JP2020521636A - Control method of hot-rotating shape/characteristic integration of tubular member based on hot working diagram - Google Patents

Control method of hot-rotating shape/characteristic integration of tubular member based on hot working diagram Download PDF

Info

Publication number
JP2020521636A
JP2020521636A JP2019553195A JP2019553195A JP2020521636A JP 2020521636 A JP2020521636 A JP 2020521636A JP 2019553195 A JP2019553195 A JP 2019553195A JP 2019553195 A JP2019553195 A JP 2019553195A JP 2020521636 A JP2020521636 A JP 2020521636A
Authority
JP
Japan
Prior art keywords
hot
strain rate
strain
diagram
tubular member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019553195A
Other languages
Japanese (ja)
Other versions
JP2020521636A5 (en
Inventor
琴香 夏
琴香 夏
寧遠 朱
寧遠 朱
秀全 程
秀全 程
剛鋒 肖
剛鋒 肖
Original Assignee
華南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華南理工大学 filed Critical 華南理工大学
Publication of JP2020521636A publication Critical patent/JP2020521636A/en
Publication of JP2020521636A5 publication Critical patent/JP2020521636A5/ja
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/30Automatic controllers with an auxiliary heating device affecting the sensing element, e.g. for anticipating change of temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/14Spinning
    • B21D22/16Spinning over shaping mandrels or formers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/16Heating or cooling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • G01N3/18Performing tests at high or low temperatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • G01N2203/0071Creep
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • G01N2203/0075Strain-stress relations or elastic constants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/0222Temperature
    • G01N2203/0226High temperature; Heating means

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Automation & Control Theory (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Heat Treatment Of Steel (AREA)
  • Forging (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Mounting, Exchange, And Manufacturing Of Dies (AREA)

Abstract

本発明が熱間加工図に基づく筒状部材の熱間強回転形状/特性一体化の制御方法を公開し、変形しにくい金属材料の熱可塑性成形過程において発生する動的再結晶温度と歪み速度範囲内での金属材料の高温力学性能試験を行う。熱可塑性成形過程における電力損失及び変流不安定性判断基準に基づいて、高温力学の性能試験で変流応力歪みの関係を得た上、それぞれ異なる歪みにおける電力損失図と変流不安定図を構成する。電力損失図と変流不安定図を組み合わせ、材料の熱間加工図を取得する。電力損失率係数ηの分布及び変流不安定性の判断に基づき、変流不安定性判断基準の潜在的危険な成形条件及び安全な成形条件を満たされた下での、電力損失率係数ηの熱可塑性成形に有利な成形条件を分析して取得する。最後に、熱間加工図に従って得られた材料は熱間成形の温度及び歪み速度に有利であり、筒状部材熱間強回転成形を行う。【選択図】図8The present invention discloses a method of controlling the shape/characteristic integration of the hot rolling of the cylindrical member based on the hot working diagram, and the dynamic recrystallization temperature and strain rate generated in the thermoplastic forming process of the metal material which is difficult to deform. Perform high temperature mechanical performance test of metallic materials within the range. Based on the criteria of power loss and current instability in the thermoplastic molding process, the relationship between current stress and strain was obtained in the performance test of high temperature mechanics, and the power loss diagram and current instability diagram at different strains were constructed. To do. Combine the power loss diagram and the current instability diagram to obtain the hot working diagram of the material. Based on the distribution of the power loss rate coefficient η and the judgment of the current instability, the heat of the power loss rate coefficient η under the conditions of potentially dangerous molding conditions and safe molding conditions of the current flow instability criterion is satisfied. A molding condition advantageous for plastic molding is analyzed and obtained. Finally, the material obtained according to the hot working diagram is advantageous in the temperature and strain rate of hot forming, and is subjected to hot strong rotational forming of tubular members. [Selection diagram] Figure 8

Description

本発明は熱間加工図に関し、金属材料の熱間成形分野に属する。特に、熱間加工図による筒状部材の熱間強回転形状/特性一体化制御方法に関する。 The present invention relates to hot working drawings and belongs to the field of hot forming of metallic materials. In particular, the present invention relates to a method for controlling the shape/characteristic integrated hot rolling of a tubular member according to a hot working diagram.

従来の塑性成形が寸法精度に対する要求の上、成形部品の優れた組織性能を実現することを提出したのは、現在の塑性成形技術の特徴と発展傾向である。飛行機や宇宙船、国防軍工、艦船等の高精緻な技術の発展に伴い、高い寸法精度と良好な高温性能を同時に有する筒状部材への応用はますます広くなってきている。しかしその類の合金は室温で変形抵抗が大きく、塑性が悪く、常温で塑性成形することは極めて困難である。点負荷連続部分成形の特徴を有する熱間強回転成形は現在該類の変形しにくい金属筒部材を得るための最も有効な方法の一つである。熱間強回転過程において、熱の結合作用により、その成形メカニズムが複雑であり、成形温度及び各プロセスパラメータの組み合わせをどのように制御することは、高い寸法精度と高温性能の筒状部材を同時に得ることの鍵である。 It is the characteristics and development tendency of the current plastic forming technology that the conventional plastic forming has realized the excellent structural performance of the formed part in addition to the requirement for dimensional accuracy. Along with the development of highly precise technology for airplanes, spacecrafts, Defense Forces, ships, etc., its application to tubular members having high dimensional accuracy and good high-temperature performance is becoming more and more widespread. However, such alloys have large deformation resistance at room temperature and poor plasticity, and it is extremely difficult to perform plastic forming at room temperature. Strong hot-rolling hot forming, which has the characteristic of point-load continuous partial forming, is currently one of the most effective methods for obtaining such a metal tube member that is difficult to deform. In the hot strong rotation process, the forming mechanism is complicated by the coupling action of heat, and how to control the combination of forming temperature and each process parameter is to control the cylindrical member with high dimensional accuracy and high temperature performance at the same time. It's the key to getting it.

材料化学組成以外に、ミクロ組織形態は材料性能の決定要因である。したがって、熱間強回転過程において、ミクロ組織の変化は製品性能を決定する鍵である。熱間強回転成形過程におけるミクロ組織の変化メカニズムを研究するために、従来の方法は金相顕微鏡(OM)、X線回折(XRD)、後方散乱電子回折(EBSD)などを用いて組織及びテクスチャに対して実験的に研究する。しかし実験手段の限界性により、ミクロ組織の動態的観察を実現することができず、経験によって予測及び制御を行うことが困難であり、一定的な盲目性があり、時間と手間もかかる。 Besides material chemical composition, microstructure morphology is a determinant of material performance. Therefore, the microstructure change is the key to determine the product performance in the process of strong hot rolling. In order to study the change mechanism of the microstructure in the process of high-speed hot-rolling, the conventional method is to use the texture phase microscope (OM), X-ray diffraction (XRD), backscattering electron diffraction (EBSD), etc. To study experimentally. However, due to the limitation of experimental means, it is not possible to realize dynamic observation of microstructure, it is difficult to predict and control by experience, there is a certain blindness, and it takes time and labor.

形状/特性一体化制御は、塑性成形技術の重要な発展方向である。回転プレス成形においては、現在、主にマクロ的な成形品質、回転プレス欠陥制御上のプロセスパラメータを最適化の研究が注目され、ミクロ的な組織変化メカニズムについての研究もみな上記の実験方法を採用され、成形後のミクロ的な組織を分析するだけにとどまり、マクロ的な成形品質とミクロ的な組織変化を協調して研究することがなく、そのうえ、組織変化の物理メカニズムの基礎における具体的な形状/特性一体化制御方法をも提供されていない。 Shape/property integrated control is an important development direction of plastic forming technology. In rotary press molding, mainly research on optimization of macroscopic molding quality and process parameters for rotary press defect control is currently attracting attention, and research on microscopic microstructural change mechanism is also adopted the above experimental method. Therefore, it is only necessary to analyze the microscopic structure after molding, and there is no need to study macroscopic molding quality and microscopic structural changes in a coordinated manner. A shape/characteristic integrated control method is not provided either.

本発明の目的は、従来技術の上記の欠点及び欠陥を克服し、熱間加工図に基づく筒状部材の熱間強回転形状/特性一体化の制御方法を提供し、盲目的な実験と材料の無駄を回避し、材料の性能的な可能性を十分に活用することである。本発明の技術的解決策では、加工中の材料のマクロ的な流動と材料の変形中のミクロ的な組織変化の両方が考慮され、高い寸法精度と良好な組織性能の筒状部材を同時に得ることができる。 The object of the present invention is to overcome the above-mentioned drawbacks and deficiencies of the prior art, to provide a control method of hot-rolling shape/property integration of a tubular member based on hot-working drawings, and to perform blind experiments and materials Is to avoid waste and take full advantage of the material's performance potential. The technical solution of the present invention considers both the macroscopic flow of the material during processing and the microstructure change during deformation of the material, and simultaneously obtains a tubular member with high dimensional accuracy and good tissue performance. be able to.

熱間加工図に基づく筒状部材の熱間強回転形状/特性一体化の制御方法は、
異なる金属材料の熱可塑性成形過程における発生する動的再結晶温度、歪み速度及び歪みの違いに基づいて、動的再結晶が発生する温度、歪み速度及び歪みの条件の下で金属材料の高温力学性能試験を行うステップ(1)と、
限られた試験温度、歪み速度のサンプルポイントの下で得られた変流応力と歪み関係に対して補間計算を行うステップ(2)と、
熱可塑性成形過程における電力損失及び変流不安定性判断基準に基づいて、拡張された高温力学の性能試験で変流応力と歪みの関係を得た上、それぞれ異なる歪みにおける電力損失図と変流不安定図を構成するステップ(3)と、
電力損失図と変流不安定図を組み合わせ、材料の熱間加工図を取得する。電力損失率係数ηの分布及び変流不安定性の判断に基づき、変流不安定性判断基準の潜在的危険な成形条件及び安全な成形条件を満たされた下での、電力損失率係数ηの熱可塑性成形に有利な成形条件を分析して取得するステップ(4)と、
最後に、熱間加工図に従って得られた材料は熱間成形の温度及び歪み速度に有利であり、熱間強回転成形プロセスパラメータを確定し、筒状部材熱間強回転成形を行い、寸法精度及び組織性能の要求を満たした筒状部材を取得するステップ(5)と、を含む。
The control method for the hot strong rotation shape/characteristic integration of the cylindrical member based on the hot working diagram is
High temperature mechanics of metal materials under the conditions of temperature, strain rate and strain at which dynamic recrystallization occurs, based on the difference of dynamic recrystallization temperature, strain rate and strain occurring during thermoplastic forming process of different metal materials Step (1) of performing a performance test,
A step (2) of performing an interpolation calculation on the relation between the flow stress and the strain obtained under the limited test temperature and strain rate sample points;
Based on the criteria of power loss and current instability in the thermoplastic forming process, the relationship between current stress and strain was obtained in the extended high temperature dynamics performance test, and the power loss diagram and current non-current at different strains were obtained. Step (3) of constructing the stability diagram,
Combine the power loss diagram and the current instability diagram to obtain the hot working diagram of the material. Based on the distribution of the power loss factor η and the judgment of the current instability, the heat of the power loss factor η under the conditions of potentially dangerous molding conditions and safe molding conditions Analyzing and obtaining molding conditions advantageous for plastic molding;
Finally, the material obtained according to the hot working diagram is advantageous for the temperature and strain rate of hot forming, and the hot strong rotational forming process parameters are established, and the tubular member is subjected to hot strong rotational forming to obtain the dimensional accuracy. And (5) obtaining a tubular member satisfying the requirements for tissue performance.

上記ステップ(1)の前記金属材料は熱可塑性成形過程において、動的再結晶が発生しやすい中低層欠陥金属又は合金であり、ステップ(1)の前記高温力学性能試験温度は、材料の動的再結晶温度以下50℃と熱可塑性成形温度以上50℃の範囲内である。 The metal material of the step (1) is a metal or metal alloy having a middle-to-low layer defect in which dynamic recrystallization is likely to occur in the thermoplastic molding process, and the high temperature mechanical performance test temperature of the step (1) is the dynamic of the material. It is within the range of 50° C. below the recrystallization temperature and 50° C. above the thermoplastic molding temperature.

上記ステップ(5)の熱間加工図は動的材料モデルに基づく熱間加工図である。 The hot working drawing of the step (5) is a hot working drawing based on the dynamic material model.

上記ステップ(1)の前記高温力学性能試験の歪み速度は、筒状部材の強力回転歪み速度の分布に従って0.01/s〜10/sの範囲を取る。ステップ(1)の前記高温力学性能試験は歪み量が0.6以上であることを保証する。 The strain rate of the high temperature mechanical performance test in the step (1) is in the range of 0.01/s to 10/s according to the distribution of the strong rotational strain rate of the tubular member. The high temperature mechanical performance test of step (1) ensures that the strain amount is 0.6 or more.

上記ステップ(2)の前記補間計算は、温度及び歪み速度試験サンプル数を拡張する。 The interpolation calculation of step (2) above expands the temperature and strain rate test sample numbers.

上記ステップ(3)の前記変流不安定基準における歪み速度感度係数mは、変流応力σの歪み速度
に対する偏微分であり、これは塑性変形により損失されたたエネルギーGとミクロ組織変化により損失されたエネルギーJの分配を決定し、
材料の加工過程における単位時間内に外力が単位体積材料にあたる仕事量はPであり、つまり材料が得られた総エネルギーは、応力σと歪み速度
を乗算することによって得られ、それは材料の塑性変形により消費されるエネルギーGとミクロ組織変化により消費されるエネルギーJに変換される。
理想的なエネルギー損失システムは、塑性変形とミクロ組織変化で消費されるエネルギーに等しいと考えられるが、通常、材料は非線形的なエネルギー損失状態にあり、エネルギー分配関係を説明するために、変流応力σの歪み速度
に対する偏微分を採用し、すなわち歪み速度感度係数mはその分配比を説明する。
The strain rate sensitivity coefficient m in the above-mentioned criterion of instability of current transformation in the step (3) is the strain rate of the current stress σ.
, Which determines the distribution of energy G lost by plastic deformation and energy J lost by microstructural changes,
The amount of work that the external force exerts on the unit volume material in a unit time in the material processing process is P, that is, the total energy obtained by the material is the stress σ and the strain rate.
Which is converted into the energy G consumed by the plastic deformation of the material and the energy J consumed by the microstructural change.
The ideal energy loss system is considered to be equal to the energy consumed by plastic deformation and microstructural change, but usually the material is in a non-linear energy loss state, and the Strain rate of stress σ
, The strain rate sensitivity coefficient m describes its distribution ratio.

上記ステップ(4)の前記危険な成形条件は、歪み速度感度係数mによって説明された大きな塑性変形の不可逆的な熱力学的極値原理に基づく変流不安定基準を満たす条件であり、
大きな塑性変形の不可逆的な熱力学的極値原理に基づき、速度感度係数m及び歪み速度の関数を用いて変流不安定基準を構築する。
熱可塑性成形に有利な条件は、ミクロ組織の変化によって損失されたエネルギーJが占める電力損失率係数ηを説明する大きな成形条件である。理想的な線形エネルギー損失システムに置かれる時に、ミクロ組織から損失されるエネルギーは最も大きいJmax=P/2であり、従って、材料から得られる総エネルギーPと損失エネルギーとの関係に基づき、歪み速度感度係数mの関数を用いて電力損失率ηを説明し、もって、ミクロ組織から損失されたエネルギーJの割合を説明する。
The dangerous forming condition of the step (4) is a condition satisfying the current instability criterion based on the irreversible thermodynamic extreme value principle of large plastic deformation explained by the strain rate sensitivity coefficient m,
Based on the irreversible thermodynamic extremum principle of large plastic deformation, the current instability criterion is constructed using the function of velocity sensitivity coefficient m and strain rate.
An advantageous condition for thermoplastic molding is a large molding condition that explains the power loss rate coefficient η occupied by the energy J lost due to the change in microstructure. When placed in an ideal linear energy loss system, the energy lost from the microstructure is the largest J max =P/2, and therefore, based on the relationship between the total energy P obtained from the material and the loss energy, the strain The function of the speed sensitivity coefficient m is used to explain the power loss rate η, and thus the proportion of the energy J lost from the microstructure.

上記ステップ(5)の前記熱間強回転成形温度は熱間成形図で得られた熱可塑性成形温度に有利な±25℃の範囲内に制御する必要がある。 It is necessary to control the hot strong rotational molding temperature in the step (5) within a range of ±25° C., which is advantageous to the thermoplastic molding temperature obtained from the hot molding diagram.

上記ステップ(5)の前記熱間強回転成形歪み速度は、回転ホイール成形角、回転ホイール送り比、主軸回転、薄化率及び/又はブランク壁厚を制御することにより実現され、
熱間強回転成形プロセスパラメータの確定は、筒状部材の強力回転プレス変形領域の歪み速度
と回転ホイール成形角αρ、回転プレス前のブランク壁厚t、回転プレス後のワークピースの壁厚t、壁厚薄化率φ、送り速度vの関係から求められる。
ここで、αρは、回転ホイール成形角であり、tは回転プレス前のブランク壁厚であり、tは回転プレス後のワークピース壁厚であり、tθfは回転プレス前のブランク外面と回転プレス後ワークピース外面間の異なるθ層からワークピース内面に至る距離である。φは壁厚薄化率であり、vは回転ホイール前の成形領域質点の流速(回転ホイールに対して)であり、逆回転成形において、vは送り速度に等しく、その送り比fと主軸回転nとの関係はv=f・nである。
The hot strong rotational forming strain rate in the step (5) is realized by controlling the rotating wheel forming angle, the rotating wheel feed ratio, the spindle rotation, the thinning rate and/or the blank wall thickness,
The hot hot rotary forming process parameters are determined by the strain rate of the strong rotary press deformation region of the tubular member.
And the rotary wheel forming angle α ρ , the blank wall thickness t 0 before the rotary press, the wall thickness t f of the workpiece after the rotary press, the wall thickness thinning ratio φ t , and the feed speed v 0 .
Where α ρ is the rotary wheel forming angle, t 0 is the blank wall thickness before rotary pressing, t f is the workpiece wall thickness after rotary pressing, and t θf is the blank outer surface before rotary pressing. And the distance from the different θ layers between the outer surfaces of the workpiece after rotary pressing to the inner surface of the workpiece. φ t is the wall thickness thinning ratio, v 0 is the flow velocity of the molding region mass point in front of the rotating wheel (relative to the rotating wheel), and in reverse rotational molding, v 0 is equal to the feed rate and its feed ratio f The relationship with the spindle rotation n is v 0 =f·n.

上記ステップ(1)の動的再結晶条件は以下のとおりであり、ステップ(1)に記載の中低層欠陥金属材料の中、熱可塑性成形過程において、転位密度が臨界値に達することによって結晶粒界及び高い転位密度の応力集中箇所に転位密度が極めて低い再結晶核を形成し、且つ成長しやすく、熱処理過程における再結晶を区別するため、このような組織変化過程を動的再結晶と呼ぶ。 The dynamic recrystallization conditions of the step (1) are as follows, and in the middle-low layer defect metal material described in the step (1), when the dislocation density reaches a critical value in the thermoplastic molding process, the crystal grains are This structure change process is called dynamic recrystallization because it forms recrystallized nuclei with extremely low dislocation density and easily grows at the boundaries and stress concentration points with high dislocation density, and distinguishes recrystallization during the heat treatment process. ..

金属材料の動的再結晶温度及び歪み速度の確定は主に材料の組織状態、化学組成、成形形態などの諸要因に影響される。歪み速度については通常成形方式を考え、本発明の中では熱間強回転成形になる。その歪み速度は通常0.01/s〜10/sの範囲であり、異なる歪み速度での動的再結晶温度は熱処理中の再結晶温度を参照することができ、しかし、正確な再結晶温度は主に試験によって得られる。 The determination of the dynamic recrystallization temperature and the strain rate of a metallic material is mainly influenced by various factors such as the material's structural state, chemical composition, and molding morphology. Regarding the strain rate, a normal forming method is considered, and in the present invention, hot hot rotation forming is performed. The strain rate is usually in the range of 0.01/s to 10/s, and the dynamic recrystallization temperature at different strain rates can refer to the recrystallization temperature during heat treatment, but Is mainly obtained by testing.

1、本発明が採用した技術的解決手段は、物理的メカニズムレベルから熱間強回転成形回転形状/特性一体化の制御を実現することができる。
2、本発明が採用した技術的解決手段は、高い寸法精度と良好な組織性能を有する筒状部材を同時に得ることができる。
3、本発明が採用した技術的解決手段は、金属材料の熱可塑性成形の危険な成形条件が得られ、成形不良及び減少を回避することができる。
このように、本発明は、変形困難な金属薄壁筒状部品に対して高精度の外形寸法を有するだけでなく、さらに微細で均一で、変流不安定現象のないミクロ結晶粒組織を有し、それによって良好な機械的性能を有し、変形しにくい金属筒状部品の寸法精度と組織性能の一体化制御が実現できる。
1. The technical solution adopted by the present invention can realize the control of the hot strong rotary forming rotary shape/characteristic integration from the physical mechanism level.
2. The technical solution adopted by the present invention can simultaneously obtain a tubular member having high dimensional accuracy and good tissue performance.
3. The technical solution adopted by the present invention makes it possible to obtain dangerous molding conditions for thermoplastic molding of metal materials, and avoid molding defects and reduction.
As described above, the present invention not only has a highly accurate external dimension for a metal thin-walled tubular component that is difficult to deform, but also has a finer and more uniform micro-grain structure that is free from the phenomenon of instability in current flow. In this way, it is possible to realize integrated control of dimensional accuracy and tissue performance of a metal tubular part that has good mechanical performance and is difficult to deform.

筒状部材の強力回転プレス変形領域歪み速度の計算式である。6 is a calculation formula of a strain rate of a strong rotary press deformation region of a tubular member. 熱可塑成形過程におけるエネルギーの組成である。It is the composition of energy in the thermoplastic molding process. 歪み速度感度係数式である。It is a strain rate sensitivity coefficient formula. 理想線形と非線形的エネルギーの損失分配である。Ideally linear and non-linear energy loss distribution. 電力損失率係数式である。It is a power loss rate coefficient formula. 大きな塑性変形の不可逆的な熱力学的極値原理に基づく変流不安定判断基準である。It is a criterion for instability of current change based on the irreversible thermodynamic extreme value principle of large plastic deformation. 本発明の実施例のフローチャートである。It is a flow chart of an example of the present invention. 本発明の熱間強回転で得られた筒状部材の概略図である。It is a schematic diagram of a cylindrical member obtained by strong hot rotation of the present invention. 本発明の高温平面歪み圧縮試験の試料図である。It is a sample figure of the high temperature plane strain compression test of the present invention. 本発明の高温平面歪み圧縮試験のロード概略図である。FIG. 3 is a load schematic diagram of the high temperature plane strain compression test of the present invention. 本発明の高温力学性能試験の熱負荷曲線図である。It is a heat load curve figure of the high temperature mechanical performance test of this invention. 本発明の高温平面歪み圧縮変流応力歪みの計算式である。It is a calculation formula of high temperature plane strain compressive current stress strain of the present invention. 本発明の高温平面歪み圧縮によって得られた変流応力歪みの関係である。It is the relationship of the change current stress strain obtained by the high temperature plane strain compression of the present invention. 本発明によって得られた電力損失図である。It is a power loss diagram obtained by the present invention. 本発明によって得られた変流不安定図である。FIG. 4 is a current instability diagram obtained by the present invention. 本発明によって得られた動的材料に基づくモデル熱間加工図である。It is a model hot work drawing based on the dynamic material obtained by the present invention. 本発明のHaynes230ニッケルベース高温合金歪みが1である時の熱間加工図及び金相である。そのうち、図17aは本発明のHaynes230ニッケルベース高温合金歪みが1である時の熱間加工図である。図17bは本発明のHaync230ニッケルベース高温合金歪みが1である時の金相の一である。図17cは本発明のHaync230ニッケルベース高温合金歪みが1である時の金相の二である。図17dは本発明のHaync230ニッケルベース高温合金歪みが1である時の金相の三である。FIG. 3 is a hot work diagram and a metal phase when the Haynes 230 nickel-based high temperature alloy strain of the present invention is 1. FIG. Among them, FIG. 17a is a hot work diagram when the Haynes 230 nickel base high temperature alloy strain of the present invention is 1. FIG. 17b is one of the metal phases of the Haync230 nickel-based high temperature alloy of the present invention when the strain is 1. FIG. 17c is the second of the metallic phases when the strain of Haync230 nickel-based high temperature alloy of the present invention is 1. FIG. 17d is three of the metallic phases when the strain of Haync230 nickel-based high temperature alloy of the present invention is 1. 本発明の熱間強回転成形筒状部材ブランクの概略図である。It is a schematic diagram of a hot strong rotation forming cylindrical member blank of the present invention. 本発明の三回転ホイールの逆回転ピッチの回転プレス成形概略図である。It is a rotary press molding schematic of the reverse rotation pitch of the three-rotation wheel of this invention. 本発明のHaync230ニッケルベース高温合金熱間強回転金相属組織である。It is a Haync230 nickel-based high temperature alloy hot rolling strong metallurgical structure of the present invention. 本発明の高温一軸引張試料図である。It is a high temperature uniaxial tension sample figure of this invention.

以下は図面及び実施例を参照して本発明をさらに説明し、本発明の請求範囲は実施例に限定されるものではない。 Hereinafter, the present invention will be further described with reference to the drawings and examples, and the claims of the present invention are not limited to the examples.

図1に示す筒状部材強回転プレス変形領域歪み速度
計算式に基づいて高温力学性能試験における歪み速度の範囲を確定する。回転プレス成形における回転ホイール成形角αρ、回転プレス前ブランク壁厚t、回転プレス後のワークピース壁厚t、回転プレス前ブランク外面と回転プレス後ワークピース外面間の異なるθ層からワークピース内面に至る距離tθf、壁厚薄化率φ、送り速度vに基づき、そのうち送り速度vと送り比fと主軸回転nの関係はv=f・nであり、筒状部材強回転プレス変形領域歪み速度
が0.01/s〜10/s範囲内に確定し、通常0.05/s〜5/s内にある。そのため、高温力学的性能試験の歪み速度は0.01/s〜10/sの範囲で選択することができる。
Cylindrical member shown in Fig. 1 Strong rotation press deformation region strain rate
The strain rate range in the high temperature mechanical performance test is established based on the calculation formula. Rotating wheel forming angle α ρ in rotating press forming, blank wall thickness t 0 before rotating press, workpiece wall thickness t f after rotating press, work from different θ layer between outer surface of blank before rotating press and outer surface of workpiece after rotating press. distance t .theta.f leading to piece inner surface, based wall partiality rate phi t, the feed rate v 0, the relationship between them feeding speed v 0 and the feed ratio f and spindle rotation n v is 0 = f · n, the tubular member Strong rotation press deformation area strain rate
Is determined within the range of 0.01/s to 10/s, and is usually within the range of 0.05/s to 5/s. Therefore, the strain rate of the high temperature mechanical performance test can be selected in the range of 0.01/s to 10/s.

本発明は動的材料モデルに基づく熱間加工図を用いる。材料の加工過程における単位時間内に外力が単位体積材料にあたる仕事量P、つまり材料が得られた総エネルギーである。動的材料モデルの熱間加工図による前記外力の仕事(エネルギー)と材料の塑性変形による消費さえたエネルギーとの関係に基づくと、図2に示すようになる。材料から得られる総エネルギーPは、応力σと歪み速度
の積で表すことができ、つまり、塑性変形により消費されるエネルギー損失量Gとミクロ組織変化により消費されるエネルギー補足損失量Jの2つの部分によって構成される。そのうち、損失量Gと補足損失量Jの分配は図3に示すように歪み速度感度係数mによって決定される。
The present invention uses hot work drawings based on dynamic material models. An external force is a work amount P corresponding to a unit volume material in a unit time in a material processing process, that is, a total energy obtained from the material. Based on the relationship between the work (energy) of the external force and the energy consumed by the plastic deformation of the material according to the hot working diagram of the dynamic material model, it becomes as shown in FIG. The total energy P obtained from the material is the stress σ and the strain rate.
It can be expressed by the product of, namely, the energy loss amount G consumed by plastic deformation and the energy supplemental loss amount J consumed by microstructural change. Among them, the distribution of the loss amount G and the supplementary loss amount J is determined by the strain velocity sensitivity coefficient m as shown in FIG.

図4(a)に示すように、材料が理想的な線形エネルギー損失状態である場合には、歪み速度感度係数m=1となり、このときの補足損失量は最大値Jmax=P/2となる。一般的には、図4(b)に示すように、材料が非線形的なエネルギー損失状態にあり、したがって、図5に示すような電力損失率係数ηを用いて熱可塑性成形過程おけるミクロ組織変化の損失エネルギーが占める割合を説明する。 As shown in FIG. 4A, when the material is in an ideal linear energy loss state, the strain rate sensitivity coefficient m=1, and the supplementary loss amount at this time is the maximum value J max =P/2. Become. Generally, as shown in FIG. 4( b ), the material is in a non-linear energy loss state, and therefore, the microstructural change in the thermoplastic molding process using the power loss rate coefficient η as shown in FIG. Explain the ratio of energy loss in.

熱可塑性成形過程において、材料の変形不安定現象は、主に以下の局部塑性流動、断熱せん断帯形成、硬質点周囲ボイド発生、粒界くさび型開裂などがある。動的材料モデルに基づく熱間加工図において図6に示すような大きな塑性変形非可逆熱特性の極大値原理に基づく変流不安定判断基準を用いてそれを判断する。図6に示すように、歪み速度感度係数mと歪み速度
を含む安定判断基準が成立すると、この温度Tと歪み速度
の条件では不安定な危険が存在することを表している。
In the thermoplastic forming process, the deformation instability phenomenon of the material mainly includes the following local plastic flow, adiabatic shear band formation, void generation around a hard point, and grain boundary wedge type cleavage. In the hot working diagram based on the dynamic material model, it is judged by using the criterion of unstable current flow based on the maximum value principle of large plastic deformation irreversible thermal characteristics as shown in FIG. As shown in FIG. 6, the strain rate sensitivity coefficient m and the strain rate
If the stability criterion including
It means that there is an unstable danger under the condition of.

本発明の熱間加工筒状部材熱間強回転形状/特性一体化制御方法のフローチャートは図7に示す通りである。 The flowchart of the hot-working tubular member hot-rotation shape/characteristic integrated control method of the present invention is as shown in FIG.

(実施例1)
材料は銘柄Haynes230というニッケルベース高温合金であり、それはNi−Cr−W−Mo固溶強化型低層欠陥高温合金である。そのうち、熱間強回転して得られる筒状部材(図8に示す)のキャビティ直径d=54mmであり、壁厚δ=2mmであり、長さl=500mmである。
(Example 1)
The material is a brand Haynes 230 nickel-based high temperature alloy, which is a Ni-Cr-W-Mo solid solution strengthened low layer defect high temperature alloy. Among them, the cavity diameter d=54 mm, the wall thickness δ=2 mm, and the length l=500 mm of the tubular member (shown in FIG. 8) obtained by the strong hot rolling were used.

1、本実施例は高温平面歪み圧縮試験を用いて高温力学性能試験を行う。試料はワイヤカット方式を採用して図9に示すように10×15×20mmの直方体試料に加工し、試験過程におけるロード方式は図10に示すようになる。 1. In this example, a high temperature plane strain compression test is used to perform a high temperature mechanical performance test. The sample is processed into a rectangular parallelepiped sample of 10×15×20 mm 3 as shown in FIG. 9 by adopting the wire cut system, and the loading system in the test process is as shown in FIG.

2、文献及び試験に基づいてHaynes230ニッケルベース高温合金が1000℃程度であることを確定し、そのため、高温力学性能の温度が950℃〜1200℃であることを確定し、50℃ごとに1つのレベルを選択し、合計6つのレベルを選択する。図1に示すように、筒状部材強力回転プレス変形領域歪み速度
の計算式は、歪み速度を0.01/s〜10/sの範囲内で得られるため、試験の歪み速度は0.01/s、0.1/s、1/s、10/sの4つのレベルに設計する。
2. Based on literature and tests, it was determined that the Haynes 230 nickel-based high temperature alloy was about 1000° C., and therefore the temperature of the high temperature mechanical performance was determined to be 950° C. to 1200° C., one for each 50° C. Select a level and select a total of 6 levels. As shown in FIG. 1, the tubular member strong rotary press deformation region strain rate
Since the calculation formula of is obtained in the strain rate within the range of 0.01/s to 10/s, the strain rate of the test is 0.01/s, 0.1/s, 1/s, 10/s. Design on four levels.

3、試験は単要素試験の設計方法を採用し、Gleeble−3500熱シミュレーション試験機において計24組の試験を行い、試験過程においては、まず10℃/sで試料を試験に必要な温度50℃以上に加熱し、3min保温して試料を均一に加熱させ、さらに5℃/sで試験温度まで降温して5min保温し、続いて平面歪み高温圧縮を行い、圧縮過程において試験機が試料の温度を制御して等温圧縮を確保し、実際の歪み量が1に圧縮された後に水冷の方式で試料に焼入れを行い、できるだけ変形組織を保持し、試料に対してミクロ組織の研究ができるようにする。熱負荷曲線は図11に示す通りである。 3. The test adopts the design method of single element test, and a total of 24 sets of tests are conducted on the Gleeble-3500 thermal simulation tester. In the test process, the temperature of the sample is 50° C. which is necessary for the test at 10° C./s. The sample is heated to the above temperature for 3 minutes to evenly heat it, and then the temperature is lowered to the test temperature at 5°C/s for 5 minutes and then flat strain hot compression is performed. Is controlled to ensure isothermal compression, and after the actual strain amount is compressed to 1, the sample is quenched with a water-cooled method to retain the deformed structure as much as possible and to study the microstructure of the sample. To do. The heat load curve is as shown in FIG.

4、試験方法に従って高温平面歪み圧縮試験を行い、圧縮過程における実際の歪みεは圧縮前後の試料の厚さhとh−Δhの比の自然対数で求め、実際の応力σはアンビルの荷重力Fとアンビル幅wかける試料の長さbとの積の比であり、すなわち荷重力Fとアンビルと試料の接触面積w・bとの比であり、計算式は図12に示す通りであり、歪み係数Aと応力係数Bは0.866である。得られた変流応力歪みの関係は図13に示す通りである。 4. A high temperature plane strain compression test is performed according to the test method. The actual strain ε in the compression process is obtained by the natural logarithm of the ratio of the thickness h of the sample before and after compression and h-Δh, and the actual stress σ is the anvil load force. It is the ratio of the product of F and the anvil width w times the length b of the sample, that is, the ratio of the load force F and the contact area w·b between the anvil and the sample. The calculation formula is as shown in FIG. The strain coefficient A and the stress coefficient B are 0.866. The relationship of the obtained current flow stress strain is as shown in FIG.

5、試験データを補間計算し、有限の24組の試験条件を精度が合理的な温度と歪み速度の二次元平面に拡張する。図5に示す式で得た電力損失率係数ηの変形温度Tと歪み速度
で構成される二次元平面内の分布を計算し、且つ等値線で表現し、すなわち図14に示すような一定の歪み時の電力損失図を得ることができる。図6に示す式によって変流不安定判定基準の値が温度と歪み速度の二次元平面内での分布を計算し、図15に示す一定の歪み時の変流不安定図を取得する。図14と図15を併せて、図6に示すような変流不安定判定基準に満たす領域を灰色で示すと、図16に示すようなHaynes230合金の歪み時の熱間加工図を簡単かつ直観的に得られる。図中の灰色領域は、すなわち変流不安定領域であり、塑性成形の危険領域である。電力損失率係数η値の比較的大きい領域は、すなわち熱可塑性成形に有利な安全領域である。
5. Interpolate the test data and extend the finite set of 24 test conditions to the two-dimensional plane of temperature and strain rate with reasonable accuracy. Deformation temperature T and strain rate of power loss factor η obtained by the formula shown in FIG.
It is possible to calculate the distribution in the two-dimensional plane constituted by and to express it by isolines, that is, to obtain the power loss diagram under constant distortion as shown in FIG. The distribution of the temperature and strain rate in the two-dimensional plane of the value of the current instability determination criterion is calculated by the equation shown in FIG. 6 to obtain the current instability diagram under constant strain shown in FIG. 14 and FIG. 15 together, when the region that satisfies the criterion of instability of current flow as shown in FIG. 6 is shown in gray, the hot working diagram at the time of strain of the Haynes 230 alloy as shown in FIG. 16 is simple and intuitive. Obtained. The gray region in the figure is a region of unstable flow, that is, a dangerous region for plastic forming. A region in which the power loss rate coefficient η value is relatively large is a safety region advantageous for thermoplastic molding.

6、上記ステップ5に基づいて、本実施例の力学的性能試験における最大歪み時(歪みε=1)の熱間加工図(図17に示す)を得られ、且つ変流不安定領域の試料に対して金相組織観測を行うと、変流不安定の原因を確定することができる。得られたHaynes230ニッケルベース高温合金の塑性成形危険領域は
>0.03、T<1025℃と
>0.4、1050℃<T<1200℃であり、塑性成形に有利な安全領域は
<0.295、T>1050℃である。
6. Based on the above step 5, the hot working diagram (shown in FIG. 17) at the maximum strain (strain ε=1) in the mechanical performance test of the present example was obtained, and the sample in the unstable region of the current transformation was obtained. The cause of the current instability can be determined by observing the metallographic texture for the. The plastic forming risk area of the obtained Haynes 230 nickel-based high temperature alloy is
>0.03, T<1025°C
>0.4, 1050° C.<T<1200° C., and the safety region advantageous for plastic forming is
<0.295, T>1050°C.

7、熱間加工図によって確定された塑性成形に有利な安全領域に基づいて、熱間強回転成形を行う。Haynes230ニッケルベース高温合金は米国Haynes社によって生産されるため、図18に示すようなキャビティ直径d=54mm、壁厚Δ=5mmの筒状部材ブランクを得ることができない。ワイヤカット加工方式を採用して熱間強回転ブランクを得て、回転プレス過程において壁厚が5mmから2mmに薄くし、薄化率は60%である。部品をトリミング残量とし30mmに延長して、体積が変わらない原理によって筒状部材ブランクの長さL=200mm、即ち
に確定する。直径が54mm、長さが600mmの回転コア型を設計し、熱間強回転立式回転プレス機の主軸に取り付け、仕様がφ54*5、長さL=200mmの筒状部材ブランクをコア型にセットする。三回転逆回転ピッチ回転プレス成形(図19に示す)を採用し、軸方向ピッチ量はa12=a23=2.5mmである。
7. Perform hot strong rotation forming on the basis of the safety region that is determined by the hot working diagram and is advantageous for plastic forming. Since the Haynes 230 nickel-based high temperature alloy is manufactured by Haynes, Inc., USA, it is not possible to obtain a tubular member blank having a cavity diameter d=54 mm and a wall thickness Δ=5 mm as shown in FIG. A wire-cutting method is adopted to obtain a hot strong rotation blank, and the wall thickness is reduced from 5 mm to 2 mm in the rotary pressing process, and the thinning rate is 60%. The length of the tubular member blank is L=200 mm, that is, the length of the part is trimmed to 30 mm and the volume is not changed.
To confirm. We designed a rotating core mold with a diameter of 54 mm and a length of 600 mm, and attached it to the main shaft of a hot strong rotation vertical rotary press, using a cylindrical member blank with a specification of φ54*5 and length L=200 mm as the core mold. set. Three-rotation reverse rotation pitch rotary press molding (shown in FIG. 19) is adopted, and the axial pitch amount is a 12 =a 23 =2.5 mm.

8、熱間強回転温度は1100℃であり、主軸回転は100r/minであり、回転ホイール成形角は20°であり、送り比は0.6mm/rであり、薄化率がそれぞれ26%、28%、25%の3回の回転プレス成形を行い、図1に示す筒状部材強回転プレス変形領域歪み速度
計算式から、歪み速度は0.13/s−0.165/sであり、Haynes230ニッケルベース高温合金塑性成形の安全領域内にあることが分かる。回転プレス過程において高効率で省エネルギーの電磁誘導加熱を採用し、且つ赤外線測温計及び温度制御システムを介してリアルタイムにフィードバック制御を行い、回転プレス領域ブランク温度が1075℃〜1125℃であることを保証する。
8. The hot rolling temperature is 1100° C., the spindle rotation is 100 r/min, the rotary wheel forming angle is 20°, the feed ratio is 0.6 mm/r, and the thinning ratio is 26%. , 28%, 25% three times of rotary press molding, and the cylindrical member strong rotary press deformation region strain rate shown in FIG.
From the calculation formula, it can be seen that the strain rate is 0.13/s-0.165/s, which is within the safe region of Haynes 230 nickel base high temperature alloy plastic forming. High efficiency and energy saving electromagnetic induction heating is adopted in the rotary press process, and real-time feedback control is performed through the infrared thermometer and the temperature control system, and the rotary press area blank temperature is 1075 to 1125 ℃. Guarantee.

9、回転プレス成形後に寸法精度を評価する指標として回転プレス部材の壁厚偏差Ψ、直線度e、楕円度eを測定する。そのうち、壁厚偏差Ψは、筒状部材が安定して回転プレス段階の壁厚の最大値と最小値の差である。直線度eは、測れる筒状部材の固定長さの範囲内の任意プライムラインが最も小さい二つの平行平面の間に位置する距離である。楕円度eは、筒状部材が安定して回転プレス段階の断面の外径の最大値と最小値の差である。測定された回転プレス部材の壁厚偏差Ψは0.107mmであり、直線度eは0.17mmであり、楕円度eは0.20mmであり、部品の要求が満たされている。 9. As an index for evaluating the dimensional accuracy after rotary press molding, the wall thickness deviation Ψ t of the rotary press member, the straightness e straightness , and the ellipticity e ellipse are measured. Among them, the wall thickness deviation Ψ t is the difference between the maximum value and the minimum value of the wall thickness in the rotary pressing stage in which the tubular member is stable. Straightness e straight is the distance located between any prime line is the smallest two parallel planes within a fixed length of can measure the tubular member. The ellipticity e ellipse is the difference between the maximum value and the minimum value of the outer diameter of the cross-section during the rotary pressing step in which the tubular member is stable. Wall thickness deviation [psi t of the measured rotary press member is 0.107 mm, straightness e straight is 0.17 mm, ellipticity e oval is 0.20 mm, the component requirements are met.

10、回転プレス成形後に回転プレス部材の組織性能を評価する指標として、金相組織観測、力学的性能検出及びマイクロ硬度測定を行う。回転プレス部材の安定回転段階(口部から15mm)で切断して試験を行い、インサート、研磨、艶出しの後にHClを用い、HNOは3:1の溶液で3分間エッチングし、MJ−42光学顕微鏡で金相組織を観測し、図20に示すように微小で均一な軸状の完全な再結晶組織が得られ、平均結晶粒径が回転プレス前の19.2μmから、4.23μmに微細化される。金相組織観測後の試料を利用してHVS−1000Z型マイクロ硬度計でマイクロ硬度測量を行い、回転前ブランクの平均硬度は191.14HVであり、回転プレス後の平均硬度は315.74HVまで増大した。回転プレス部材に対して一軸引張力学性能試験を行い、その降伏強度はブランクの時の480MPaから1110MPaまで増加し、引張強度は基本的に変わらず、1200MPa程度に保持される。 10. As an index for evaluating the microstructure performance of the rotary press member after rotary press molding, metallographic structure observation, mechanical performance detection and micro hardness measurement are performed. The rotary press member was cut at a stable rotation stage (15 mm from the mouth) and tested, and HCl was used after insertion, polishing, and polishing, and HNO 3 was etched with a 3:1 solution for 3 minutes. By observing the metallographic structure with an optical microscope, a fine and uniform complete recrystallized structure was obtained as shown in FIG. 20, and the average crystal grain size was changed from 19.2 μm before rotary pressing to 4.23 μm. Be miniaturized. Micro hardness measurement was performed with a HVS-1000Z type micro hardness meter using the sample after the observation of the metallographic structure, the average hardness of the blank before rotation was 191.14 HV, and the average hardness after rotary pressing increased to 315.74 HV. did. A uniaxial tensile mechanical performance test is performed on the rotary press member, and the yield strength thereof is increased from 480 MPa in the blank to 1110 MPa, and the tensile strength is basically unchanged and is maintained at about 1200 MPa.

このことから、本発明の熱間加工図に基づく筒状部材熱間強回転形状/特性一体化制御方法により、寸法精度が良好で、且つ組織性に優れたHaynes230ニッケルベース合金筒状部材が得られることが分かる。 From this, the Haynes 230 nickel-based alloy tubular member having good dimensional accuracy and excellent texture was obtained by the method for controlling the hot-rolling shape/property integration of the tubular member based on the hot work drawing of the present invention. You can see that.

(実施例2)
材料は304ステンレス鋼であり、それは最も一般的なCr−Niステンレス鋼である。そのうち熱間強回転して得られた筒状部材(図8に示す)のキャビティ直径d=50mmであり、壁厚δ=2mmであり、長さl=500mmである。
(Example 2)
The material is 304 stainless steel, which is the most common Cr-Ni stainless steel. Among them, the cavity diameter d of the tubular member (shown in FIG. 8) obtained by strong hot rotation was 50 mm, the wall thickness was δ=2 mm, and the length was 1=500 mm.

1、本実施例は高温一軸引張試験を用いて高温力学性能試験を行う。試料はワイヤカット方式を採用して図21に示すような高温一軸引張試料に加工する。 1. In this example, a high temperature uniaxial tensile test is used to perform a high temperature mechanical performance test. The sample is processed into a high temperature uniaxial tensile sample as shown in FIG. 21 by adopting the wire cut method.

2、文献と試験を組み合わせて304ステンレス鋼の動的再結晶温度が950℃程度であることを確定し、そのため、高温力学性能の温度が900℃−1100℃であることを確定し、50℃ごとに1つのレベルを選択し、合計5つのレベルを選択する。同じように試験の歪み速度は0.01/s、0.1/s、1/s、10/sの4つのレベルに設計する。 2. By combining literature and tests, it was confirmed that the dynamic recrystallization temperature of 304 stainless steel was about 950°C, and therefore the temperature of high temperature mechanical performance was confirmed to be 900°C-1100°C, and 50°C. Choose one level for each, for a total of five levels. Similarly, the strain rate of the test is designed at four levels of 0.01/s, 0.1/s, 1/s, and 10/s.

3、試験は単要素試験の設計方法を採用し、Gleeble−3500熱シミュレーション試験機において20組の試験を行い、試験過程においては抵抗加熱の方式を採用し、熱負荷曲線は図11に示すように、まず10℃/sで引張変形部分を試験に必要な温度50℃以上に加熱し、3min保温して試料を均一に加熱させ、さらに5℃/sで試験温度まで降温して5min保温し、それから、試料が破断した後水冷の方式で試料を焼入れるまで一軸引張試験を行い続ける。 3. The test adopts the design method of the single element test, 20 sets of tests are conducted in the Gleeble-3500 thermal simulation tester, the resistance heating method is adopted in the test process, and the heat load curve is as shown in FIG. First, at 10° C./s, the tensile deformation portion was heated to a temperature required for the test of 50° C. or higher, and was kept warm for 3 minutes to uniformly heat the sample. Further, the temperature was lowered to 5° C./s to the test temperature and kept for 5 minutes. Then, after the sample breaks, the uniaxial tensile test is continued until the sample is quenched by water cooling.

4、試験データを補間計算し、有限の20組の試験条件を精度が合理的な温度と歪み速度の二次元平面に拡張する。図5に示す式に基づいて計算して得られた電力損失率係数ηを等値線で表現し、図14に示すような一定の歪み時の電力損失図を得る。図6に示す式によって変流不安定判定基準の値が温度と歪み速度の二次元平面内での分布を計算し、図15に示すような一定の歪み時の変流不安定図を取得する。電力損失図と変流不安定図を併せて、図6に示す変流不安定判定基準に満たす領域を灰色で示すと、図16に示すような熱間加工図を簡単かつ直観的に得られる。図中の灰色領域は、すなわち変流不安定領域であり、塑性成形の危険領域である。電力損失率係数η値の比較的大きい領域は、すなわち熱可塑性成形に有利な安全領域である。304ステンレス鋼塑性成形危険領域を得るのは、0.1<
<1、900℃<T<1000℃と
>1、1000℃<T<1100℃であり、塑性成形の安全領域は
<0.5、1000℃<T<1100℃である。
4. Interpolate the test data and extend the finite 20 sets of test conditions to a two-dimensional plane with reasonable accuracy of temperature and strain rate. The power loss rate coefficient η obtained by calculation based on the formula shown in FIG. 5 is expressed by contour lines to obtain a power loss diagram under constant distortion as shown in FIG. The distribution of instability determination criteria for temperature and strain rate is calculated in the two-dimensional plane by the equation shown in FIG. 6, and a current instability diagram under constant strain as shown in FIG. 15 is acquired. .. If the region satisfying the current flow instability judgment criteria shown in FIG. 6 is shown in gray together with the power loss diagram and the current flow instability diagram, a hot working diagram as shown in FIG. 16 can be obtained easily and intuitively. .. The gray region in the figure is a region of unstable flow, that is, a dangerous region for plastic forming. A region in which the power loss rate coefficient η value is relatively large is a safety region advantageous for thermoplastic molding. To obtain the 304 stainless steel plastic forming risk area, 0.1<
<1, 900°C <T <1000°C
>1, 1000°C<T<1100°C, and the safety region for plastic molding is
<0.5, 1000° C. <T<1100° C.

5、熱間加工図によって確定された塑性成形に有利な安全領域に基づいて、熱間強回転成形を行う。キャビティ直径d=50mm、壁厚Δ=5mmの304ステンレス鋼素管は市場で購入できるため、直接関連寸法の素管を購入して熱間強回転成形を行う。部品をトリミング残量とし30mmに延長して、体積が変わらない原理によって筒状部材ブランクの長さはL=200mm、即ち
に確定する。直径が50mm、長さが600mmの回転コア型を設計し、立式の熱間強回転プレス機の主軸に取り付け、仕様がφ50*5、長さL=200mmの筒状部材ブランクをコア型にセットする。三回転逆回転ピッチ回転プレス成形(図19に示す)を採用し、軸方向ピッチ量はa12=a23=2.5mmである。
5. Hot strong rotation forming is performed based on the safety region that is advantageous for plastic forming determined by the hot working diagram. Since 304 stainless steel raw pipe with cavity diameter d=50 mm and wall thickness Δ=5 mm can be purchased in the market, directly purchase the raw pipe of related dimensions and perform hot strong rotation forming. The length of the tubular member blank is L=200 mm, that is, the length of the part is trimmed to 30 mm, and the volume does not change.
To confirm. We designed a rotating core mold with a diameter of 50 mm and a length of 600 mm, and attached it to the main shaft of a vertical hot strong rotation press machine. The cylindrical member blank with a specification of φ50*5 and length L=200 mm was used as the core mold. set. Three-rotation reverse rotation pitch rotary press molding (shown in FIG. 19) is adopted, and the axial pitch amount is a 12 =a 23 =2.5 mm.

6、熱間強回転成形中ブランクの壁厚が5mmから2mmに薄くし、薄化率は60%である。熱間強回転温度は1050℃であり、主軸回転は100r/minであり、回転ホイール成形角は20°であり、送り比は0.4mm/rであり、薄化率がそれぞれ26%、28%、25%の3回の回転プレス成形を行い、図1に示す筒状部材強力回転プレス変形領域歪み速度
計算式から、歪み速度は0.088/s−0.11/sであり、304ステンレス鋼塑性成形の安全領域内にあることが分かる。回転プレス過程において高効率で省エネルギーの電磁誘導加熱を採用し、且つ赤外線測温計及び温度制御システムを介してリアルタイムにフィードバック制御を行い、回転プレス領域ブランク温度が1025℃〜1075℃であることを保証する。
6. The wall thickness of the blank was thinned from 5 mm to 2 mm during the high-speed hot-rolling, and the thinning rate was 60%. The hot strong rotation temperature is 1050° C., the spindle rotation is 100 r/min, the rotary wheel forming angle is 20°, the feed ratio is 0.4 mm/r, and the thinning ratios are 26% and 28, respectively. %, 25% three times of rotary press molding, the tubular member strong rotary press deformation region strain rate shown in FIG.
From the calculation formula, it is found that the strain rate is 0.088/s-0.11/s, which is within the safe region of 304 stainless steel plastic forming. High efficiency and energy saving electromagnetic induction heating is adopted in the rotary press process, and real-time feedback control is performed through the infrared thermometer and the temperature control system, and the rotary press area blank temperature is 1025°C to 1075°C. Guarantee.

7、回転プレス成形後に寸法精度を評価する指標として回転プレス部材の壁厚偏差Ψ、直線度e、楕円度eを測定する。測定された回転プレス部材の壁厚偏差Ψは0.102mmであり、直線度eは0.11mmであり、楕円度eは0.13mmであり、部品の要求が満たされている。 7. The wall thickness deviation Ψ t of the rotary press member, the straightness e straightness , and the ellipticity e ellipse are measured as indexes for evaluating the dimensional accuracy after rotary press molding. Wall thickness deviation [psi t of the measured rotary press member is 0.102 mm, straightness e straight is 0.11 mm, ellipticity e oval is 0.13 mm, the component requirements are met.

8、回転プレス成形後に回転プレス部材の組織性能を評価する指標として、金相組織観測、力学的性能検出を行う。回転プレス部材の安定回転段階(口部から15mm)で切断して試験を行い、インサート、研磨、艶出しの後にHClを用い、HNOは3:1の溶液で3分間エッチングし、MJ−42光学顕微鏡で金相組織を観測し、微小で均一で一定な繊維状組織が得られる。その平均結晶粒径が回転プレス前の13.03μmから、2.26μmに微細化される。回転プレス部材に対して一軸引張力学性能試験を行い、その降伏強度はブランクの時の269MPaから560MPaまで増加し、引張強度は705MPaから846MPaまでに増加し、伸び率は40%程度に保持される。 8. As an index for evaluating the structure performance of the rotary press member after the rotary press molding, the metallographic structure observation and mechanical performance detection are performed. The rotary press member was cut at a stable rotation stage (15 mm from the mouth) and tested, and HCl was used after insertion, polishing, and polishing, and HNO 3 was etched with a 3:1 solution for 3 minutes. By observing the metallographic structure with an optical microscope, a fine, uniform and uniform fibrous structure can be obtained. The average crystal grain size is reduced from 13.03 μm before rotary pressing to 2.26 μm. A uniaxial tensile mechanical performance test was performed on the rotary press member, and the yield strength was increased from 269 MPa to 560 MPa in the blank state, the tensile strength was increased from 705 MPa to 846 MPa, and the elongation rate was maintained at about 40%. ..

このことから、本発明の熱間加工図に基づく筒状部材熱間強回転形状/特性一体化制御方法により、寸法精度が良好で、且つ組織性に優れたHaynes230ニッケルベース合金筒状部材が得られることが分かる。 From this, the Haynes 230 nickel-based alloy tubular member having good dimensional accuracy and excellent texture was obtained by the method for controlling the hot-rolling shape/property integration of the tubular member based on the hot work drawing of the present invention. You can see that.

以上のように、本発明を好適に実施することができる。 As described above, the present invention can be preferably implemented.

本発明の実施形態は、上述した実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更、修正、代替、組み合わせ、簡略は、みな置換と同等であり、本発明の保護範囲に含まれるものである。 The embodiments of the present invention are not limited to the above-described examples, and various changes, modifications, substitutions, combinations, and simplifications are equivalent to the replacement without departing from the scope of the present invention. It is included in the protection scope of.

(付記)
(付記1)
異なる金属材料の熱可塑性成形過程における動的再結晶が発生する温度、歪み速度及び歪みの違いに基づき、動的再結晶が発生する温度、歪み速度及び歪み条件の下で金属材料の高温力学性能試験を行うステップ(1)と、
限られた試験温度、歪み速度のサンプルポイントの下で得られた変流応力と歪み関係に対して補間計算を行うステップ(2)と、
熱可塑性成形過程における電力損失及び変流不安定性判断基準に基づいて、拡張された高温力学性能試験で変流応力と歪みの関係を得た上、それぞれ異なる歪みにおける電力損失図と変流不安定図を構成するステップ(3)と、
電力損失図と変流不安定図を組み合わせ、材料の熱間加工図を取得し、電力損失率係数ηの分布及び変流不安定性の判断に基づき、変流不安定性判断基準の潜在的危険な成形条件及び安全な成形条件を満たされた下での、電力損失率係数ηの熱可塑性成形に有利な成形条件を分析して取得するステップ(4)と、
最後に、熱間加工図に従って得られた材料は熱間成形の温度及び歪み速度に有利であり、熱間強回転成形プロセスパラメータを確定し、筒状部材熱間強回転成形を行い、寸法精度及び組織性能の要求を満たした筒状部材を取得するステップ(5)と、
を含むことを特徴とする熱間加工図に基づく筒状部材の熱間強回転形状/特性一体化の制御方法。
(Appendix)
(Appendix 1)
High temperature mechanical performance of metal materials under the temperature, strain rate and strain condition of dynamic recrystallization based on the difference of temperature, strain rate and strain of dynamic recrystallization in thermoplastic forming process of different metal materials A step (1) of conducting a test,
A step (2) of performing an interpolation calculation on the relation between the flow stress and the strain obtained under the limited test temperature and strain rate sample points;
Based on the criteria of power loss and current instability in the thermoplastic forming process, the relationship between current stress and strain was obtained in the extended thermodynamic performance test based on the criteria of power loss and current instability at different strains. Step (3) of constructing the diagram,
A hot working diagram of the material is obtained by combining the power loss diagram and the current instability diagram, and based on the distribution of the power loss factor η and the current instability judgment, the potential risk of the current instability criterion is A step (4) of analyzing and obtaining a molding condition advantageous for thermoplastic molding having a power loss rate coefficient η under the condition that the molding condition and the safe molding condition are satisfied;
Finally, the material obtained according to the hot working diagram is advantageous for the temperature and strain rate of hot forming, and the hot strong rotational forming process parameters are established, and the tubular member is subjected to hot strong rotational forming to obtain the dimensional accuracy. And a step (5) of obtaining a tubular member satisfying the requirements of the tissue performance,
A method for controlling hot shape/characteristic integration of a cylindrical member on the basis of a hot working drawing, including:

(付記2)
ステップ(1)の前記金属材料は熱可塑性成形過程において、動的再結晶が発生しやすい中低層欠陥金属又は合金であり、ステップ(1)の前記高温力学性能試験温度は、材料の動的再結晶温度以下50℃と熱可塑性成形温度以上50℃の範囲内であることを特徴とする付記1に記載の熱間加工図に基づく筒状部材の熱間強回転形状/特性一体化の制御方法。
(Appendix 2)
The metal material of step (1) is a metal or an alloy having a middle-to-low layer defect in which dynamic recrystallization is likely to occur in the thermoplastic forming process, and the high temperature mechanical performance test temperature of step (1) is the dynamic recrystallization of the material. A method for controlling hot-rotation shape/characteristic integration of a tubular member based on the hot working diagram described in appendix 1, characterized in that the temperature is within a range of 50° C. or lower of the crystallization temperature and 50° C. or higher of the thermoplastic molding temperature. ..

(付記3)
ステップ(5)の前記熱間加工図は動的材料モデルに基づく熱間加工図であることを特徴とする付記1に記載の熱間加工図に基づく筒状部材の熱間強回転形状/特性一体化の制御方法。
(Appendix 3)
The hot-working drawing of step (5) is a hot-working drawing based on a dynamic material model. Integrated control method.

(付記4)
ステップ(1)の前記高温力学性能試験の歪み速度は、筒状部材の強力回転プレス歪み速度の分布に従って0.01/s〜10/sの範囲を取り、ステップ(1)の前記高温力学性能試験は歪み量が0.6以上であることを保証することを特徴とする付記1に記載の熱間加工図に基づく筒状部材の熱間強回転形状/特性一体化の制御方法。
(Appendix 4)
The strain rate of the high temperature mechanical performance test of step (1) is in the range of 0.01/s to 10/s according to the distribution of the high-speed rotary press strain rate of the tubular member, and the high temperature mechanical performance of step (1) is The test guarantees that the amount of strain is 0.6 or more. The method for controlling the hot-rotation shape/characteristic integration of a tubular member based on the hot-working drawing described in Appendix 1.

(付記5)
ステップ(2)の前記補間計算は、温度及び歪み速度試験サンプル数を拡張することを特徴とする付記1に記載の熱間加工図に基づく筒状部材の熱間強回転形状/特性一体化の制御方法。
(Appendix 5)
The step (2) of the interpolation calculation expands the number of temperature and strain rate test samples. Control method.

(付記6)
ステップ(3)の前記変流不安定基準における歪み速度感度係数mは、変流応力σの歪み速度
に対する偏微分であり、塑性変形により損失されたたエネルギーGとミクロ組織変化により損失されたエネルギーJの分配を決定し、
材料の加工過程における単位時間内に外力が単位体積材料にあたる仕事量はPであり、つまり材料が得られた総エネルギーは、応力σと歪み速度
を乗算することによって得られ、材料の塑性変形により消費されるエネルギーGとミクロ組織変化により消費されるエネルギーJ
に変換され、
理想的なエネルギー損失システムは、塑性変形とミクロ組織変化で消費されるエネルギーに等しいと考えられるが、通常、材料は非線形的なエネルギー損失状態にあり、エネルギー分配関係を説明するために、変流応力σの歪み速度
に対する偏微分を採用し、すなわち歪み速度感度係数m
はその分配比を説明する、
ことを特徴とする付記1に記載の熱間加工図に基づく筒状部材の熱間強回転形状/特性一体化の制御方法。
(Appendix 6)
In step (3), the strain rate sensitivity coefficient m on the basis of the instability of the current transformation is the strain rate of the current stress σ.
Is a partial differential with respect to, and determines the distribution of energy G lost due to plastic deformation and energy J lost due to microstructural change,
The amount of work that the external force exerts on the unit volume material in a unit time in the material processing process is P, that is, the total energy obtained by the material is the stress σ and the strain rate.
The energy G consumed by the plastic deformation of the material and the energy J consumed by the microstructural change obtained by multiplying by
Is converted to
The ideal energy loss system is considered to be equal to the energy consumed by plastic deformation and microstructural change, but usually the material is in a non-linear energy loss state, and the Strain rate of stress σ
The partial differential with respect to is adopted, that is, the strain rate sensitivity coefficient m
Explains its distribution ratio,
A method of controlling hot shape/characteristic integration of a tubular member on the basis of the hot working drawing described in Appendix 1.

(付記7)
ステップ(4)の前記危険な成形条件は、歪み速度感度係数mによって説明された大きな塑性変形の不可逆的な熱力学的極値原理に基づく変流不安定基準を満たす条件であり、
大きな塑性変形の不可逆的な熱力学的極値原理に基づき、歪み速度感度係数m及び歪み速度の関数を用いて変流不安定基準
を構築し、
熱可塑性成形に有利な条件は、ミクロ組織の変化によって損失されたエネルギーJが占める電力損失率係数ηを説明する大きな成形条件であり、理想的な線形エネルギー損失システムに置かれる時に、ミクロ組織から損失されるエネルギーは最も大きいJmax=P/2であり、従って、材料から得られる総エネルギーPと損失エネルギーとの関係に基づき、歪み速度感度係数mの関数を用いて電力損失率ηを説明し、もって、ミクロ組織から損失されたエネルギーJの割合
を説明する、
ことを特徴とする付記1に記載の熱間加工図に基づく筒状部材の熱間強回転形状/特性一体化の制御方法。
(Appendix 7)
The dangerous forming condition of the step (4) is a condition satisfying the current instability criterion based on the irreversible thermodynamic extreme value principle of large plastic deformation explained by the strain rate sensitivity coefficient m,
Based on the irreversible thermodynamic extremum principle of large plastic deformation, the current instability criterion is calculated using the strain rate sensitivity coefficient m and the function of strain rate.
Build
An advantageous condition for thermoplastic forming is a large forming condition that explains the power loss rate coefficient η occupied by the energy J lost due to the change in microstructure, and when placed in an ideal linear energy loss system, The maximum energy lost is J max =P/2, and therefore the power loss rate η is explained using the function of the strain rate sensitivity coefficient m based on the relationship between the total energy P obtained from the material and the loss energy. Therefore, the ratio of energy J lost from the microstructure
To explain,
A method of controlling hot shape/characteristic integration of a tubular member on the basis of the hot working drawing described in Appendix 1.

(付記8)
ステップ(5)の前記熱間強回転成形温度は熱間成形図で得られた熱可塑性成形温度に有利な±25℃の範囲内に制御する必要があることを特徴とする付記1に記載の熱間加工図に基づく筒状部材の熱間強回転形状/特性一体化の制御方法。
(Appendix 8)
The hot strong rotational molding temperature of step (5) needs to be controlled within a range of ±25° C., which is advantageous to the thermoplastic molding temperature obtained in the hot molding diagram, and the additional heat treatment is performed. A method for controlling the shape/characteristic integration of the hot rolling of a cylindrical member based on a hot working drawing.

(付記9)
上記ステップ(5)の前記熱間強回転成形歪み速度は、回転ホイール成形角、回転ホイール送り比、主軸回転、薄化率及び/又はブランク壁厚を制御することにより実現され、
熱間強回転型成形パラメータの確定は、筒状部材の強力回転プレス変形領域の歪み速度
と回転ホイール成形角αρ、回転プレス前のブランク壁厚t、回転プレス後のワークピースの壁厚t、壁厚薄化率φ、送り速度vの関係
から求められ、ここで、αρは、回転ホイール成形角であり、tは回転プレス前のブランク壁厚であり、tは回転プレス後のワークピース壁厚であり、tθfは回転プレス前のブランク外面と回転プレス後ワークピース外面間の異なるθ層からワークピース内面に至る距離であり、φは壁厚薄化率であり、vは回転ホイール前の成形領域質点の流速(回転ホイールに対して)であり、逆回転成形において、vは送り速度に等しく、その送り比fと主軸回転nとの関係はv=f・nである、
ことを特徴とする付記1に記載の熱間加工図に基づく筒状部材の熱間強回転形状/特性一体化の制御方法。
(Appendix 9)
The hot strong rotational forming strain rate in the step (5) is realized by controlling the rotating wheel forming angle, the rotating wheel feed ratio, the spindle rotation, the thinning rate and/or the blank wall thickness,
Determining the hot strong rotary molding parameters is the strain rate of the strong rotary press deformation region of the tubular member.
And the rotary wheel forming angle α ρ , the blank wall thickness t 0 before the rotary press, the wall thickness t f of the workpiece after the rotary press, the wall thickness thinning ratio φ t , and the feed speed v 0 .
Where α ρ is the rotary wheel forming angle, t 0 is the blank wall thickness before the rotary press, t f is the workpiece wall thickness after the rotary press, and t θf is the rotary press. The distance from the different θ layers between the outer surface of the front blank and the outer surface of the workpiece after rotary pressing to the inner surface of the workpiece, φ t is the wall thinning ratio, and v 0 is the flow velocity of the molding region mass point in front of the rotating wheel (rotation). (In relation to the wheel), in reverse rotational molding, v 0 is equal to the feed rate, and the relationship between the feed ratio f and the spindle rotation n is v 0 =f·n.
A method of controlling hot shape/characteristic integration of a tubular member on the basis of the hot working drawing described in Appendix 1.

(付記10)
ステップ(1)の動的再結晶条件は、ステップ(1)の前記中低層欠陥金属材料の中、熱可塑性成形過程において、転位密度が臨界値に達することによって結晶粒界及び高い転位密度の応力集中箇所に転位密度が極めて低い再結晶核を形成し、且つ成長しやすく、熱処理過程における再結晶を区別するため、このような組織変化過程を動的再結晶と呼ぶことを特徴とする付記1に記載の熱間加工図に基づく筒状部材の熱間強回転形状/特性一体化の制御方法。
(Appendix 10)
The dynamic recrystallization condition of step (1) is that the stress in the grain boundary and the stress of high dislocation density is caused by the dislocation density reaching a critical value in the thermoplastic forming process in the middle-low layer defect metal material of step (1). Appendix 1 characterized in that such a microstructural change process is called dynamic recrystallization in order to form recrystallization nuclei having extremely low dislocation density at a concentrated portion and to grow easily and to distinguish recrystallization in the heat treatment process. A method for controlling the shape/characteristic integration of the hot rolling of a cylindrical member based on the hot working diagram described in.

Claims (10)

異なる金属材料の熱可塑性成形過程における動的再結晶が発生する温度、歪み速度及び歪みの違いに基づき、動的再結晶が発生する温度、歪み速度及び歪み条件の下で金属材料の高温力学性能試験を行うステップ(1)と、
限られた試験温度、歪み速度のサンプルポイントの下で得られた変流応力と歪み関係に対して補間計算を行うステップ(2)と、
熱可塑性成形過程における電力損失及び変流不安定性判断基準に基づいて、拡張された高温力学性能試験で変流応力と歪みの関係を得た上、それぞれ異なる歪みにおける電力損失図と変流不安定図を構成するステップ(3)と、
電力損失図と変流不安定図を組み合わせ、材料の熱間加工図を取得し、電力損失率係数ηの分布及び変流不安定性の判断に基づき、変流不安定性判断基準の潜在的危険な成形条件及び安全な成形条件を満たされた下での、電力損失率係数ηの熱可塑性成形に有利な成形条件を分析して取得するステップ(4)と、
最後に、熱間加工図に従って得られた材料は熱間成形の温度及び歪み速度に有利であり、熱間強回転成形プロセスパラメータを確定し、筒状部材熱間強回転成形を行い、寸法精度及び組織性能の要求を満たした筒状部材を取得するステップ(5)と、
を含むことを特徴とする熱間加工図に基づく筒状部材の熱間強回転形状/特性一体化の制御方法。
High temperature mechanical performance of metal materials under the temperature, strain rate and strain condition of dynamic recrystallization based on the difference of temperature, strain rate and strain of dynamic recrystallization in thermoplastic forming process of different metal materials A step (1) of conducting a test,
A step (2) of performing an interpolation calculation on the relation between the flow stress and the strain obtained under the limited test temperature and strain rate sample points;
Based on the criteria of power loss and current instability in the thermoplastic forming process, the relationship between current stress and strain was obtained in the extended thermodynamic performance test based on the criteria of power loss and current instability at different strains. Step (3) of constructing the diagram,
A hot working diagram of the material is obtained by combining the power loss diagram and the current instability diagram, and based on the distribution of the power loss factor η and the current instability judgment, the potential risk of the current instability criterion is A step (4) of analyzing and acquiring a molding condition advantageous for thermoplastic molding having a power loss rate coefficient η under the condition that the molding condition and the safe molding condition are satisfied;
Finally, the material obtained according to the hot working diagram is advantageous for the temperature and strain rate of hot forming, and the hot strong rotational forming process parameters are established, and the tubular member is subjected to hot strong rotational forming to obtain the dimensional accuracy. And a step (5) of obtaining a tubular member satisfying the requirements of the tissue performance,
A method for controlling hot shape/characteristic integration of a cylindrical member on the basis of a hot working drawing, including:
ステップ(1)の前記金属材料は熱可塑性成形過程において、動的再結晶が発生しやすい中低層欠陥金属又は合金であり、ステップ(1)の前記高温力学性能試験温度は、材料の動的再結晶温度以下50℃と熱可塑性成形温度以上50℃の範囲内であることを特徴とする請求項1に記載の熱間加工図に基づく筒状部材の熱間強回転形状/特性一体化の制御方法。 The metal material of step (1) is a metal or an alloy having a medium-to-low layer defect in which dynamic recrystallization is likely to occur in the thermoplastic forming process, and the high temperature mechanical performance test temperature of step (1) is the dynamic recrystallization of the material. 2. The control of the hot-rotating shape/characteristic integration of the tubular member based on the hot working diagram according to claim 1, wherein the temperature is within the range of 50° C. or lower of the crystallization temperature and 50° C. or higher of the thermoplastic molding temperature. Method. ステップ(5)の前記熱間加工図は動的材料モデルに基づく熱間加工図であることを特徴とする請求項1に記載の熱間加工図に基づく筒状部材の熱間強回転形状/特性一体化の制御方法。 The hot-working shape of the tubular member based on the hot-working drawing according to claim 1, wherein the hot-working drawing of step (5) is a hot-working drawing based on a dynamic material model. Control method of characteristic integration. ステップ(1)の前記高温力学性能試験の歪み速度は、筒状部材の強力回転プレス歪み速度の分布に従って0.01/s〜10/sの範囲を取り、ステップ(1)の前記高温力学性能試験は歪み量が0.6以上であることを保証することを特徴とする請求項1に記載の熱間加工図に基づく筒状部材の熱間強回転形状/特性一体化の制御方法。 The strain rate of the high temperature mechanical performance test of step (1) is in the range of 0.01/s to 10/s according to the distribution of the high-speed rotary press strain rate of the tubular member, and the high temperature mechanical performance of step (1) is The method for controlling the hot-rotation shape/characteristic integration of a tubular member based on a hot-working drawing according to claim 1, wherein the test guarantees that the strain amount is 0.6 or more. ステップ(2)の前記補間計算は、温度及び歪み速度試験サンプル数を拡張することを特徴とする請求項1に記載の熱間加工図に基づく筒状部材の熱間強回転形状/特性一体化の制御方法。 The hot-rolling shape/characteristic integration of a tubular member according to claim 1, wherein the interpolation calculation in step (2) extends the number of temperature and strain rate test samples. Control method. ステップ(3)の前記変流不安定基準における歪み速度感度係数mは、変流応力σの歪み速度
に対する偏微分であり、塑性変形により損失されたたエネルギーGとミクロ組織変化により損失されたエネルギーJの分配を決定し、
材料の加工過程における単位時間内に外力が単位体積材料にあたる仕事量はPであり、つまり材料が得られた総エネルギーは、応力σと歪み速度
を乗算することによって得られ、材料の塑性変形により消費されるエネルギーGとミクロ組織変化により消費されるエネルギーJ
に変換され、
理想的なエネルギー損失システムは、塑性変形とミクロ組織変化で消費されるエネルギーに等しいと考えられるが、通常、材料は非線形的なエネルギー損失状態にあり、エネルギー分配関係を説明するために、変流応力σの歪み速度
に対する偏微分を採用し、すなわち歪み速度感度係数m
はその分配比を説明する、
ことを特徴とする請求項1に記載の熱間加工図に基づく筒状部材の熱間強回転形状/特性一体化の制御方法。
In step (3), the strain rate sensitivity coefficient m on the basis of the instability of the current transformation is the strain rate of the current stress σ.
Is a partial differential with respect to, and determines the distribution of energy G lost due to plastic deformation and energy J lost due to microstructural change,
The amount of work that the external force exerts on the unit volume material in a unit time in the material processing process is P, that is, the total energy obtained by the material is the stress σ and the strain rate.
The energy G consumed by the plastic deformation of the material and the energy J consumed by the microstructural change obtained by multiplying by
Is converted to
The ideal energy loss system is considered to be equal to the energy consumed by plastic deformation and microstructural change, but usually the material is in a non-linear energy loss state, and the Strain rate of stress σ
A partial differential with respect to the strain rate sensitivity coefficient m
Explains its distribution ratio,
The method for controlling the hot-rotation shape/characteristic integration of a tubular member based on the hot-working drawing according to claim 1, characterized in that.
ステップ(4)の前記危険な成形条件は、歪み速度感度係数mによって説明された大きな塑性変形の不可逆的な熱力学的極値原理に基づく変流不安定基準を満たす条件であり、
大きな塑性変形の不可逆的な熱力学的極値原理に基づき、歪み速度感度係数m及び歪み速度の関数を用いて変流不安定基準
を構築し、
熱可塑性成形に有利な条件は、ミクロ組織の変化によって損失されたエネルギーJが占める電力損失率係数ηを説明する大きな成形条件であり、理想的な線形エネルギー損失システムに置かれる時に、ミクロ組織から損失されるエネルギーは最も大きいJmax=P/2であり、従って、材料から得られる総エネルギーPと損失エネルギーとの関係に基づき、歪み速度感度係数mの関数を用いて電力損失率ηを説明し、もって、ミクロ組織から損失されたエネルギーJの割合
を説明する、
ことを特徴とする請求項1に記載の熱間加工図に基づく筒状部材の熱間強回転形状/特性一体化の制御方法。
The dangerous forming condition of the step (4) is a condition satisfying the current instability criterion based on the irreversible thermodynamic extreme value principle of large plastic deformation explained by the strain rate sensitivity coefficient m,
Based on the irreversible thermodynamic extremum principle of large plastic deformation, the current instability criterion is calculated using the strain rate sensitivity coefficient m and the function of strain rate.
Build
An advantageous condition for thermoplastic forming is a large forming condition that explains the power loss rate coefficient η occupied by the energy J lost due to the change in microstructure, and when placed in an ideal linear energy loss system, The maximum energy lost is J max =P/2, and therefore the power loss rate η is explained using the function of the strain rate sensitivity coefficient m based on the relationship between the total energy P obtained from the material and the loss energy. Therefore, the ratio of energy J lost from the microstructure
To explain,
The method for controlling the hot-rotation shape/characteristic integration of a tubular member based on the hot-working drawing according to claim 1, characterized in that.
ステップ(5)の前記熱間強回転成形温度は熱間成形図で得られた熱可塑性成形温度に有利な±25℃の範囲内に制御する必要があることを特徴とする請求項1に記載の熱間加工図に基づく筒状部材の熱間強回転形状/特性一体化の制御方法。 The hot hot rotomolding temperature of step (5) needs to be controlled within a range of ±25° C., which is advantageous to the thermoplastic molding temperature obtained from the hot forming diagram. Control method of hot-rotation shape/characteristic integration of a cylindrical member based on the hot-working diagram of FIG. 上記ステップ(5)の前記熱間強回転成形歪み速度は、回転ホイール成形角、回転ホイール送り比、主軸回転、薄化率及び/又はブランク壁厚を制御することにより実現され、
熱間強回転型成形パラメータの確定は、筒状部材の強力回転プレス変形領域の歪み速度
と回転ホイール成形角αρ、回転プレス前のブランク壁厚t、回転プレス後のワークピースの壁厚t、壁厚薄化率φ、送り速度vの関係
から求められ、ここで、αρは、回転ホイール成形角であり、tは回転プレス前のブランク壁厚であり、tは回転プレス後のワークピース壁厚であり、tθfは回転プレス前のブランク外面と回転プレス後ワークピース外面間の異なるθ層からワークピース内面に至る距離であり、φは壁厚薄化率であり、vは回転ホイール前の成形領域質点の流速(回転ホイールに対して)であり、逆回転成形において、vは送り速度に等しく、その送り比fと主軸回転nとの関係はv=f・nである、
ことを特徴とする請求項1に記載の熱間加工図に基づく筒状部材の熱間強回転形状/特性一体化の制御方法。
The hot strong rotational forming strain rate in the step (5) is realized by controlling the rotating wheel forming angle, the rotating wheel feed ratio, the spindle rotation, the thinning rate and/or the blank wall thickness,
Determining the hot strong rotary molding parameters is the strain rate of the strong rotary press deformation region of the tubular member
And the rotary wheel forming angle α ρ , the blank wall thickness t 0 before the rotary press, the wall thickness t f of the workpiece after the rotary press, the wall thickness thinning ratio φ t , and the feed speed v 0 .
Where α ρ is the rotary wheel forming angle, t 0 is the blank wall thickness before the rotary press, t f is the workpiece wall thickness after the rotary press, and t θf is the rotary press. The distance from the different θ layers between the outer surface of the front blank and the outer surface of the workpiece after rotary pressing to the inner surface of the workpiece, φ t is the wall thinning ratio, and v 0 is the flow velocity of the molding region mass point in front of the rotating wheel (rotation). (In relation to the wheel), in reverse rotational molding, v 0 is equal to the feed rate, and the relationship between the feed ratio f and the spindle rotation n is v 0 =f·n.
The method for controlling the hot-rotation shape/characteristic integration of a tubular member based on the hot-working drawing according to claim 1, characterized in that.
ステップ(1)の動的再結晶条件は、ステップ(1)の前記中低層欠陥金属材料の中、熱可塑性成形過程において、転位密度が臨界値に達することによって結晶粒界及び高い転位密度の応力集中箇所に転位密度が極めて低い再結晶核を形成し、且つ成長しやすく、熱処理過程における再結晶を区別するため、このような組織変化過程を動的再結晶と呼ぶことを特徴とする請求項1に記載の熱間加工図に基づく筒状部材の熱間強回転形状/特性一体化の制御方法。 The dynamic recrystallization condition of step (1) is that the stress in the grain boundary and the high dislocation density is caused by the dislocation density reaching a critical value in the thermoplastic molding process in the middle-low layer defect metal material of step (1). A recrystallization nucleus having a very low dislocation density is formed at a concentrated portion and is easily grown, and in order to distinguish recrystallization in a heat treatment process, such a microstructural change process is called dynamic recrystallization. A method for controlling the shape/characteristic integration of a hot-rotating cylindrical member based on the hot-working drawing described in 1.
JP2019553195A 2017-03-28 2017-11-24 Control method of hot-rotating shape/characteristic integration of tubular member based on hot working diagram Pending JP2020521636A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201710190026.0A CN107121992A (en) 2017-03-28 2017-03-28 A kind of strong rotation shape/property integrated control method of cylindrical member heat based on hot working chart
CN201710190026.0 2017-03-28
PCT/CN2017/112819 WO2018176870A1 (en) 2017-03-28 2017-11-24 Method for controlling integration of hot power spinning forming/performance of cylindrical part based on hot processing map

Publications (2)

Publication Number Publication Date
JP2020521636A true JP2020521636A (en) 2020-07-27
JP2020521636A5 JP2020521636A5 (en) 2021-02-12

Family

ID=59717322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019553195A Pending JP2020521636A (en) 2017-03-28 2017-11-24 Control method of hot-rotating shape/characteristic integration of tubular member based on hot working diagram

Country Status (4)

Country Link
US (1) US11358202B2 (en)
JP (1) JP2020521636A (en)
CN (1) CN107121992A (en)
WO (1) WO2018176870A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107121992A (en) * 2017-03-28 2017-09-01 华南理工大学 A kind of strong rotation shape/property integrated control method of cylindrical member heat based on hot working chart
CN108595827A (en) * 2018-04-20 2018-09-28 安徽工业大学 A kind of determination method of C-Mn-Al high strength steels Hot Deformation Microstructure evolution mechanism and hot-working character
CN111366426A (en) * 2020-01-18 2020-07-03 西安嘉业航空科技有限公司 Method for predicting grain size of high-temperature corrosion-resistant alloy
CN111985128B (en) * 2020-07-20 2024-01-09 南京钢铁股份有限公司 Method for constructing thermal processing diagram of large-specification non-quenched and tempered steel
CN114218767A (en) * 2021-11-30 2022-03-22 华中科技大学 Method for determining deformation mechanism of metastable beta titanium alloy in single-phase region
CN114700406B (en) * 2022-03-22 2023-08-15 西北工业大学 Near-net spin forming process of large thin-wall high-temperature alloy component
CN115436186A (en) * 2022-07-28 2022-12-06 东莞市赛测试验设备有限公司 Tensile test method and device based on spring tester, electronic equipment and medium

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06191842A (en) * 1991-09-30 1994-07-12 Alcatel Alsthom Co General Electricite Method of producing and controlling superconducting material with high critical temperature
JP2006247734A (en) * 2005-03-14 2006-09-21 Japan Science & Technology Agency Twist-working method for hollow material
CN101201307A (en) * 2006-12-13 2008-06-18 中国科学院金属研究所 Method for automatically drafting material hot working chart
CN101579804A (en) * 2009-06-04 2009-11-18 航天材料及工艺研究所 Integral forming method of large size thin-walled titanium alloy cylindrical part without welding line
JP2014530765A (en) * 2011-10-20 2014-11-20 ポステク アカデミー−インダストリー ファウンデイションPostech Academy−Industryfoundation Method for producing helical layered composites using compression torsion
CN104636565A (en) * 2015-02-17 2015-05-20 扬州大学 Magnesium alloy one-off die forging forming process optimizing method based on machinability analysis
CN105537478A (en) * 2016-01-28 2016-05-04 西北工业大学 Method for optimizing parameters of GH696 alloy forging technology
CN105562573A (en) * 2015-12-29 2016-05-11 西北工业大学 Optimization method for hydrogenated TC4 titanium alloy forging technology parameters
CN105651620A (en) * 2016-03-09 2016-06-08 中南大学 Method estimating hot-working performance of metal material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5816493A (en) * 1996-04-08 1998-10-06 Texan Corporation Thermally expansible compositions methods for preparation and devices using same
CN103499988B (en) * 2013-09-26 2015-08-12 常州市新创复合材料有限公司 The hot-forming temperature-controlled process of thermo-plastic planking's MULTILAYER COMPOSITE equipment and device
CN104607519B (en) * 2014-11-28 2016-08-24 航天材料及工艺研究所 Aluminum alloys tank Loadings On Hemispherical Shell manufacturing process
CN107121992A (en) * 2017-03-28 2017-09-01 华南理工大学 A kind of strong rotation shape/property integrated control method of cylindrical member heat based on hot working chart
CN110538914B (en) * 2019-09-04 2020-10-30 西北工业大学 Plate sectional heating spinning forming method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06191842A (en) * 1991-09-30 1994-07-12 Alcatel Alsthom Co General Electricite Method of producing and controlling superconducting material with high critical temperature
JP2006247734A (en) * 2005-03-14 2006-09-21 Japan Science & Technology Agency Twist-working method for hollow material
CN101201307A (en) * 2006-12-13 2008-06-18 中国科学院金属研究所 Method for automatically drafting material hot working chart
CN101579804A (en) * 2009-06-04 2009-11-18 航天材料及工艺研究所 Integral forming method of large size thin-walled titanium alloy cylindrical part without welding line
JP2014530765A (en) * 2011-10-20 2014-11-20 ポステク アカデミー−インダストリー ファウンデイションPostech Academy−Industryfoundation Method for producing helical layered composites using compression torsion
CN104636565A (en) * 2015-02-17 2015-05-20 扬州大学 Magnesium alloy one-off die forging forming process optimizing method based on machinability analysis
CN105562573A (en) * 2015-12-29 2016-05-11 西北工业大学 Optimization method for hydrogenated TC4 titanium alloy forging technology parameters
CN105537478A (en) * 2016-01-28 2016-05-04 西北工业大学 Method for optimizing parameters of GH696 alloy forging technology
CN105651620A (en) * 2016-03-09 2016-06-08 中南大学 Method estimating hot-working performance of metal material

Also Published As

Publication number Publication date
WO2018176870A1 (en) 2018-10-04
US11358202B2 (en) 2022-06-14
US20210276067A1 (en) 2021-09-09
CN107121992A (en) 2017-09-01

Similar Documents

Publication Publication Date Title
JP2020521636A (en) Control method of hot-rotating shape/characteristic integration of tubular member based on hot working diagram
JP2020521636A5 (en)
Zhang et al. Mechanism for the macro and micro behaviors of the Ni-based superalloy during electrically-assisted tension: Local Joule heating effect
Zhang et al. Dynamic recrystallization behavior of a γ′-hardened nickel-based superalloy during hot deformation
Wu et al. Experimental study and numerical simulation of dynamic recrystallization for a FGH96 superalloy during isothermal compression
Jiang et al. Hot deformation characteristics of Alloy 617B nickel-based superalloy: A study using processing map
WO2019172000A1 (en) Method for manufacturing super-refractory nickel-based alloy and super-refractory nickel-based alloy
CN110337500A (en) Ni base superalloy and its manufacturing method
Sun et al. Characterization on hot deformation behavior of Ti-22Al-25Nb alloy using a combination of 3D processing maps and finite element simulation method
Mostafa et al. Hot compression behavior and microstructure of selectively laser-melted IN718 alloy
He et al. Microstructure evolutions and nucleation mechanisms of dynamic recrystallization of a powder metallurgy Ni-based superalloy during hot compression
Liu et al. Plastic deformation and dynamic recrystallization of a powder metallurgical nickel-based superalloy
CN108977741B (en) Prediction method for basket structure distribution of titanium alloy die forging
Wang et al. Hot deformation behavior of as-quenched 7005 aluminum alloy
JP6088280B2 (en) Titanium alloy forged material, manufacturing method thereof, and ultrasonic flaw detection inspection method
CN106756688B (en) A kind of deformation TiAl alloy structure property accuracy control method
Chen et al. Characterization of hot deformation behavior and optimization of hot workability for GH4698 superalloy
Du et al. The superplastic forming/diffusion bonding of TA7 titanium alloy for manufacturing hollow structure with stiffeners
Mei et al. Geometric precision and microstructure evolution of TA15 alloy by hot shear spinning
JP2019183263A (en) Ni BASED SUPERALLOY MATERIAL FOR COLD WORKING
Hu et al. Hot workability and microstructural evolution of a nickel-based superalloy fabricated by laser-based directed energy deposition
Xiao et al. Process parameters optimization of Ti-6Al-4V alloy sheet during hot stretch-creep forming
Wang et al. Processing map and mechanism of hot deformation of a corrosion-resistant nickel-based alloy
Yuan et al. Microstructure and texture of thin-walled Ti-6Al-4V alloy seamless tubing manufactured by cold-rotary swaging
He et al. Effect of deformation temperature on dynamic recrystallization and CSL grain boundary distribution of Fe-36% Ni invar alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201225

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20201225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210608

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220118