JP7080737B2 - Ultrasonic flaw detection method - Google Patents

Ultrasonic flaw detection method Download PDF

Info

Publication number
JP7080737B2
JP7080737B2 JP2018112081A JP2018112081A JP7080737B2 JP 7080737 B2 JP7080737 B2 JP 7080737B2 JP 2018112081 A JP2018112081 A JP 2018112081A JP 2018112081 A JP2018112081 A JP 2018112081A JP 7080737 B2 JP7080737 B2 JP 7080737B2
Authority
JP
Japan
Prior art keywords
flaw detection
ultrasonic flaw
ultrasonic
inspected
detection method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018112081A
Other languages
Japanese (ja)
Other versions
JP2019215227A (en
Inventor
泰宏 和佐
友信 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2018112081A priority Critical patent/JP7080737B2/en
Publication of JP2019215227A publication Critical patent/JP2019215227A/en
Application granted granted Critical
Publication of JP7080737B2 publication Critical patent/JP7080737B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

本発明は、超音波探傷装置に用いて被検査物の欠陥を超音波で検出する超音波探傷方法に関する。 The present invention relates to an ultrasonic flaw detection method that is used in an ultrasonic flaw detector to detect defects in an inspected object by ultrasonic waves.

従来、被検査物における例えば傷、亀裂、接合不良および介在物等の欠陥を非破壊で検査する際に、超音波探傷装置が利用されている。特に、鉄鋼業において、超音波探傷装置は、製造ラインでの品質管理に用いられている。この超音波探傷装置は、被検査物へ第1超音波を送信し、前記送信した第1超音波に基づいて前記被検査物から来た第2超音波を受信する超音波探傷用探触子(超音波探傷用プローブ)を備え、前記受信した第2超音波を解析することで、前記欠陥の有無、その位置およびその大きさ(サイズ)等を検出する。 Conventionally, an ultrasonic flaw detector has been used for non-destructive inspection of defects such as scratches, cracks, joint defects and inclusions in an object to be inspected. Especially in the steel industry, ultrasonic flaw detectors are used for quality control on production lines. This ultrasonic flaw detector is an ultrasonic flaw detector that transmits a first ultrasonic wave to the object to be inspected and receives a second ultrasonic wave coming from the object to be inspected based on the transmitted first ultrasonic wave. (Probe for ultrasonic flaw detection) is provided, and the presence or absence of the defect, its position, its size (size), and the like are detected by analyzing the received second ultrasonic wave.

例えば、非特許文献1には、具体的な手法が開示されており、50~125MHzの高い周波数で超音波探傷することによって20μm以上の鋼中介在部を検出できることが開示されている。 For example, Non-Patent Document 1 discloses a specific method, and discloses that an intervening portion in steel of 20 μm or more can be detected by ultrasonic flaw detection at a high frequency of 50 to 125 MHz.

加藤恵之他、「高周波超音波探傷による鋼中介在物の評価技術の開発」、Sanyo Technical Report Vol.7 (2000) No.1Yoshiyuki Kato et al., "Development of Evaluation Technique for Inclusions in Steel by High Frequency Ultrasonic Fracture Detection", Sanyo Technical Report Vol. 7 (2000) No. 1

ところで、このような超音波探傷では、通常、事前に被検査物が熱処理され、表面を平坦に研磨する等の事前準備が必要になる。この事前準備で適切に熱処理することで結晶粒を適切な状態に整え、組織ノイズを低減することが可能となる。このように熱処理や表面研磨等の事前準備に手間や時間がかかり、連続的にかつ自動的に被検査物を検査することが難しく、多くの被検査物を検査することも難しい。 By the way, in such ultrasonic flaw detection, it is usually necessary to prepare in advance such as heat-treating the object to be inspected in advance and polishing the surface flat. Appropriate heat treatment in this advance preparation makes it possible to arrange the crystal grains in an appropriate state and reduce tissue noise. As described above, it takes time and effort to prepare in advance such as heat treatment and surface polishing, it is difficult to continuously and automatically inspect the inspected object, and it is also difficult to inspect many inspected objects.

本発明は、上述の事情に鑑みて為された発明であり、その目的は、事前準備の手間や時間を低減できる超音波探傷方法を提供することである。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an ultrasonic flaw detection method capable of reducing the labor and time of advance preparation.

本発明者は、種々検討した結果、上記目的は、以下の本発明により達成されることを見出した。すなわち、本発明の一態様にかかる超音波探傷方法は、断面において加工前よりも扁平に加工された状態の被検査物における短辺の側面から超音波探傷するように、超音波探傷探触子をセットするA工程と、前記A工程でセットした状態で前記短辺の側面から超音波を入射して超音波探傷を実行するB工程とを備え、前記被検査物の結晶粒は、扁平であって、前記被検査物における長辺方向に沿って配向している。好ましくは、上述の超音波探傷方法において、前記被検査物を、ローラを用いる冷間圧延法、または、矩形断面の伸線用ダイスを用いるダイス伸線法によって、断面において加工前よりも扁平に前記被検査物を加工する工程をさらに備える。 As a result of various studies, the present inventor has found that the above object can be achieved by the following invention. That is, the ultrasonic flaw detection method according to one aspect of the present invention is an ultrasonic flaw detector such that ultrasonic flaw detection is performed from the side surface of the short side of the object to be inspected in a state where the cross section is processed to be flatter than before processing. The step A for setting and the step B for performing ultrasonic flaw detection by injecting ultrasonic waves from the side surface of the short side in the state set in the step A are provided, and the crystal grains of the object to be inspected are flat. Therefore, it is oriented along the long side direction of the object to be inspected. Preferably, in the above-mentioned ultrasonic flaw detection method, the object to be inspected is made flatter in cross section than before processing by a cold rolling method using a roller or a die drawing method using a drawing die having a rectangular cross section. A step of processing the inspected object is further provided.

超音波探傷方法では、通常、超音波は、欠陥だけで反射するわけではなく、結晶粒界でも反射する。この結晶粒界による反射超音波は、欠陥による反射超音波に対して、いわゆる組織ノイズや林状ノイズと呼ばれるノイズとなる。上記超音波探傷方法では、被検査物は、断面において加工前よりも扁平に加工されている。このため、被検査物中の結晶粒も扁平となり、被検査物中の前記結晶粒は、長辺方向に沿って配向していると考えられる。特に、ローラを用いる冷間圧延や、矩形断面の伸線用ダイスを用いるダイス伸線法では、結晶粒は、長軸方法(長辺方向)に配向する特性を持つ。したがって、扁平形状の被検査物における短辺の側面から超音波を入射した方が、その長辺の側面から超音波を入射する場合より前記ノイズが低減すると考えられる。上記超音波探傷方法は、前記短辺の側面から超音波を入射するので、前記ノイズを低減でき、上述の熱処理や表面研磨等の事前準備を実施しなくても超音波探傷できる。したがって、上記超音波探傷方法は、事前準備が必要なく、前記事前準備の手間や時間を低減できる。この結果、上記超音波探傷方法は、製造ラインで連続的かつ自動的に被検査物を検査でき、より多くの被検査物を検査できる。 In the ultrasonic flaw detection method, ultrasonic waves are usually reflected not only by defects but also by grain boundaries. The reflected ultrasonic waves due to the grain boundaries become so-called tissue noise or forest noise with respect to the reflected ultrasonic waves due to defects. In the ultrasonic flaw detection method, the object to be inspected is processed to be flatter in cross section than before processing. Therefore, it is considered that the crystal grains in the inspected object are also flattened, and the crystal grains in the inspected object are oriented along the long side direction. In particular, in cold rolling using a roller or a die drawing method using a drawing die having a rectangular cross section, the crystal grains have a characteristic of being oriented in the long axis method (long side direction). Therefore, it is considered that the noise is reduced when the ultrasonic wave is incident from the side surface of the short side of the flat object to be inspected as compared with the case where the ultrasonic wave is incident from the side surface of the long side thereof. In the ultrasonic flaw detection method, since ultrasonic waves are incident from the side surface of the short side, the noise can be reduced, and ultrasonic flaw detection can be performed without performing the above-mentioned heat treatment, surface polishing, or other preliminary preparations. Therefore, the ultrasonic flaw detection method does not require advance preparation, and the labor and time of the advance preparation can be reduced. As a result, the ultrasonic flaw detection method can continuously and automatically inspect the inspected object on the production line, and can inspect more inspected objects.

他の一態様では、上述の超音波探傷方法において、前記被検査物の断面における短辺の長さに対する長辺の長さの比が2以上となるように(長辺の長さ/短辺の長さ≧2)、前記被検査物を加工するC工程をさらに備える。好ましくは、上述の超音波探傷方法において、前記C工程は、前記被検査物の断面における短辺の長さに対する長辺の長さの比が2.3以上となるように(長辺の長さ/短辺の長さ≧2.3)、前記被検査物を加工する。 In another aspect, in the above-mentioned ultrasonic flaw detection method, the ratio of the length of the long side to the length of the short side in the cross section of the object to be inspected is 2 or more (length of long side / short side). Length ≧ 2), further includes a C step of processing the object to be inspected. Preferably, in the ultrasonic flaw detection method described above, in the step C, the ratio of the length of the long side to the length of the short side in the cross section of the object to be inspected is 2.3 or more (the length of the long side). The length of the side / short side ≧ 2.3), the object to be inspected is processed.

このような超音波探傷方法は、前記被検査物の断面における短辺の長さに対する長辺の長さの比が2以上であるので、結晶粒を充分な扁平組織で配向でき、前記ノイズを低減できる。 In such an ultrasonic flaw detection method, since the ratio of the length of the long side to the length of the short side in the cross section of the object to be inspected is 2 or more, the crystal grains can be oriented with a sufficiently flat structure, and the noise can be detected. Can be reduced.

他の一態様では、上述の超音波探傷方法において、前記A工程は、高周波垂直法で前記超音波探傷探触子をセットする。 In another aspect, in the above-mentioned ultrasonic flaw detection method, the step A sets the ultrasonic flaw detector by a high-frequency vertical method.

上述したように扁平な結晶粒が長辺方向に沿って配向していると考えられる。上記超音波探傷方法は、高周波垂直法(垂直探傷法)を用いるので、適切な音響レンズを用いて適切な距離から入射することで、被検査物中に高精度に超音波を集束させることができ、被検査物中の欠陥からの反射超音波を得ることができる。 As described above, it is considered that the flat crystal grains are oriented along the long side direction. Since the above ultrasonic flaw detection method uses a high-frequency vertical flaw detection method (vertical flaw detection method), it is possible to focus ultrasonic waves in the object to be inspected with high accuracy by incident from an appropriate distance using an appropriate acoustic lens. It is possible to obtain reflected ultrasonic waves from defects in the object to be inspected.

他の一態様では、上述の超音波探傷方法において、前記短辺の長さが前記短辺に沿った短辺方向において、被検査物中における超音波の波長の3倍以上の長さとなる平面、前記短辺の側面を加工するD工程をさらに備える。 In another aspect, in the above-mentioned ultrasonic flaw detection method, the length of the short side is three times or more the wavelength of the ultrasonic wave in the object to be inspected in the short side direction along the short side. The flat surface is further provided with a D step of processing the side surface of the short side.

このような超音波探傷方法は、前記短辺に沿った短辺方向において、被検査物中における超音波の波長の3倍以上の長さで平を持つので、高周波垂直法をより容易に実現できる。 Such an ultrasonic flaw detection method has a plane with a length of three times or more the wavelength of the ultrasonic wave in the object to be inspected in the short side direction along the short side, so that the high frequency vertical method can be more easily performed. realizable.

本発明にかかる超音波探傷方法は、事前準備の手間や時間を低減できる。 The ultrasonic flaw detection method according to the present invention can reduce the labor and time of advance preparation.

実施形態における超音波探傷方法を用いるダイス伸線装置の概略構成を示す図である。It is a figure which shows the schematic structure of the die wire drawing apparatus which uses the ultrasonic flaw detection method in an embodiment. 前記ダイス伸線装置における第1ないし第7パス後の鋼線断面を説明するため図である。It is a figure for demonstrating the cross section of the steel wire after the 1st to 7th passes in the die wire drawing apparatus. 本実施形態における超音波探傷方法を説明するための図である。It is a figure for demonstrating the ultrasonic flaw detection method in this embodiment. 一例として、鋼線を扁平加工後におけるサンプルおよびその探傷結果を説明するための図である。As an example, it is a figure for demonstrating the sample after flattening a steel wire and the flaw detection result thereof. 一例として、扁平加工前の円形断面の鋼線におけるサンプルおよびその探傷結果を説明するための図である。As an example, it is a figure for demonstrating a sample in a steel wire of a circular cross section before flattening, and the flaw detection result thereof. 実施形態における超音波探傷方法の作用効果を説明するための図である。It is a figure for demonstrating the action effect of the ultrasonic flaw detection method in an embodiment. 欠陥を含むサンプルに対する一実施例の超音波探傷の結果を示す図である。It is a figure which shows the result of the ultrasonic flaw detection of one Example for a sample containing a defect. 変形形態を説明するための図である。It is a figure for demonstrating a modified form.

以下、図面を参照して、本発明の1または複数の実施形態が説明される。しかしながら、発明の範囲は、開示された実施形態に限定されない。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、適宜、その説明を省略する。本明細書において、総称する場合には添え字を省略した参照符号で示し、個別の構成を指す場合には添え字を付した参照符号で示す。 Hereinafter, one or more embodiments of the present invention will be described with reference to the drawings. However, the scope of the invention is not limited to the disclosed embodiments. It should be noted that the configurations with the same reference numerals in the respective drawings indicate the same configurations, and the description thereof will be omitted as appropriate. In the present specification, when they are generically referred to, they are indicated by reference numerals without subscripts, and when they refer to individual configurations, they are indicated by reference numerals with subscripts.

図1は、実施形態における超音波探傷方法を用いるダイス伸線装置の概略構成を示す図である。図2は、前記ダイス伸線装置における第1ないし第7パス後の鋼線断面を説明するため図である。図2Aないし図2Gの各図は、鋼線の研磨後における断面の顕微鏡写真であり、図2Aは、第1パス後(第1伸線用ダイス#1による伸線後)を示し、図2Bは、第2パス後(第2伸線用ダイス#2による伸線後)を示し、図2Cは、第3パス後(第3伸線用ダイス#3による伸線後)を示し、図2Dは、第4パス後(第4伸線用ダイス#4による伸線後)を示し、図2Eは、第5パス後(第5伸線用ダイス#5による伸線後)を示し、図2Fは、第6パス後(第6伸線用ダイス#6による伸線後)を示し、図2Gは、第7パス後(第7伸線用ダイス#7による伸線後)を示す。図3は、本実施形態における超音波探傷方法を説明するための図である。 FIG. 1 is a diagram showing a schematic configuration of a die wire drawing device using the ultrasonic flaw detection method in the embodiment. FIG. 2 is a diagram for explaining a cross section of a steel wire after the first to seventh passes in the die wire drawing device. 2A to 2G are micrographs of cross sections of the steel wire after polishing, FIG. 2A shows after the first pass (after drawing with the first drawing die # 1), and FIG. 2B. Shows after the second pass (after drawing with the second drawing die # 2), FIG. 2C shows after the third pass (after drawing with the third drawing die # 3), and FIG. 2D shows. Shows after the 4th pass (after drawing with the 4th drawing die # 4), and FIG. 2E shows after the 5th pass (after drawing with the 5th drawing die # 5), FIG. 2F. Shows after the 6th pass (after drawing with the 6th drawing die # 6), and FIG. 2G shows after the 7th pass (after drawing with the 7th drawing die # 7). FIG. 3 is a diagram for explaining the ultrasonic flaw detection method in the present embodiment.

本実施形態における超音波探傷方法は、例えば、ローラを用いる冷間圧延法、または、矩形断面の伸線用ダイスを用いるダイス伸線法によって、断面において加工前よりも扁平に加工された状態であって線状の被検査物WKを、製造ラインで超音波探傷装置を用いて探傷検査する方法である。ここでは、鋼線をダイス伸線法によって扁平に伸線加工する場合について説明するが、鋼線を冷間圧延法によって扁平に圧延加工する場合についても同様に説明できる。また、被検査物は、鋼線に限定されるものではなく、他の金属(合金を含む)であって良い。 The ultrasonic flaw detection method in the present embodiment is, for example, a cold rolling method using a roller or a die wire drawing method using a drawing die having a rectangular cross section, in a state where the cross section is processed to be flatter than before processing. This is a method of inspecting a linear inspected object WK on a production line using an ultrasonic flaw detector. Here, the case where the steel wire is drawn flat by the die drawing method will be described, but the case where the steel wire is rolled flat by the cold rolling method can also be described in the same manner. Further, the object to be inspected is not limited to the steel wire, but may be another metal (including an alloy).

ダイス伸線法による伸線加工装置Sは、複数の伸線用ダイスDS(DS-1~DS-7)と、複数対の駆動ローラRL(RL-1~RL-7)とを備える。 The wire drawing processing device S by the die wire drawing method includes a plurality of wire drawing dies DS (DS-1 to DS-7) and a plurality of pairs of drive rollers RL (RL-1 to RL-7).

複数の伸線用ダイスDSは、それぞれ、所定の間隔を空けて基台BSの平坦面上に配設されている。本実施形態では、7回のパスで線引きにより、断面円形の鋼線WKを、断面扁平な形状の鋼線WKに加工するために、複数の伸線用ダイスDSは、7個の第1ないし第7伸線用ダイスDS-1(#1)~DS-7(#7)を備える。これら第1ないし第7伸線用ダイスDS-1(#1)~DS-7(#7)は、それぞれ、所定の間隔を空けてこの順で基台BSに配設されており、表1に示すように、上流側から下流側に向かって徐々に(パス順に徐々に)、ダイスの開口断面が円形形状から扁平形状になるように、かつ、サイズ(断面積)が小さくなるように、形成されている。これら第1ないし第7伸線用ダイスDS-1(#1)~DS-7(#7)の諸元は、一例では、表1の通りである。 The plurality of wire drawing dice DS are arranged on the flat surface of the base BS at predetermined intervals. In the present embodiment, in order to process a steel wire WK having a circular cross section into a steel wire WK having a flat cross section by drawing with seven passes, a plurality of wire drawing dies DS are seven first to first. The seventh wire drawing die DS-1 (# 1) to DS-7 (# 7) is provided. These 1st to 7th wire drawing dice DS-1 (# 1) to DS-7 (# 7) are arranged on the base BS in this order with a predetermined interval, respectively, and Table 1 As shown in, gradually (gradually in the order of the path) from the upstream side to the downstream side, the opening cross section of the die changes from a circular shape to a flat shape, and the size (cross-sectional area) becomes smaller. It is formed. The specifications of the first to seventh wire drawing dice DS-1 (# 1) to DS-7 (# 7) are as shown in Table 1 as an example.

Figure 0007080737000001
Figure 0007080737000001

複数対の駆動ローラRLは、それぞれ、一対のローラを備え、これら一対のローラで鋼線WKを狭持し、これら一対のローラが回転することで、鋼線WKを線引きする装置である。本実施形態では、複数対の駆動ローラRLは、複数の伸線用ダイスDSに応じた個数であり、複数の伸線用ダイスDSそれぞれの各後段に配設されている。図1に示す例では、複数対の駆動ローラRLは、7個の対の第1ないし第7駆動ローラRL-1~RL-7を備える。これら第1ないし第7駆動ローラRL-1~RL-7それぞれは、第1ないし第7伸線用ダイスDS-1~DS-7それぞれの各後段(各下流側)に配設されている。なお、伸線用ダイスDSの個数は、7個に限定されず、任意であって良く、1対の駆動ローラRLの個数も、7個に限定されず、任意であって良い。1対の駆動ローラRLの個数は、伸線用ダイスDSの個数と同数であっても、異なっても良い。 Each of the plurality of pairs of drive rollers RL is a device that includes a pair of rollers, holds the steel wire WK between the pair of rollers, and draws the steel wire WK by rotating the pair of rollers. In the present embodiment, the number of the plurality of pairs of drive roller RLs is the number corresponding to the plurality of wire drawing die DSs, and is arranged in the subsequent stage of each of the plurality of wire drawing die DSs. In the example shown in FIG. 1, the plurality of pairs of drive rollers RL include seven pairs of first to seventh drive rollers RL-1 to RL-7. Each of the first to seventh drive rollers RL-1 to RL-7 is arranged in the rear stage (each downstream side) of each of the first to seventh wire drawing dice DS-1 to DS-7. The number of wire drawing dice DS is not limited to 7, and may be arbitrary, and the number of a pair of drive roller RLs is not limited to 7, and may be arbitrary. The number of pairs of drive rollers RL may be the same as or different from the number of wire drawing dice DS.

なお、図1では、第2ないし第6伸線用ダイスDS-2(#2)~DS-6(#6)および1対の第2ないし第6駆動ローラRL-2~RL-6の図示が省略されている。 In FIG. 1, the second to sixth wire drawing dice DS-2 (# 2) to DS-6 (# 6) and a pair of second to sixth drive rollers RL-2 to RL-6 are shown. Is omitted.

このような構成の伸線加工装置Sでは、加工対象の鋼線WKを巻回した巻出しリール(不図示)より、鋼線WKが巻出され、第1伸線用ダイスDS-1(#1)に挿通され、1対の第1駆動ローラRL-1を介して次パス(次段)の第2伸線用ダイスDS-2(#2)に挿通され、1対の第2駆動ローラRL-1を介して次パス(次段)の第3伸線用ダイスDS-3(#3)に挿通される。以後、同様に、順次に、前段の1対の駆動ローラRLを介して次段の伸線用ダイスDSに挿通され、最後に、1対の第7駆動ローラRL-7を介して加工後の鋼線WKが引き出される。鋼線WKは、例えば図2Aないし図2Gに示すように、第1ないし第7伸線用ダイスDS-1(#1)~DS-7(#7)を通過するごとに、各伸線用ダイスDS-1(#1)~DS-7(#7)によって、断面が円形形状から扁平形状になるように、かつ、サイズ(断面積)が小さくなるように、加工される。そして、加工後の鋼線WKは、巻取りリール(不図示)に巻き取られる。 In the wire drawing machine S having such a configuration, the steel wire WK is unwound from a winding reel (not shown) around which the steel wire WK to be machined is wound, and the first wire drawing die DS-1 (#). It is inserted through 1) and inserted into the second wire drawing die DS-2 (# 2) of the next pass (next stage) via the pair of first drive rollers RL-1, and the pair of second drive rollers. It is inserted into the third wire drawing die DS-3 (# 3) of the next pass (next stage) via RL-1. After that, similarly, the die DS for wire drawing in the next stage is sequentially inserted through the pair of drive rollers RL in the previous stage, and finally, after processing through the pair of seventh drive rollers RL-7. The steel wire WK is pulled out. As shown in FIGS. 2A to 2G, for example, the steel wire WK is used for each wire drawing every time it passes through the first to seventh wire drawing dies DS-1 (# 1) to DS-7 (# 7). The dies DS-1 (# 1) to DS-7 (# 7) are processed so that the cross section changes from a circular shape to a flat shape and the size (cross-sectional area) is reduced. Then, the processed steel wire WK is wound on a take-up reel (not shown).

そして、本実施形態では、このような加工後、最終ダイスDS-7(#7)と駆動ローラRL-7の間における所定の位置PSで、一般的に用いられる公知の超音波探傷装置によって加工後の鋼線WKが超音波探傷される。一般にダイス伸線されている被検査材(本実施形態では鋼線WK)は、多少なりとも振動または回転している。超音波探傷では被検査材と超音波探傷探触子PBの相対位置が変化することは、望ましくなく、被検査材の振動や回転は、相対位置を変動させる原因となる。最終ダイスDS-7と駆動ローラRL-7との間では、被検査材の鋼線WKに大きな張力が働いており、この工程内でもっとも振動が少なく、超音波探傷には最適な場所になる。 Then, in the present embodiment, after such processing, processing is performed by a commonly used ultrasonic flaw detector at a predetermined position PS between the final die DS-7 (# 7) and the drive roller RL-7. The later steel wire WK is ultrasonically detected. The material to be inspected (steel wire WK in this embodiment) that is generally die-drawn is vibrating or rotating to some extent. In ultrasonic flaw detection, it is not desirable that the relative position of the material to be inspected and the ultrasonic flaw detector PB change, and vibration or rotation of the material to be inspected causes the relative position to change. A large tension acts on the steel wire WK of the material to be inspected between the final die DS-7 and the drive roller RL-7, which causes the least vibration in this process and is the optimum location for ultrasonic flaw detection. ..

より具体的には、本実施形態では、図3に示すように、まず、断面において加工前よりも扁平に加工された状態の被検査物WK(本実施形態では鋼線WK)における短辺の側面SSから超音波探傷するように、高周波の超音波探傷探触子Pbが垂直探傷法の配置で被検査物の鋼線WKの表面から適切な距離を隔ててセットされる。 More specifically, in the present embodiment, as shown in FIG. 3, first, the short side of the inspected object WK (steel wire WK in the present embodiment) in a state where the cross section is processed to be flatter than before processing. A high-frequency ultrasonic flaw detector Pb is set at an appropriate distance from the surface of the steel wire WK of the inspected object in a vertical flaw detection method arrangement so as to perform ultrasonic flaw detection from the side surface SS.

一例では、高周波の超音波探触子PBは、その軸が被検査材の線WKにおける短辺の側面SSに常に垂直方向になり、かつ、その表面から一定の距離になるように、被検査材の鋼線WKに自動追従する倣い機構にて保持されている。より具体的には、被検査材の鋼線WKにおける短辺の側面SSにバネ機構にて押し当てて常に被検査材の鋼線WKと摺動接触しているテフロン(登録商標)等の動摩擦係数の小さい材料で構成された滑り面を有した接触部材と、この接触部材と同じに追従稼働して被検査材の鋼線WKに垂直を維持しながら一定距離を保つ自動倣い機構にて超音波探触子Pbは、保持されている。 In one example, the high frequency ultrasonic probe PB is inspected so that its axis is always perpendicular to the side surface SS of the short side of the line WK of the inspected material and at a constant distance from its surface. It is held by a copying mechanism that automatically follows the steel wire WK of the material. More specifically, the dynamic friction of Teflon (registered trademark) or the like that is pressed against the side surface SS of the short side of the steel wire WK of the inspected material by a spring mechanism and is always in sliding contact with the steel wire WK of the inspected material. A contact member with a sliding surface made of a material with a small coefficient, and an automatic copying mechanism that keeps a constant distance while maintaining a constant distance while following the same contact member as the contact member and keeping it perpendicular to the steel wire WK of the material to be inspected. The ultrasonic probe Pb is held.

超音波探傷探触子(超音波探傷プローブ)Pbは、超音波探傷本体(不図示)にケーブルを介して接続され、被検査物WKに対し超音波を接触触媒WCを介して入出力する超音波探傷探触子本体11と、超音波探傷探触子本体11の先端に装着され、前記接触触媒WCを、超音波探傷探触子本体11と被検査物WKとの間で柱状に形成する略円筒形状のノズル12とを備える。接触触媒WCは、適宜に選択されて良く、本実施形態では、例えば水である。前記超音波探傷本体は、超音波探傷探触子Pbと前記ケーブルを介して接続され、超音波探傷探触子Pbへ前記ケーブルを介して電気信号の送信信号を送信することによって超音波探傷探触子Pbに被検査物WKに対して第1超音波信号(送信超音波信号)を送信させると共に、超音波探傷探触子Pbで受信された被検査物WKから来た第2超音波信号(受信超音波信号)に応じて超音波探傷探触子Pbで生成された電気信号の受信信号に基づいて被検査物WKの欠陥を超音波画像として画像化する装置である。 The ultrasonic flaw detector (ultrasonic flaw detector probe) Pb is connected to the ultrasonic flaw detector body (not shown) via a cable, and ultrasonic waves are input to and from the WK to be inspected via the contact catalyst WC. The contact catalyst WC, which is attached to the tip of the ultrasonic flaw detector main body 11 and the ultrasonic flaw detector main body 11, is formed in a columnar shape between the ultrasonic flaw detector main body 11 and the object WK to be inspected. It is provided with a substantially cylindrical nozzle 12. The contact catalyst WC may be appropriately selected, and in this embodiment, for example, water. The ultrasonic flaw detector main body is connected to the ultrasonic flaw detector Pb via the cable, and the ultrasonic flaw detector Pb is transmitted to the ultrasonic flaw detector Pb via the cable to transmit an electric signal. The tentacle Pb is made to transmit the first ultrasonic signal (transmitted ultrasonic signal) to the inspected object WK, and the second ultrasonic signal coming from the inspected object WK received by the ultrasonic flaw detector Pb. It is a device that images a defect of an inspected object WK as an ultrasonic image based on a received signal of an electric signal generated by an ultrasonic flaw detector Pb according to (received ultrasonic signal).

高周波垂直法(垂直探傷法)は、被検査物WKの探傷面(本実施形態では短辺の側面SS)に対し垂直に超音波を入射させる方法である。 The high-frequency vertical method (vertical flaw detection method) is a method in which ultrasonic waves are incident perpendicularly to the flaw detection surface (side surface SS of the short side in the present embodiment) of the object to be inspected WK.

そして、この超音波探傷探触子Pbをセットしたセット状態で、ノズル12を用いて接触触媒WCの水を流しながら超音波探傷が実行される。このような超音波探傷方法による超音波探傷の結果が一例として図4に示されている。 Then, in the set state in which the ultrasonic flaw detector Pb is set, ultrasonic flaw detection is executed while flowing water of the contact catalyst WC using the nozzle 12. The result of ultrasonic flaw detection by such an ultrasonic flaw detection method is shown in FIG. 4 as an example.

図4は、一例として、鋼線を扁平加工後におけるサンプルおよびその探傷結果を説明するための図である。図4Aは、断面扁平な第1鋼線WK-1における長辺の側面から超音波探傷した結果を示し、図4Bは、前記第1鋼線WK-1における短辺の側面から超音波探傷した結果を示し、図4Cは、前記第1鋼線WK-1から切り出される第1サンプルSP-1を説明するための図であり、図4Dは、超音波探傷するために、前記第1サンプルSP-1に対して入射される超音波の入射方向(探傷方向)を説明するための図である。図5は、一例として、扁平加工前の円形断面の鋼線におけるサンプルおよびその探傷結果を説明するための図である。図5Aは、前記断面扁平な第1鋼線WK-1に加工する前の断面が円形な第2鋼線WK-2における互いに直交する2面のうちの一方面から超音波探傷した結果を示し、図5Bは、前記2面のうちの他方面から超音波探傷した結果を示し、図5Cは、前記第2鋼線WK-2から切り出される第2サンプルSP-2を説明するための図であり、図5Dは、超音波探傷するために、前記第2サンプルSP-2に対して入射される超音波の入射方向(探傷方向)を説明するための図である。図6は、実施形態における超音波探傷方法の作用効果を説明するための図である。図6Aは、本実施形態のように、扁平な被検査物における短辺の側面から高周波垂直法(垂直探傷法)で超音波探傷する場合を示し、図6Bは、対比として、扁平な被検査物における長辺の側面から高周波垂直法(垂直探傷法)で超音波探傷する場合を示す。図7は、欠陥を含むサンプルに対する一実施例の超音波探傷の結果を示す図である。図7Aは、1mm×1mmの範囲での超音波探傷の結果を示し、図7Bは、欠陥が存在する箇所での受信信号の信号波形を示す。図7Bの横軸は、入射面からの距離(深さ)であり、その縦軸は、受信信号の信号レベル(受信強度)である。 FIG. 4 is a diagram for explaining a sample after flattening a steel wire and a flaw detection result thereof, as an example. FIG. 4A shows the result of ultrasonic flaw detection from the side surface of the long side of the first steel wire WK-1 having a flat cross section, and FIG. 4B shows the result of ultrasonic flaw detection from the side surface of the short side of the first steel wire WK-1 having a flat cross section. The results are shown, FIG. 4C is a diagram for explaining the first sample SP-1 cut out from the first steel wire WK-1, and FIG. 4D is a diagram for explaining the first sample SP-1 for ultrasonic flaw detection. It is a figure for demonstrating the incident direction (the flaw detection direction) of the ultrasonic wave incident on -1. FIG. 5 is a diagram for explaining a sample and a flaw detection result thereof in a steel wire having a circular cross section before flattening, as an example. FIG. 5A shows the result of ultrasonic flaw detection from one of two surfaces orthogonal to each other in the second steel wire WK-2 having a circular cross section before being processed into the first steel wire WK-1 having a flat cross section. 5B shows the result of ultrasonic flaw detection from the other side of the two surfaces, and FIG. 5C is a diagram for explaining the second sample SP-2 cut out from the second steel wire WK-2. FIG. 5D is a diagram for explaining the incident direction (damage detection direction) of the ultrasonic wave incident on the second sample SP-2 for ultrasonic wave detection. FIG. 6 is a diagram for explaining the action and effect of the ultrasonic flaw detection method in the embodiment. FIG. 6A shows a case where ultrasonic flaw detection is performed by a high-frequency vertical method (vertical flaw detection method) from the side surface of a short side of a flat subject to be inspected as in the present embodiment, and FIG. 6B shows a case where the flat subject is to be inspected for comparison. The case where ultrasonic flaw detection is performed by the high frequency vertical method (vertical flaw detection method) from the side surface of the long side of an object is shown. FIG. 7 is a diagram showing the results of ultrasonic flaw detection of one example for a sample containing defects. FIG. 7A shows the result of ultrasonic flaw detection in the range of 1 mm × 1 mm, and FIG. 7B shows the signal waveform of the received signal at the place where the defect exists. The horizontal axis of FIG. 7B is the distance (depth) from the incident surface, and the vertical axis thereof is the signal level (reception intensity) of the received signal.

扁平加工による変化を説明するために、まず、扁平加工前の断面円形な鋼線WKについて試験が実施された。一例として、図5Cに示すように、扁平加工前における直径φ5.5mmの断面円形な第2鋼線WK-2から、2.5mm×2.5mmの直方体の第2サンプルSP-2が切り出され、各面が研磨され、表面凹凸の影響が排除されている。そして、図5Dに示すように、この第2サンプルSP-2に対し、一方の第1B側面SF-1BをXY平面とするとともに前記第1B側面SF-1Bに直交する他方の第2B側面SF-2BをZX平面とするXYZ直交座標系を設定した場合に、第2サンプルSP-2の第1B側面SF-1Bに、Z方向DR1から垂直探傷法で超音波探傷が実施され、その結果が図5Aに示され、そして、第2サンプルSP-2の第2B側面SF-2Bに、Y方向DR2から垂直探傷法で超音波探傷が実施され、その結果が図5Bに示されている。なお、図4Aおよび図4Bならびに図5Aおよび図5Bでは、基準とする人工欠陥である直径50μmの平底穴からのエコーレベル(反射波強度)が80%となるように感度調整された超音波探傷装置において20%以下の信号レベルの信号は、カットされ、表示されていない。図5Aおよび図5Bそれぞれに示す超音波探傷の各結果を相互に比較すると分かるように、これら前記各結果は、大差なく、略同等であり、したがって、第2鋼線WK-2の結晶粒は、全体として等方的であり、このため、周方向のいずれの方向から垂直探傷法で超音波探傷が実施されても、いわゆる組織ノイズは、大差なく、略同等である。 In order to explain the change due to flattening, first, a test was carried out on a steel wire WK having a circular cross section before flattening. As an example, as shown in FIG. 5C, a rectangular parallelepiped second sample SP-2 having a diameter of 2.5 mm × 2.5 mm is cut out from a second steel wire WK-2 having a circular cross section with a diameter of φ5.5 mm before flattening. , Each surface is polished to eliminate the influence of surface irregularities. Then, as shown in FIG. 5D, with respect to the second sample SP-2, one first B side surface SF-1B is set as an XY plane, and the other second B side surface SF-1B orthogonal to the first B side surface SF-1B-. When an XYZ Cartesian coordinate system with 2B as the ZX plane is set, ultrasonic flaw detection is performed from the Z direction DR1 on the first B side surface SF-1B of the second sample SP-2 by the vertical flaw detection method, and the result is shown in the figure. Shown in 5A, and on the second B side surface SF-2B of the second sample SP-2, ultrasonic flaw detection was performed from the Y direction DR2 by the vertical flaw detection method, and the result is shown in FIG. 5B. In FIGS. 4A and 4B and FIGS. 5A and 5B, the sensitivity of the ultrasonic flaw detection is adjusted so that the echo level (reflected wave intensity) from the flat bottom hole having a diameter of 50 μm, which is a reference artificial defect, is 80%. Signals with signal levels below 20% in the device are cut and not displayed. As can be seen by comparing the results of the ultrasonic flaw detection shown in FIGS. 5A and 5B with each other, these results are not so different and are substantially equivalent, and therefore, the crystal grains of the second steel wire WK-2 are not so different. Therefore, the so-called tissue noise is almost the same regardless of which direction in the circumferential direction the ultrasonic flaw detection is performed by the vertical flaw detection method.

次に、このような断面円形の鋼線を扁平に加工した断面扁平な鋼線について試験が実施された。この試験に当たって、まず、被検査物としての鋼線WKの断面における短辺の長さに対する長辺の長さの比が2以上となるように(長辺の長さ/短辺の長さ≧2)、一例では前記比が2.3以上となるように(長辺の長さ/短辺の長さ≧2.3)、前記鋼線WKが加工され、長辺約6mmであって短辺約2.6mmの断面扁平な第1鋼線WK-1が作成された(6/2.6=約2.3)。この第1鋼線WK-1から、図4Cに示すように、2.5mm×3.0mmの直方体の第1サンプルSP-1が切り出され、各面が研磨され、表面凹凸の影響が排除されている。そして、図4Dに示すように、この第1サンプルSP-1に対し、直方体に切り出される前に長辺の側面であった第1A側面SF-1AをXY平面とするとともに短辺の側面であった第2A側面SF-2AをZX平面とするXYZ直交座標系を設定した場合に、第1サンプルSP-1の第1A側面に、Z方向DR1から垂直探傷法で超音波探傷が実施され、その結果が図4Aに示され、そして、第1サンプルSP-1の第2A側面SF-2Aに、Y方向DR2から垂直探傷法で超音波探傷が実施され、その結果が図4Bに示されている。図4Aから分かるように、断面扁平な第1鋼線WK-1に対し、長辺の側面(第1A側面SF-1Aに相当)から垂直探傷法で超音波探傷すると、いわゆる組織ノイズが高いが、図4Bから分かるように、断面扁平な第1鋼線WK-1に対し、短辺の側面(第2A側面SF-2Aに相当)から垂直探傷法で超音波探傷すると、このような組織ノイズが低減できている。また、図4Bに示す超音波探傷の結果と図5Aおよび図5Bに示す超音波探傷の各結果とを比較すると、図4Bに示す超音波探傷の結果における組織ノイズは、図5Aおよび図5Bに示す超音波探傷の各結果における組織ノイズの1/2以下に低減している。 Next, a test was carried out on a steel wire having a flat cross section obtained by processing such a steel wire having a circular cross section into a flat shape. In this test, first, the ratio of the length of the long side to the length of the short side in the cross section of the steel wire WK as the object to be inspected is 2 or more (length of long side / length of short side ≧). 2) In one example, the steel wire WK is processed so that the ratio is 2.3 or more (long side length / short side length ≧ 2.3), and the long side is about 6 mm, which is short. A first steel wire WK-1 having a flat cross section with a side of about 2.6 mm was created (6 / 2.6 = about 2.3). As shown in FIG. 4C, a first sample SP-1 having a rectangular parallelepiped of 2.5 mm × 3.0 mm was cut out from the first steel wire WK-1, and each surface was polished to eliminate the influence of surface irregularities. ing. Then, as shown in FIG. 4D, with respect to the first sample SP-1, the first A side surface SF-1A, which was the side surface of the long side before being cut into a rectangular parallelepiped, is set as the XY plane and the side surface of the short side. When an XYZ Cartesian coordinate system with the second A side surface SF-2A as the ZX plane is set, ultrasonic flaw detection is performed on the first A side surface of the first sample SP-1 from the Z direction DR1 by a vertical flaw detection method. The results are shown in FIG. 4A, and ultrasonic flaw detection was performed on the second A side surface SF-2A of the first sample SP-1 from the Y direction DR2 by the vertical flaw detection method, and the results are shown in FIG. 4B. .. As can be seen from FIG. 4A, when ultrasonic flaw detection is performed from the side surface of the long side (corresponding to the side surface SF-1A of the first A) by the vertical flaw detection method with respect to the first steel wire WK-1 having a flat cross section, so-called tissue noise is high. As can be seen from FIG. 4B, when ultrasonic flaw detection is performed from the side surface of the short side (corresponding to the second A side surface SF-2A) with respect to the first steel wire WK-1 having a flat cross section, such tissue noise is observed. Has been reduced. Comparing the results of ultrasonic flaw detection shown in FIG. 4B with the results of ultrasonic flaw detection shown in FIGS. 5A and 5B, the tissue noise in the result of ultrasonic flaw detection shown in FIG. 4B is shown in FIGS. 5A and 5B. It is reduced to less than 1/2 of the tissue noise in each result of the ultrasonic flaw detection shown.

模式図で説明すると、断面円形の鋼線WKを扁平に加工すると、図6Aおよび図6Bに模式的に示すように、鋼線WK内の結晶粒CGは、扁平に変形し、結晶粒CGにおける長辺の側面(結晶粒長辺側面)が鋼線WKにおける長辺の側面(鋼線長辺側面)に平行となるように、扁平な形状が揃って配向すると考えられる。特に、ローラを用いる冷間圧延や、矩形断面の伸線用ダイスを用いるダイス伸線法では、結晶粒CGは、長軸方法(長辺方向)に配向する特性を持つ。この結果、図6Bに示すように、鋼線WKにおける長辺の側面から結晶粒CGを見ると、相対的にサイズ(超音波の入射方向を法線に持つ面の断面積)が大きく見える一方、図6Aに示すように、鋼線WKにおける短辺の側面から結晶粒CGを見ると、相対的にサイズが小さく見える。したがって、上述の図4に示すように、鋼線WKにおける長辺の側面から超音波探傷すると、いわゆる組織ノイズが高くなる一方、鋼線WKにおける短辺の側面から超音波探傷すると、このような組織ノイズが低減できる。特に、図4に示す例では、被検査物としての鋼線WKの断面における短辺の長さに対する長辺の長さの比が2以上であるので、結晶粒を充分な扁平組織で配向でき、前記組織ノイズが低減できる。 Explaining with a schematic diagram, when a steel wire WK having a circular cross section is processed flat, the crystal grain CG in the steel wire WK is deformed flat as shown schematically in FIGS. 6A and 6B, and the grain CG is formed. It is considered that the flat shapes are aligned and oriented so that the side surface of the long side (the side surface of the long side of the crystal grain) is parallel to the side surface of the long side (the side surface of the long side of the steel wire) in the steel wire WK. In particular, in cold rolling using a roller or a die drawing method using a drawing die having a rectangular cross section, the crystal grain CG has a characteristic of being oriented in the long axis method (long side direction). As a result, as shown in FIG. 6B, when the crystal grain CG is viewed from the side surface of the long side of the steel wire WK, the size (cross-sectional area of the surface having the incident direction of the ultrasonic wave as the normal) seems to be relatively large. As shown in FIG. 6A, when the crystal grain CG is viewed from the side surface of the short side of the steel wire WK, the size seems to be relatively small. Therefore, as shown in FIG. 4 above, ultrasonic flaw detection from the side surface of the long side of the steel wire WK increases so-called tissue noise, while ultrasonic flaw detection from the side surface of the short side of the steel wire WK results in such flaws. Tissue noise can be reduced. In particular, in the example shown in FIG. 4, since the ratio of the length of the long side to the length of the short side in the cross section of the steel wire WK as the object to be inspected is 2 or more, the crystal grains can be oriented with a sufficiently flat structure. , The tissue noise can be reduced.

このため、図6に示すように、鋼線WK内に介在物Obが存在した場合、鋼線WKにおける長辺の側面から超音波探傷探触子Pbで垂直探傷法で超音波探傷すると、いわゆる組織ノイズが高いため、前記介在物Obが検出され難いが、鋼線WKにおける短辺の側面から超音波探傷探触子Pbで垂直探傷法で超音波探傷すると、いわゆる組織ノイズが低減できるため、前記介在物Obが検出し易くなる。 Therefore, as shown in FIG. 6, when an inclusion Ob is present in the steel wire WK, ultrasonic flaw detection by the ultrasonic flaw detector Pb from the side surface of the long side of the steel wire WK by the ultrasonic flaw detector method is so-called. Since the structure noise is high, it is difficult to detect the inclusions Ob, but when ultrasonic flaw detection is performed by the ultrasonic flaw detector Pb from the side surface of the short side of the steel wire WK by the vertical flaw detector method, so-called tissue noise can be reduced. The inclusion Ob becomes easy to detect.

一実施例のサンプルに対し、その短辺の側面から超音波探傷探触子Pbで垂直探傷法で超音波探傷した結果が図7に示されており、図7Aには、介在物Obの像が良好に見て取れる。このサンプルを研磨し顕微鏡観察すると、図7Aに示す介在物Obの像の位置で介在物Obの存在が確認できた。なお、図7Aの画像を作成する際の一例として、図7Bには、超音波探傷探触子Pbの走査中における介在物Obを検出した位置での受信信号が示されており、図7Bの紙面左側のピークCHfは、超音波の入射面で反射された超音波による信号であり、図7Bの紙面右側のピークCHbは、前記入射面に対向する裏面で反射された超音波による信号であり、その間のピークCHsが介在物Obで反射された超音波による信号である。 The results of ultrasonic flaw detection by the vertical flaw detector method with the ultrasonic flaw detector Pb from the side surface of the short side of the sample of one example are shown in FIG. 7, and FIG. 7A shows an image of inclusions Ob. Can be seen well. When this sample was polished and observed under a microscope, the presence of inclusions Ob was confirmed at the position of the image of inclusions Ob shown in FIG. 7A. As an example of creating the image of FIG. 7A, FIG. 7B shows a received signal at a position where an inclusion Ob is detected during scanning of the ultrasonic flaw detector Pb, and is shown in FIG. 7B. The peak CHf on the left side of the paper surface is a signal due to ultrasonic waves reflected on the incident surface of ultrasonic waves, and the peak CHb on the right side of the paper surface in FIG. 7B is a signal due to ultrasonic waves reflected on the back surface facing the incident surface. , The peak CHs in the meantime are ultrasonic signals reflected by the inclusions Ob.

また、他の一実施例では、直径φ5.5mm鋼線WKを30m/分で連続伸線しながら、点集束型の75MHzの超音波探傷探触子を用いて、50μm平底穴からのエコーが80%になる感度で、連続探傷が実施された。この場合の繰り返し周波数は、10kHzであり、前記点集束型の超音波探傷探触子の半値巾から算出した1パルス当たりの探傷領域から計算すると、1時間当たり約3.0kgの高速探傷が可能となった。 In another embodiment, while continuously drawing a steel wire WK having a diameter of φ5.5 mm at 30 m / min, an echo from a 50 μm flat bottom hole is generated using a point-focused 75 MHz ultrasonic flaw detector. Continuous flaw detection was performed with a sensitivity of 80%. The repetition frequency in this case is 10 kHz, and high-speed flaw detection of about 3.0 kg per hour is possible when calculated from the flaw detection region per pulse calculated from the half-value width of the point-focused ultrasonic flaw detector. It became.

以上説明したように、超音波探傷方法では、通常、超音波は、欠陥だけで反射するわけではなく、結晶粒界でも反射する。この結晶粒界による反射超音波は、欠陥による反射超音波に対して、いわゆる組織ノイズや林状ノイズと呼ばれるノイズとなる。実施形態における超音波探傷方法では、被検査物WKは、断面において加工前よりも扁平に加工されている。このため、被検査物WK中の結晶粒CGも扁平となり、被検査物WK中の前記結晶粒CGは、長辺方向に沿って配向していると考えられる。したがって、扁平形状の被検査物WKにおける短辺の側面から超音波を入射した方が、その長辺の側面から超音波を入射する場合より前記ノイズが低減すると考えられる。上記超音波探傷方法は、前記短辺の側面から超音波を入射するので、前記ノイズを低減でき、上述の熱処理や表面研磨等の事前準備を実施しなくても超音波探傷できる。したがって、上記超音波探傷方法は、事前準備が必要なく、前記事前準備の手間や時間を低減できる。この結果、上記超音波探傷方法は、製造ラインで連続的かつ自動的に被検査物WKを検査でき、より多くの被検査物WKを検査できる。 As described above, in the ultrasonic flaw detection method, ultrasonic waves are usually reflected not only by defects but also by grain boundaries. The reflected ultrasonic waves due to the grain boundaries become so-called tissue noise or forest noise with respect to the reflected ultrasonic waves due to defects. In the ultrasonic flaw detection method of the embodiment, the inspected object WK is processed to be flatter in cross section than before processing. Therefore, it is considered that the crystal grain CG in the inspected object WK is also flattened, and the crystal grain CG in the inspected object WK is oriented along the long side direction. Therefore, it is considered that the noise is reduced when the ultrasonic wave is incident from the side surface of the short side of the flat object WK to be inspected, as compared with the case where the ultrasonic wave is incident from the side surface of the long side thereof. In the ultrasonic flaw detection method, since ultrasonic waves are incident from the side surface of the short side, the noise can be reduced, and ultrasonic flaw detection can be performed without performing the above-mentioned heat treatment, surface polishing, or other preliminary preparations. Therefore, the ultrasonic flaw detection method does not require advance preparation, and the labor and time of the advance preparation can be reduced. As a result, the ultrasonic flaw detection method can continuously and automatically inspect the inspected object WK on the production line, and can inspect more inspected objects WK.

上述したように扁平な結晶粒CGが長辺方向に沿って配向していると考えられる。上記超音波探傷方法は、高周波垂直法(垂直探傷法)を用いるので、適切な音響レンズを用いて適切な距離から入射することで、鋼中に高精度に超音波を集束させることができ、鋼中の欠陥からの反射超音波を得ることができる。 As described above, it is considered that the flat crystal grains CG are oriented along the long side direction. Since the above ultrasonic flaw detection method uses a high-frequency vertical flaw detection method (vertical flaw detection method), ultrasonic waves can be focused in steel with high accuracy by incident from an appropriate distance using an appropriate acoustic lens. Reflected ultrasonic waves can be obtained from defects in the steel.

なお、上述の実施形態において、扁平加工後、超音波探傷前に、前記短辺に沿った短辺方向において、被検査物WK中における超音波の波長の3倍以上の長さで平坦となるように、前記短辺の側面SSが加工されても良い。 In the above-described embodiment, after the flattening process and before the ultrasonic flaw detection, the object becomes flat in the short side direction along the short side at a length of three times or more the wavelength of the ultrasonic wave in the WK to be inspected. As described above, the side surface SS on the short side may be machined.

図8は、変形形態を説明するための図である。図8は、超音波探傷探触子の集音特性を示した一例であり、その横軸は、音軸の位置を基準0とした各位置であり、その縦軸は、S/Nである。図8での前記超音波探傷探触子は、最大周波数が75MHzであり、主要周波数が約50MHzであり、振動子径がφ3mmであり、焦点位置が12.7mmである。鋼中の波長は、約0.1mmである。図8に示すように、超音波探傷探触子の集音特性は、鋼中の波長、すなわち、被検査物WK中の波長の約3倍程度の拡がりを持つ。このため、被検査物WK中における超音波の波長の3倍以上の長さで平坦となるように、前記短辺の側面SSが加工されると、高周波垂直法(垂直探傷法)で超音波探傷探触子から射出された超音波は、ほとんど全て、この平坦面からより確実に入射できる。したがって、このような超音波探傷方法は、高周波垂直法をより容易に実現できる。 FIG. 8 is a diagram for explaining a modified form. FIG. 8 is an example showing the sound collecting characteristics of the ultrasonic flaw detector, the horizontal axis thereof is each position with respect to the position of the sound axis 0, and the vertical axis thereof is S / N. .. The ultrasonic flaw detector in FIG. 8 has a maximum frequency of 75 MHz, a main frequency of about 50 MHz, a vibrator diameter of φ3 mm, and a focal position of 12.7 mm. The wavelength in the steel is about 0.1 mm. As shown in FIG. 8, the sound collecting characteristic of the ultrasonic flaw detector has a wavelength in the steel, that is, about three times as wide as the wavelength in the WK to be inspected. Therefore, when the side surface SS of the short side is processed so as to be flat at a length of three times or more the wavelength of the ultrasonic wave in the WK to be inspected, the ultrasonic wave is subjected to the high frequency vertical method (vertical flaw detection method). Almost all ultrasonic waves emitted from the flaw detector can more reliably enter from this flat surface. Therefore, such an ultrasonic flaw detection method can more easily realize a high-frequency vertical method.

本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。 In order to express the present invention, the present invention has been appropriately and sufficiently described through the embodiments with reference to the drawings described above, but those skilled in the art can easily change and / or improve the above-described embodiments. It should be recognized that it is possible. Therefore, unless the modified or improved form implemented by a person skilled in the art is at a level that deviates from the scope of rights of the claims stated in the claims, the modified form or the improved form is the scope of rights of the claims. It is interpreted to be included in.

Pb 超音波探傷探触子
WK 被検査物
SS 短辺の側面
CG 結晶粒
Ob 介在物
S ダイス伸線装置
DS(DS-1~DS-7) 伸線用ダイス
RL(RL-1~RL-7) 一対の駆動ローラ
BS 基台
Pb Ultrasonic flaw detector WK Inspected object SS Short side side surface CG Crystal grain Ob inclusions S Die wire drawing device DS (DS-1 to DS-7) Wire drawing die RL (RL-1 to RL-7) ) Pair of drive roller BS base

Claims (4)

断面において加工前よりも扁平に加工された状態の被検査物における短辺の側面から超音波探傷するように、超音波探傷探触子をセットするA工程と、
前記A工程でセットした状態で前記短辺の側面から超音波を入射して超音波探傷を実行するB工程とを備え、
前記被検査物の結晶粒は、扁平であって、前記被検査物における長辺方向に沿って配向している、
超音波探傷方法。
Step A, in which the ultrasonic flaw detector is set so that ultrasonic flaw detection is performed from the side surface of the short side of the object to be inspected, which is processed flatter than before processing in the cross section, and
It is provided with a step B in which ultrasonic waves are incident from the side surface of the short side to execute ultrasonic flaw detection in the state set in the step A.
The crystal grains of the inspected object are flat and oriented along the long side direction in the inspected object.
Ultrasonic flaw detection method.
前記被検査物の断面における短辺の長さに対する長辺の長さの比が2以上となるように、前記被検査物を加工するC工程をさらに備える、
請求項1に記載の超音波探傷方法。
A step C for processing the inspected object is further provided so that the ratio of the length of the long side to the length of the short side in the cross section of the inspected object is 2 or more.
The ultrasonic flaw detection method according to claim 1.
前記A工程は、高周波垂直法で前記超音波探傷探触子をセットする、
請求項1または請求項2に記載の超音波探傷方法。
In step A, the ultrasonic flaw detector is set by the high-frequency vertical method.
The ultrasonic flaw detection method according to claim 1 or 2.
前記短辺に沿った短辺方向において、前記短辺の長さが被検査物中における超音波の波長の3倍以上の長さとなる平面、前記短辺の側面を加工するD工程をさらに備える、
請求項1ないし請求項3のいずれか1項に記載の超音波探傷方法。
In the short side direction along the short side, the D step of processing the side surface of the short side into a plane having a length of the short side at least three times the wavelength of the ultrasonic wave in the inspected object is performed. Further prepare
The ultrasonic flaw detection method according to any one of claims 1 to 3.
JP2018112081A 2018-06-12 2018-06-12 Ultrasonic flaw detection method Active JP7080737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018112081A JP7080737B2 (en) 2018-06-12 2018-06-12 Ultrasonic flaw detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018112081A JP7080737B2 (en) 2018-06-12 2018-06-12 Ultrasonic flaw detection method

Publications (2)

Publication Number Publication Date
JP2019215227A JP2019215227A (en) 2019-12-19
JP7080737B2 true JP7080737B2 (en) 2022-06-06

Family

ID=68918611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018112081A Active JP7080737B2 (en) 2018-06-12 2018-06-12 Ultrasonic flaw detection method

Country Status (1)

Country Link
JP (1) JP7080737B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002202116A (en) 2000-12-28 2002-07-19 Non-Destructive Inspection Co Ltd Method of measuring thickness of locally thinned portion of plate
US20110178727A1 (en) 2010-01-19 2011-07-21 The Boeing Company Crawling automated scanner for non-destructive inspection of aeropace structural elements
JP2013189708A (en) 2012-02-13 2013-09-26 Kobe Steel Ltd Titanium alloy forged material and method for producing the same, and ultrasonic flaw-detection testing method
JP2015162301A (en) 2014-02-26 2015-09-07 日立金属株式会社 Conductor, and wire and cable prepared using the same
JP2017197807A (en) 2016-04-27 2017-11-02 新日鐵住金株式会社 Manufacturing method of thick steel sheet
WO2018061787A1 (en) 2016-09-29 2018-04-05 Jfeスチール株式会社 Steel sheet for crown caps, production method therefor, and crown cap

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5383672A (en) * 1976-12-28 1978-07-24 Sumitomo Electric Ind Ltd Method and apparatus for detecting inside defect of continuous
JPS5952750A (en) * 1982-09-20 1984-03-27 Sumitomo Metal Ind Ltd Method and apparatus for ultrasonic flaw inspection of steel plate
JPS60250251A (en) * 1984-05-25 1985-12-10 Sumitomo Metal Ind Ltd Flaw detection for wire rod
JPH1073576A (en) * 1996-08-30 1998-03-17 Tokimec Inc Plate-wave ultrasonic flaw detector

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002202116A (en) 2000-12-28 2002-07-19 Non-Destructive Inspection Co Ltd Method of measuring thickness of locally thinned portion of plate
US20110178727A1 (en) 2010-01-19 2011-07-21 The Boeing Company Crawling automated scanner for non-destructive inspection of aeropace structural elements
JP2013189708A (en) 2012-02-13 2013-09-26 Kobe Steel Ltd Titanium alloy forged material and method for producing the same, and ultrasonic flaw-detection testing method
JP2015162301A (en) 2014-02-26 2015-09-07 日立金属株式会社 Conductor, and wire and cable prepared using the same
JP2017197807A (en) 2016-04-27 2017-11-02 新日鐵住金株式会社 Manufacturing method of thick steel sheet
WO2018061787A1 (en) 2016-09-29 2018-04-05 Jfeスチール株式会社 Steel sheet for crown caps, production method therefor, and crown cap

Also Published As

Publication number Publication date
JP2019215227A (en) 2019-12-19

Similar Documents

Publication Publication Date Title
KR101641014B1 (en) Defect detection device, defect detection method, and storage medium
JP7372543B2 (en) Flaw detection method and system
CN112997075B (en) Method for ultrasonic detection and characterization of defects in heterogeneous materials
JP7080737B2 (en) Ultrasonic flaw detection method
JP5909873B2 (en) Weld defect detection system, method for manufacturing ERW steel pipe, and method for manufacturing welded product
US11415554B2 (en) Ultrasonic inspection method
Passini et al. Ultrasonic inspection of AA6013 laser welded joints
CN111380955A (en) Method for detecting defects of additive manufacturing part based on ultrasonic phased array
JP6219075B2 (en) 疵 Detection method
JP4826950B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP5909874B2 (en) Welding defect detection system for ERW pipe and method for manufacturing ERW pipe
WO2016185836A1 (en) Steel material cleanliness evaluation method and cleanliness evaluation device
Sommerhuber et al. Monitoring of remote laser processes using air-coupled ultrasound
JP5909870B2 (en) WELDING DEFECT DETECTING METHOD, ERW TUBE MANUFACTURING METHOD, AND WELDED PRODUCT MANUFACTURING METHOD
JP6761780B2 (en) Defect evaluation method
JP4015935B2 (en) Inclusion detection evaluation method in steel by water immersion ultrasonic flaw detection
JP2017078662A (en) Method for inspecting inner surface of tubular body
JP5662640B2 (en) Detection and evaluation method for inclusions in steel
JP2008197003A (en) Ultrasonic flaw detection inspection method
JP4298444B2 (en) Ultrasonic flaw detection method
CN108918669A (en) A kind of 2 ××× line aluminium alloy thin plate Lamb waves contact method of detection
JP2005249451A (en) Method for determining cutting-off range of end part of steel wire material
JPH1151911A (en) Line focus type ultrasonic flaw detecting method and device
JP5797375B2 (en) ERW steel pipe manufacturing method
JP2962194B2 (en) Plate wave ultrasonic inspection method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220525

R150 Certificate of patent or registration of utility model

Ref document number: 7080737

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150