CN108595827A - A kind of determination method of C-Mn-Al high strength steels Hot Deformation Microstructure evolution mechanism and hot-working character - Google Patents
A kind of determination method of C-Mn-Al high strength steels Hot Deformation Microstructure evolution mechanism and hot-working character Download PDFInfo
- Publication number
- CN108595827A CN108595827A CN201810360313.6A CN201810360313A CN108595827A CN 108595827 A CN108595827 A CN 108595827A CN 201810360313 A CN201810360313 A CN 201810360313A CN 108595827 A CN108595827 A CN 108595827A
- Authority
- CN
- China
- Prior art keywords
- deformation
- processing
- strain
- temperature
- steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 46
- 239000010959 steel Substances 0.000 title claims abstract description 46
- 238000000034 method Methods 0.000 title claims abstract description 31
- 230000007246 mechanism Effects 0.000 title claims abstract description 26
- 229910018657 Mn—Al Inorganic materials 0.000 title claims abstract description 22
- 238000012545 processing Methods 0.000 claims abstract description 70
- 238000009792 diffusion process Methods 0.000 claims abstract description 11
- 229910001566 austenite Inorganic materials 0.000 claims abstract description 8
- 238000002474 experimental method Methods 0.000 claims abstract description 5
- 238000007906 compression Methods 0.000 claims abstract description 4
- 230000006835 compression Effects 0.000 claims abstract description 4
- 239000000463 material Substances 0.000 claims description 39
- 238000010586 diagram Methods 0.000 claims description 19
- 230000004913 activation Effects 0.000 claims description 3
- 238000012417 linear regression Methods 0.000 claims description 3
- 238000002844 melting Methods 0.000 claims description 3
- 230000008018 melting Effects 0.000 claims description 3
- 125000004432 carbon atom Chemical group C* 0.000 claims 1
- 238000004886 process control Methods 0.000 abstract 1
- 238000001953 recrystallisation Methods 0.000 description 15
- 239000007769 metal material Substances 0.000 description 7
- 238000011084 recovery Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 4
- 230000002427 irreversible effect Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000013210 evaluation model Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910018125 Al-Si Inorganic materials 0.000 description 1
- 229910018520 Al—Si Inorganic materials 0.000 description 1
- 229910018643 Mn—Si Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910001567 cementite Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000012669 compression test Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000009931 harmful effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/10—Geometric CAD
- G06F30/17—Mechanical parametric or variational design
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Geometry (AREA)
- General Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
本发明属于高强度钢加工工程技术领域,特别涉及一种C‑Mn‑Al高强度钢热变形组织演变机制及热加工性能的确定方法。本发明首先对新型C‑Mn‑Al高强度钢进行高温压缩实验,获得钢的真应力‑真应变曲线数据,然后建立钢的流变应力预测模型,模型选择基于蠕变理论、考虑了杨氏模量和奥氏体的自扩散系数与温度关系的一类具有物理基础的本构模型,建立的本构模型能准确预测钢的流变应力;建立钢的热变形加工图,结合显微组织确定加工图中不同区域的组织演变机制。将热变形本构模型和加工图结合起来,分析任意变形条件下的热变形流变应力和热变形功率耗散效率,从而得到对应的组织演变机制及热加工性能信息,结果对高强度钢热加工过程控制有重要意义。
The invention belongs to the technical field of high-strength steel processing engineering, and in particular relates to a method for determining the thermal deformation microstructure evolution mechanism and thermal processing performance of C-Mn-Al high-strength steel. The present invention first carries out high-temperature compression experiment to novel C-Mn-Al high-strength steel, obtains the true stress-true strain curve data of steel, then establishes the flow stress prediction model of steel, and model selection is based on creep theory, has considered Young's A type of constitutive model with physical basis for the relationship between modulus and austenite self-diffusion coefficient and temperature. The established constitutive model can accurately predict the flow stress of steel; establish the thermal deformation processing map of steel, combined with the microstructure Identify mechanisms of tissue evolution in different regions of the processing map. Combining the thermal deformation constitutive model with the processing map, the thermal deformation flow stress and thermal deformation power dissipation efficiency under arbitrary deformation conditions are analyzed, so as to obtain the corresponding microstructure evolution mechanism and thermal processing performance information. Process control is of great significance.
Description
技术领域technical field
本发明属于高强度钢加工工程技术领域,特别涉及一种C-Mn-Al高强度钢热变形组织演变机制及热加工性能的确定方法。The invention belongs to the technical field of high-strength steel processing engineering, and particularly relates to a method for determining the thermal deformation microstructure evolution mechanism and thermal processing performance of C-Mn-Al high-strength steel.
背景技术Background technique
为了节约能源以及保护环境,迫切需要开发具有良好塑韧性的高强度钢,包括TRIP钢。基于C-Mn-Si合金系统开发了常规TRIP钢,采用高硅含量的目的是为了抑制冷却过程中渗碳体的形成以便增加残余奥氏体的稳定性及数量。然而,高硅含量可能使钢产生缺陷,如坚硬的氧化层、差的表面性能和低的涂层能力。由于Al替代Si能消除Si的这些有害影响,故C-Mn-Al-Si或C-Mn-Al基TRIP钢引起了越来越多的关注,人们对此类钢的显微组织和力学行为进行了大量的研究,但对其热变形行为的研究较为缺乏。In order to save energy and protect the environment, it is urgent to develop high-strength steels with good ductility and toughness, including TRIP steels. Conventional TRIP steels were developed based on the C-Mn-Si alloy system. The purpose of using high silicon content is to suppress the formation of cementite during cooling so as to increase the stability and quantity of retained austenite. However, high silicon content may cause steel defects such as hard oxide layer, poor surface properties and low coating ability. Since the substitution of Al for Si can eliminate these harmful effects of Si, C-Mn-Al-Si or C-Mn-Al-based TRIP steels have attracted more and more attention, and people have studied the microstructure and mechanical behavior of such steels. A lot of research has been done, but the research on its thermal deformation behavior is relatively scarce.
动态再结晶是一种非常普遍而重要的变形机制,在动态再结晶过程中,发生了明显的组织重建,可以大大地消除原始组织中的各种缺陷,微观的组织变化导致宏观上加工塑性的提高和变形抗力的减少。在动态再结晶过程的前期总会有动态回复发生,因为动态回复过程中发生的位错的消除和重排,可以形成一定尺寸的胞状结构和大角度取向差的界面,这正是为动态再结晶提供新核的条件。在热加工过程中动态再结晶是一个安全的变形机制,为了获得良好的热变形显微组织,在制定热加工工艺时要将变形参数尽量控制在合金的动态再结晶机制发挥作用的范围内。Dynamic recrystallization is a very common and important deformation mechanism. In the process of dynamic recrystallization, obvious tissue reconstruction occurs, which can greatly eliminate various defects in the original tissue. Microscopic structural changes lead to macroscopic processing plasticity. Improvement and reduction of deformation resistance. In the early stage of the dynamic recrystallization process, there will always be dynamic recovery, because the elimination and rearrangement of dislocations during the dynamic recovery process can form a certain size cell structure and a large-angle misorientation interface, which is precisely for dynamic recrystallization. Crystallization provides the conditions for new nuclei. Dynamic recrystallization is a safe deformation mechanism during thermal processing. In order to obtain a good thermal deformation microstructure, the deformation parameters should be controlled as much as possible within the range where the dynamic recrystallization mechanism of the alloy plays a role when formulating the thermal processing process.
热变形本构方程能表示应力、应变、温度和应变速率这类可以在宏观对象上测定到的物理量间关系。本构方程的优点是可以直观的得到在某一变形条件下的流变应力,但不能单纯通过流变应力曲线的信息确定材料的组织演变机制及热加工性能。动态材料模型是根据大应变量塑性变形条件下的不可逆热动力学、物理系统模拟和连续力学等方面的基本原理建立起来的。动态材料模型的加工图可通过少量的实验准确反映材料在不同变形条件下的组织演变规律及机理,进而可以用来优化材料的热加工工艺,但通过加工图不能得到流变应力曲线的信息。The constitutive equation of thermal deformation can express the relationship between physical quantities such as stress, strain, temperature and strain rate, which can be measured on macroscopic objects. The advantage of the constitutive equation is that the flow stress under a certain deformation condition can be obtained intuitively, but the microstructure evolution mechanism and thermal processing performance of the material cannot be determined simply through the information of the flow stress curve. The dynamic material model is established based on the basic principles of irreversible thermodynamics, physical system simulation and continuum mechanics under the condition of large strain plastic deformation. The processing diagram of the dynamic material model can accurately reflect the microstructure evolution law and mechanism of the material under different deformation conditions through a small number of experiments, and can be used to optimize the thermal processing process of the material, but the information of the flow stress curve cannot be obtained through the processing diagram.
经检索,中国专利申请号为201610131725.3的申请案公开了一种评估金属材料热加工性能的方法,该方法包括以下步骤:(1)在设计的热变形条件下,进行金属材料的高温压缩试验,获得金属材料的真应力-真应变数据;(2)建立描述金属材料高温流变应力的改进型双曲正弦本构模型,并通过编程实现;(3)建立金属材料热加工耗散效率评估模型和失稳判据模型,并通过编程实现;(4)采用步骤(2)和(3)中建立的预测高温流变应力模型、热加工耗散效率评估模型和失稳判据模型,可以预测任意变形条件下的金属材料的流变应力、热加工耗散效率和失稳系数,从而实现对任意变形条件下金属材料热加工性能的综合评估。但该申请案仍是采用传统的双曲正弦本构模型,其预测结果的准确度仍有待进一步提高。After retrieval, the Chinese patent application No. 201610131725.3 discloses a method for evaluating the thermal processing performance of metal materials. The method includes the following steps: (1) Under the designed thermal deformation conditions, conduct a high-temperature compression test of the metal material, Obtain the true stress-true strain data of metal materials; (2) Establish an improved hyperbolic sinusoidal constitutive model describing the high temperature flow stress of metal materials, and implement it through programming; (3) Establish a thermal processing dissipation efficiency evaluation model for metal materials and instability criterion model, and realized by programming; (4) using the high temperature flow stress prediction model, thermal processing dissipation efficiency evaluation model and instability criterion model established in steps (2) and (3), it is possible to predict The flow stress, thermal processing dissipation efficiency and instability coefficient of metal materials under arbitrary deformation conditions, so as to realize the comprehensive evaluation of the thermal processing performance of metal materials under arbitrary deformation conditions. However, this application still adopts the traditional hyperbolic sine constitutive model, and the accuracy of its prediction results still needs to be further improved.
发明内容Contents of the invention
1.发明要解决的技术问题1. The technical problem to be solved by the invention
本发明的目的在于克服现有技术的不足,提供了一种C-Mn-Al高强度钢热变形组织演变机制及热加工性能的确定方法。采用本发明的方法能够更准确地判断C-Mn-Al高强度钢在不同条件下的热变形组织演变机制及热加工性能,对于C-Mn-Al高强度钢热加工工艺的合理制定具有重要的指导意义。The purpose of the present invention is to overcome the deficiencies of the prior art, and to provide a method for determining the evolution mechanism of hot-deformed microstructure and hot-working performance of C-Mn-Al high-strength steel. Adopting the method of the present invention can more accurately judge the evolution mechanism and thermal processing performance of thermal deformation structure of C-Mn-Al high-strength steel under different conditions, which is of great importance for the rational formulation of C-Mn-Al high-strength steel thermal processing technology guiding significance.
2.技术方案2. Technical solution
为达到上述目的,本发明提供的技术方案为:In order to achieve the above object, the technical scheme provided by the invention is:
本发明的一种C-Mn-Al高强度钢热变形组织演变机制及热加工性能的确定方法,该方法包括以下步骤:A kind of C-Mn-Al high-strength steel hot deformation microstructure evolution mechanism of the present invention and the determination method of hot workability, this method comprises the following steps:
步骤1:在不同变形温度和应变速率下对钢进行高温压缩实验,获得钢的真应力-真应变曲线数据;Step 1: Carry out high-temperature compression experiments on steel at different deformation temperatures and strain rates to obtain the true stress-true strain curve data of the steel;
步骤2:建立预测C-Mn-Al高强度钢高温流变应力的本构模型,该本构模型选择基于蠕变理论,考虑了杨氏模量和奥氏体的自扩散系数与温度关系的一类具有物理基础的模型,如下式所示: Step 2: Establish a constitutive model for predicting the high-temperature flow stress of C-Mn-Al high-strength steel. The constitutive model is selected based on creep theory, taking into account the relationship between Young's modulus and austenite self-diffusion coefficient and temperature A class of models with a physical basis, as shown in the following formula:
上式中,是应变速率(s-1),T是温度(K),σ是流变应力(MPa),D(T)是奥氏体的自扩散系数,D(T)=D0exp(Qsd/(RT)),D0是扩散常数,Qsd是自扩散激活能,E(T)描述了杨氏模量与温度的关系;B′、α′和n′为材料常数;In the above formula, is the strain rate (s -1 ), T is the temperature (K), σ is the flow stress (MPa), D(T) is the self-diffusion coefficient of austenite, D(T)=D 0 exp(Q sd / (RT)), D 0 is the diffusion constant, Q sd is the self-diffusion activation energy, E(T) describes the relationship between Young's modulus and temperature; B', α' and n' are material constants;
将应变量ε对实验钢流变应力的影响引入本构方程中,逐一计算系列不同应变量对应应力下的此类本构方程,所得到的材料常数lnB′、α′和n′与应变量ε的关系用5次多项式拟合;Introduce the influence of strain ε on the flow stress of the experimental steel into the constitutive equation, and calculate the constitutive equations under the corresponding stresses of a series of different strains one by one. The obtained material constants lnB', α' and n' and the strain The relationship of ε is fitted with a polynomial of degree 5;
将拟合结果代入模型中,即获得流变应力预测模型:Substituting the fitting results into the model, the rheological stress prediction model is obtained:
其中:α′ε=α0+α1ε+α2ε2+α3ε3+α4ε4+α5ε5,n′ε=N0+N1ε+N2ε2+N3ε3+N4ε4+N5ε5,(lnB′)ε=B0′+B1′ε+B2′ε2+B3′ε3+B4′ε4+B5′ε5;Among them: α′ ε = α 0 + α 1 ε + α 2 ε 2 + α 3 ε 3 + α 4 ε 4 + α 5 ε 5 , n′ ε = N 0 +N 1 ε+N 2 ε 2 +N 3 ε 3 +N 4 ε 4 +N 5 ε 5 , (lnB′) ε =B 0 ′+B 1 ′ε+B 2 ′ε 2 +B 3 ′ε 3 +B 4 ′ε 4 +B 5 ′ ε 5 ;
步骤3:动态材料模型是根据大应变量塑性变形条件下的不可逆热动力学、物理系统模拟和连续力学等方面的基本原理建立起来的。根据动态材料模型,定义功率耗散效率因子η和加工失稳的判据如下:Step 3: The dynamic material model is established based on the basic principles of irreversible thermodynamics, physical system simulation and continuum mechanics under the condition of large strain plastic deformation. According to the dynamic material model, the criteria for defining the power dissipation efficiency factor η and processing instability are as follows:
其中m是应变速率敏感因子,同一应变量下,在温度-应变速率的二维平面上,画出η的等值线图,即功率耗散图,再绘出参数ξ为负的区域,即热加工失稳图,即得到了材料的加工图;观测钢在不同变形条件下的显微组织,和加工图相结合,确定加工图中的流变失稳区、动态再结晶区和动态回复区;where m is the strain rate sensitivity factor, Under the same strain, on the temperature-strain rate two-dimensional plane, draw the contour map of η, that is, the power dissipation map, and then draw the area where the parameter ξ is negative, that is, the thermal processing instability map, that is, The processing map of the material is obtained; the microstructure of steel under different deformation conditions is observed, combined with the processing map, the rheological instability zone, dynamic recrystallization zone and dynamic recovery zone are determined in the processing map;
步骤4:将本构模型和加工图结合起来研究材料的热变形行为:利用建立的本构模型预测不同变形条件下的应力应变曲线,不同的变形条件对应着加工图中的不同位置,确定不同变形条件下的功率耗散效率因子η,从而得到任意变形条件下的流变应力曲线信息和热变形功率耗散效率η值。本发明利用加工图和本构方程两种方法相互印证,从而更准确地判断不同条件下的热变形组织演变机制及热加工性能。Step 4: Combine the constitutive model and the processing map to study the thermal deformation behavior of the material: use the established constitutive model to predict the stress-strain curves under different deformation conditions, different deformation conditions correspond to different positions in the processing map, determine the different The power dissipation efficiency factor η under deformation conditions, so as to obtain the flow stress curve information and thermal deformation power dissipation efficiency η value under arbitrary deformation conditions. The invention utilizes two methods of processing diagram and constitutive equation to verify each other, thereby more accurately judging the thermal deformation microstructure evolution mechanism and thermal processing performance under different conditions.
更进一步的,所述步骤1中的变形温度为900-1100℃,变形温度的间隔区间为50℃,所述应变速率0.01-30s-1,分别取0.01、0.1、1、10和30s-1。Furthermore, the deformation temperature in the step 1 is 900-1100°C, the deformation temperature interval is 50°C, and the strain rate is 0.01-30s -1 , which are respectively 0.01, 0.1, 1, 10 and 30s -1 .
更进一步的,步骤2中α′的值利用公式α′=β′/n1′求得,而n1′和β′分别由和的斜率得到,根据线性回归求得n1′和β′的值;根据本构模型,线性拟合所得斜率和截距分别用来计算n′和lnB′的值。Furthermore, the value of α' in step 2 is obtained by using the formula α'=β'/n 1 ', and n 1 ' and β' are obtained by and The slope is obtained, and the values of n 1 ' and β' are obtained according to linear regression; according to the constitutive model, linear fitting The resulting slope and intercept were used to calculate the values of n' and lnB', respectively.
更进一步的,步骤2中应变量ε的取值从0.05-0.80,间隔区间为0.05。Furthermore, the value of the dependent variable ε in step 2 is from 0.05 to 0.80, and the interval interval is 0.05.
更进一步的,步骤2中的E(T)根据下式计算得到:Furthermore, E(T) in step 2 is calculated according to the following formula:
其中,E0和G0分别代表材料在300K时的杨氏模量和剪切模量,G为材料在温度T下的剪切模量,TM是材料的熔点。Among them, E 0 and G 0 represent the Young's modulus and shear modulus of the material at 300K, respectively, G is the shear modulus of the material at temperature T, and T M is the melting point of the material.
3.有益效果3. Beneficial effect
采用本发明提供的技术方案,与现有技术相比,具有如下显著效果:Compared with the prior art, the technical solution provided by the invention has the following remarkable effects:
(1)本发明的一种C-Mn-Al高强度钢热变形组织演变机制及热加工性能的确定方法,结合基于物理的热变形本构方程和热变形加工图,利用加工图和本构方程两种方法相互印证,从而能够更准确地判断不同条件下的热变形组织演变机制及热加工性能。(1) A method for determining the thermal deformation microstructure evolution mechanism and thermal processing performance of a C-Mn-Al high-strength steel of the present invention, combined with the physical-based thermal deformation constitutive equation and thermal deformation processing diagram, using the processing diagram and constitutive The two methods of the equation confirm each other, so that the evolution mechanism of hot deformation microstructure and hot processing performance under different conditions can be judged more accurately.
(2)本发明的一种C-Mn-Al高强度钢热变形组织演变机制及热加工性能的确定方法,利用建立的本构模型预测不同变形条件下的应力应变曲线,不同的变形条件对应着加工图中的不同位置,确定不同变形条件下的功率耗散效率因子η,从而得到任意变形条件下的流变应力曲线信息和热变形功率耗散效率η值,了解一定变形条件下材料的热变形及动态再结晶信息,从而给材料的热加工过程提供重要参考。(2) A kind of C-Mn-Al high-strength steel thermal deformation structure evolution mechanism of the present invention and the determination method of thermal processing performance utilize the constitutive model of establishment to predict the stress-strain curve under different deformation conditions, and different deformation conditions correspond to According to different positions in the processing diagram, determine the power dissipation efficiency factor η under different deformation conditions, so as to obtain the flow stress curve information and thermal deformation power dissipation efficiency η value under arbitrary deformation conditions, and understand the material performance under certain deformation conditions. Thermal deformation and dynamic recrystallization information provide important references for the thermal processing of materials.
附图说明Description of drawings
图1-图4为不同变形条件下本构模型的预测值和实验值对比。Figures 1 to 4 show the comparison between the predicted values and experimental values of the constitutive model under different deformation conditions.
图5为热变形加工图及加工图中不同区域所对应的热变形显微组织。Fig. 5 is the thermal deformation processing diagram and the thermal deformation microstructure corresponding to different regions in the processing diagram.
图6为两种不同变形条件(1080℃、0.03s-1和930℃、6s-1)下所对应加工图中的位置标定情况。Fig. 6 shows the calibration of positions in the corresponding processing maps under two different deformation conditions (1080°C, 0.03s -1 and 930°C, 6s -1 ).
图7为1080℃、0.03s-1条件下本构模型预测的流变应力曲线。Figure 7 is the flow stress curve predicted by the constitutive model under the conditions of 1080°C and 0.03s -1 .
图8为930℃、6s-1条件下本构模型预测的流变应力曲线。Fig. 8 is the rheological stress curve predicted by the constitutive model under the conditions of 930°C and 6s -1 .
具体实施方式Detailed ways
为进一步了解本发明的内容,现结合具体实施例对本发明作详细描述。In order to further understand the content of the present invention, the present invention will be described in detail in conjunction with specific embodiments.
实施例1Example 1
本实施例的一种C-Mn-Al高强度钢热变形组织演变机制及热加工性能的确定方法,该方法包括以下步骤:A kind of C-Mn-Al high-strength steel hot-deformed microstructure evolution mechanism and the determination method of hot-working performance of the present embodiment, the method comprises the following steps:
步骤1:在变形温度为900-1100℃(间隔区间为50℃)和应变速率为0.01-30s-1(0.01、0.1、1、10、30s-1),应变量为工程应变0.6的热变形条件下,对C-Mn-Al高强度钢进行高温压缩实验,获得C-Mn-Al高强度钢的真应力-真应变曲线数据;Step 1: Thermal deformation at a deformation temperature of 900-1100°C (the interval is 50°C) and a strain rate of 0.01-30s -1 (0.01, 0.1, 1, 10, 30s -1 ) with an engineering strain of 0.6 Under the same conditions, high-temperature compression experiments were carried out on C-Mn-Al high-strength steel to obtain the true stress-true strain curve data of C-Mn-Al high-strength steel;
步骤2:建立预测C-Mn-Al高强度钢热变形流变应力的本构模型,所选用的本构方程为:Step 2: Establish a constitutive model for predicting the thermal deformation flow stress of C-Mn-Al high-strength steel. The selected constitutive equation is:
其中,是应变速率(s-1),T是温度(K),σ是流变应力(MPa),B′、α′和n′是材料常数,D(T)是奥氏体的自扩散系数,D(T)=D0exp(Qsd/(RT)),D0是扩散常数,Qsd是自扩散激活能,E(T)描述了杨氏模量与温度的关系。γ-Fe是和实验钢最接近的材料,将γ-Fe的数据代入,得到:in, is the strain rate (s -1 ), T is the temperature (K), σ is the flow stress (MPa), B′, α′ and n′ are material constants, D(T) is the self-diffusion coefficient of austenite, D(T)=D 0 exp(Q sd /(RT)), D 0 is the diffusion constant, Q sd is the self-diffusion activation energy, and E(T) describes the relationship between Young's modulus and temperature. γ-Fe is the closest material to the experimental steel. Substituting the data of γ-Fe into it, we get:
其中,E0和G0分别代表材料在300K时的杨氏模量和剪切模量,TM是材料的熔点。Among them, E 0 and G 0 represent the Young's modulus and shear modulus of the material at 300K, respectively, and T M is the melting point of the material.
方程中有3个未知数B′、α′和n′需要确定。α′的值可以利用公式α′=β′/n1′求得,而n1′和β′可以分别由和的斜率得到,线性回归求得n1′和β′的值。根据本构方程,线性拟合所得斜率和截距可以分别用来计算n′和lnB′的值。There are three unknowns B', α' and n' in the equation to be determined. The value of α' can be obtained by using the formula α'=β'/n 1 ', and n 1 ' and β' can be calculated by and The slope is obtained, and the values of n 1 ' and β' are obtained by linear regression. According to the constitutive equation, a linear fit The resulting slope and intercept can be used to calculate the values of n' and lnB', respectively.
将应变量对实验钢流变应力的影响引入本构方程式中,应变量的取值从0.05-0.80,间隔区间为0.05,逐一计算系列不同应变量对应的应力下的此类本构方程,所得到的材料常数α′、n′和lnB′与应变量ε的关系用5次多项式拟合。Introduce the influence of the strain on the flow stress of the experimental steel into the constitutive equation, the value of the strain ranges from 0.05 to 0.80, and the interval interval is 0.05, and calculate the constitutive equations under the stresses corresponding to the series of different strains one by one. The relationship between the obtained material constants α', n' and lnB' and the strain ε is fitted by a polynomial of degree 5.
将拟合所得到的系数值代入式中,即获得基于物理的流变应力预测模型:Substituting the coefficient value obtained by fitting into the formula, the prediction model of rheological stress based on physics is obtained:
其中,α′ε=α0+α1ε+α2ε2+α3ε3+α4ε4+α5ε5,n′ε=N0+N1ε+N2ε2+N3ε3+N4ε4+N5ε5,(lnB′)ε=B0′+B1′ε+B2′ε2+B3′ε3+B4′ε4+B5′ε5,其系数如表1所示。Among them, α′ ε = α 0 +α 1 ε+α 2 ε 2 +α 3 ε 3 +α 4 ε 4 +α 5 ε 5 , n′ ε =N 0 +N 1 ε+N 2 ε 2 +N 3 ε 3 +N 4 ε 4 +N 5 ε 5 , (lnB′) ε =B 0 ′+B 1 ′ε+B 2 ′ε 2 +B 3 ′ε 3 +B 4 ′ε 4 +B 5 ′ ε 5 , whose coefficients are shown in Table 1.
利用预测模型计算不同变形条件下的热变形流变应力,所得预测值和实验值的对比图如图1-图4所示,由图可以看出预测结果良好,故建立的本构模型能准确预测钢的热变形流变应力曲线。Using the prediction model to calculate the thermal deformation rheological stress under different deformation conditions, the comparison diagrams of the obtained prediction values and experimental values are shown in Figure 1-Figure 4. It can be seen from the figure that the prediction results are good, so the established constitutive model can be accurate Prediction of thermal deformation flow stress curve of steel.
表1五次多项式中的各个系数值Each coefficient value in table 1 quintic polynomial
步骤3:动态材料模型是根据大应变量塑性变形条件下的不可逆热动力学、物理系统模拟和连续力学等方面的基本原理建立起来的。根据动态材料模型,定义了功率耗散效率因子η和加工失稳的判据。Step 3: The dynamic material model is established based on the basic principles of irreversible thermodynamics, physical system simulation and continuum mechanics under the condition of large strain plastic deformation. According to the dynamic material model, the power dissipation efficiency factor η and the criterion of processing instability are defined.
其中m是应变速率敏感因子,同一应变量下,在温度-应变速率的二维平面上,画出η的等值线图(即功率耗散图),再绘出参数ξ约为负的区域(即热加工失稳图),就得到了材料的加工图。where m is the strain rate sensitivity factor, Under the same strain, on the temperature-strain rate two-dimensional plane, draw the contour map of η (that is, the power dissipation map), and then draw the area where the parameter ξ is about negative (that is, the thermal processing instability map) , the processing map of the material is obtained.
为了验证热变形加工图的准确性,观测了钢在不同变形条件下的组织,和加工图相结合,确定了加工图中的流变失稳区、动态再结晶区和动态回复区。图5所示为所得到的加工图及加工图中不同区域对应的显微组织图,可以确定图中阴影区为加工失稳区(应避免在此区域进行热加工),图中矩形框线所包括的区域(1000-1100℃、0.01-1s-1)为动态再结晶区,其他区域为动态回复区。In order to verify the accuracy of the thermal deformation processing map, the microstructure of steel under different deformation conditions was observed, combined with the processing map, the rheological instability zone, dynamic recrystallization zone and dynamic recovery zone in the processing map were determined. Figure 5 shows the obtained processing map and the corresponding microstructure map of different regions in the processing map. It can be determined that the shaded area in the figure is the processing instability area (hot processing should be avoided in this area), and the rectangular frame line in the figure The included region (1000-1100°C, 0.01-1s -1 ) is the dynamic recrystallization region, and the other regions are the dynamic recovery region.
步骤4:将本构方程和加工图相结合来研究材料的热变形行为:利用建立的本构方程预测在不同变形条件下的应力应变曲线。不同的变形条件对应着加工图中的不同位置,具有不同的功率耗散效率。加工图和本构方程两种方法可以相互印证,更准确地判断不同变形条件的组织演变机制及热加工性能。以下将举例具体说明。Step 4: Combining the constitutive equation and the processing diagram to study the thermal deformation behavior of the material: use the established constitutive equation to predict the stress-strain curve under different deformation conditions. Different deformation conditions correspond to different positions in the processing map and have different power dissipation efficiencies. The two methods of processing diagram and constitutive equation can confirm each other, and can more accurately judge the microstructure evolution mechanism and thermal processing performance under different deformation conditions. Examples will be given below for specific description.
任意选择两个不同的变形条件(1080℃、0.03s-1和930℃、6s-1)为例来进行分析。从加工图中标出(1080℃、0.03s-1和930℃、6s-1)所处的位置如图6所示。从图3看出:1080℃、0.03s-1的变形条件对应着的功率耗散效率为0.25,位于动态再结晶区,而930℃、6s-1的变形条件对应着的功率耗散效率为0.19,位于动态回复区。用本构方程预测的两种变形条件下的应力应变曲线如图7、图8所示。可以看出,在1080℃、0.03s-1变形条件下流变应力曲线呈动态再结晶型,因此加工图和本构方程两种方法均判定在此变形条件下材料会发生动态再结晶。而在930℃、6s-1变形条件下流变应力曲线未出现明显的动态再结晶峰值,故初步判断此变形条件下材料发生动态回复,与加工图相互印证,可以更准确地判断此变形条件对应材料的动态回复区。类似地,可以用这种方法得到任意变形条件下的流变应力曲线信息和热变形功率耗散效率η值,从而确定材料的热变形组织演变机制以及热加工性能。Two different deformation conditions (1080°C, 0.03s -1 and 930°C, 6s -1 ) were arbitrarily selected as examples for analysis. The positions marked (1080°C, 0.03s -1 and 930°C, 6s -1 ) from the processing diagram are shown in Fig. 6 . It can be seen from Figure 3 that the deformation condition of 1080°C and 0.03s- 1 corresponds to a power dissipation efficiency of 0.25, which is located in the dynamic recrystallization zone, while the deformation condition of 930°C and 6s -1 corresponds to a power dissipation efficiency of 0.19, in the dynamic reply area. The stress-strain curves under the two deformation conditions predicted by the constitutive equation are shown in Fig. 7 and Fig. 8. It can be seen that the flow stress curve under the deformation conditions of 1080 ℃ and 0.03s -1 is a dynamic recrystallization type, so both the processing diagram and the constitutive equation determine that the material will undergo dynamic recrystallization under this deformation condition. However, there is no obvious dynamic recrystallization peak in the flow stress curve under the deformation condition of 930°C and 6s -1 , so it is preliminarily judged that the material undergoes dynamic recovery under this deformation condition, which can be confirmed with the processing diagram, and it can be more accurately judged that the deformation condition corresponds to The dynamic reply area of the material. Similarly, this method can be used to obtain the flow stress curve information and thermal deformation power dissipation efficiency η value under arbitrary deformation conditions, so as to determine the thermal deformation microstructure evolution mechanism and thermal processing performance of the material.
本发明通过选用一种新型的基于物理的本构模型来预测钢的流变应力曲线,相对于传统的双曲正弦本构模型,不仅简单有效,还具有一定的物理基础。本发明还将本构模型的预测结果和加工图的分析结果进行对比研究,研究结果进一步确认了本构模型和加工图两种方法的配合使用能更为有效的预测钢的热加工行为。综上所述,结合加工图和本构方程,可以全面地了解一定变形条件下的热变形及动态再结晶信息,从而给材料热加工过程提供重要参考。The invention predicts the flow stress curve of steel by selecting a new type of constitutive model based on physics. Compared with the traditional hyperbolic sine constitutive model, it is not only simple and effective, but also has a certain physical basis. In the present invention, the prediction results of the constitutive model and the analysis results of the processing diagram are compared and studied, and the research results further confirm that the combined use of the two methods of the constitutive model and the processing diagram can more effectively predict the thermal processing behavior of steel. In summary, combined with the processing diagram and constitutive equation, the thermal deformation and dynamic recrystallization information under certain deformation conditions can be fully understood, thus providing an important reference for the thermal processing of materials.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810360313.6A CN108595827A (en) | 2018-04-20 | 2018-04-20 | A kind of determination method of C-Mn-Al high strength steels Hot Deformation Microstructure evolution mechanism and hot-working character |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810360313.6A CN108595827A (en) | 2018-04-20 | 2018-04-20 | A kind of determination method of C-Mn-Al high strength steels Hot Deformation Microstructure evolution mechanism and hot-working character |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108595827A true CN108595827A (en) | 2018-09-28 |
Family
ID=63614351
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810360313.6A Pending CN108595827A (en) | 2018-04-20 | 2018-04-20 | A kind of determination method of C-Mn-Al high strength steels Hot Deformation Microstructure evolution mechanism and hot-working character |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108595827A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109492332A (en) * | 2018-12-11 | 2019-03-19 | 西安交通大学 | For the analogy method of the single component thermal deformation of sodium-cooled fast reactor |
CN109811115A (en) * | 2019-01-31 | 2019-05-28 | 武汉科技大学 | A method for determining the hot forming process window of bainitic steel |
CN110096759A (en) * | 2019-04-10 | 2019-08-06 | 西北工业大学 | Blade of aviation engine mechanical property appraisal procedure and device |
CN110570910A (en) * | 2019-08-19 | 2019-12-13 | 华中科技大学 | A method and system for reducing dislocation density by growing gallium nitride thin film |
CN110705108A (en) * | 2019-10-08 | 2020-01-17 | 天津理工大学 | Method for determining hot working temperature range of low-alloy high-strength steel for ocean engineering |
CN111380899A (en) * | 2019-11-29 | 2020-07-07 | 中国科学院金属研究所 | A method for correcting flow stress of zirconium alloy by temperature rise in rolling simulation process |
CN111735715A (en) * | 2020-06-28 | 2020-10-02 | 苏州健雄职业技术学院 | Test method for PLC effect micromechanism of CHDG-A austenitic heat-resistant steel |
CN112729376A (en) * | 2020-11-27 | 2021-04-30 | 成都先进金属材料产业技术研究院有限公司 | Method for evaluating hot working performance of light high-strength steel |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61270332A (en) * | 1985-05-27 | 1986-11-29 | Mitsubishi Heavy Ind Ltd | Thermo-mechanical treatment of austenitic stainless steel |
JPH04110417A (en) * | 1990-08-31 | 1992-04-10 | Minoru Umemoto | Method for predicting austenitic structure in steel after multi-pass hot-working |
CN103852382A (en) * | 2014-03-04 | 2014-06-11 | 湖南大学 | Establishment method of high-strength steel plate thermoforming limit diagram |
CN104928605A (en) * | 2015-07-20 | 2015-09-23 | 中南大学 | Method for predicting nickel base alloy high temperature flow stress and dynamic recrystallization behavior |
CN104951633A (en) * | 2015-07-20 | 2015-09-30 | 中南大学 | Method for predicting work-hardening and dynamic recovery behaviors of nickel-based alloy |
CN105651620A (en) * | 2016-03-09 | 2016-06-08 | 中南大学 | Method estimating hot-working performance of metal material |
CN107121992A (en) * | 2017-03-28 | 2017-09-01 | 华南理工大学 | A kind of strong rotation shape/property integrated control method of cylindrical member heat based on hot working chart |
-
2018
- 2018-04-20 CN CN201810360313.6A patent/CN108595827A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61270332A (en) * | 1985-05-27 | 1986-11-29 | Mitsubishi Heavy Ind Ltd | Thermo-mechanical treatment of austenitic stainless steel |
JPH04110417A (en) * | 1990-08-31 | 1992-04-10 | Minoru Umemoto | Method for predicting austenitic structure in steel after multi-pass hot-working |
CN103852382A (en) * | 2014-03-04 | 2014-06-11 | 湖南大学 | Establishment method of high-strength steel plate thermoforming limit diagram |
CN104928605A (en) * | 2015-07-20 | 2015-09-23 | 中南大学 | Method for predicting nickel base alloy high temperature flow stress and dynamic recrystallization behavior |
CN104951633A (en) * | 2015-07-20 | 2015-09-30 | 中南大学 | Method for predicting work-hardening and dynamic recovery behaviors of nickel-based alloy |
CN105651620A (en) * | 2016-03-09 | 2016-06-08 | 中南大学 | Method estimating hot-working performance of metal material |
CN107121992A (en) * | 2017-03-28 | 2017-09-01 | 华南理工大学 | A kind of strong rotation shape/property integrated control method of cylindrical member heat based on hot working chart |
Non-Patent Citations (5)
Title |
---|
潘红波等: "低碳硅锰钢奥氏体区形变对贝氏体组织及力学性能影响", 《金属热处理》 * |
魏海莲: "中低碳微合金钢及C-Mn-Al(Si)高强钢的热变形行为研究", 《中国优秀博硕士学位论文全文数据库(博士)工程科技I辑》 * |
魏海莲等: "基于本构分析的中碳钒微合金钢热变形行为", 《材料科学与工艺》 * |
魏海莲等: "新型微合金化C--Mn--Al高强度钢的热变形行为", 《北京科技大学学报》 * |
魏海莲等: "表观的和基于物理的35Mn2钢奥氏体热变形本构分析", 《金属学报》 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109492332A (en) * | 2018-12-11 | 2019-03-19 | 西安交通大学 | For the analogy method of the single component thermal deformation of sodium-cooled fast reactor |
CN109811115A (en) * | 2019-01-31 | 2019-05-28 | 武汉科技大学 | A method for determining the hot forming process window of bainitic steel |
CN110096759A (en) * | 2019-04-10 | 2019-08-06 | 西北工业大学 | Blade of aviation engine mechanical property appraisal procedure and device |
CN110570910A (en) * | 2019-08-19 | 2019-12-13 | 华中科技大学 | A method and system for reducing dislocation density by growing gallium nitride thin film |
CN110570910B (en) * | 2019-08-19 | 2021-10-08 | 华中科技大学 | A method and system for reducing dislocation density for growing gallium nitride thin films |
CN110705108A (en) * | 2019-10-08 | 2020-01-17 | 天津理工大学 | Method for determining hot working temperature range of low-alloy high-strength steel for ocean engineering |
CN111380899A (en) * | 2019-11-29 | 2020-07-07 | 中国科学院金属研究所 | A method for correcting flow stress of zirconium alloy by temperature rise in rolling simulation process |
CN111735715A (en) * | 2020-06-28 | 2020-10-02 | 苏州健雄职业技术学院 | Test method for PLC effect micromechanism of CHDG-A austenitic heat-resistant steel |
CN111735715B (en) * | 2020-06-28 | 2022-01-11 | 苏州健雄职业技术学院 | PLC effect micro-mechanism test method of CHDG-A austenitic heat-resistant steel |
CN112729376A (en) * | 2020-11-27 | 2021-04-30 | 成都先进金属材料产业技术研究院有限公司 | Method for evaluating hot working performance of light high-strength steel |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108595827A (en) | A kind of determination method of C-Mn-Al high strength steels Hot Deformation Microstructure evolution mechanism and hot-working character | |
CN104928605B (en) | Method for predicting nickel base alloy high temperature flow stress and dynamic recrystallization behavior | |
Duan et al. | Developed constitutive models, processing maps and microstructural evolution of Pb-Mg-10Al-0.5 B alloy | |
Li et al. | Constitutive equations for high temperature flow stress prediction of Al–14Cu–7Ce alloy | |
Paturi et al. | Constitutive flow stress formulation, model validation and FE cutting simulation for AA7075-T6 aluminum alloy | |
CN102750425A (en) | Simulation method of texture evolvement of heat affected zone in welding process | |
Sun et al. | Hot compressive deformation behaviour and constitutive equations of Mg–Pb–Al–1B–0.4 Sc alloy | |
CN110032795B (en) | Method for predicting thermal fatigue crack initiation life of nickel-based single crystal alloy | |
CN105651620A (en) | Method estimating hot-working performance of metal material | |
Lin et al. | A new creep constitutive model for 7075 aluminum alloy under elevated temperatures | |
Liao et al. | Strain-dependent constitutive analysis of extruded AZ61 Mg alloy under hot compression | |
CN110068507A (en) | The method that a kind of pair of tradition recrystallization model is modified | |
Favre et al. | Modeling grain boundary motion and dynamic recrystallization in pure metals | |
Wang et al. | Hot compression deformation behavior of biomedical Ni–Ti alloy | |
Zhu et al. | Optimization of hot deformation parameters for multi-directional forging of Ti65 alloy based on the integration of processing maps and finite element method | |
CN103235840A (en) | Simulation method for three-dimensional network silicon carbide based ceramic | |
CN107357956A (en) | The method that glass transformation temperature is determined based on molecular dynamics radial distribution function figure | |
CN107058923A (en) | Novel method for optimizing magnesium alloy hot working process | |
CN105241903A (en) | Method for predicting endurance strength of gamma' -strengthened high-temperature alloy for 700 ℃ power station | |
Jaimin et al. | Integrated Johnson–Cook and Zerilli–Armstrong constitutive model for flow-stress prediction of AZ31B alloy | |
CN106383928A (en) | Method for constructing high-temperature plastic flow densification constitutive models of powder sintering materials | |
Jiang et al. | Hot deformation behavior and processing map of Al-Zn-Mg-Cu-Zr alloy | |
Chen et al. | Simulation of flow of aluminum alloy 3003 under hot compressive deformation | |
CN105445185B (en) | The method of the second distributed mutually of segregation uniformity in accurate determination of material | |
Zhou et al. | Investigation of interfacial heat transfer characterization for TC4 alloy in triple-layer sheet hot stamping process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180928 |