JP2013189708A - Titanium alloy forged material and method for producing the same, and ultrasonic flaw-detection testing method - Google Patents

Titanium alloy forged material and method for producing the same, and ultrasonic flaw-detection testing method Download PDF

Info

Publication number
JP2013189708A
JP2013189708A JP2013025373A JP2013025373A JP2013189708A JP 2013189708 A JP2013189708 A JP 2013189708A JP 2013025373 A JP2013025373 A JP 2013025373A JP 2013025373 A JP2013025373 A JP 2013025373A JP 2013189708 A JP2013189708 A JP 2013189708A
Authority
JP
Japan
Prior art keywords
forging
titanium alloy
grains
flat
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013025373A
Other languages
Japanese (ja)
Other versions
JP6088280B2 (en
Inventor
Yoshinori Ito
良規 伊藤
Shogo Murakami
昌吾 村上
Takayuki Kinoshita
敬之 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2013025373A priority Critical patent/JP6088280B2/en
Publication of JP2013189708A publication Critical patent/JP2013189708A/en
Application granted granted Critical
Publication of JP6088280B2 publication Critical patent/JP6088280B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Forging (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a titanium alloy forged material which reduces the noise when the test is applied with an ultrasonic flaw-detection while keeping the mechanical characteristic of the β forged material needed to aircraft parts such as fatigue-strength; and a method for producing the same.SOLUTION: This titanium alloy forged material having mixed granular structure of flat grains of the priorβ grain, in which the diameter in the thickness direction is 50-500 μm and the aspect ratio exceeds 3, and non-flat grains of the prior β grain, in which the diameter of the direction is 30-200 μm and the aspect ratio is 1-3 has such peculiarity that the flat grains are 40-99% and the non-flat grains are 1-60%, and the sum total of the flat grains and the non-flat grains exisits in ≥90%.

Description

本発明は、超音波検査にて欠陥の有無を検査されるα+β型チタン合金のβ鍛造材およびその製造方法に関する。   The present invention relates to an α + β-type titanium alloy β-forged material to be inspected for defects by ultrasonic inspection and a method for producing the same.

Ti−6Al−4V合金に代表されるα+β型チタン合金は、軽量、高強度、高耐食性に加え、溶接性、超塑性、拡散接合性等の諸特性を有することから、エンジン部品等、航空機産業で多く使用されている。α+β型チタン合金は、主相である稠密六方晶(hcp構造)のα相と体心立方晶(bcc構造)のβ相とが室温で安定に共存し、β変態点(Tβ)以上の温度域でβ相単相となる。α+β型チタン合金の鍛造材には、Tβ以上の温度に到達しないようにTβ未満の温度域(α+β二相域)に加熱してこの温度域で鍛造するα+β鍛造によるものと、Tβ以上の温度域(β単相域)に加熱して鍛造するβ鍛造によるものとがあり、形成される材料組織は全く異なり、それに伴い材料特性が異なることが知られている。 Α + β type titanium alloy, represented by Ti-6Al-4V alloy, has various characteristics such as weldability, superplasticity, and diffusion bondability in addition to light weight, high strength, and high corrosion resistance. Is used a lot. In the α + β type titanium alloy, the α phase of the dense hexagonal crystal (hcp structure) as the main phase and the β phase of the body-centered cubic crystal (bcc structure) coexist stably at room temperature, and the β transformation point (T β ) or higher It becomes β phase single phase in the temperature range. The forging material of α + β type titanium alloy includes α + β forging which is heated to a temperature range (α + β two-phase region) below T β so as not to reach a temperature equal to or higher than T β and is forged in this temperature range, and T β It is known that there are those by β forging in which the above temperature range (β single phase range) is heated and forged, the material structure formed is completely different, and the material properties are accordingly different.

チタン合金鍛造材は、β鍛造によれば、針状α相組織となる。具体的には、次のように組織が形成される。すなわち、Tβ以上の温度域でβ相単相となり、鍛造加工により等軸状のβ相が扁平に潰れた後、Tβ未満の温度域まで冷却されてこの温度域で保持されると、β相(β粒)の結晶粒界にα相が膜状に析出し、引き続き、β粒の結晶粒内にα相が針状に析出する(図2(a)で白く示されているのがα相)。なお、β鍛造には、β単相域で鍛造を完了させるもの、β単相域外(α+β二相域)に温度降下後も鍛造が継続されるもの、およびα+β二相域に温度が降下してから鍛造を開始するものがある。さらにβ鍛造材は、鍛造条件やその後の冷却条件によって、旧β粒の結晶粒界のα相の形態や厚さ、また粒内の針状α相の長さや厚さが変化し、さらには粒界α相が存在しないものもあり得る。一方、チタン合金鍛造材は、α+β鍛造によれば、粒状α組織となる(図2(b)参照)。一般的に、α+β型チタン合金鍛造材において、破壊靭性はβ鍛造をされた鍛造材の方がα+β鍛造をされた鍛造材よりも優れ、逆に疲労強度特性はα+β鍛造をされた鍛造材の方がβ鍛造をされた鍛造材よりも優れることが知られている。 The titanium alloy forged material has a needle-like α phase structure according to β forging. Specifically, the organization is formed as follows. That is, it becomes a β-phase single phase in a temperature range equal to or higher than T β , and after the equiaxed β phase is flattened by forging, it is cooled to a temperature range lower than T β and held in this temperature range, The α phase is deposited in the form of a film at the grain boundary of the β phase (β grain), and then the α phase is deposited in the form of needles in the crystal grains of the β grain (shown in white in FIG. 2 (a)). Is α phase). In β forging, forging is completed in the β single-phase region, forging continues after the temperature drops outside the β single-phase region (α + β two-phase region), and the temperature drops in the α + β two-phase region. Some start forging after that. Furthermore, the β forging material changes the form and thickness of the α phase of the grain boundaries of the old β grains, and the length and thickness of the acicular α phase in the grains, depending on the forging conditions and the subsequent cooling conditions. There may be one in which no grain boundary α phase exists. On the other hand, the titanium alloy forged material has a granular α structure according to α + β forging (see FIG. 2B). In general, forging materials with α + β-type titanium alloy, fracture toughness is better for forged materials with β-forging than forged materials with α + β-forging, and conversely, fatigue strength characteristics are for forged materials with α + β-forging. It is known that this method is superior to the forged material that has been β-forged.

航空機のエンジン部品は、高い信頼性が要求されることから、超音波探傷により欠陥の有無が検査される。超音波探傷検査は、探触子から発信(送信)された超音波を被検査体の表面から内部に入射させ、傷等の欠陥で反射する反射波を同じく探触子で受信することで、内部の欠陥の有無を判定する検査である。しかし、α相とβ相が共存するα+β型チタン合金は、α+β鍛造材かβ鍛造材かにかかわらず、超音波探傷時に材料組織に起因するノイズが高く、このノイズのため、欠陥の検出精度が低下したり、あるいは材料組織起因のノイズを欠陥と誤認したりして、問題となっている。そのため、α+β型チタン合金(以下、チタン合金)で形成されるエンジン部品等には、超音波探傷時のノイズを低減して超音波探傷性を向上させることが求められている。   Since aircraft engine parts are required to have high reliability, the presence or absence of defects is inspected by ultrasonic flaw detection. In ultrasonic flaw detection, the ultrasonic wave transmitted (transmitted) from the probe is incident from the surface of the object to be inspected, and the reflected wave reflected by the defect such as a flaw is received by the probe. This is an inspection for determining the presence or absence of internal defects. However, α + β-type titanium alloys in which α and β phases coexist, regardless of whether they are α + β forged or β forged, have high noise due to the material structure during ultrasonic flaw detection. Or the noise caused by the material structure is mistaken as a defect. Therefore, engine parts and the like formed of an α + β type titanium alloy (hereinafter, titanium alloy) are required to reduce noise during ultrasonic flaw detection and improve ultrasonic flaw detection performance.

そこで、ノイズを低減したα+β型チタン合金材として、例えば、α+β二相域での熱間圧延前に、β単相域から急冷して組織を微細化して、その後のα+β二相域での熱間圧延および熱処理により、等軸α組織を得たチタン合金圧延板が提案されている(特許文献1)。   Therefore, as an α + β type titanium alloy material with reduced noise, for example, before hot rolling in the α + β two-phase region, the structure is refined by rapid cooling from the β single-phase region, and then heat in the α + β two-phase region. A titanium alloy rolled sheet having an equiaxed α structure by hot rolling and heat treatment has been proposed (Patent Document 1).

特許第2988269号公報Japanese Patent No. 2988269

しかしながら、前記した従来技術はα+β鍛造によるα+β型チタン合金材に関するものである。一方、β鍛造材については、前記した通りα+β鍛造材とは材料組織の形成過程および最終的に形成される形態が大きく異なるので、超音波探傷時のノイズの原因が異なると考えられ、これに伴い改善方法も異なるため、前記技術を適用してノイズを低減することができない。   However, the prior art described above relates to an α + β type titanium alloy material by α + β forging. On the other hand, as for β forging, as described above, since the formation process of the material structure and the form finally formed are greatly different from α + β forging, it is considered that the cause of noise during ultrasonic flaw detection is different. Since the improvement methods are also different, it is impossible to reduce noise by applying the above technique.

本発明は、前記問題点に鑑みてなされたものであり、α+β型チタン合金のβ鍛造材について、疲労強度特性等の航空機用部品に要求される機械的特性を保持しつつ、超音波探傷時のノイズを低減した超音波探傷性に優れるチタン合金鍛造材およびその製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and for β-forged materials of α + β-type titanium alloys, while maintaining mechanical properties required for aircraft parts such as fatigue strength properties, at the time of ultrasonic flaw detection An object of the present invention is to provide a titanium alloy forged material excellent in ultrasonic flaw detection with reduced noise and a method for producing the same.

本発明者らは鋭意研究の結果、β鍛造により送信波の入射方向に垂直な広い面を有する扁平な形状に潰れた旧β粒の粒界で送信波が正反射し易く、この反射波が探触子で受信されてノイズの主原因となることを解明するに至った。さらに、材料組織を適正に制御することにより、疲労強度特性等を保持しつつ、β鍛造材の超音波探傷性を向上することができることを明らかにした。   As a result of earnest research, the inventors of the present invention easily transmit the reflected wave regularly at the grain boundary of the old β grains that have been crushed into a flat shape having a wide surface perpendicular to the incident direction of the transmitted wave by β forging. It has been clarified that it is received by the probe and is the main cause of noise. Furthermore, it has been clarified that by appropriately controlling the material structure, the ultrasonic flaw detection property of the β-forged material can be improved while maintaining the fatigue strength characteristics and the like.

すなわち、本発明に係るチタン合金鍛造材は、超音波探傷検査が行われるβ鍛造をされた鍛造材であって、厚み方向の径が50μm以上500μm以下でアスペクト比が3を超える旧β粒の結晶粒である扁平粒と、前記方向の径が30μm以上200μm以下でアスペクト比が1以上3以下である旧β粒の結晶粒である非扁平粒と、の混粒組織を有する。そして、前記チタン合金鍛造材は、前記扁平粒が40%以上99%以下、前記非扁平粒が1%以上60%以下、前記扁平粒と前記非扁平粒とが合計で90%以上存在することを特徴とする。   That is, the titanium alloy forged material according to the present invention is a forged material that has been β-forged to be subjected to ultrasonic flaw detection, and has a diameter in the thickness direction of 50 μm to 500 μm and an old β grain having an aspect ratio of more than 3. It has a mixed grain structure of flat grains that are crystal grains and non-flat grains that are crystal grains of old β grains having a diameter in the direction of 30 μm to 200 μm and an aspect ratio of 1 to 3. In the titanium alloy forging, the flat particles are 40% or more and 99% or less, the non-flat particles are 1% or more and 60% or less, and the flat particles and the non-flat particles are 90% or more in total. It is characterized by.

かかる構成のチタン合金鍛造材は、扁平でない所定の大きさの旧β粒が所定範囲で混在する組織を有するため、β鍛造材としての強度を低下させることなく、この非扁平な旧β粒の粒界で送信波が反射することで探触子に受信されず、ノイズが低減するため超音波探傷性に優れる。   Since the titanium alloy forging material having such a structure has a structure in which old β grains having a predetermined size that is not flat are mixed in a predetermined range, the non-flat old β grains are not reduced in strength as the β forging material. Reflecting the transmitted wave at the grain boundary does not receive the probe, and noise is reduced, so that the ultrasonic flaw detection is excellent.

さらに、本発明に係るチタン合金鍛造材は、次式(1)で表されるMo当量[Mo]eqが2.7を超え15未満であるチタン合金からなることが好ましい。
[Mo]eq=[Mo]+[Ta]/5+[Nb]/3.6+[W]/2.5+[V]/1.5+1.25[Cr]+1.25[Ni]+1.7[Mn]+1.7[Co]+2.5[Fe] ・・・(1)
ただし、前記式(1)の[X]は、前記チタン合金における元素Xの含有量(質量%)とする。
Further, the forged titanium alloy according to the present invention is preferably made of a titanium alloy having a Mo equivalent [Mo] eq represented by the following formula (1) of more than 2.7 and less than 15.
[Mo] eq = [Mo] + [Ta] / 5 + [Nb] /3.6+ [W] /2.5+ [V] /1.5+1.25 [Cr] +1.25 [Ni] +1.7 [ Mn] +1.7 [Co] +2.5 [Fe] (1)
However, [X] in the formula (1) is the content (mass%) of the element X in the titanium alloy.

かかる構成により、チタン合金鍛造材は、α+β型チタン合金となり、旧β粒の形状の影響が強くなって、機械的特性と超音波探傷性とを並存させることができる。   With this configuration, the titanium alloy forged material becomes an α + β type titanium alloy, and the influence of the shape of the old β grains becomes strong, and mechanical characteristics and ultrasonic flaw detection properties can coexist.

また、本発明に係るチタン合金鍛造材は、厚さが少なくとも50mmであってもよい。かかる構成により、厚肉化しても、深部まで精度よく超音波探傷検査を行うことができ、信頼性の高い製品が得られる。   Further, the forged titanium alloy according to the present invention may have a thickness of at least 50 mm. With such a configuration, even if the thickness is increased, ultrasonic flaw detection can be performed to a deep portion with high accuracy, and a highly reliable product can be obtained.

本発明に係るチタン合金鍛造材は、β鍛造を行って製造される。この本発明に係るチタン合金鍛造材の製造方法は、前記β鍛造が、β変態点をTβで表したとき、Tβ+10℃以上に加熱して、β結晶粒径が400μm以上1000μm以下の範囲になるまで保持し、Tβ−30℃以上の温度域で鍛造し、前記温度域で20秒間以上であって次式(2)で表される限界保持時間(秒間)tmax未満の時間保持した後、直ちにTβ−150℃以下の温度まで冷却することを特徴とする。
max=[11.64(1−TH/1425)]4.35 ・・・(2)
ただし、前記式(2)のTHは、前記鍛造後における保持時の温度(℃)とする。
The titanium alloy forging according to the present invention is manufactured by performing β forging. In the method for producing a titanium alloy forging according to the present invention, when the β forging is represented by T β as the β transformation point, the β forging is heated to T β + 10 ° C. or more, and the β crystal grain size is 400 μm or more and 1000 μm or less. It is held until it reaches the range, forged in a temperature range of T β −30 ° C. or more, and is 20 seconds or longer in the temperature range and less than the limit holding time (second) t max represented by the following formula (2) after holding, characterized in that it immediately cooled to T beta -150 ° C. or lower.
t max = [11.64 (1-T H / 1425)] 4.35 (2)
However, T H in the formula (2) is a temperature (℃) during holding after the forging.

かかる手順により、チタン合金鍛造材の製造方法は、鍛造後にβ変態点以上の温度域で所定時間保持されて、非扁平な旧β粒が適度に成長し、鍛造で生じた扁平な旧β粒との混粒組織を有するチタン合金鍛造材が得られる。   With this procedure, the titanium alloy forged material manufacturing method is maintained for a predetermined time in a temperature range equal to or higher than the β transformation point after forging, and the non-flat old β grains grow appropriately, and the flat old β grains generated by forging And a titanium alloy forged material having a mixed grain structure.

本発明に係るチタン合金鍛造材に対する超音波探傷検査方法は、プローブ径が5〜30mmの範囲である探触子を用いて、周波数が1〜20MHzの範囲である超音波にて、前記チタン合金鍛造材の鍛造圧下量の最も大きい方向に平行な方向に探傷する工程を含むことを特徴とする。   The ultrasonic flaw detection inspection method for a titanium alloy forging according to the present invention uses the probe having a probe diameter in the range of 5 to 30 mm and ultrasonic waves in the frequency range of 1 to 20 MHz. It includes a step of flaw detection in a direction parallel to the direction in which the forging reduction amount of the forging material is the largest.

かかる方法により、超音波探傷検査方法は、比較的高ノイズとなる方向に探傷しても十分にノイズが少ないため、チタン合金鍛造材における面積の広い面を探触子で走査することができ、検査が容易になり、かつ高精度な検査を行うことができる。   By such a method, the ultrasonic flaw detection inspection method can scan a wide area of the titanium alloy forging material with a probe because the noise is sufficiently low even if flaw detection is performed in a direction that results in relatively high noise. Inspection is facilitated and high-precision inspection can be performed.

本発明に係るチタン合金鍛造材によれば、超音波探傷検査にて欠陥を高精度で検出可能となり、航空機のエンジン部品等の製品の信頼性が向上する。そして、本発明に係るチタン合金鍛造材の製造方法によれば、前記の効果を有するチタン合金鍛造材を容易に製造することができる。また、本発明に係る超音波探傷検査方法によれば、前記のチタン合金鍛造材に対して高精度な検査を行うことができる。   According to the titanium alloy forging according to the present invention, defects can be detected with high accuracy by ultrasonic flaw detection, and the reliability of products such as aircraft engine parts is improved. And according to the manufacturing method of the titanium alloy forging material which concerns on this invention, the titanium alloy forging material which has the said effect can be manufactured easily. Moreover, according to the ultrasonic inspection method according to the present invention, the titanium alloy forged material can be inspected with high accuracy.

チタン合金のβ鍛造材の組織の状態を示す模式図であり、超音波検査におけるノイズとの関係を説明するモデルである。It is a schematic diagram which shows the structure | tissue state of (beta) forging material of a titanium alloy, and is a model explaining the relationship with the noise in an ultrasonic inspection. チタン合金鍛造材の組織の画像写真であり、(a)はβ鍛造材、(b)はα+β鍛造材のそれぞれの一例である。It is an image photograph of the structure of a titanium alloy forging material, (a) is an example of β forging material, and (b) is an example of α + β forging material.

以下、本発明の実施の形態について詳細に説明する。
〔チタン合金鍛造材〕
本発明に係るチタン合金鍛造材は、従来のβ鍛造材と同様に、航空機のエンジン部品に適用され、特に超音波探傷検査にて内部の欠陥を検査することを必要とするものに好適である。具体的にはディスクやシャフトに利用されるチタン合金鍛造材に適用することができ、厚さ(鍛造方向長さ)が最薄部でも50mm以上とすることができる。
Hereinafter, embodiments of the present invention will be described in detail.
[Titanium alloy forging]
The titanium alloy forging according to the present invention is applied to aircraft engine parts, like the conventional β forging, and is particularly suitable for those that require inspection of internal defects by ultrasonic flaw detection. . Specifically, it can be applied to a titanium alloy forged material used for a disk or a shaft, and the thickness (length in the forging direction) can be 50 mm or more even at the thinnest part.

本発明に係るチタン合金鍛造材は、α+β型チタン合金(以下、チタン合金)からなり、従来のβ鍛造材と同様に、旧β粒(β相)と、旧β粒の結晶粒界や結晶粒内に析出したα相とを有する。ただし、本発明に係るチタン合金鍛造材は、旧β粒の結晶粒について、厚み方向の径が50μm以上500μm以下でアスペクト比が3を超える扁平粒と、前記方向の径が30μm以上200μm以下でアスペクト比が1以上3以下の非扁平粒と、を含んだ混粒組織を有する。さらに、チタン合金鍛造材は、前記の扁平粒が40%以上99%以下、非扁平粒が1%以上60%以下、扁平粒と非扁平粒とが合計で90%以上存在する。以下、旧β粒について詳細に説明する。   The titanium alloy forged material according to the present invention is made of an α + β type titanium alloy (hereinafter referred to as titanium alloy). Like the conventional β forged material, the old β grains (β phase) and the grain boundaries and crystals of the old β grains And α phase precipitated in the grains. However, the titanium alloy forged material according to the present invention is a flat grain having a diameter in the thickness direction of 50 μm or more and 500 μm or less and an aspect ratio of 3 or more, and a diameter in the direction of 30 μm or more and 200 μm or less. It has a mixed grain structure including non-flat grains having an aspect ratio of 1 or more and 3 or less. Further, in the titanium alloy forged material, the flat particles are 40% or more and 99% or less, the non-flat particles are 1% or more and 60% or less, and the flat particles and the non-flat particles are 90% or more in total. Hereinafter, the old β grains will be described in detail.

(混粒組織)
本発明においては、旧β粒のうち、アスペクト比が3を超えるものを扁平粒、3以下(1以上3以下)のものを非扁平粒と定義する。β鍛造においては、チタン合金材がβ変態点(Tβ)以上の温度域(β単相域)に加熱されて保持されることで、β相単相状態となって、等軸状(非扁平)のβ相(β結晶粒)が形成され成長する。そして、鍛造加工により、β結晶粒が潰されて鍛造方向(圧下方向)に垂直に広がった扁平形状に変形し、パンケーキ形状となったβ結晶粒が積み重なった組織となる。従来のβ鍛造材は、β単相域での鍛造後、直ちに冷却されてTβ未満の十分に低い温度域(α+β二相域)に降下するため、図1(b)に示すように、β結晶粒はほぼ全てが扁平粒である。一方、本発明に係るチタン合金鍛造材は、図1(a)に示すように、扁平粒と非扁平粒との混粒組織を有する。なお、図1(a)、(b)いずれにおいても、β結晶粒(旧β粒)の粒界や粒内には冷却中に形成されたα相が存在するが、α相は図示を省略する。
(Mixed grain structure)
In the present invention, among the old β grains, those having an aspect ratio of more than 3 are defined as flat grains, and those having 3 or less (1 or more and 3 or less) are defined as non-flat grains. In β-forging, the titanium alloy material is heated and held in a temperature range (β single-phase region) that is equal to or higher than the β transformation point (T β ), thereby becoming a β-phase single-phase state. A flat β phase (β crystal grains) is formed and grows. Then, the β crystal grains are crushed and deformed into a flat shape extending perpendicularly to the forging direction (the reduction direction) by the forging process, and the β crystal grains having a pancake shape are stacked. Since the conventional β forging material is immediately cooled after forging in the β single-phase region and falls to a sufficiently low temperature range (α + β two-phase region) below T β , as shown in FIG. Almost all β crystal grains are flat grains. On the other hand, the titanium alloy forged material according to the present invention has a mixed grain structure of flat grains and non-flat grains as shown in FIG. 1 (a) and 1 (b), the α phase formed during cooling is present in the grain boundaries and grains of β crystal grains (old β grains), but the α phase is not shown. To do.

(扁平粒:厚み方向の径50〜500μm、存在割合40〜99%)
本発明に係るチタン合金鍛造材は、従来のβ鍛造材と同様に、扁平形状のβ結晶粒(旧β粒)の多結晶構造により、高い破壊靱性および疲労強度を有する。旧β粒の扁平粒をアスペクト比3超と定義したのは、アスペクト比3以下の結晶粒では、チタン合金鍛造材の疲労強度の向上に寄与しないためである。一方、旧β粒の扁平粒のアスペクト比の上限は特に規定しないが、一般的な鍛造条件では30以下となる。言い換えると、アスペクト比が30を超える結晶粒を得るためには、圧下率90%程度以上で鍛造する必要があり、実用的でない。また、旧β粒の扁平粒は、厚み方向の径(最小となる方向の径)が50μm未満ではチタン合金鍛造材の超音波探傷方向における粒界数が増加し、ノイズ増大の虞があり、一方、厚み方向の径が500μmを超えるとチタン合金鍛造材の疲労強度が低下する。扁平粒の厚み方向は、チタン合金鍛造材の形状にもよるが、鍛造方向(圧下方向)と一致する場合が多い。なお、本発明において、アスペクト比とは、厚み方向の径に対するこの方向に垂直な方向の径を指す(非扁平粒も同様)。
(Flat particles: 50 to 500 μm in diameter in the thickness direction, abundance 40 to 99%)
The titanium alloy forging according to the present invention has high fracture toughness and fatigue strength due to the polycrystalline structure of flat β crystal grains (former β grains), similar to the conventional β forging. The reason why the old β grains are defined as having an aspect ratio exceeding 3 is that crystal grains having an aspect ratio of 3 or less do not contribute to the improvement of the fatigue strength of the titanium alloy forged material. On the other hand, the upper limit of the aspect ratio of the flat particles of the old β grains is not particularly specified, but is 30 or less under general forging conditions. In other words, in order to obtain crystal grains having an aspect ratio exceeding 30, it is necessary to forge at a rolling reduction of about 90% or more, which is not practical. In addition, when the diameter of the old β grain is smaller than 50 μm in the thickness direction (diameter in the minimum direction), the number of grain boundaries in the ultrasonic flaw detection direction of the titanium alloy forged material increases, and there is a risk of noise increase. On the other hand, if the diameter in the thickness direction exceeds 500 μm, the fatigue strength of the titanium alloy forged material decreases. Although the thickness direction of the flat grains depends on the shape of the titanium alloy forged material, it often coincides with the forging direction (the reduction direction). In the present invention, the aspect ratio means a diameter in a direction perpendicular to this direction with respect to a diameter in the thickness direction (the same applies to non-flat particles).

そして、チタン合金鍛造材は、前記範囲の大きさの扁平粒の存在割合が多いほど、疲労強度が向上する。チタン合金鍛造材は、扁平粒が40%未満では扁平粒による疲労強度の向上効果が十分に得られないため、扁平粒は40%以上とし、好ましくは50%以上、より好ましくは60%以上、最も好ましくは70%以上である。一方、チタン合金鍛造材は、扁平粒が99%を超えると超音波探傷検査におけるノイズが増大するため、扁平粒は99%以下とし、好ましくは97%以下、より好ましくは95%以下、さらに好ましくは90%以下である。したがって、本発明に係るチタン合金鍛造材は、厚み方向の径が50μm以上500μm以下でアスペクト比が3を超える旧β粒の扁平粒が、40%以上99%以下存在するものとする。このような形状および大きさの旧β粒の扁平粒は、鍛造前にβ単相域に加熱した際に保持温度と時間を調整してβ結晶粒を適度な大きさに成長させて、十分な圧下率で鍛造することによりアスペクト比3超に変形させて得られる。さらに鍛造後の保持時間により、旧β粒の扁平粒の存在割合を制御することができる。   And as for the titanium alloy forging material, fatigue strength improves, so that there are many rates of the flat grain of the magnitude | size of the said range. The titanium alloy forged material has a flat grain of less than 40%, and the effect of improving fatigue strength due to the flat grain cannot be sufficiently obtained. Therefore, the flat grain is set to 40% or more, preferably 50% or more, more preferably 60% or more. Most preferably, it is 70% or more. On the other hand, in the titanium alloy forged material, when flat grains exceed 99%, noise in ultrasonic flaw detection increases, so the flat grains are 99% or less, preferably 97% or less, more preferably 95% or less, and still more preferably. Is 90% or less. Therefore, in the titanium alloy forged material according to the present invention, flat β grains of old β grains having a diameter in the thickness direction of 50 μm or more and 500 μm or less and an aspect ratio exceeding 3 are present in an amount of 40% or more and 99% or less. The old β-grained flat grains of such shape and size are sufficiently grown by adjusting the holding temperature and time when heated to the β-single phase region before forging, and growing the β-grains to an appropriate size. It is obtained by deforming to an aspect ratio exceeding 3 by forging at a low reduction rate. Furthermore, the abundance ratio of the old β grains can be controlled by the holding time after forging.

(非扁平粒:厚み方向の径30〜200μm、存在割合1〜60%)
β鍛造材は、表面から内部に入射した超音波が旧β粒の粒界で反射し易い。超音波を鍛造方向と平行方向に入射させた場合、旧β粒が主に扁平粒である従来のβ鍛造材は、図1(b)に示すように、粒界の多くが鍛造方向に垂直な面であるため、入射波が正反射することになり、かかる反射波の多くが探触子で受信されてノイズとなる。本発明に係るチタン合金鍛造材は、図1(a)に示すように、旧β粒の扁平粒に非扁平粒を混在させた混粒組織を有することで、反射波を分散させてノイズにならないようにする。旧β粒の非扁平粒は、アスペクト比3以下でないと、反射波の分散効果が小さく、ノイズ低減効果が得られない。また、旧β粒の非扁平粒は、厚み方向の径(最小となる方向の径)が200μmを超えると、疲労強度や破壊靭性の低下を招く虞がある。反対に、旧β粒の非扁平粒は、厚み方向の径が30μm未満では当該非扁平粒の粒界の面積が狭く、ノイズ低減効果が得られない。
(Non-flat particles: 30-200 μm in the thickness direction, 1-60% abundance)
In the β forged material, ultrasonic waves incident from the surface to the inside are easily reflected by the grain boundaries of the old β grains. When ultrasonic waves are incident in a direction parallel to the forging direction, as shown in FIG. 1B, in the conventional β forging material in which the old β grains are mainly flat grains, most of the grain boundaries are perpendicular to the forging direction. Therefore, the incident wave is regularly reflected, and many of the reflected waves are received by the probe and become noise. As shown in FIG. 1 (a), the titanium alloy forging according to the present invention has a mixed grain structure in which non-flat grains are mixed with flat grains of old β grains, thereby dispersing reflected waves and generating noise. Do not become. The non-flat particles of the old β grains have a small reflected wave dispersion effect unless the aspect ratio is 3 or less, and a noise reduction effect cannot be obtained. Further, when the non-flat particles of the old β-grains have a diameter in the thickness direction (a diameter in the minimum direction) exceeding 200 μm, there is a possibility that fatigue strength and fracture toughness are reduced. On the other hand, when the non-flat particles of the old β grains have a diameter in the thickness direction of less than 30 μm, the area of the grain boundaries of the non-flat grains is narrow, and a noise reduction effect cannot be obtained.

そして、チタン合金鍛造材は、前記範囲の大きさの非扁平粒が1%未満では、非扁平粒によるノイズ低減効果が十分に得られないため、非扁平粒は1%以上とし、好ましくは3%以上、より好ましくは5%以上、最も好ましくは10%以上である。一方、チタン合金鍛造材は、非扁平粒の存在割合が多くなるにしたがい、相対的に扁平粒が少なくなって疲労強度が低下する。チタン合金鍛造材は、具体的には非扁平粒が60%を超えると疲労強度が不足するため、非扁平粒は60%以下とし、好ましくは50%以下、より好ましくは40%以下、さらに好ましくは30%以下、最も好ましくは20%以下である。したがって、本発明に係るチタン合金鍛造材は、厚み方向の径が30μm以上200μm以下でアスペクト比が3以下の旧β粒の非扁平粒が、1%以上60%以下存在するものとする。このような形状および大きさの旧β粒の非扁平粒は、鍛造後のβ単相域における保持温度およびそれに応じた保持時間により、大きさおよび存在割合を制御することができる。   The titanium alloy forged material has a non-flat grain size of 1% or more, preferably 3% or less because the noise reduction effect of the non-flat grain is not sufficiently obtained when the non-flat grain size is less than 1%. % Or more, more preferably 5% or more, and most preferably 10% or more. On the other hand, as the titanium alloy forged material increases in the proportion of non-flat grains, the number of flat grains is relatively reduced and the fatigue strength is lowered. Specifically, when the non-flat grain exceeds 60%, the titanium alloy forged material has insufficient fatigue strength. Therefore, the non-flat grain is 60% or less, preferably 50% or less, more preferably 40% or less, and still more preferably. Is 30% or less, most preferably 20% or less. Therefore, in the titanium alloy forged material according to the present invention, non-flat grains of old β grains having a diameter in the thickness direction of 30 μm or more and 200 μm or less and an aspect ratio of 3 or less are 1% or more and 60% or less. The size and existence ratio of the non-flat grains of the old β grains having such shapes and sizes can be controlled by the holding temperature in the β single-phase region after forging and the holding time corresponding thereto.

(旧β粒の扁平粒と非扁平粒の合計の存在割合90%以上)
チタン合金鍛造材は、旧β粒について前記したアスペクト比および径の扁平粒、非扁平粒の合計が90%未満では、これらの範囲外である微細なβ結晶粒または粗大なβ結晶粒が過剰で、疲労強度や破壊靱性が不足したり、超音波探傷検査におけるノイズが増大したりする。したがって、本発明に係るチタン合金鍛造材は、旧β粒の扁平粒と非扁平粒が合計で90%以上とし、好ましくは92%以上、より好ましくは94%以上である。
(The total proportion of old β flat and non-flat particles is 90% or more)
Titanium alloy forgings, if the total of flat and non-flat grains with the aspect ratio and diameter described above with respect to the old β grains is less than 90%, there is an excess of fine β grains or coarse β grains outside these ranges As a result, fatigue strength and fracture toughness are insufficient, and noise in ultrasonic inspection is increased. Therefore, in the titanium alloy forged material according to the present invention, the total amount of the old β flat particles and non-flat particles is 90% or more, preferably 92% or more, more preferably 94% or more.

本発明において、チタン合金鍛造材の旧β粒の扁平粒、非扁平粒の各存在割合は、断面における面積率を指す。チタン合金鍛造材の旧β粒のアスペクト比や径、面積率は、チタン合金鍛造材を鍛造方向と平行な面で切断し、断面を研磨(機械研磨、電解研磨)仕上げの後に腐食させてこの面を観察した結果を基に求めることができる。例えば、断面から1〜数mm角程度の視野を複数選択し、光学顕微鏡により断面組織を観察する。そして、断面の鍛造方向と鍛造方向に直交する方向とのそれぞれにおける旧β粒の長さ(径)を測定し、鍛造方向(厚み方向)の径およびアスペクト比に基づいて扁平粒、非扁平粒を定義し、視野におけるそれぞれの面積率を算出すればよい。   In the present invention, the abundance ratios of the old β-grained flat particles and non-flat particles of the titanium alloy forged material indicate the area ratio in the cross section. The aspect ratio, diameter, and area ratio of the old β grains of titanium alloy forged materials are determined by cutting the titanium alloy forged material in a plane parallel to the forging direction and corroding the cross section after polishing (mechanical polishing, electrolytic polishing). This can be determined based on the result of observing the surface. For example, a plurality of visual fields of about 1 to several mm square are selected from the cross section, and the cross-sectional structure is observed with an optical microscope. Then, the length (diameter) of the old β grains in each of the forging direction of the cross section and the direction orthogonal to the forging direction is measured, and flat grains and non-flat grains are determined based on the diameter and aspect ratio in the forging direction (thickness direction). And the respective area ratios in the field of view may be calculated.

(チタン合金:Mo当量2.7を超え15未満)
本発明に係るチタン合金鍛造材を形成するチタン合金は、α+β型チタン合金であれば適用することができるが、次式(1)で表されるMo当量[Mo]eqが2.7を超え15未満となる組成であることが好ましい。チタン合金は、Mo当量が大きくなるにしたがい、α相の体積含有率が減少して旧β粒界の形状の影響が強くなって、前記した旧β粒の扁平粒による破壊靱性および疲労強度の向上効果がいっそう得られる。チタン合金のMo当量は、より好ましくは3.5以上、さらに好ましくは4.5以上である。一方、チタン合金は、Mo当量[Mo]eqが大きくなるにしたがい、合金元素が偏析し易くなり、組織がばらつく虞があるため、15未満とすることが好ましい。チタン合金のMo当量は、より好ましくは12以下、さらに好ましくは10以下である。
[Mo]eq=[Mo]+[Ta]/5+[Nb]/3.6+[W]/2.5+[V]/1.5+1.25[Cr]+1.25[Ni]+1.7[Mn]+1.7[Co]+2.5[Fe] ・・・(1)
ただし、式(1)の[X]は、チタン合金における元素Xの含有量(質量%)とする。
(Titanium alloy: Mo equivalent 2.7 and less than 15)
The titanium alloy for forming the titanium alloy forging according to the present invention can be applied as long as it is an α + β type titanium alloy, but the Mo equivalent [Mo] eq represented by the following formula (1) exceeds 2.7. The composition is preferably less than 15. As the Mo equivalent increases, the volume content of the α phase decreases and the influence of the shape of the old β grain boundary increases, and the fracture toughness and fatigue strength due to the flat particles of the old β grain are increased. The improvement effect is further obtained. The Mo equivalent of the titanium alloy is more preferably 3.5 or more, and further preferably 4.5 or more. On the other hand, the titanium alloy is preferably less than 15 because the alloy element is easily segregated and the structure may vary as the Mo equivalent [Mo] eq increases. The Mo equivalent of the titanium alloy is more preferably 12 or less, and still more preferably 10 or less.
[Mo] eq = [Mo] + [Ta] / 5 + [Nb] /3.6+ [W] /2.5+ [V] /1.5+1.25 [Cr] +1.25 [Ni] +1.7 [ Mn] +1.7 [Co] +2.5 [Fe] (1)
However, [X] in the formula (1) is the content (mass%) of the element X in the titanium alloy.

このようなチタン合金としては、具体的にはAMS4981,AMS4995で規定されるチタン合金が挙げられる。AMS4981で規定されるチタン合金(Ti−6Al−2Sn−4Zr−6Mo合金、Ti−6246合金)は、Al:5.50〜6.50質量%、Sn:1.75〜2.25質量%、Zr:3.50〜4.50質量%、Mo:5.50〜6.50質量%を含有し、残部はTiおよび不可避的不純物であり、各元素の平均値から計算されるMo当量は6.0である。前記不可避的不純物としては、概ね、N:0.04質量%、C:0.08質量%、H:0.015質量%、Fe:0.15質量%、O:0.15質量%を含有する。   Specific examples of such a titanium alloy include titanium alloys specified by AMS4981 and AMS4995. Titanium alloys (Ti-6Al-2Sn-4Zr-6Mo alloy, Ti-6246 alloy) specified by AMS4981 are Al: 5.50-6.50 mass%, Sn: 1.75-2.25 mass%, Zr: 3.50 to 4.50% by mass, Mo: 5.50 to 6.50% by mass, the balance being Ti and inevitable impurities, and the Mo equivalent calculated from the average value of each element is 6 .0. The inevitable impurities generally include N: 0.04 mass%, C: 0.08 mass%, H: 0.015 mass%, Fe: 0.15 mass%, and O: 0.15 mass%. To do.

AMS4995で規定されるチタン合金(Ti−5Al−2Sn−2Zr−4Cr−4Mo合金、Ti−17合金)は、Al:4.5〜5.5質量%、Sn:1.5〜2.5質量%、Zr:1.5〜2.5質量%、Cr:3.5〜4.5質量%、Mo:3.5〜4.5質量%、O:0.08〜0.12質量%であって、残部はTiおよび不可避的不純物であり、各元素の平均値から計算されるMo当量は9.5である。前記不可避的不純物としては、概ね、Fe:0.03質量%、C:0.05質量%、N:0.04質量%、H:0.0125質量%を含有する。   Titanium alloy (Ti-5Al-2Sn-2Zr-4Cr-4Mo alloy, Ti-17 alloy) specified by AMS4995 is Al: 4.5 to 5.5 mass%, Sn: 1.5 to 2.5 mass %, Zr: 1.5 to 2.5% by mass, Cr: 3.5 to 4.5% by mass, Mo: 3.5 to 4.5% by mass, O: 0.08 to 0.12% by mass The balance is Ti and inevitable impurities, and the Mo equivalent calculated from the average value of each element is 9.5. The inevitable impurities generally include Fe: 0.03% by mass, C: 0.05% by mass, N: 0.04% by mass, and H: 0.0125% by mass.

〔チタン合金鍛造材の製造方法〕
本発明に係るチタン合金鍛造材は、所望の組成のチタン合金からなるインゴットを公知の方法でビレットに鍛造し(ビレット鍛造工程と称する)、必要に応じて機械加工を行ってから、β鍛造を行って所望の製品形状に製造される。ビレット鍛造工程は、例えば、β鍛造→α+β鍛造→β熱処理→応力除去焼鈍→α+β鍛造→焼鈍の順序で行われる。α+β鍛造はβ変態点(適宜、Tβと表す)よりも10〜200℃程度低い温度域に、β鍛造はTβよりも10〜150℃程度高い温度域に、それぞれ加熱し、所定の鍛錬比(鍛伸方向に垂直な断面の、鍛造前に対する鍛造後の面積比、例えば1.5)の鍛造を行い、室温に冷却する。ビレット鍛造工程における鍛造をα+β鍛造とするかβ鍛造とするかは製品に要求される特性に応じて設定すればよく、鍛造の回数も所望するビレットの径等に応じて行えばよい。また2回の焼鈍はそれぞれ必要に応じて行えばよく、例えば2回目の焼鈍はその後の機械加工をし易くするために行われる。さらにチタン合金ビレットを機械加工することで、表面の酸化皮膜やシワやバリが除去され、表面粗度を整えることができ、その後の鍛造(チタン合金鍛造材の製造におけるβ鍛造)がし易くなる。そして、本発明に係るチタン合金鍛造材を製造するために、チタン合金ビレットを以下の方法でβ鍛造する。β鍛造前にチタン合金ビレットに対してα+β二相域にて荒地鍛造を行い、所望の形状に仕上げてもよい。なお、チタン合金鍛造材のβ鍛造前をチタン合金素材と称し、ここではチタン合金素材としてチタン合金ビレットを適用する。
[Production method of titanium alloy forging]
The titanium alloy forged material according to the present invention is formed by forging an ingot made of a titanium alloy having a desired composition into a billet by a known method (referred to as a billet forging step), performing machining as necessary, and then performing β forging. To produce the desired product shape. The billet forging step is performed, for example, in the order of β forging → α + β forging → β heat treatment → stress relief annealing → α + β forging → annealing. α + β forging is heated to a temperature range about 10 to 200 ° C. lower than the β transformation point (appropriately expressed as T β ), and β forging is heated to a temperature range about 10 to 150 ° C. higher than T β. Forging is performed at a ratio (area ratio after forging of the cross section perpendicular to the forging direction to before forging, for example, 1.5), and cooled to room temperature. Whether the forging in the billet forging process is α + β forging or β forging may be set according to the characteristics required for the product, and the number of forgings may be determined according to the desired billet diameter and the like. Further, the two annealings may be performed as necessary. For example, the second annealing is performed to facilitate subsequent machining. Furthermore, by machining the titanium alloy billet, the surface oxide film, wrinkles and burrs can be removed, the surface roughness can be adjusted, and subsequent forging (β forging in the production of titanium alloy forgings) is easy. . And in order to manufacture the titanium alloy forged material which concerns on this invention, a titanium alloy billet is beta forged by the following method. Prior to β forging, the titanium alloy billet may be subjected to rough ground forging in an α + β two-phase region and finished to a desired shape. Note that the titanium alloy forged material before β forging is referred to as a titanium alloy material, and here, a titanium alloy billet is applied as the titanium alloy material.

本発明に係るチタン合金鍛造材の製造方法は、チタン合金素材(チタン合金ビレット)をTβ+10℃以上に加熱して、β結晶粒径(平均粒径)が400μm以上1000μm以下の範囲になるまで保持し、Tβ−30℃以上の温度域で鍛造し、この温度域で20秒間以上であって次式(2)で表される限界保持時間(秒間)tmax未満の時間保持した後、直ちにTβ−150℃以下の温度まで冷却する。
max=[11.64(1−TH/1425)]4.35 ・・・(2)
ただし、前記式(2)のTHは、鍛造後における保持時の温度(℃)とする。
In the method for producing a titanium alloy forged material according to the present invention, a titanium alloy material (titanium alloy billet) is heated to T β + 10 ° C. or higher, and the β crystal grain size (average particle size) is in the range of 400 μm to 1000 μm. Until forging in a temperature range of T β −30 ° C. or higher, and holding for 20 seconds or longer in this temperature range and less than the limit holding time (seconds) t max represented by the following formula (2) , immediately cooled to T beta -150 ° C. or lower.
t max = [11.64 (1-T H / 1425)] 4.35 (2)
However, T H in the formula (2) is the temperature at the time of holding after forging (° C.).

(鍛造前加熱温度:Tβ+10℃以上)
鍛造前加熱は、一般的なβ鍛造と同様に、鍛造前に、チタン合金ビレットをβ単相域まで加熱してβ相単相にするために行われる。β単相域とはβ変態点(Tβ)以上の温度域であり、Tβはチタン合金ビレットの全体(100%)がβ相となる最低温度で、当該チタン合金ビレット(チタン合金鍛造材)を形成するチタン合金の組成によって変化する。例えば、AMS4981で規定されるチタン合金(Ti−6246合金)のTβは960℃程度であり、AMS4995で規定されるチタン合金(Ti−17合金)のTβは890℃程度である。本発明においては、チタン合金ビレットを深部まで確実にβ相単相とし、またTβ−30℃以上の温度域で鍛造を完了させ、さらにその後に一定時間、同温度域で保持する。一方、チタン合金ビレットがβ単相域において高温になるにしたがい、β相の結晶粒の成長速度が速くなるため結晶粒径を制御し難くなり、またTβ+150℃を超えると、表面に厚い酸化スケールが形成され易く、鍛造後に除去する必要が生じるため、加熱温度はTβ+150℃以下が好ましい。さらに、鍛造前の加熱温度が過剰に高いと、鍛造完了時の温度が高くなって、鍛造後にTβ−30℃以上の温度域外(Tβ−30℃未満)に冷却されるまでに、後記するようにβ結晶粒(非扁平粒)が過剰に成長する虞がある。
(Heating temperature before forging: T β + 10 ° C or more)
The heating before forging is performed in order to heat the titanium alloy billet to the β single-phase region to form the β-phase single phase before forging, as in general β forging. The β single-phase region is a temperature range equal to or higher than the β transformation point (T β ), and T β is the lowest temperature at which the entire titanium alloy billet (100%) becomes the β phase, and the titanium alloy billet (titanium alloy forged material) ) Varies depending on the composition of the titanium alloy forming. For example, the T beta titanium alloy as defined in AMS4981 (Ti-6246 alloy) is about 960 ° C., the T beta titanium alloy as defined in AMS4995 (Ti-17 alloy) is about 890 ° C.. In the present invention, the titanium alloy billet is surely made into a β-phase single phase to the deep part, forging is completed in a temperature range of T β −30 ° C. or higher, and thereafter, the titanium alloy billet is held in the same temperature range for a certain time. On the other hand, as the titanium alloy billet becomes higher in the β single phase region, the growth rate of the β phase crystal grains becomes faster, so it becomes difficult to control the crystal grain size, and when T β + 150 ° C. is exceeded, the surface becomes thicker. Since the oxide scale is easily formed and needs to be removed after forging, the heating temperature is preferably T β + 150 ° C. or less. Further, if the heating temperature before forging is excessively high, the temperature at the completion of forging becomes high, and after the forging, it is cooled to a temperature outside T β −30 ° C. or higher (less than T β −30 ° C.). As such, β crystal grains (non-flat grains) may grow excessively.

チタン合金ビレットを加熱してβ単相域に到達させた後、鍛造開始前に一定時間保持して、β結晶粒を適度な大きさ、具体的には径400μm以上1000μm以下の範囲に成長させる。保持時間は、チタン合金ビレットの保持温度によって異なるが、例えば1000℃で60〜480分間程度保持すればよい。なお、いったん所望のβ結晶粒組織が形成された後は、チタン合金ビレットの温度は、鍛造前にTβ+10℃未満に降下してもよいが、後記するように、鍛造完了、さらにその後の保持時間内までTβ−30℃以上の温度域を保持することができるように設定する。 After heating the titanium alloy billet to reach the β single-phase region, the titanium alloy billet is held for a certain period of time before forging starts, and the β crystal grains are grown to an appropriate size, specifically, a diameter of 400 μm to 1000 μm. . The holding time varies depending on the holding temperature of the titanium alloy billet, but may be held, for example, at 1000 ° C. for about 60 to 480 minutes. Once the desired β crystal grain structure is formed, the temperature of the titanium alloy billet may be lowered to less than T β + 10 ° C. before forging. However, as described later, forging is completed and further thereafter It is set so that a temperature range of T β −30 ° C. or higher can be held until the holding time.

(鍛造温度:Tβ−30℃以上)
加熱して一定時間保持したチタン合金ビレットを鍛造して、製品の形状とする。鍛造に使用される金型は、400℃以上に加熱されていることが好ましく、鍛造温度(チタン合金ビレットの温度)に加熱されていることがさらに好ましい。このように加熱された金型を使用することで、鍛造されるチタン合金ビレットの表面が内部に対して早期に冷却され過ぎることがなく、表面近傍もTβ−30℃以上に保持して鍛造を完了することができる。Tβ−30℃未満に温度が降下してから鍛造を完了すると、後記するように、その後に非扁平粒が形成されない。鍛造の完了温度は、Tβ−10℃以上が好ましく、Tβを超えることがさらに好ましい。なお、鍛造完了、さらに後記の保持終了までTβ−30℃以上の温度域に保持されるのは、チタン合金鍛造材の製品部分でよく、鍛造後(冷却後)に除去される表層等の余肉(製品部分以外)は、鍛造中またはその後の保持中に前記温度域外(Tβ−30℃未満)に冷却されてもよい。
(Forging temperature: Tβ- 30 ° C or more)
A titanium alloy billet that has been heated and held for a certain period of time is forged into a product shape. The mold used for forging is preferably heated to 400 ° C. or higher, and more preferably heated to a forging temperature (temperature of a titanium alloy billet). By using such a heated mold, without the surface of the titanium alloy billet to be forged too is cooled early with respect to the internal, near surface be maintained above T beta -30 ° C. Forging Can be completed. When temperature below T beta -30 ° C. to complete the forging descends, as described later, not subsequently to the non-flattened grains formed. The forging completion temperature is preferably T β −10 ° C. or higher, and more preferably exceeds T β . It should be noted that the product portion of the titanium alloy forged material may be held in the temperature range of T β −30 ° C. or higher until the completion of forging and the end of holding described later, such as the surface layer to be removed after forging (after cooling) (non-product part) the excess thickness may be cooled during said during or after the holding forging temperature outside (T beta less than -30 ° C.).

鍛造における加工率(圧下率)は特に規定されず、一般的な仕上げ鍛造と同様の条件で鍛造することができる。β結晶粒をアスペクト比が3を超える扁平粒にするためには、平坦面を有する金型による円柱形状ビレットの鍛造を例にすると、圧下率45%以上、好ましくは55%以上の加工、あるいはそれに相当する加工を加えることが好ましい。また、チタン合金ビレットに対する金型の移動速度は、ひずみ速度が10-3〜10(1/s)とすることが好ましい。 The processing rate (reduction rate) in forging is not particularly specified, and forging can be performed under the same conditions as in general finish forging. In order to make β crystal grains into flat grains having an aspect ratio of more than 3, when forging a cylindrical billet by a mold having a flat surface, for example, processing with a rolling reduction of 45% or more, preferably 55% or more, or It is preferable to add a corresponding process. Moreover, it is preferable that the moving speed of the mold with respect to the titanium alloy billet is 10 −3 to 10 (1 / s).

(鍛造後の温度(℃)TH(≧Tβ−30℃)での保持時間(秒間):20以上[11.64(1−TH/1425)]4.35未満)
チタン合金ビレットを鍛造した後、引き続きTβ−30℃以上の温度に所定時間保持する。このように、鍛造されたチタン合金ビレットをTβ−30℃以上の温度域に保持することで、鍛造で扁平粒となったβ結晶粒とは別に、新たに非扁平なβ結晶粒(非扁平粒)が形成される。チタン合金は前記温度域未満に冷却されると非扁平なβ結晶粒の形成、成長がほぼ停止するため、チタン合金ビレットの鍛造後にTβ−30℃未満で保持しても、本発明の効果が得られず、逆に旧β粒の粒界に太く連続したα相が析出して、疲労強度を劣化させる虞がある。鍛造後の保持温度は、Tβ−10℃以上が好ましく、Tβを超えることがさらに好ましい。一方、鍛造後の保持温度の上限は、非扁平粒が形成される速度が速くなって大きさや存在割合を制御し難くなるため、1160℃以下が好ましく、Tβが1010℃未満のチタン合金の場合、Tβ+150℃以下がより好ましい。
(Temperature after forging (° C.) T H (≧ T β −30 ° C.) holding time (seconds): 20 or more [11.64 (1-T H / 1425)] less than 4.35
After forging a titanium alloy billet, subsequently maintained for a predetermined time T beta -30 ° C. or higher. In this way, by keeping the forged titanium alloy billet in a temperature range of T β −30 ° C. or higher, aside from the β crystal grains that have become flat grains by forging, new non-flat β crystal grains (non- Flat particles) are formed. Since the formation and growth of non-flat β crystal grains almost stops when the titanium alloy is cooled below the above temperature range, the effect of the present invention can be achieved even if the titanium alloy is kept below T β −30 ° C. after forging the titanium alloy billet. In contrast, a thick and continuous α phase is precipitated at the grain boundaries of the old β grains, which may deteriorate the fatigue strength. The holding temperature after forging is preferably T β −10 ° C. or more, and more preferably exceeds T β . On the other hand, the upper limit of the holding temperature after forging is preferably 1160 ° C. or less, because the rate at which non-flat grains are formed and the size and the existing ratio are difficult to control, and T β is less than 1010 ° C. In this case, T β + 150 ° C. or lower is more preferable.

鍛造後の保持時間が20秒間未満では、非扁平粒の大きさ(厚み方向の径)や存在割合が不十分で、非扁平粒による超音波探傷検査におけるノイズ低減効果が得られない。したがって、鍛造後のTβ−30℃以上での保持時間は、20秒間以上とし、好ましくは30秒間以上、より好ましくは40秒間以上である。一方、保持時間の経過にしたがい、非扁平粒の存在割合が増加して相対的に扁平粒の存在割合が減少するため、この温度域で過剰に長い時間保持すると、チタン合金鍛造材の疲労強度が低下する。 If the holding time after forging is less than 20 seconds, the size (diameter in the thickness direction) and the existence ratio of the non-flat particles are insufficient, and the noise reduction effect in the ultrasonic flaw detection by the non-flat particles cannot be obtained. Therefore, the holding time at T β −30 ° C. or higher after forging is 20 seconds or longer, preferably 30 seconds or longer, more preferably 40 seconds or longer. On the other hand, as the retention time elapses, the proportion of non-flat grains increases and the proportion of flat grains decreases relatively, so if retained for an excessively long time in this temperature range, the fatigue strength of titanium alloy forgings Decreases.

ここで、β結晶粒の成長速度は保持温度に依存し、温度が高いほど速くなる。このような速度挙動は、原子の拡散挙動に基づいて推測される。そこで、原子の拡散し易さを表す拡散方程式に基づいた、温度(℃)Tと、β結晶粒が成長してある存在割合に到達するまでの時間(秒間)tとの関係式を次式(3)に表す。なお、a,b,nは定数である。
t=[b(1−T/a)]n ・・・(3)
Here, the growth rate of the β crystal grains depends on the holding temperature, and increases as the temperature increases. Such velocity behavior is estimated based on the diffusion behavior of atoms. Therefore, a relational expression between the temperature (° C.) T and the time (seconds) t until the existence ratio of the β crystal grains is grown based on the diffusion equation representing the ease of atom diffusion is expressed by the following equation: Expressed in (3). Note that a, b, and n are constants.
t = [b (1-T / a)] n (3)

本発明者らは、実験により、鍛造後のチタン合金ビレットの保持温度(℃)THを変化させて、非扁平粒が本発明に係るチタン合金鍛造材における存在割合の上限(60%)を超えるまでの保持時間(限界保持時間)tmaxを測定し、式(3)に挿入して定数a,b,nを求めた。その結果、a=1425、b=11.64、n=4.35となり、限界保持時間tmaxを算出するための式(2)が得られた。
max=[11.64(1−TH/1425)]4.35 ・・・(2)
The present inventors have experimentally, by changing the holding temperature (° C.) T H titanium alloy billet after forging, the non-flat particles is existing ratio in the titanium alloy forging according to the present invention the upper limit (60%) The retention time (limit retention time) t max until exceeding was measured and inserted into the equation (3) to determine the constants a, b, and n. As a result, a = 1425, b = 11.64, and n = 4.35, and Equation (2) for calculating the limit holding time tmax was obtained.
t max = [11.64 (1-T H / 1425)] 4.35 (2)

したがって、鍛造後のTβ−30℃以上での保持時間は、保持温度THに基づいて式(2)で表される限界保持時間tmax秒間未満とする。なお、式(2)から、保持温度THが高いほど限界保持時間tmaxは短くなるため、保持温度THとして最も高い鍛造完了時の温度に基づきtmaxを算出するようにする。 Therefore, the holding time at T β −30 ° C. or higher after forging is set to be less than the limit holding time t max seconds represented by the formula (2) based on the holding temperature T H. Incidentally, the equation (2), the holding temperature T H is the shorter limit holding time t max higher, so as to calculate the t max on the basis of the temperature during the highest forging completed as the holding temperature T H.

鍛造後のチタン合金ビレットを、前記保持時間の経過後に直ちにTβ−150℃以下に冷却することで、β単相域外(α+β二相域)として非扁平なβ結晶粒の成長を停止させ、かつ旧β粒の粒界に太く連続したα相が析出することを抑制して、得られたチタン合金鍛造材の疲労強度の劣化を防止する。そのために、保持後の冷却速度は、好ましくは10℃/min以上、より好ましくは50℃/min以上である。一方、冷却速度の上限は特に規定しないが、500℃/min以下が実用的であり、また粒内の針状α相を長くして破壊靭性を向上させるため、好ましい。冷却方法は、空冷、送風、水冷、湯冷、油冷等の公知の方法を適用すればよい。なお、Tβ−150℃未満における冷却速度は特に規定せず、その他の要求される特性に応じて設定すればよい。 The titanium alloy billet after forging is cooled to T β −150 ° C. or less immediately after the holding time has elapsed, thereby stopping the growth of non-flat β crystal grains outside the β single-phase region (α + β two-phase region), In addition, the precipitation of a thick and continuous α phase at the grain boundaries of the old β grains is suppressed, and deterioration of the fatigue strength of the obtained titanium alloy forging is prevented. Therefore, the cooling rate after holding is preferably 10 ° C./min or more, more preferably 50 ° C./min or more. On the other hand, the upper limit of the cooling rate is not particularly defined, but 500 ° C./min or less is practical, and is preferable because the acicular α phase in the grains is lengthened to improve fracture toughness. The cooling method may be a known method such as air cooling, air blowing, water cooling, hot water cooling, or oil cooling. In addition, the cooling rate in particular below T ( beta) -150 degreeC is not prescribed | regulated, What is necessary is just to set according to another required characteristic.

得られたチタン合金鍛造材は、必要に応じて、公知の方法にて溶体化処理および時効処理にて調質熱処理を行い、さらに機械加工を行って酸化皮膜や余肉を除去し、以下の超音波探傷検査を実施される。具体的には表面から1mm以上の厚さを除去し、表面粗度6.3S以上に平滑化してから、超音波探傷検査を行うことが好ましい。チタン合金鍛造材は、その後、必要に応じて再度機械加工されてエンジン部品等の製品となる。これらの処理は、公知の方法で行われてよい。   The obtained titanium alloy forged material is subjected to tempering heat treatment by solution treatment and aging treatment by a known method, if necessary, and further machined to remove oxide film and surplus, Ultrasonic flaw detection is performed. Specifically, it is preferable to perform ultrasonic flaw detection after removing a thickness of 1 mm or more from the surface and smoothing the surface to a surface roughness of 6.3S or more. The titanium alloy forged material is then machined again as necessary to become a product such as an engine part. These processes may be performed by a known method.

〔超音波探傷検査方法〕
本発明に係るチタン合金鍛造材に対する超音波探傷検査は、公知の方法で行うことができ、探触子はプローブ径が5〜30mmの範囲のものから選択し、超音波(送信波)は周波数1〜20MHzの範囲を使用する。プローブ径は10mm以上、超音波の周波数は15MHz以下が好ましい。また、欠陥の検出分解能が高い水浸探傷法にて検査を行うことが好ましい。本発明に係るチタン合金鍛造材は、鍛造における圧下量の最も大きい方向と平行な方向を含む方向に探傷する超音波探傷検査に供すことができる。超音波探傷検査の方向とは、送信波の進行方向(チタン合金鍛造材の内部を透過させる方向)を指す(図1参照)。チタン合金鍛造材は鍛造圧下量の最も大きい方向が最もノイズが多い傾向があるが、本発明に係るチタン合金鍛造材は、かかる方向に探傷しても十分にノイズが少なく高精度な検査を行うことができる。また、チタン合金鍛造材は、この方向の厚さが最も小さい(薄い)場合が多いので、深部まで精度よく検査を行うことができ、さらに探触子を走査するこの方向に垂直な表面の面積が広い場合が多いので、検査し易い。また、チタン合金鍛造材(製品)の形状に応じて、前記1方向での探傷、またはさらに方向を変化させて合計2回以上検査することが好ましい。さらに、チタン合金鍛造材の厚さ(送信波の進行方向長さ)によっては、逆方向から送信波を入射してもよい。
[Ultrasonic flaw detection method]
The ultrasonic flaw detection inspection for the titanium alloy forging according to the present invention can be performed by a known method. The probe is selected from a probe having a diameter of 5 to 30 mm, and the ultrasonic wave (transmitted wave) is a frequency. The range of 1-20 MHz is used. The probe diameter is preferably 10 mm or more, and the ultrasonic frequency is preferably 15 MHz or less. Moreover, it is preferable to perform inspection by a water immersion flaw detection method having high defect detection resolution. The titanium alloy forged material according to the present invention can be subjected to ultrasonic flaw detection inspection in which flaw detection is performed in a direction including a direction parallel to the direction in which the amount of rolling reduction is greatest. The direction of ultrasonic flaw detection inspection refers to the traveling direction of the transmission wave (the direction in which the inside of the titanium alloy forging is transmitted) (see FIG. 1). Titanium alloy forgings tend to have the most noise in the direction with the largest forging reduction, but the titanium alloy forgings according to the present invention are sufficiently noise-free and perform high-accuracy inspection even if flaw detection is performed in these directions. be able to. In addition, titanium alloy forgings often have the smallest (thin) thickness in this direction, so that inspection can be performed accurately to the deep part, and the surface area perpendicular to this direction for scanning the probe Is often wide and easy to inspect. Moreover, it is preferable to inspect for a total of two or more times by flaw detection in the one direction or further changing the direction according to the shape of the titanium alloy forged material (product). Further, depending on the thickness of the titanium alloy forged material (the length in the traveling direction of the transmission wave), the transmission wave may be incident from the opposite direction.

以上、本発明を実施するための形態について述べてきたが、以下に、本発明の効果を確認した実施例を、本発明の要件を満たさない比較例と対比して具体的に説明する。なお、本発明はこの実施例によって制限を受けるものではなく、請求項に示した範囲で変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。   As mentioned above, although the form for implementing this invention has been described, the Example which confirmed the effect of this invention is demonstrated concretely compared with the comparative example which does not satisfy | fill the requirements of this invention below. It should be noted that the present invention is not limited by this embodiment, and can be implemented with modifications within the scope shown in the claims, all of which are included in the technical scope of the present invention.

〔試験体作製〕
チタン合金素材として、AMS4981で規定されるTi−6246合金(Tβ:960℃、Mo当量:6.0)からなるφ120mmのビレットを長さ(軸方向)180mmに切断して使用した。
[Test specimen preparation]
As titanium alloy material, Ti-6246 alloy defined by AMS4981 (T β: 960 ℃, Mo eq: 6.0) billet a length of φ120mm consisting (axial direction) was used and cut into 180 mm.

(β鍛造)
チタン合金ビレットの内部の温度分布が一定となるように、炉内にて920℃で2時間保持した後、表1に示す鍛造温度に加熱した。表1に示すβ結晶粒径になるまで、前記鍛造温度で、当該鍛造温度に応じて30〜480分間保持してからチタン合金ビレットを炉から出し、予め低周波加熱装置で鍛造温度に加熱した金型を用いて鍛造した。鍛造は、平坦な面形状の一対の金型を用い、表1に示す金型移動速度で、変形方向(圧下方向)をビレット軸方向として圧下率67%で行った(鍛造後の素材長さ60mm)。なお、鍛造温度をTβ未満とした試験体No.10については、チタン合金ビレットを1010℃まで加熱し、他の試験体と同様に表1に示すβ結晶粒径になるまで保持した後に炉から出して、表1に示す鍛造温度まで空冷させた後に鍛造した。
(Β forging)
The titanium alloy billet was maintained at 920 ° C. for 2 hours in a furnace so that the temperature distribution inside the titanium alloy billet was constant, and then heated to the forging temperatures shown in Table 1. The titanium alloy billet was removed from the furnace after being held at the forging temperature for 30 to 480 minutes depending on the forging temperature until the β crystal grain size shown in Table 1 was reached, and heated to the forging temperature with a low-frequency heating device in advance. Forged using a mold. Forging was performed using a pair of flat surface-shaped molds at a mold movement speed shown in Table 1, with the deformation direction (rolling direction) as the billet axis direction and a rolling reduction of 67% (the length of the material after forging). 60 mm). Note that the forging temperature is less than T beta specimen No. For No. 10, the titanium alloy billet was heated to 1010 ° C., held in the same manner as the other test specimens until the β crystal grain size shown in Table 1, and then removed from the furnace and allowed to air-cool to the forging temperature shown in Table 1. Forged later.

鍛造後、金型の負荷荷重を徐荷し、チタン合金ビレットの上下面を鍛造温度に加熱した金型で挟み込み、かつチタン合金ビレットの側面を断熱材で覆うことで、鍛造完了時から表1に示す鍛造後保持時間が経過するまで保持し、その後直ちに取り出して室温まで冷却して、チタン合金鍛造材を得た。また、試験体No.6は空冷、それ以外の試験体は水冷にて冷却した。なお、チタン合金ビレットは、加熱や保持、鍛造時に、1/2H,1/4D位置(H:鍛造材の厚み、D:鍛造材の直径)、すなわち鍛造材の厚み方向と半径方向のそれぞれの中間位置の温度を熱電対で測定して鍛造温度等を管理した。また、表1に記載の鍛造後の冷却速度は予備実験により測定した。すなわち、チタン合金鍛造材と同形状のチタン合金素材を用意し、その1/2H,1/4D位置に熱電対を挿入し、1050℃に加熱保持した後、空冷ならびに水冷を行い、冷却曲線を取得した。その後、900℃に到達した時から700℃に到達した時までの冷却速度が一定であるとして、冷却速度を算出した。また、鍛造温度を鍛造後の保持温度THとして、式(2)より限界保持時間tmaxを算出し、表1に併記する。 After forging, the load on the mold is gradually reduced, the upper and lower surfaces of the titanium alloy billet are sandwiched between the molds heated to the forging temperature, and the side surfaces of the titanium alloy billet are covered with a heat insulating material. Was held until the holding time after forging passed, and then immediately taken out and cooled to room temperature to obtain a titanium alloy forged material. In addition, the specimen No. 6 was cooled by air, and the other specimens were cooled by water. In addition, a titanium alloy billet is 1 / 2H, 1 / 4D position (H: thickness of a forging material, D: diameter of a forging material) at the time of heating, holding, and forging, that is, the thickness direction and the radial direction of the forging material, respectively. The forging temperature was controlled by measuring the temperature at the intermediate position with a thermocouple. Moreover, the cooling rate after forging described in Table 1 was measured by a preliminary experiment. That is, prepare a titanium alloy material having the same shape as the titanium alloy forging, insert a thermocouple at the 1 / 2H, 1 / 4D position, heat and hold at 1050 ° C., perform air cooling and water cooling, and set the cooling curve I got it. Thereafter, the cooling rate was calculated assuming that the cooling rate from when it reached 900 ° C. to when it reached 700 ° C. was constant. Further, with the forging temperature as the holding temperature T H after forging, the limit holding time t max is calculated from the equation (2) and is also shown in Table 1.

(調質)
室温に冷却したチタン合金鍛造材を、Tβ未満(α+β二相域)の935℃に加熱して2時間保持して30℃/minで冷却する溶体化処理の後、595℃で8時間保持して35℃/minで室温まで冷却する時効処理を行い、試験体とした。
(refining)
Titanium alloy forging cooling to room temperature, after solution treatment cooling with T beta less than (alpha + beta two-phase region) of was heated to 935 ° C. and held for 2 hours 30 ° C. / min, 8 h holding at 595 ° C. Then, an aging treatment for cooling to room temperature at 35 ° C./min was performed to obtain a test specimen.

(材料組織の観察)
試験体における1/2H,1/4D位置を含む15mm角の立方体の小片試料を試験体から切り出した。そして、旧β粒界の観察を容易にするために、Tβ未満(α+β二相域)の900℃に加熱して、30分間保持後に空冷する熱処理を行った。このように、α+β二相域での熱処理により、β粒の再結晶や粒成長は起こらず旧β粒の形状は維持しつつ、旧β粒内の針状α相の面積率を低下させるため、旧β粒界の観察が容易となる。前記熱処理を施した小片から、試験体の鍛造方向と半径方向とに平行な面な断面を切り出し、前記断面に対して、エメリー紙で機械研磨を行い、ダイヤモンド砥粒による仕上げ研磨の後、フッ硝酸溶液で腐食を行い、組織観察に供した。組織観察は光学顕微鏡にて行い、倍率100倍で3200μm×2000μmの視野をパノラマ状に観察し、旧β粒について、アスペクト比と厚み方向(軸方向)の径を求め、本発明の要件を満たす扁平粒と非扁平粒とを検出した。そして、扁平粒、非扁平粒の面積率を求めた。その結果を表1に示す。
(Observation of material structure)
A 15 mm square cube small sample including 1 / 2H and 1 / 4D positions in the test specimen was cut out from the test specimen. And in order to make observation of an old beta grain boundary easy, the heat processing which heats to 900 degrees C less than T beta (alpha + beta two phase area), air-cools after holding for 30 minutes was performed. In this way, heat treatment in the α + β two-phase region reduces the area ratio of the acicular α phase in the old β grains while maintaining the shape of the old β grains without causing recrystallization or grain growth of β grains. This makes it easy to observe the old β grain boundary. A cross section parallel to the forging direction and the radial direction of the specimen is cut out from the heat-treated small piece, and the cross section is mechanically polished with emery paper. Corrosion was performed with a nitric acid solution, and the structure was observed. Tissue observation is performed with an optical microscope, and a field of view of 3200 μm × 2000 μm is observed in a panorama shape at a magnification of 100 times, and the aspect ratio and the diameter in the thickness direction (axial direction) are obtained for the old β grains to satisfy the requirements of the present invention. Flat and non-flat particles were detected. And the area ratio of a flat grain and a non-flat grain was calculated | required. The results are shown in Table 1.

〔評価〕
試験体について、チタン合金鍛造材の超音波探傷性の評価として、水浸探傷法にて超音波探傷検査を行い、また、機械的特性として疲労強度を評価した。いずれの評価も試験体No.8を基準に、すなわち1として規格化して(試験体No.8の値で除する)表1に示す。
[Evaluation]
The test specimen was subjected to an ultrasonic flaw detection by a water immersion flaw detection method as an evaluation of the ultrasonic flaw detection property of the titanium alloy forged material, and fatigue strength was evaluated as a mechanical characteristic. In any evaluation, specimen No. Table 1 shows the results normalized by 8 (ie, divided by the value of specimen No. 8).

(超音波探傷性)
試験体から53mm角の立方体の試験片を切り出し、水浸探傷法にて超音波探傷検査を行った。プローブ径19.05mm、焦点距離152.4mmの探触子を使用し、周波数5MHzの超音波を送信波とし、水距離(探触子から試験片表面までの距離)は160mmとした。標準化試験片を用いて直径0.62mmの平底穴からの反射強度が80%となるように感度調整を行った後、試験片表面(鍛造方向に垂直な面)における中央の40mm×40mmを検査領域として、探触子を移動走査させながら、鍛造圧下量の最も大きい方向として、試験体の軸方向(一方向に鍛造)に平行な方向に超音波探傷試験を行って、Cスコープを取得した。
(Ultrasonic flaw detection)
A 53 mm-square cubic test piece was cut out from the test specimen, and an ultrasonic flaw detection inspection was performed by a water immersion flaw detection method. A probe having a probe diameter of 19.05 mm and a focal length of 152.4 mm was used, an ultrasonic wave having a frequency of 5 MHz was used as a transmission wave, and a water distance (distance from the probe to the surface of the test piece) was 160 mm. After adjusting the sensitivity so that the reflection intensity from a flat bottom hole with a diameter of 0.62 mm is 80% using a standardized test piece, the center 40 mm × 40 mm on the test piece surface (surface perpendicular to the forging direction) is inspected. As a region, an ultrasonic flaw detection test was performed in the direction parallel to the axial direction (forging in one direction) of the specimen as the direction in which the forging reduction amount was the largest while moving and scanning the probe, and the C scope was obtained. .

なお、Cスコープとは、水距離を一定として被検査体の表面に沿って探触子を移動走査させ、探触子が検出した探傷深さ範囲における最大ノイズ強度値を表面走査点毎に抽出し、二次元表示した探傷結果である。各試験片において移動走査させた探触子が検出した最大ノイズについて、試験体No.8を基準に、0.8以下を合格とする。   The C scope moves the probe along the surface of the object to be inspected at a constant water distance, and extracts the maximum noise intensity value in the flaw detection depth range detected by the probe for each surface scanning point. The flaw detection results are displayed two-dimensionally. With respect to the maximum noise detected by the probe moved and scanned in each specimen, the specimen No. On the basis of 8, 0.8 or less is accepted.

(疲労特性)
試験体の1/2H,1/4D位置から、試験体の周(接線)方向が荷重軸と平行になる疲労試験片を切り出した。室温にて、ASTM規格のE466に準拠した低サイクル疲労試験を、荷重制御で、最大荷重1000MPa、応力比0、台形波の条件で、疲労試験片が破断するまで行った。破断サイクル数について、試験体No.8を基準に、0.3以上を合格とする。
(Fatigue properties)
A fatigue test piece in which the circumferential (tangential) direction of the test body was parallel to the load axis was cut out from the 1 / 2H and 1 / 4D positions of the test body. A low cycle fatigue test in accordance with ASTM standard E466 was performed at room temperature under load control under conditions of a maximum load of 1000 MPa, a stress ratio of 0, and a trapezoidal wave until the fatigue test piece broke. Regarding the number of fracture cycles, the test specimen No. On the basis of 8, 0.3 or more is accepted.

表1に示すように、旧β粒の扁平粒の存在割合(面積率)が多いほど、疲労強度は高くなり、一方で超音波探傷検査におけるノイズが増大する傾向が確認された。試験体No.8,9はβ単相域での鍛造後にほとんど温度を保持せずに冷却したため、従来のβ鍛造材に相当し、旧β粒のほとんどが扁平粒であって非扁平粒が不足し、疲労強度は高いが、超音波探傷性に劣った。   As shown in Table 1, it was confirmed that the fatigue strength increased as the proportion of the old β-grained flat particles (area ratio) increased, while the noise in the ultrasonic flaw detection increased. Specimen No. 8 and 9 were cooled without maintaining the temperature after forging in the β single-phase region, so they corresponded to conventional β forging materials. Most of the old β grains were flat and non-flat grains were insufficient. Although the strength was high, the ultrasonic flaw detection property was poor.

これに対して、試験体No.1〜7,13〜15は、本発明に係る製造方法、すなわちβ単相域での鍛造後に温度を所定範囲の時間保持したことにより、旧β粒の非扁平粒が適度に成長し、非扁平粒、扁平粒のそれぞれの存在割合が本発明に係るチタン合金鍛造材の範囲を満足する実施例となった。その結果、試験体No.1〜7,13〜15は、試験体No.8と比較して疲労強度は僅かに低いものの、航空機のエンジン部品等として必要な機械的特性を保持しつつ、優れた超音波探傷性を示した。特に、試験体No.6,7,13,14は、疲労特性を高いレベルで維持しつつ、超音波探傷時のノイズを効果的に低減できた。このことから、本実施例で用いた組成のチタン合金からなるチタン合金鍛造材については、扁平粒の存在割合が90〜98%、かつ非扁平粒の存在割合が1.5〜10%であることが特に好ましいことがわかる。   In contrast, the test specimen No. 1 to 7 and 13 to 15 are the production method according to the present invention, that is, by maintaining the temperature for a predetermined range after forging in the β single phase region, the non-flat particles of the old β grains grow appropriately, The presence ratio of each of the flat grains and the flat grains became an example satisfying the range of the titanium alloy forged material according to the present invention. As a result, the test specimen No. 1 to 7 and 13 to 15 are specimen Nos. Although the fatigue strength was slightly lower than that of No. 8, it exhibited excellent ultrasonic flaw detection properties while maintaining the mechanical properties required for aircraft engine parts and the like. In particular, specimen No. 6, 7, 13, and 14 were able to effectively reduce noise during ultrasonic flaw detection while maintaining fatigue characteristics at a high level. From this, about the titanium alloy forging material which consists of a titanium alloy of the composition used in the present Example, the abundance ratio of flat grains is 90 to 98%, and the abundance ratio of non-flat grains is 1.5 to 10%. It can be seen that this is particularly preferable.

一方、試験体No.11,12は、鍛造後に過剰に長い時間保持したために、非扁平粒が過剰に成長した。そのため、低ノイズであるが、疲労強度が大きく低下した。試験体No.10は、鍛造前にβ単相域に加熱された後、Tβ−30℃未満(α+β二相域)に冷却してから鍛造されたため、過冷β相の状態で鍛造が開始され(βプロセスともいう)、微細なα相が形成されたため、疲労強度が特に高かった。しかし、試験体No.10は、鍛造開始時にすでにTβ−30℃未満であり、その後もβ単相域で保持されていないため、旧β粒の非扁平粒が全く形成されず、ノイズが特に多かった。 On the other hand, the specimen No. Since Nos. 11 and 12 were held for an excessively long time after forging, non-flat grains grew excessively. Therefore, although the noise is low, the fatigue strength is greatly reduced. Specimen No. No. 10 was heated in the β single phase region before forging and then forged after being cooled to less than T β −30 ° C. (α + β two phase region), so that forging was started in the supercooled β phase state (β Fatigue strength was particularly high because a fine α phase was formed. However, the specimen No. No. 10 was already T β −30 ° C. at the start of forging and was not maintained in the β single-phase region after that, so the non-flat grains of the old β grains were not formed at all, and the noise was particularly high.

〔試験体作製〕
チタン合金素材として、AMS4995で規定されるTi−17合金(Tβ:890℃、Mo当量:9.5)からなるφ105mmのビレットを長さ(軸方向)175mmに切断して使用した。
[Test specimen preparation]
As titanium alloy material, Ti-17 alloys defined by AMS4995 (T β: 890 ℃, Mo eq: 9.5) billets φ105mm consisting used by cutting in the length (axial) 175mm.

(β鍛造)
チタン合金ビレットの内部の温度分布が一定となるように、炉内にて850℃で2時間保持した後、表2に示す鍛造温度に加熱した。β結晶粒径が550μmとなるまで、前記鍛造温度で、当該鍛造温度に応じて150〜200分間保持してからチタン合金ビレットを炉から出し、予め低周波加熱装置で鍛造温度に加熱した金型を用いて鍛造した。鍛造は、平坦な面形状の一対の金型を用い、金型移動速度1800mm/minで、変形方向(圧下方向)をビレット軸方向として圧下率67%で行った(鍛造後の素材長さ58mm)。なお、鍛造温度をTβ近傍とした試験体No.18については、確実にβ単相組織を得るために、チタン合金ビレットを940℃まで加熱し、他の試験体と同様にβ結晶粒径が550μmとなるまで保持した後に炉から出して、表2に示す鍛造温度まで空冷させた後に鍛造した。
(Β forging)
After maintaining in the furnace at 850 ° C. for 2 hours so that the temperature distribution inside the titanium alloy billet was constant, the titanium alloy billet was heated to the forging temperatures shown in Table 2. A mold in which the titanium alloy billet is removed from the furnace after being held at the forging temperature for 150 to 200 minutes according to the forging temperature until the β crystal grain size reaches 550 μm, and is heated to the forging temperature with a low-frequency heating device in advance. Forged using Forging was performed using a pair of flat surface-shaped molds at a mold moving speed of 1800 mm / min, with the deformation direction (rolling direction) as the billet axis direction and a rolling reduction of 67% (material length after forging 58 mm ). Note that the forging temperature was near T beta specimen No. For No. 18, in order to obtain a β single-phase structure with certainty, the titanium alloy billet was heated to 940 ° C. and held in the same manner as the other specimens until the β crystal grain size was 550 μm. Forging was carried out after air cooling to the forging temperature shown in FIG.

鍛造後、実施例1と同様に、鍛造温度等を管理しつつ、チタン合金ビレットの上下面を鍛造温度に加熱した金型で挟み込んで、鍛造完了時から表2に示す鍛造後保持時間が経過するまで保持し、その後直ちに取り出して室温まで送風で冷却して、チタン合金鍛造材を得た。また、表2に記載の鍛造後の冷却速度は、加熱温度等を除いて実施例1と同様に、予備実験により測定した。すなわち、チタン合金鍛造材と同形状のチタン合金素材を用意し、その1/2H,1/4D位置に熱電対を挿入し、960℃に加熱保持した後、送風で冷却し、冷却曲線を取得した。その後、900℃に到達した時から750℃に到達した時までの冷却速度が一定であるとして、冷却速度を算出した。また、鍛造温度を鍛造後の保持温度THとして、式(2)より限界保持時間tmaxを算出し、表2に併記する。 After forging, in the same manner as in Example 1, while controlling the forging temperature and the like, the upper and lower surfaces of the titanium alloy billet were sandwiched between the molds heated to the forging temperature, and the retention time after forging shown in Table 2 elapsed from the completion of forging. Until then, taken out immediately and cooled to room temperature by blowing with air to obtain a titanium alloy forged material. Moreover, the cooling rate after forging described in Table 2 was measured by a preliminary experiment in the same manner as in Example 1 except for the heating temperature and the like. That is, a titanium alloy material having the same shape as the titanium alloy forged material is prepared, a thermocouple is inserted at the 1 / 2H, 1 / 4D position, and heated and held at 960 ° C., and then cooled by blowing to obtain a cooling curve. did. Thereafter, the cooling rate was calculated assuming that the cooling rate from when it reached 900 ° C. to when it reached 750 ° C. was constant. Further, the limit holding time t max is calculated from the formula (2) using the forging temperature as the holding temperature T H after forging, and is also shown in Table 2.

(調質)
室温に冷却したチタン合金鍛造材を、Tβ未満(α+β二相域)の805℃に加熱して2時間保持して445℃/minで冷却する溶体化処理の後、610℃で8時間保持して60℃/minで室温まで冷却する時効処理を行い、試験体とした。
(refining)
Titanium alloy forging cooling to room temperature, after solution treatment cooling with T beta less than (alpha + beta two-phase region) of was heated to 805 ° C. and held for 2 hours 445 ° C. / min, 8 h holding at 610 ° C. Then, an aging treatment for cooling to room temperature at 60 ° C./min was performed to obtain a test specimen.

(材料組織の観察)
試験体における1/2H,1/4D位置を含む15mm角の立方体の小片試料を試験体から切り出し、試験体の鍛造方向と半径方向とに平行な面な断面を切り出した。この小片から、試験体の鍛造方向と半径方向とに平行な面な断面を切り出し、前記断面に対して、エメリー紙で機械研磨を行い、ダイヤモンド砥粒による仕上げ研磨の後、フッ硝酸溶液で腐食を行い、組織観察に供した。組織観察は、実施例1と同様に行い、扁平粒、非扁平粒の面積率を求めた。その結果を表2に示す。
(Observation of material structure)
A 15 mm square cubic small sample including 1 / 2H and 1 / 4D positions in the test specimen was cut out from the test specimen, and a cross section parallel to the forging direction and the radial direction of the test specimen was cut out. From this small piece, a cross section that is parallel to the forging direction and the radial direction of the specimen is cut out, and the cross section is mechanically polished with emery paper. After final polishing with diamond abrasive grains, it is corroded with hydrofluoric acid solution. And subjected to tissue observation. Tissue observation was performed in the same manner as in Example 1, and the area ratio of flat particles and non-flat particles was determined. The results are shown in Table 2.

〔評価〕
試験体について、チタン合金鍛造材の超音波探傷性の評価として、水浸探傷法にて超音波探傷検査を行い、また、機械的特性として疲労強度を評価した。いずれの評価も試験体No.18を基準に、すなわち1として規格化して(試験体No.18の値で除する)表2に示す。
[Evaluation]
The test specimen was subjected to an ultrasonic flaw detection by a water immersion flaw detection method as an evaluation of the ultrasonic flaw detection property of the titanium alloy forged material, and fatigue strength was evaluated as a mechanical characteristic. In any evaluation, specimen No. Table 2 shows the results normalized by 18 (ie, divided by the value of specimen No. 18).

(超音波探傷性)
実施例1と同様に、試験体から53mm角の立方体の試験片を切り出し、超音波探傷試験を行って、Cスコープを取得した。最大ノイズについて、試験体No.18を基準に、0.8以下を合格とする。
(Ultrasonic flaw detection)
Similarly to Example 1, a 53 mm square test piece was cut out from the test specimen, and an ultrasonic flaw detection test was performed to obtain a C scope. Specimen No. for maximum noise. On the basis of 18, 0.8 or less is accepted.

(疲労特性)
試験体の1/2H,1/4D位置から、試験体の周(接線)方向が荷重軸と平行になる疲労試験片を切り出した。室温にて、ASTM規格のE466に準拠した低サイクル疲労試験を、荷重制御で、最大荷重1030MPa、応力比0、台形波の条件で、疲労試験片が破断するまで行った。破断サイクル数について、試験体No.18を基準に、0.3以上を合格とする。
(Fatigue properties)
A fatigue test piece in which the circumferential (tangential) direction of the test body was parallel to the load axis was cut out from the 1 / 2H and 1 / 4D positions of the test body. A low cycle fatigue test in accordance with ASTM standard E466 was performed at room temperature under the conditions of maximum load of 1030 MPa, stress ratio of 0, and trapezoidal wave under load control until the fatigue test piece broke. Regarding the number of fracture cycles, the test specimen No. On the basis of 18, 0.3 or more is accepted.

試験体にTi−6246合金を適用した実施例1と同様、表2に示すように、旧β粒の扁平粒の存在割合(面積率)が多いほど、疲労強度は高くなり、一方で超音波探傷検査におけるノイズが増大する傾向が確認された。試験体No.18はβ単相域での鍛造後にほとんど温度を保持せずに冷却したため、従来のβ鍛造材に相当し、旧β粒のほとんどが扁平粒であって非扁平粒が不足し、疲労強度は高いが、超音波探傷性に劣った。   Similar to Example 1 in which the Ti-6246 alloy was applied to the test specimen, as shown in Table 2, the fatigue strength increased as the proportion of the old β-grained flat particles (area ratio) increased, while the ultrasonic wave It was confirmed that noise in the flaw detection inspection increased. Specimen No. No. 18 was cooled without maintaining the temperature after forging in the β single-phase region, so it corresponds to the conventional β forging material. Most of the old β grains are flat grains and non-flat grains are insufficient. High, but inferior in ultrasonic flaw detection.

これに対して、試験体No.16,17は、本発明に係る製造方法、すなわちβ単相域での鍛造後に温度を所定範囲の時間保持したことにより、旧β粒の非扁平粒が適度に成長し、非扁平粒、扁平粒のそれぞれの存在割合が本発明に係るチタン合金鍛造材の範囲を満足する実施例となった。その結果、試験体No.16,17は、試験体No.18と比較して疲労強度は僅かに低いものの、航空機のエンジン部品等として必要な機械的特性を保持しつつ、優れた超音波探傷性を示した。   In contrast, the test specimen No. Nos. 16 and 17 are the production method according to the present invention, that is, the temperature is maintained for a predetermined range after forging in the β single-phase region, so that the non-flat particles of the old β grains grow appropriately, and the non-flat grains, flat Each abundance ratio of the grains became an example satisfying the range of the titanium alloy forging according to the present invention. As a result, the test specimen No. 16 and 17 are specimen Nos. Although the fatigue strength was slightly lower than that of No. 18, it exhibited excellent ultrasonic flaw detection properties while maintaining the mechanical properties required for aircraft engine parts and the like.

Claims (5)

超音波探傷検査が行われる、β鍛造をされたチタン合金鍛造材であって、
厚み方向の径が50μm以上500μm以下でアスペクト比が3を超える旧β粒の結晶粒である扁平粒と、前記方向の径が30μm以上200μm以下でアスペクト比が1以上3以下である旧β粒の結晶粒である非扁平粒と、の混粒組織を有し、
前記扁平粒が40%以上99%以下、前記非扁平粒が1%以上60%以下、前記扁平粒と前記非扁平粒とが合計で90%以上存在することを特徴とするチタン合金鍛造材。
It is a forged titanium alloy forged material that undergoes ultrasonic flaw detection,
A flat grain which is a crystal grain of an old β grain having a diameter in the thickness direction of 50 μm or more and 500 μm or less and an aspect ratio exceeding 3, and an old β grain having a diameter in the direction of 30 μm or more and 200 μm or less and an aspect ratio of 1 or more and 3 or less Having a mixed grain structure of non-flat grains that are crystal grains of
The titanium alloy forging material, wherein the flat grains are 40% to 99%, the non-flat grains are 1% to 60%, and the flat grains and the non-flat grains are 90% or more in total.
次式(1)で表されるMo当量[Mo]eqが2.7を超え15未満であるチタン合金からなることを特徴とする請求項1に記載のチタン合金鍛造材。
[Mo]eq=[Mo]+[Ta]/5+[Nb]/3.6+[W]/2.5+[V]/1.5+1.25[Cr]+1.25[Ni]+1.7[Mn]+1.7[Co]+2.5[Fe] ・・・(1)
ただし、前記式(1)の[X]は、前記チタン合金における元素Xの含有量(質量%)とする。
2. The titanium alloy forging according to claim 1, comprising a titanium alloy having a Mo equivalent [Mo] eq represented by the following formula (1) of more than 2.7 and less than 15.
[Mo] eq = [Mo] + [Ta] / 5 + [Nb] /3.6+ [W] /2.5+ [V] /1.5+1.25 [Cr] +1.25 [Ni] +1.7 [ Mn] +1.7 [Co] +2.5 [Fe] (1)
However, [X] in the formula (1) is the content (mass%) of the element X in the titanium alloy.
厚さが少なくとも50mmであることを特徴とする請求項1または請求項2に記載のチタン合金鍛造材。   The titanium alloy forged material according to claim 1 or 2, wherein the thickness is at least 50 mm. β鍛造を行って請求項1ないし請求項3のいずれか一項に記載のチタン合金鍛造材を製造する製造方法であって、
前記β鍛造は、β変態点をTβで表したとき、Tβ+10℃以上に加熱して、β結晶粒径が400μm以上1000μm以下の範囲になるまで保持し、Tβ−30℃以上の温度域で鍛造し、前記温度域で20秒間以上であって次式(2)で表される限界保持時間(秒間)tmax未満の時間保持した後、直ちにTβ−150℃以下の温度まで冷却することを特徴とするチタン合金鍛造材の製造方法。
max=[11.64(1−TH/1425)]4.35 ・・・(2)
ただし、前記式(2)のTHは、前記鍛造後における保持時の温度(℃)とする。
A production method for producing a titanium alloy forged material according to any one of claims 1 to 3 by performing β-forging,
In the β forging, when the β transformation point is expressed by T β , the β forging is heated to T β + 10 ° C. or higher and held until the β crystal grain size is in a range of 400 μm to 1000 μm, and T β −30 ° C. or higher. After forging in the temperature range and holding for less than 20 seconds in the temperature range and less than the limit holding time (seconds) t max represented by the following formula (2), the temperature is immediately increased to T β −150 ° C. or less. A method for producing a titanium alloy forging material, characterized by cooling.
t max = [11.64 (1-T H / 1425)] 4.35 (2)
However, T H in the formula (2) is a temperature (℃) during holding after the forging.
請求項1ないし請求項3のいずれか一項に記載のチタン合金鍛造材に対する超音波探傷検査方法であって、
プローブ径が5〜30mmの範囲である探触子を用いて、周波数が1〜20MHzの範囲である超音波にて、前記チタン合金鍛造材の鍛造圧下量の最も大きい方向に平行な方向に探傷する工程を含むことを特徴とする超音波探傷検査方法。
An ultrasonic flaw detection inspection method for a titanium alloy forged material according to any one of claims 1 to 3,
Using a probe having a probe diameter in the range of 5 to 30 mm, flaw detection is performed in the direction parallel to the direction in which the forging reduction amount of the titanium alloy forging material is maximum with ultrasonic waves having a frequency in the range of 1 to 20 MHz. An ultrasonic flaw detection method comprising the steps of:
JP2013025373A 2012-02-13 2013-02-13 Titanium alloy forged material, manufacturing method thereof, and ultrasonic flaw detection inspection method Expired - Fee Related JP6088280B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013025373A JP6088280B2 (en) 2012-02-13 2013-02-13 Titanium alloy forged material, manufacturing method thereof, and ultrasonic flaw detection inspection method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012028183 2012-02-13
JP2012028183 2012-02-13
JP2013025373A JP6088280B2 (en) 2012-02-13 2013-02-13 Titanium alloy forged material, manufacturing method thereof, and ultrasonic flaw detection inspection method

Publications (2)

Publication Number Publication Date
JP2013189708A true JP2013189708A (en) 2013-09-26
JP6088280B2 JP6088280B2 (en) 2017-03-01

Family

ID=49390251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013025373A Expired - Fee Related JP6088280B2 (en) 2012-02-13 2013-02-13 Titanium alloy forged material, manufacturing method thereof, and ultrasonic flaw detection inspection method

Country Status (1)

Country Link
JP (1) JP6088280B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014238395A (en) * 2013-05-31 2014-12-18 アールティーアイ・インターナショナル・メタルズ,インコーポレイテッド Method of ultrasonic inspection of as-cast titanium alloy articles
JP2016000848A (en) * 2014-06-11 2016-01-07 株式会社神戸製鋼所 Titanium alloy forged material
JP2018504282A (en) * 2014-11-05 2018-02-15 アールティーアイ・インターナショナル・メタルズ,インコーポレイテッド Ti welding wire, ultrasonically inspectable weld and article obtained from the welding wire, and related methods
JP2018034207A (en) * 2017-10-10 2018-03-08 株式会社神戸製鋼所 TITANIUM ALLOY β FORGING MATERIAL, AND SUPERSONIC FLAW INSPECTION METHOD
JP2019215227A (en) * 2018-06-12 2019-12-19 株式会社神戸製鋼所 Ultrasonic flaw detection method
CN112756524A (en) * 2020-12-18 2021-05-07 陕西宏远航空锻造有限责任公司 Quasi-beta forging heating method and device for variable-section-thickness titanium alloy forging
CN113564500A (en) * 2021-06-27 2021-10-29 中国科学院金属研究所 Preparation method of high-strength ultrafine-grained TC4 titanium alloy foil
CN113996741A (en) * 2021-10-20 2022-02-01 西部超导材料科技股份有限公司 Forging method of Ti555211 titanium alloy bar with high detectability

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03140447A (en) * 1989-10-23 1991-06-14 Cooper Ind Inc Forging of microcrystalline titanium powder and method of its manufacture
JPH0417650A (en) * 1990-05-10 1992-01-22 Sumitomo Metal Ind Ltd Production of titanium alloy
JPH0849053A (en) * 1994-08-08 1996-02-20 Sumitomo Metal Ind Ltd Production of alpha + betha type titanium alloy sheet
JPH08269656A (en) * 1995-03-30 1996-10-15 Sumitomo Metal Ind Ltd Production of titanium alloy
US6387197B1 (en) * 2000-01-11 2002-05-14 General Electric Company Titanium processing methods for ultrasonic noise reduction
JP2011102414A (en) * 2009-11-10 2011-05-26 Kobe Steel Ltd NEAR-beta TYPE TITANIUM ALLOY HAVING EXCELLENT LOW CYCLE FATIGUE PROPERTY
JP2011144413A (en) * 2010-01-13 2011-07-28 Kobe Steel Ltd Titanium alloy billet having excellent flaw detectability in ultrasonic test

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03140447A (en) * 1989-10-23 1991-06-14 Cooper Ind Inc Forging of microcrystalline titanium powder and method of its manufacture
JPH0417650A (en) * 1990-05-10 1992-01-22 Sumitomo Metal Ind Ltd Production of titanium alloy
JPH0849053A (en) * 1994-08-08 1996-02-20 Sumitomo Metal Ind Ltd Production of alpha + betha type titanium alloy sheet
JPH08269656A (en) * 1995-03-30 1996-10-15 Sumitomo Metal Ind Ltd Production of titanium alloy
US6387197B1 (en) * 2000-01-11 2002-05-14 General Electric Company Titanium processing methods for ultrasonic noise reduction
JP2011102414A (en) * 2009-11-10 2011-05-26 Kobe Steel Ltd NEAR-beta TYPE TITANIUM ALLOY HAVING EXCELLENT LOW CYCLE FATIGUE PROPERTY
JP2011144413A (en) * 2010-01-13 2011-07-28 Kobe Steel Ltd Titanium alloy billet having excellent flaw detectability in ultrasonic test

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014238395A (en) * 2013-05-31 2014-12-18 アールティーアイ・インターナショナル・メタルズ,インコーポレイテッド Method of ultrasonic inspection of as-cast titanium alloy articles
JP2016000848A (en) * 2014-06-11 2016-01-07 株式会社神戸製鋼所 Titanium alloy forged material
JP2018504282A (en) * 2014-11-05 2018-02-15 アールティーアイ・インターナショナル・メタルズ,インコーポレイテッド Ti welding wire, ultrasonically inspectable weld and article obtained from the welding wire, and related methods
JP2019193947A (en) * 2014-11-05 2019-11-07 アーコニック インコーポレイテッドArconic Inc. METHOD OF ULTRASONICALLY INSPECTING WELDS OBTAINED FROM Ti WELDING WIRE
JP2018034207A (en) * 2017-10-10 2018-03-08 株式会社神戸製鋼所 TITANIUM ALLOY β FORGING MATERIAL, AND SUPERSONIC FLAW INSPECTION METHOD
JP2019215227A (en) * 2018-06-12 2019-12-19 株式会社神戸製鋼所 Ultrasonic flaw detection method
JP7080737B2 (en) 2018-06-12 2022-06-06 株式会社神戸製鋼所 Ultrasonic flaw detection method
CN112756524A (en) * 2020-12-18 2021-05-07 陕西宏远航空锻造有限责任公司 Quasi-beta forging heating method and device for variable-section-thickness titanium alloy forging
CN113564500A (en) * 2021-06-27 2021-10-29 中国科学院金属研究所 Preparation method of high-strength ultrafine-grained TC4 titanium alloy foil
CN113564500B (en) * 2021-06-27 2022-08-09 中国科学院金属研究所 Preparation method of high-strength ultrafine-grained TC4 titanium alloy foil
CN113996741A (en) * 2021-10-20 2022-02-01 西部超导材料科技股份有限公司 Forging method of Ti555211 titanium alloy bar with high detectability
CN113996741B (en) * 2021-10-20 2022-12-06 西部超导材料科技股份有限公司 Forging method of Ti555211 titanium alloy bar with high detectability

Also Published As

Publication number Publication date
JP6088280B2 (en) 2017-03-01

Similar Documents

Publication Publication Date Title
JP6088280B2 (en) Titanium alloy forged material, manufacturing method thereof, and ultrasonic flaw detection inspection method
JP6084553B2 (en) Titanium alloy forged material and method for producing the same
JP6022341B2 (en) Titanium alloy billet, method for producing titanium alloy billet, titanium alloy forged material, method for producing titanium alloy forged material, and method for producing aircraft parts
KR102364142B1 (en) Titanium alloy member
JP5952689B2 (en) Titanium alloy forged material, method for producing the same, and method for producing titanium alloy forged parts
JP6236361B2 (en) Titanium alloy intermediate forging material, titanium alloy intermediate forging material shape determination method, and titanium alloy β forging material manufacturing method
JP2020521636A (en) Control method of hot-rotating shape/characteristic integration of tubular member based on hot working diagram
WO2014196042A1 (en) Forged titanium alloy material and method for producing same, and ultrasonic testing method
JP6454768B2 (en) Titanium alloy β-forged material and ultrasonic inspection method
JP5827165B2 (en) Titanium alloy forging, its manufacturing method, and its ultrasonic flaw detection inspection method
JP6570774B2 (en) Watch parts
CN107904442B (en) A kind of processing method of fine grain pure titanium rod material
JP2017190480A (en) Titanium sheet
Vrátná et al. Investigation of microhardness and microstructure of AZ31 alloy after high pressure torsion
KR102559606B1 (en) aluminum alloy plate
Ratochka et al. The influence of structure and phase composition of titanium alloy on superplastic deformation
WO2022249665A1 (en) Aluminum alloy, aluminum alloy wire, and method for manufacturing aluminum alloy wire
KR102582659B1 (en) Commercially pure titanium sheet having high room temperature formability and high strength and method for manufacturing the same
CN117191580B (en) Method for detecting microscopic residual stress
JP2016000848A (en) Titanium alloy forged material
JP2023148659A (en) Titanium alloy member and manufacturing method thereof
JP5846530B2 (en) Co-Cr-Mo base alloy and method for producing Co-Cr-Mo base alloy
Poerschke Mechanical Properties of Oxide Dispersion Strengthened Molybdenum Alloys

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150901

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170203

R150 Certificate of patent or registration of utility model

Ref document number: 6088280

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees