53355

Claims (12)

第一の処理液を用いて、細胞が破壊されている生体組織に含まれるDNAを分解する第一の工程と、
第二の処理液を用いて、該DNAが分解された生体組織を脱脂する第二の工程と、
第三の処理液を用いて、該脱脂された生体組織を洗浄する第三の工程を含み、
前記第一の工程、前記第二の工程及び前記第三の工程の少なくとも一つが流通式で実施される、脱細胞化組織の製造方法。
Using a first treatment solution, a first step of decomposing DNA contained in living tissue in which cells are destroyed,
A second step of delipidating the biological tissue in which the DNA has been decomposed, using a second treatment liquid;
A third step of washing the delipidated living tissue using a third treatment liquid,
A method for producing a decellularized tissue, wherein at least one of the first step, the second step, and the third step is performed by a flow system.
前記第一の処理液は、酵素又は界面活性剤を含む液体であることを特徴とする請求項1に記載の脱細胞化組織の製造方法。   The method for producing a decellularized tissue according to claim 1, wherein the first treatment liquid is a liquid containing an enzyme or a surfactant. 前記第二の処理液は、有機溶媒を含む液体であることを特徴とする請求項1又は2に記載の脱細胞化組織の製造方法。   The method for producing a decellularized tissue according to claim 1, wherein the second treatment liquid is a liquid containing an organic solvent. 前記有機溶媒は、エタノールであることを特徴とする請求項3に記載の脱細胞化組織の製造方法。   The method for producing a decellularized tissue according to claim 3, wherein the organic solvent is ethanol. 前記第三の処理液は、水を主溶媒とすることを特徴とする請求項1乃至4のいずれか一項に記載の脱細胞化組織の製造方法。   The method for producing a decellularized tissue according to any one of claims 1 to 4, wherein the third treatment liquid is mainly composed of water. 液化ガスを含む液体を用いて、生体組織の細胞を破壊する第四の工程を更に含み、
前記第四の工程は、前記液化ガスが液体状態を維持する所定の環境下で実施されることを特徴とする請求項1乃至5のいずれか一項に記載の脱細胞化組織の製造方法。
Using a liquid containing a liquefied gas, further comprising a fourth step of destroying cells of the living tissue,
The method for producing a decellularized tissue according to any one of claims 1 to 5, wherein the fourth step is performed under a predetermined environment in which the liquefied gas maintains a liquid state.
前記液化ガスは、液化ジメチルエーテルである請求項6に記載の脱細胞化組織の製造方法。   The method for producing a decellularized tissue according to claim 6, wherein the liquefied gas is liquefied dimethyl ether. 前記所定の環境は、1〜40℃、0.2〜5MPaの環境であることを特徴とする請求項7に記載の脱細胞化組織の製造方法。   The method for producing a decellularized tissue according to claim 7, wherein the predetermined environment is an environment of 1 to 40C and 0.2 to 5 MPa. 前記第一の工程、前記第二の工程、前記第三の工程及び前記第四の工程の少なくとも一つの工程は、接触槽で実施され、
前記接触槽は、上流側の端面に、多孔質の部材を有することを特徴とする請求項6乃至8のいずれか一項に記載の脱細胞化組織の製造方法。
At least one of the first step, the second step, the third step and the fourth step is performed in a contact tank,
The method for producing a decellularized tissue according to any one of claims 6 to 8, wherein the contact tank has a porous member on an end surface on an upstream side.
前記第一の工程、前記第二の工程、前記第三の工程又は前記第四の工程は、4〜40℃で実施されることを特徴とする請求項6乃至9のいずれか一項に記載の脱細胞化組織の製造方法。   The said 1st process, the said 2nd process, the said 3rd process, or the said 4th process is implemented at 4-40 degreeC, The Claims any one of Claims 6-9 characterized by the above-mentioned. A method for producing a decellularized tissue. 前記第一の工程、前記第二の工程及び前記第三の工程の少なくとも一つの工程で用いられた処理液から夾雑物を除去する工程を更に含むことを特徴とする請求項1乃至10のいずれか一項に記載の脱細胞化組織の製造方法。   The method according to any one of claims 1 to 10, further comprising a step of removing contaminants from a processing solution used in at least one of the first step, the second step, and the third step. The method for producing a decellularized tissue according to claim 1. 第一の処理液を用いて、細胞が破壊されている生体組織に含まれるDNAを分解する第一の手段と、
第二の処理液を用いて、該DNAが分解された生体組織を脱脂する第二の手段と、
第三の処理液を用いて、該脱脂された生体組織を洗浄する第三の手段を含み、
前記第一の手段、前記第二の手段及び前記第三の手段の少なくとも一つが流通式であることを特徴とする脱細胞化組織の製造装置。
First means for decomposing DNA contained in living tissue in which cells have been destroyed, using a first treatment solution;
A second means for delipidating the biological tissue in which the DNA has been decomposed, using a second treatment solution;
Using a third treatment solution, including a third means for washing the delipidated biological tissue,
An apparatus for producing a decellularized tissue, wherein at least one of the first means, the second means, and the third means is of a flow type.
JP2018165407A 2018-06-29 2018-09-04 Method for producing decellularized tissues, and apparatus for producing decellularized tissues Withdrawn JP2020005622A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/449,935 US20200002669A1 (en) 2018-06-29 2019-06-24 Decellularized tissue producing method and decellularized tissue producing apparatus
EP19182121.4A EP3586885A1 (en) 2018-06-29 2019-06-25 Decellularized tissue producing method and decellularized tissue producing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018125168 2018-06-29
JP2018125168 2018-06-29

Publications (1)

Publication Number Publication Date
JP2020005622A true JP2020005622A (en) 2020-01-16

Family

ID=69149313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018165407A Withdrawn JP2020005622A (en) 2018-06-29 2018-09-04 Method for producing decellularized tissues, and apparatus for producing decellularized tissues

Country Status (1)

Country Link
JP (1) JP2020005622A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11547953B2 (en) 2018-03-16 2023-01-10 Ricoh Company, Ltd. Method of producing extract and extraction residue of biological material, extract, and extraction residue

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140065238A1 (en) * 1999-06-07 2014-03-06 Lifenet Health Process for Devitalizing Soft-Tissue Engineered Medical Implants and Devitalized Soft-Tissue Medical Implants Produced

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140065238A1 (en) * 1999-06-07 2014-03-06 Lifenet Health Process for Devitalizing Soft-Tissue Engineered Medical Implants and Devitalized Soft-Tissue Medical Implants Produced

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
鈴木章悟,他: "液化ジメチルエーテルを用いた生体材料創製", 化学工学会 第49回秋季大会 研究発表講演プログラム集, JPN6022019119, 20 September 2017 (2017-09-20), pages 104, ISSN: 0004773011 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11547953B2 (en) 2018-03-16 2023-01-10 Ricoh Company, Ltd. Method of producing extract and extraction residue of biological material, extract, and extraction residue

Similar Documents

Publication Publication Date Title
Rabbani et al. Contribution of physical methods in decellularization of animal tissues
JP6889118B2 (en) Manufacture of high-purity collagen particles and their use
US11077230B2 (en) Decellularising tissue
WO2018207493A1 (en) Method for producing decellularized tissue, decellularized tissue, and apparatus for producing decellularized tissue
EP1929862A1 (en) Allograft tissue purification process for cleaning bone
Keane et al. Decellularization of mammalian tissues: preparing extracellular matrix bioscaffolds
JP2002529201A (en) How to pool organizations
CN113368313B (en) Preparation method of biological membrane, product and application thereof
Duarte et al. Contributions of supercritical fluid technology for advancing decellularization and postprocessing of viable biological materials
KR20180135597A (en) Preparation method of hydrogel based on decellularized tissue using supercritical fluid-organic solvent system
JP2007105081A (en) Cell removal processing of viable tissue for transplantation by supercritical carbon dioxide
Duarte et al. Fast decellularization process using supercritical carbon dioxide for trabecular bone
JP2020005622A (en) Method for producing decellularized tissues, and apparatus for producing decellularized tissues
Olga et al. Comparative analysis of the skin decellularization methods
CN109621008A (en) A kind of Acellular nerve graft and preparation method thereof
US20200002669A1 (en) Decellularized tissue producing method and decellularized tissue producing apparatus
JP2020006130A (en) Method for producing decellularized tissue
Wang et al. Triton X-100 combines with chymotrypsin: A more promising protocol to prepare decellularized porcine carotid arteries
Say et al. Sonication-assisted perfusion decellularization of whole porcine kidney
Jiwangga et al. Current strategies for tracheal decellularization: a systematic review
JP7133870B2 (en) Cell-free organ and method of producing same
JP2021122244A (en) Decellularized tissue, recellularized tissue, method for producing decellularized tissue, and apparatus for producing decellularized tissue
CN111110917A (en) Method for preparing acellular biological tissue material
Hsu et al. Physical processing for decellularized nerve xenograft in peripheral nerve regeneration
KR102586304B1 (en) Acellular nerve graft and method of making the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220517

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20220708