JP7080087B2 - Ridge creation method - Google Patents

Ridge creation method Download PDF

Info

Publication number
JP7080087B2
JP7080087B2 JP2018066809A JP2018066809A JP7080087B2 JP 7080087 B2 JP7080087 B2 JP 7080087B2 JP 2018066809 A JP2018066809 A JP 2018066809A JP 2018066809 A JP2018066809 A JP 2018066809A JP 7080087 B2 JP7080087 B2 JP 7080087B2
Authority
JP
Japan
Prior art keywords
solidifying material
soil
ridge
amount
aggregate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018066809A
Other languages
Japanese (ja)
Other versions
JP2019176755A (en
Inventor
俊吉 須藤
隆 神谷
政彦 守屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2018066809A priority Critical patent/JP7080087B2/en
Publication of JP2019176755A publication Critical patent/JP2019176755A/en
Application granted granted Critical
Publication of JP7080087B2 publication Critical patent/JP7080087B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、畦造成方法に関する。 The present invention relates to a method for creating ridges.

水田の畦は、水田に水を貯める目的で、通常、水田の中の泥土を盛り上げて造られる。また、畦自体が通路としての機能を有している。
畦に雑草が繁茂すると、例えば、斑点米の原因となるカメムシの侵入源となる等、病虫害の発生源となるとともに、日照や通風の確保が困難となる。また、畦から水田に侵入する雑草や、景観の悪化を防ぐ等の観点から、草刈作業を行って畦の管理を行う必要がある。しかし、平面のみならず斜面も有する畦を、刈払機等を用いて行われる草刈りは、容易な作業ではなく、高齢化が進んでいる地域では特に問題となっている。
水田の畦において、表面を硬化させて雑草の生育を抑制する目的でセメント系材料を用いた場合、セメントに起因するアルカリが稲の生育を阻害する恐れがあるほか、有機物の含有量の多い土壌の固化は難しくなるという問題がある。また、畦を解体する際には、セメントには微量元素などが含まれるため、解体した硬化層を作土として再利用することが困難であるという問題がある。
Paddy ridges are usually made by raising the mud in the paddy field for the purpose of storing water in the paddy field. In addition, the ridge itself has a function as a passage.
When weeds grow on the ridges, it becomes a source of pests and diseases, for example, a source of stink bugs that cause spotted rice, and it becomes difficult to secure sunlight and ventilation. In addition, it is necessary to manage the ridges by mowing the weeds that invade the paddy fields from the ridges and from the viewpoint of preventing the deterioration of the landscape. However, mowing ridges that have not only flat surfaces but also slopes using a brush cutter or the like is not an easy task, and is a particular problem in areas where the population is aging.
When cement-based materials are used for the purpose of hardening the surface and suppressing the growth of weeds in the ridges of paddy fields, the alkali caused by cement may inhibit the growth of rice, and the soil contains a large amount of organic matter. There is a problem that solidification becomes difficult. Further, when the ridges are dismantled, there is a problem that it is difficult to reuse the dismantled hardened layer as soil because the cement contains trace elements and the like.

特許文献1には、地面に供給されて、水と反応して硬化し、地面に硬化層を形成して雑草の繁殖を防止する雑草繁殖防止材において、酸化マグネシウムと増量材を含み、酸化マグネシウムが水と反応して硬化するようにしてなることを特徴とする雑草繁殖防止材が記載されている。
また、特許文献2には、土壌表面に粉状のマグネシアを敷均しする工程と、上記マグネシアの上に表層土を敷均しする工程と、上記表層土の表面に散水を行う工程と、表層土を加圧する工程とを有することを特徴とする土壌の防草工法が記載されている。
Patent Document 1 describes a weed growth preventive material that is supplied to the ground and reacts with water to harden to form a hardened layer on the ground to prevent the growth of weeds, and includes magnesium oxide and a bulking material, and magnesium oxide. Described are weed growth inhibitors characterized by the fact that they react with water to harden.
Further, Patent Document 2 includes a step of laying powdery magnesia on the soil surface, a step of laying surface soil on the magnesia, and a step of sprinkling water on the surface of the surface soil. A soil weed control method characterized by having a step of pressurizing the surface soil is described.

特開2003-47388号公報Japanese Patent Application Laid-Open No. 2003-47388 特許第5940326号公報Japanese Patent No. 5940326

本発明の目的は、雑草の生育が抑制された畦を造成することができる方法を提供することである。 An object of the present invention is to provide a method capable of creating ridges in which the growth of weeds is suppressed.

本発明者は、上記課題を解決するために鋭意検討した結果、畦の造成に使用する土壌を採掘する地盤から、試料を採取する工程と、該試料と固化材を混合して混合物を得た後、該混合物について固化後の強度を測定し、得られた測定値に基いて固化材の種類及び量を定める工程、及び、該工程で定めた固化材の種類及び量で地盤に畦を造成する工程を含む畦造成方法によれば、上記目的を達成できることを見出し、本発明を完成した。
すなわち、本発明は、以下の[1]~[5]を提供するものである。
[1] 畦の造成に使用する土壌を採掘する地盤から、土壌の試料を採取する土壌採取工程、上記土壌の試料と、使用予定の固化材を混合して、混合物を得た後、上記混合物について固化後の強度を測定し、得られた測定値に基いて、雑草の生育を抑制するための固化材の種類及び量を定める固化材決定工程、及び、上記固化材決定工程で定めた固化材の種類及び量で、地盤に畦を造成する畦造成工程、を含むことを特徴とする畦造成方法。
[2] 上記固化材が、軽焼酸化マグネシウム粉末である前記[1]に記載の畦造成方法。
[3] 上記固化材決定工程及び上記畦造成工程において、上記土壌の試料及び上記固化材に加えて、骨材を用いる前記[1]又は[2]に記載の畦造成方法。
[4] 上記固化材決定工程における上記固化後の強度が、一軸圧縮強さ、または、土壌硬度計を用いて得られる硬度である前記[1]~[3]のいずれかに記載の畦造成方法。
[5] 上記畦造成工程で造成される畦が、既存の畦の代替物、または、新たに造成される畦である前記[1]~[4]のいずれかに記載の畦造成方法。
As a result of diligent studies to solve the above problems, the present inventor obtained a step of collecting a sample from the ground for mining the soil used for ridge formation and mixing the sample with a solidifying material to obtain a mixture. After that, the strength of the mixture after solidification is measured, and the type and amount of the solidifying material are determined based on the obtained measured values, and the ridges are formed on the ground by the type and amount of the solidifying material determined in the step. The present invention has been completed by finding that the above object can be achieved by the ridge forming method including the step of making the above.
That is, the present invention provides the following [1] to [5].
[1] A soil sampling process in which a soil sample is collected from the ground for mining the soil used for ridge formation, the above soil sample is mixed with a solidifying material to be used to obtain a mixture, and then the above mixture is obtained. The solidification material determination step for determining the type and amount of solidifying material for suppressing the growth of weeds, and the solidification material determination step specified in the above solidification material determination step, are measured for the strength after solidification. A ridge-building method characterized by including a ridge-building step of ridge-building on the ground depending on the type and amount of the material.
[2] The ridge forming method according to the above [1], wherein the solidifying material is lightly baked magnesium oxide powder.
[3] The ridge forming method according to the above [1] or [2], which uses an aggregate in addition to the soil sample and the solidifying material in the solidifying material determining step and the ridge forming step.
[4] The ridge formation according to any one of the above [1] to [3], wherein the strength after solidification in the solidifying material determination step is the uniaxial compressive strength or the hardness obtained by using a soil hardness tester. Method.
[5] The ridge creation method according to any one of the above [1] to [4], wherein the ridge created in the ridge creation step is a substitute for an existing ridge or a newly created ridge.

本発明の畦造成方法によれば、雑草の生育が抑制された畦を造成することができる。 According to the ridge-building method of the present invention, ridges in which the growth of weeds is suppressed can be created.

以下、本発明の畦造成方法について、工程ごとに詳しく説明する。
[土壌採取工程]
本工程は、畦の造成に使用する土壌を採掘する地盤から、土壌の試料を採取する工程である。該地盤は、特に限定されるものではなく、畦を造成する予定の場所(水田)の状況に応じて適宜定めればよいが、通常、畦を造成する場所の近傍の地盤である。
[固化材決定工程]
本工程は、土壌採取工程の後に行われる工程であって、前工程で採取した土壌の試料と、使用予定の固化材を混合して、混合物を得た後、該混合物について固化後の強度を測定し、得られた測定値に基いて、雑草の生育を抑制するための固化材の種類及び量を定める工程である。
Hereinafter, the ridge forming method of the present invention will be described in detail for each step.
[Soil sampling process]
This step is a step of collecting a soil sample from the ground where the soil used for the creation of ridges is mined. The ground is not particularly limited and may be appropriately determined according to the situation of the place (paddy field) where the ridge is to be created, but it is usually the ground near the place where the ridge is to be created.
[Consolidating material determination process]
This step is a step performed after the soil sampling step, in which the soil sample collected in the previous step is mixed with the solidifying material to be used to obtain a mixture, and then the strength of the mixture after solidification is determined. This is a step of measuring and determining the type and amount of the solidifying material for suppressing the growth of weeds based on the obtained measured values.

使用予定の固化材の種類は、畦を造成する予定の場所(水田)の状況や、畦の造成に使用する土壌に応じて適宜定めればよい。中でも、有機物の含有量が多い土壌であっても容易に固化することができ、造成後の畦(畦を構成する土壌)から溶出するアルカリに起因して水田における稲の生育を阻害する恐れがなく、造成された畦を解体する際に、解体後の土壌を作土等として再利用することが容易となり、さらには、硫酸カルシウムや硫酸マグネシウムを含まず、硫化水素の発生の恐れがない等の観点から、軽焼酸化マグネシウム粉末が好適である。
軽焼酸化マグネシウムは、炭酸マグネシウムおよび水酸化マグネシウムの少なくとも1種を主成分とする鉱物を、650~1,000℃で焼成することで得られる軽焼マグネシアである。
The type of solidifying material to be used may be appropriately determined according to the conditions of the place (paddy field) where the ridges are to be created and the soil used to create the ridges. Above all, even soil with a high content of organic matter can be easily solidified, and there is a risk that the growth of rice in paddy fields will be hindered by the alkali that elutes from the ridges (soil that constitutes the ridges) after construction. When dismantling the created ridges, it is easy to reuse the dismantled soil as soil, and it does not contain calcium sulfate or magnesium sulfate, so there is no risk of hydrogen sulfide generation. From this point of view, light-baked magnesium oxide powder is suitable.
Light-burning magnesium oxide is a light-burning magnesia obtained by firing a mineral containing at least one of magnesium carbonate and magnesium hydroxide as main components at 650 to 1,000 ° C.

炭酸マグネシウムを主成分とする鉱物の例としては、マグネサイト、ドロマイト等が挙げられる。この場合、鉱物中の炭酸マグネシウムの含有率は、好ましくは80質量%以上、より好ましくは85質量%以上、特に好ましくは90質量%以上である。
水酸化マグネシウムを主成分とする鉱物の例としては、ブルーサイト等が挙げられる。この場合、鉱物中の水酸化マグネシウムの含有率は、好ましくは80質量%以上、より好ましくは85質量%以上、特に好ましくは90質量%以上である。
焼成温度は、650~1,000℃、好ましくは750~900℃、より好ましくは800~900℃である。該温度が650℃未満であると、軽焼マグネシアが生成しにくくなる。該温度が、1,000℃を超えると、固化材の土壌を固化する性能が低下する場合がある。
Examples of minerals containing magnesium carbonate as a main component include magnesite, dolomite and the like. In this case, the content of magnesium carbonate in the mineral is preferably 80% by mass or more, more preferably 85% by mass or more, and particularly preferably 90% by mass or more.
Examples of minerals containing magnesium hydroxide as a main component include brucite and the like. In this case, the content of magnesium hydroxide in the mineral is preferably 80% by mass or more, more preferably 85% by mass or more, and particularly preferably 90% by mass or more.
The firing temperature is 650 to 1,000 ° C, preferably 750 to 900 ° C, and more preferably 800 to 900 ° C. If the temperature is less than 650 ° C., light-baked magnesia is less likely to be produced. If the temperature exceeds 1,000 ° C., the ability of the solidifying material to solidify the soil may deteriorate.

軽焼酸化マグネシウム粉末のブレーン比表面積は、好ましくは3,000~10,000cm/g、より好ましくは4,000~8,000cm/g、特に好ましくは4,500~7,000cm/gである。該ブレーン比表面積が3,000cm/g以上であれば、固化材の土壌を固化する性能がより向上する。該ブレーン比表面積が10,000cm/g以下であれば、固化材の製造にかかる労力を低減することができる。
使用予定の固化材の量(土壌1mあたりの質量)は、固化材の種類や、畦を造成する予定の場所(水田)の状況や、畦の造成に使用する土壌に応じて適宜定めればよいが、例えば、造成された畦の強度をより向上する観点から、好ましくは50kg/m以上、より好ましくは80kg/m以上、特に好ましくは150kg/m以上である。
The brain specific surface area of the lightly baked magnesium oxide powder is preferably 3,000 to 10,000 cm 2 / g, more preferably 4,000 to 8,000 cm 2 / g, and particularly preferably 4,500 to 7,000 cm 2 / g. g. When the brain specific surface area is 3,000 cm 2 / g or more, the ability of the solidifying material to solidify the soil is further improved. When the brain specific surface area is 10,000 cm 2 / g or less, the labor required for producing the solidifying material can be reduced.
The amount of solidifying material to be used (mass per 1 m 3 of soil) is appropriately determined according to the type of solidifying material, the situation of the place (paddy field) where the ridges are to be created, and the soil used to create the ridges. However, for example, from the viewpoint of further improving the strength of the created ridge, it is preferably 50 kg / m 3 or more, more preferably 80 kg / m 3 or more, and particularly preferably 150 kg / m 3 or more.

土壌の試料と、使用予定の固化材を混合する手段としては、特に限定されるものではなく、例えば、各種のミキサ(例えば、パドルミキサ、強制撹拌型ミキサ、パン型ミキサ、ロータリーハンマミキサ、4軸直列混合式ミキサ等)が挙げられる。
得られた混合物について固化後の強度の例としては、一軸圧縮強さ、土壌硬度計を用いて得られる硬度等が挙げられる。
一軸圧縮強さは、「JIS A 1216:2009(土の一軸圧縮試験方法)」に準拠して測定することができる。
一軸圧縮強さの測定値は、好ましくは300kN/m以上、より好ましくは350kN/m以上、特に好ましくは400kN/m以上である。該測定値が300kN/m以上であれば、畦における雑草の生育を十分に抑制することができると判断できる。
The means for mixing the soil sample and the solidifying material to be used is not particularly limited, and for example, various mixers (for example, paddle mixer, forced stirring type mixer, pan type mixer, rotary hammer mixer, quadrangle) are not particularly limited. Series-mixed mixer, etc.).
Examples of the strength of the obtained mixture after solidification include uniaxial compressive strength, hardness obtained by using a soil hardness tester, and the like.
The uniaxial compressive strength can be measured in accordance with "JIS A 1216: 2009 (soil uniaxial compressive test method)".
The measured value of the uniaxial compressive strength is preferably 300 kN / m 2 or more, more preferably 350 kN / m 2 or more, and particularly preferably 400 kN / m 2 or more. When the measured value is 300 kN / m 2 or more, it can be judged that the growth of weeds in the ridges can be sufficiently suppressed.

土壌硬度計を用いて得られる硬度は、例えば、山中式土壌硬度計を用いて得ることができる。
山中式土壌硬度計を用いて得られる硬度(カタサ指数)の測定値は、好ましくは30mm以上、より好ましくは35mm以上、特に好ましくは40mm以上である。該硬度(カタサ指数)が30mm以上であれば、畦における雑草の生育を十分に抑制することができることと判断できる。
The hardness obtained by using a soil hardness tester can be obtained by using, for example, a Yamanaka soil hardness tester.
The measured value of the hardness (katasa index) obtained by using the Yamanaka soil hardness tester is preferably 30 mm or more, more preferably 35 mm or more, and particularly preferably 40 mm or more. When the hardness (katasa index) is 30 mm or more, it can be judged that the growth of weeds in the ridges can be sufficiently suppressed.

本工程において、実際に畦を造成する前に、畦の造成に使用する土壌の試料を用いて得られた測定値を得た後、該測定値に基いて、雑草の生育を抑制するための固化材の種類及び量を定めることで、畦造成工程(後述)において造成された畦の強度を、雑草の生育を十分に抑制しうる強度にすることができる。 In this step, before actually forming the ridges, after obtaining the measured values obtained by using the soil sample used for the ridges, the growth of weeds is suppressed based on the measured values. By determining the type and amount of the solidifying material, the strength of the ridges created in the ridge forming step (described later) can be made strong enough to sufficiently suppress the growth of weeds.

造成作業にかかる労力を低減する観点から、畦造成工程(後述)において、畦の造成に使用する土壌(本工程で、畦を造成する対象である地盤から、土壌の試料として採取された土壌と同じもの)は、通常、水田付近の土壌である。該土壌は、粒径が0.075mm以下である粘土・シルト(細粒分)に分類される土粒子の割合が多い一方で、粒径0.075mm~2mmの細砂・中砂・粗砂(砂)に分類される土粒子の割合が少ない場合が多い。このような土壌を用いた場合、造成された畦の強度が小さくなる場合がある。
固化材の量をより多くすることなく、造成された畦の強度をより大きくする目的で、畦造成工程において、畦の造成に使用する土壌及び固化材に加えて、骨材を用いてもよい。
From the viewpoint of reducing the labor required for the ridge construction work, the soil used for the ridge creation in the ridge creation process (described later) (the soil collected as a soil sample from the ground for which the ridge is to be created in this step). The same) is usually the soil near the paddy fields. The soil has a large proportion of soil particles classified as clay / silt (fine grain) having a particle size of 0.075 mm or less, while fine sand / medium sand / coarse sand having a particle size of 0.075 mm to 2 mm. In many cases, the proportion of soil particles classified as (sand) is small. When such soil is used, the strength of the created ridges may be reduced.
Aggregate may be used in addition to the soil and solidifying material used to create the ridges in the ridge creation process for the purpose of increasing the strength of the created ridges without increasing the amount of solidifying material. ..

畦造成工程で骨材を加える場合、本工程において、土壌の試料と固化材と骨材を混合して得られた混合物の強度の測定値に基づいて、固化材の種類及び量、並びに、骨材の種類及び量を定める。
使用予定の骨材の種類は、畦を造成する予定の場所(水田)の状況や、畦の造成に使用する土壌に応じて適宜定めればよく、特に限定されるものではない。具体的には、珪砂、山砂、鋳物砂等が挙げられる。
骨材は、造成された畦の強度をより大きくする観点から、好ましくは粒度が0.425mm~2.36mmである粒子(粒体)が60質量%以上であり、かつ、粒度が2.36mmを超える粒子が5質量%以下である粒度分布を有するものであり、より好ましくは粒度が0.5mm~2.36mmである粒子が60質量%以上であり、粒度が2.36mmを超える粒子が1質量%以下である粒度分布を有するものである。
なお、上記粒度の値は、篩の目開き寸法に対応する値である。
上記粒度分布を有する骨材(珪砂)としては、例えば、市販の3号珪砂50質量部と4号珪砂50質量部を混合すること等によって容易に作製することができる。
When aggregate is added in the ridge formation step, the type and amount of solidified material and the bone are based on the measured value of the strength of the mixture obtained by mixing the soil sample, the solidified material and the aggregate in this step. Determine the type and amount of material.
The type of aggregate to be used may be appropriately determined according to the situation of the place (paddy field) where the ridges are to be created and the soil used for the ridges, and is not particularly limited. Specific examples thereof include silica sand, mountain sand, and cast sand.
From the viewpoint of increasing the strength of the created ridges, the aggregate preferably contains 60% by mass or more of particles (grains) having a particle size of 0.425 mm to 2.36 mm and a particle size of 2.36 mm. Particles having a particle size of more than 5% by mass have a particle size distribution of 5% by mass or less, more preferably particles having a particle size of 0.5 mm to 2.36 mm having a particle size of 60% by mass or more, and particles having a particle size of more than 2.36 mm. It has a particle size distribution of 1% by mass or less.
The value of the particle size is a value corresponding to the opening size of the sieve.
The aggregate (quartz sand) having the above particle size distribution can be easily produced, for example, by mixing 50 parts by mass of commercially available No. 3 silica sand and 50 parts by mass of No. 4 silica sand.

骨材の量は、畦を造成する予定の場所(水田)の状況や、畦の造成に使用する土壌に応じて適宜定めればよく、特に限定されるものではない。例えば、畦を造成する対象である地盤から採取される土壌と骨材の合計100質量%中の骨材の割合は、好ましくは1~50質量%、より好ましくは2~25質量%、特に好ましくは3~15質量%である。該割合が1質量%以上であれば、造成された畦の強度をより大きくすることができる。該割合が50質量%以下であれば、材料にかかるコストを低減することができる。 The amount of aggregate may be appropriately determined according to the situation of the place (paddy field) where the ridges are to be created and the soil used for the ridges, and is not particularly limited. For example, the proportion of aggregate in the total 100% by mass of soil and aggregate collected from the ground for which ridges are to be created is preferably 1 to 50% by mass, more preferably 2 to 25% by mass, and particularly preferably. Is 3 to 15% by mass. When the ratio is 1% by mass or more, the strength of the created ridges can be further increased. When the ratio is 50% by mass or less, the cost of the material can be reduced.

[畦造成工程]
本工程は、固化材決定工程の後に行われる工程であって、固化材決定工程で定めた固化材の種類及び量で、地盤に畦を造成する工程である。
畦を造成する方法の一例としては、畦の造成に用いる土壌を採掘した後、得られた土壌と固化材決定工程で定めた種類及び量の固化材を混合した後、得られた混合物を、地盤(畦を造成する場所)に運搬した後、混合物を敷き均し、締め固める方法が挙げられる。
畦の造成に用いる土壌は、土壌採取工程において試料を採取した地盤から採掘される土壌である。
採掘手段としては、特に限定されるものではなく、採掘場所と畦を造成する場所の状況に応じて任意の手段を用いればよく、例えば、油圧シャベル、ホイールローダー等が挙げられる。
土壌を採掘した後、該土壌を、畦を造成する場所に運搬する手段の例としては、ダンプカー、ブルトーザー等が挙げられる。
[Ridge creation process]
This step is a step performed after the solidifying material determining step, and is a step of forming ridges on the ground with the type and amount of the solidifying material determined in the solidifying material determining step.
As an example of the method of forming ridges, after mining the soil used for creating ridges, the obtained soil is mixed with the solidifying material of the type and amount specified in the solidifying material determination step, and then the obtained mixture is used. One example is to transport the mixture to the ground (where the ridges are to be created), then spread the mixture and compact it.
The soil used to create the ridges is the soil mined from the ground from which the sample was collected in the soil sampling process.
The mining means is not particularly limited, and any means may be used depending on the conditions of the mining place and the place where the ridge is created, and examples thereof include a hydraulic shovel and a wheel loader.
Examples of means for transporting the soil to a place where ridges are created after mining the soil include a dump truck, a bulldozer, and the like.

土壌と固化材の混合手段としては、土壌と固化材を均一に混合できるものであれば特に限定されるものではなく、バックホウ、自走式土質改良機等が挙げられる。
なお、畦造成工程において骨材を用いる場合、固化材決定工程で定めた種類及び量の骨材と、上記土壌と、上記固化材を混合する。骨材の混合方法は、特に限定されるものではなく、土壌と固化材と骨材を同時に混合してもよく、土壌と骨材を混合した後に、固化材と混合してもよい。
The means for mixing the soil and the solidifying material is not particularly limited as long as the soil and the solidifying material can be uniformly mixed, and examples thereof include a backhoe and a self-propelled soil improving machine.
When an aggregate is used in the ridge forming step, the type and amount of the aggregate determined in the solidifying material determining step, the soil, and the solidifying material are mixed. The method of mixing the aggregate is not particularly limited, and the soil, the solidifying material and the aggregate may be mixed at the same time, or the soil and the aggregate may be mixed and then mixed with the solidifying material.

上記混合物を、畦を造成する場所に運搬した後、混合物を敷き均し、締め固めることで、畦を造成することができる。
混合物を敷き均す方法は、特に限定されるものではなく、例えば、バックホウ等が挙げられる。また、自走式土質改良機を用いて各材料を混合することは、混合と敷き均しが同時に実施されるため、より好ましい。
締固めの方法は、造成部分の強度が十分に発現する方法であれば特に限定されるものはなく、例えば、バックホウ、ハンドガイドローラー、ダンパー、またはランマーを用いて転圧する方法が挙げられる。
The ridges can be formed by transporting the mixture to a place where the ridges are to be formed, then spreading the mixture and compacting the mixture.
The method of spreading the mixture is not particularly limited, and examples thereof include backhoes and the like. Further, it is more preferable to mix each material using a self-propelled soil improvement machine because mixing and leveling are carried out at the same time.
The compaction method is not particularly limited as long as the strength of the created portion is sufficiently exhibited, and examples thereof include a method of rolling using a backhoe, a hand guide roller, a damper, or a rammer.

畦造成工程で造成される畦は、既存の畦の代替物、または、新たに造成される畦である。
既存の畦の代替物の造成方法の一例としては、上幅30cm、高さ30cm、法面勾配1:1の台形を有する既存の畦(標準的な大きさの畦)の上面を、混合物(採掘した土壌と固化材の混合物)で被覆した後、敷き均し、締め固めることで、上幅50cm、高さ100cm、法面勾配1(水平方法):1(高さ方向)の台形を有する新たな畦(既存の畦の代替物)を造成する方法等が挙げられる。上記既存の畦が、長辺500m、短辺100mの長方形の区画を囲むように造成されている場合、新たな畦を造成するためには、1400m程度の土壌が必要である。
また、雑草の生育をより抑制する観点から、既存の畦を混合物で被覆する前に、予め、既存の畦の表面を剥ぎ取ることが好ましい。
The ridges created in the ridge creation process are substitutes for existing ridges or newly created ridges.
As an example of the method of creating an alternative to the existing ridge, the upper surface of the existing ridge (standard size ridge) having a trapezoid with an upper width of 30 cm, a height of 30 cm, and a slope gradient of 1: 1 is formed by mixing (a mixture (standard size ridge). After covering with a mixture of mined soil and solidifying material), it has a trapezoid with an upper width of 50 cm, a height of 100 cm, and a slope gradient of 1 (horizontal method): 1 (height direction). Examples include a method of creating a new ridge (a substitute for an existing ridge). When the existing ridge is constructed so as to surround a rectangular section having a long side of 500 m and a short side of 100 m, soil of about 1400 m 3 is required to create a new ridge.
Further, from the viewpoint of further suppressing the growth of weeds, it is preferable to strip the surface of the existing ridges in advance before covering the existing ridges with the mixture.

以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
[使用材料]
(1)土壌;火山灰質粘性土に分類される関東ローム、含水比:125%、湿潤密度:1.35g/cm
(2)固化材A;軽焼酸化マグネシウム粉末(マグネサイトを850℃で焼成して得られた軽焼マグネシアの粉砕物)、ブレーン比表面積:5,500cm/g
(3)固化材B;高炉セメントB種、太平洋セメント社製、ブレーン比表面積3,900cm/g
(4)骨材;セメント強さ試験用標準砂(珪砂)、0.5mm~2.36mmである粒子の割合:62質量%以上、2.36mmを超える粒子の割合:1質量%以下
Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples.
[Material used]
(1) Soil; Kanto loam classified as volcanic ash cohesive soil, water content ratio: 125%, wet density: 1.35 g / cm 3
(2) Solidifying material A; Light-baked magnesium oxide powder (crushed light-baked magnesia obtained by firing magnesite at 850 ° C.), Brain specific surface area: 5,500 cm 2 / g
(3) Solidifying material B; Blast furnace cement type B, manufactured by Taiheiyo Cement, Brain specific surface area 3,900 cm 2 / g
(4) Aggregate: Standard sand for cement strength test (quartz sand), ratio of particles of 0.5 mm to 2.36 mm: 62% by mass or more, ratio of particles exceeding 2.36 mm: 1% by mass or less

[実施例1~6、比較例1]
上記土壌と表1に示す種類及び量の材料を使用し、「JGS 0821-2009(安定処理土の締固めをしない供試体作製方法)」に準拠して、供試体を作製した。供試体の作製において、ホバート社製の竪型ミキサに各材料を同時に投入し、10分間混合した後、7日間密封養生した。養生後の供試体について、「JIS A 1216(土の一軸圧縮試験方法)」に準拠して、一軸圧縮強さの測定を行った。
結果を表1に示す。
[Examples 1 to 6, Comparative Example 1]
Using the above soil and the materials of the types and amounts shown in Table 1, specimens were prepared in accordance with "JGS 0821-2009 (Method for preparing specimens without compaction of stable treated soil)". In the preparation of the specimen, each material was simultaneously put into a vertical mixer manufactured by Hobart, mixed for 10 minutes, and then sealed and cured for 7 days. The uniaxial compressive strength of the specimen after curing was measured in accordance with "JIS A 1216 (Soil uniaxial compressive test method)".
The results are shown in Table 1.

Figure 0007080087000001
Figure 0007080087000001

表1から、実施例1~6における供試体の一軸圧縮強さは、458kN/m以上であり、雑草の生育を十分に抑制することができる一軸圧縮強さ(300kN/m)より大きいことがわかる。
一方、比較例1(固化材:高炉セメントB種)における供試体の一軸圧縮強さは、250kN/mであり、300kN/mよりも小さいことがわかる。
また、実施例1~3間の比較、および、実施例4~6間の比較から、土壌に骨材を添加することで、供試体の一軸圧縮強さがより大きくなることがわかる。
From Table 1, the uniaxial compressive strength of the specimens in Examples 1 to 6 is 458 kN / m 2 or more, which is larger than the uniaxial compressive strength (300 kN / m 2 ) capable of sufficiently suppressing the growth of weeds. You can see that.
On the other hand, it can be seen that the uniaxial compressive strength of the specimen in Comparative Example 1 (solidifying material: blast furnace cement type B) is 250 kN / m 2 , which is smaller than 300 kN / m 2 .
Further, from the comparison between Examples 1 to 3 and the comparison between Examples 4 to 6, it can be seen that the uniaxial compressive strength of the specimen is further increased by adding the aggregate to the soil.

Claims (5)

畦の造成に使用する土壌を採掘する地盤から、上記土壌の試料を採取する土壌採取工程、
上記土壌の試料と、使用予定の固化材を混合して、混合物を得た後、上記混合物について固化後の強度を測定し、得られた測定値に基いて、雑草の生育を抑制するための固化材のを定める固化材決定工程、及び、
上記固化材決定工程で定めた上記固化材ので、地盤に畦を造成する畦造成工程、を含み、
上記固化材が、軽焼酸化マグネシウム粉末のみからなることを特徴とする畦造成方法。
A soil sampling process that collects a sample of the above soil from the ground where the soil used for the creation of ridges is mined.
After mixing the above soil sample and the solidifying material to be used to obtain a mixture, the strength of the mixture after solidification is measured, and based on the obtained measured values, the growth of weeds is suppressed. The solidifying material determination process that determines the amount of solidifying material, and
The amount of the solidifying material determined in the solidifying material determination step includes the ridge forming step of forming ridges on the ground.
A ridge-building method characterized in that the solidifying material is composed of only light-baked magnesium oxide powder .
上記固化材決定工程及び上記畦造成工程において、骨材を用いず、かつ、In the solidifying material determination step and the ridge forming step, no aggregate is used and
上記固化材決定工程において、上記土壌の試料と、上記土壌の試料1mIn the solidifying material determination step, the soil sample and the soil sample 1 m 3 あたり50~100kg/m50-100kg / m 3 となる量の上記使用予定の固化材とを混合して、混合物を得た後、上記混合物について固化後の強度を測定し、得られた測定値に基いて、雑草の生育を抑制するための固化材の量を上記土壌1mAfter mixing the above-mentioned solidifying material to be used in an amount to obtain a mixture, the strength of the above-mentioned mixture after solidification is measured, and based on the obtained measured values, the growth of weeds is suppressed. The amount of solidifying material is 1 m of the above soil. 3 あたり50~100kg/m50-100kg / m 3 の範囲内の特定の量に定める請求項1に記載の畦造成方法。The ridge-building method according to claim 1, which is defined in a specific amount within the range of.
上記固化材決定工程及び上記畦造成工程において、上記土壌の試料及び上記固化材に加えて、骨材を用い、かつ、
上記固化材決定工程において、上記土壌の試料と、上記土壌の試料1m あたり50~100kg/m となる量の上記使用予定の固化材と、上記土壌の試料と上記骨材の合計100質量%中の骨材の割合が3~15質量%となる量の上記骨材とを混合して、混合物を得た後、上記混合物について固化後の強度を測定し、得られた測定値に基いて、雑草の生育を抑制するための固化材の量を上記土壌1m あたり50~100kg/m の範囲内の特定の量に、雑草の生育を抑制するための骨材の量を上記土壌と上記骨材の合計100質量%中の骨材の割合が3~15質量%の範囲内の特定の割合となる量に定め、
上記畦造成工程において、上記固化材決定工程で定めた上記固化材の量、及び、上記骨材の量で地盤に畦を造成し、
上記骨材は、骨材の全量(100質量%)中、粒度が0.425~2.36mmである粒子の割合が60質量%以上であり、かつ、粒度が2.36mmを超える粒子の割合が5質量%以下である粒度分布を有する骨材である請求項1に記載の畦造成方法。
In the solidifying material determining step and the ridge forming step, in addition to the soil sample and the solidifying material, an aggregate is used and
In the solidifying material determination step, a total of 100 masses of the soil sample, the solidifying material to be used in an amount of 50 to 100 kg / m 3 per 1 m 3 of the soil sample, and the soil sample and the aggregate. After mixing with the above aggregate in an amount such that the ratio of the aggregate in% is 3 to 15% by mass to obtain a mixture, the strength of the mixture after solidification is measured, and the strength is measured based on the obtained measured value. Therefore, the amount of solidifying material for suppressing the growth of weeds is set to a specific amount within the range of 50 to 100 kg / m 3 per 1 m 3 of the soil, and the amount of aggregate for suppressing the growth of weeds is set to the above soil. And the amount of aggregate in the total 100% by mass of the above aggregate is set to a specific ratio within the range of 3 to 15% by mass.
In the ridge forming step, ridges are formed on the ground with the amount of the solidifying material and the amount of the aggregate determined in the solidifying material determining step.
In the above aggregate, the proportion of particles having a particle size of 0.425 to 2.36 mm is 60% by mass or more and the proportion of particles having a particle size exceeding 2.36 mm in the total amount of aggregate (100% by mass). The ridge forming method according to claim 1, wherein the aggregate has a particle size distribution of 5% by mass or less .
上記固化材決定工程における上記固化後の強度が、一軸圧縮強さ、または、土壌硬度計を用いて得られる硬度である請求項1~3のいずれか1項に記載の畦造成方法。 The ridge forming method according to any one of claims 1 to 3, wherein the strength after solidification in the solidifying material determining step is the uniaxial compressive strength or the hardness obtained by using a soil hardness tester. 上記畦造成工程で造成される畦が、既存の畦の代替物、または、新たに造成される畦である請求項1~4のいずれか1項に記載の畦造成方法。 The ridge creation method according to any one of claims 1 to 4, wherein the ridge created in the ridge creation step is a substitute for an existing ridge or a newly created ridge.
JP2018066809A 2018-03-30 2018-03-30 Ridge creation method Active JP7080087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018066809A JP7080087B2 (en) 2018-03-30 2018-03-30 Ridge creation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018066809A JP7080087B2 (en) 2018-03-30 2018-03-30 Ridge creation method

Publications (2)

Publication Number Publication Date
JP2019176755A JP2019176755A (en) 2019-10-17
JP7080087B2 true JP7080087B2 (en) 2022-06-03

Family

ID=68277035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018066809A Active JP7080087B2 (en) 2018-03-30 2018-03-30 Ridge creation method

Country Status (1)

Country Link
JP (1) JP7080087B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8133180B2 (en) 2004-10-06 2012-03-13 Guided Therapy Systems, L.L.C. Method and system for treating cellulite
US8506486B2 (en) 2004-10-06 2013-08-13 Guided Therapy Systems, Llc Ultrasound treatment of sub-dermal tissue for cosmetic effects
US9039617B2 (en) 2009-11-24 2015-05-26 Guided Therapy Systems, Llc Methods and systems for generating thermal bubbles for improved ultrasound imaging and therapy
US9114247B2 (en) 2004-09-16 2015-08-25 Guided Therapy Systems, Llc Method and system for ultrasound treatment with a multi-directional transducer
US9216276B2 (en) 2007-05-07 2015-12-22 Guided Therapy Systems, Llc Methods and systems for modulating medicants using acoustic energy
US9241683B2 (en) 2006-10-04 2016-01-26 Ardent Sound Inc. Ultrasound system and method for imaging and/or measuring displacement of moving tissue and fluid
US11351401B2 (en) 2014-04-18 2022-06-07 Ulthera, Inc. Band transducer ultrasound therapy
US11400319B2 (en) 2004-10-06 2022-08-02 Guided Therapy Systems, Llc Methods for lifting skin tissue
US11517772B2 (en) 2013-03-08 2022-12-06 Ulthera, Inc. Devices and methods for multi-focus ultrasound therapy
US11590370B2 (en) 2004-09-24 2023-02-28 Guided Therapy Systems, Llc Rejuvenating skin by heating tissue for cosmetic treatment of the face and body
US11717707B2 (en) 2004-10-06 2023-08-08 Guided Therapy Systems, Llc System and method for noninvasive skin tightening
US11723622B2 (en) 2008-06-06 2023-08-15 Ulthera, Inc. Systems for ultrasound treatment
US11724133B2 (en) 2004-10-07 2023-08-15 Guided Therapy Systems, Llc Ultrasound probe for treatment of skin
US11969609B2 (en) 2022-12-05 2024-04-30 Ulthera, Inc. Devices and methods for multi-focus ultrasound therapy

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002241154A (en) 2001-02-14 2002-08-28 National Institute For Rural Engineering Cement composition
JP2004084392A (en) 2002-08-28 2004-03-18 Kajima Corp Investigation method for ground, data arrangement method for ground, improvement method for ground, and ground
JP2009174305A (en) 2007-12-26 2009-08-06 Chemical Grouting Co Ltd Mixing determination method for hardening material
JP2017225384A (en) 2016-06-22 2017-12-28 デンカ株式会社 Weed-proof material and method for using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6795568B1 (en) * 1998-07-17 2004-09-21 Torsana Laser Technologies A/S Method and an apparatus for severing or damaging unwanted plants

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002241154A (en) 2001-02-14 2002-08-28 National Institute For Rural Engineering Cement composition
JP2004084392A (en) 2002-08-28 2004-03-18 Kajima Corp Investigation method for ground, data arrangement method for ground, improvement method for ground, and ground
JP2009174305A (en) 2007-12-26 2009-08-06 Chemical Grouting Co Ltd Mixing determination method for hardening material
JP2017225384A (en) 2016-06-22 2017-12-28 デンカ株式会社 Weed-proof material and method for using the same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9114247B2 (en) 2004-09-16 2015-08-25 Guided Therapy Systems, Llc Method and system for ultrasound treatment with a multi-directional transducer
US11590370B2 (en) 2004-09-24 2023-02-28 Guided Therapy Systems, Llc Rejuvenating skin by heating tissue for cosmetic treatment of the face and body
US11400319B2 (en) 2004-10-06 2022-08-02 Guided Therapy Systems, Llc Methods for lifting skin tissue
US8506486B2 (en) 2004-10-06 2013-08-13 Guided Therapy Systems, Llc Ultrasound treatment of sub-dermal tissue for cosmetic effects
US9039619B2 (en) 2004-10-06 2015-05-26 Guided Therapy Systems, L.L.C. Methods for treating skin laxity
US11717707B2 (en) 2004-10-06 2023-08-08 Guided Therapy Systems, Llc System and method for noninvasive skin tightening
US11697033B2 (en) 2004-10-06 2023-07-11 Guided Therapy Systems, Llc Methods for lifting skin tissue
US8133180B2 (en) 2004-10-06 2012-03-13 Guided Therapy Systems, L.L.C. Method and system for treating cellulite
US11724133B2 (en) 2004-10-07 2023-08-15 Guided Therapy Systems, Llc Ultrasound probe for treatment of skin
US9241683B2 (en) 2006-10-04 2016-01-26 Ardent Sound Inc. Ultrasound system and method for imaging and/or measuring displacement of moving tissue and fluid
US9216276B2 (en) 2007-05-07 2015-12-22 Guided Therapy Systems, Llc Methods and systems for modulating medicants using acoustic energy
US11723622B2 (en) 2008-06-06 2023-08-15 Ulthera, Inc. Systems for ultrasound treatment
US9039617B2 (en) 2009-11-24 2015-05-26 Guided Therapy Systems, Llc Methods and systems for generating thermal bubbles for improved ultrasound imaging and therapy
US11517772B2 (en) 2013-03-08 2022-12-06 Ulthera, Inc. Devices and methods for multi-focus ultrasound therapy
US11351401B2 (en) 2014-04-18 2022-06-07 Ulthera, Inc. Band transducer ultrasound therapy
US11969609B2 (en) 2022-12-05 2024-04-30 Ulthera, Inc. Devices and methods for multi-focus ultrasound therapy

Also Published As

Publication number Publication date
JP2019176755A (en) 2019-10-17

Similar Documents

Publication Publication Date Title
JP7080087B2 (en) Ridge creation method
Oluwatuyi et al. Ameliorating effect of milled eggshell on cement stabilized lateritic soil for highway construction
JP4574386B2 (en) Mixing method of solidifying material in improved soil and mixing method of solidifying material and auxiliary in improved soil
Onyelowe Ken et al. A comparative review of soil modification methods
TW201209013A (en) Artificial stone and method for producing same
KR100429450B1 (en) Chemical agent for improving the engineering properties of soil
JP6032013B2 (en) Soft soil improvement material, soft soil improvement method using the same, and soft ground improvement method
US6439805B1 (en) Method of stabilizing the ground in road construction work
JP4375645B2 (en) Method of manufacturing soil for direct supporting ground of structures
JP2009167651A (en) Method of improving ground
JP2809496B2 (en) Ground improvement method for liquefaction prevention
JP6938934B2 (en) Ground improvement method using steelmaking slag and ground construction method using steelmaking slag
JP5668634B2 (en) Expanded controlled steel slag hydrated solid artificial stone and method for producing the same
JP6174280B1 (en) Fluid backfill material
Baaj et al. Field and lab assessment for cement-stabilized subgrade in Chatham, Ontario
JP7042016B1 (en) How to make soil cement
JP4054848B2 (en) Method for producing fluidized soil
Udoeyo et al. Mound soil as construction material
JP3208537B2 (en) Grain preparation and stabilization method using solidified cement made from sewage sludge incineration ash
Ravi et al. ANALYSIS OF LATERITE SOIL WITH PORTLAND CEMENT MIXED VARIATIONS AND THE EFFECT ON THE CBR UNSOAKED
JP7028038B2 (en) How to repair a simple pavement
JP6508525B2 (en) Ground improvement method
JP2003002725A (en) Construction material using site generated rock material
JPH07102571A (en) Pavement material and manufacture thereof
WO2022145198A1 (en) Soil paving material and soil paving method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220524

R150 Certificate of patent or registration of utility model

Ref document number: 7080087

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150