JP4375645B2 - Method of manufacturing soil for direct supporting ground of structures - Google Patents

Method of manufacturing soil for direct supporting ground of structures Download PDF

Info

Publication number
JP4375645B2
JP4375645B2 JP2001184869A JP2001184869A JP4375645B2 JP 4375645 B2 JP4375645 B2 JP 4375645B2 JP 2001184869 A JP2001184869 A JP 2001184869A JP 2001184869 A JP2001184869 A JP 2001184869A JP 4375645 B2 JP4375645 B2 JP 4375645B2
Authority
JP
Japan
Prior art keywords
soil
mud
mud water
ground
fluidized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001184869A
Other languages
Japanese (ja)
Other versions
JP2002371588A (en
Inventor
健二 中野
智晴 大西
大三 道前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudo Tetra Corp
Original Assignee
Fudo Tetra Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudo Tetra Corp filed Critical Fudo Tetra Corp
Priority to JP2001184869A priority Critical patent/JP4375645B2/en
Publication of JP2002371588A publication Critical patent/JP2002371588A/en
Application granted granted Critical
Publication of JP4375645B2 publication Critical patent/JP4375645B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、構造物建設現場において発生した残土を処理して得られる、構造物の基礎を直接支持する処理土、その製造方法及び構造物直接支持地盤を提供するものである。
【0002】
【従来の技術】
構造物の基礎を直接支持する地盤は、通常、良好な支持地盤の上に覆設され、体積収縮やクラックの発生の無い、所定の強度以上のものが要求される。従来、この構造物の基礎を直接支持する地盤には、ラップルコンクリートが適用されている。ラップルコンクリートの施工は、良好な支持地盤上の軟弱土を掘削し、当該部分に充填して行われる置換工法である。
【0003】
この場合、掘削土は全て建設発生土として処理しなければならず、産業廃棄物として処分する場合、環境負荷の点で問題がある。また、特開平7−82984号公報には、建設残土を埋め戻し材として適用する流動化処理工法が提案されている。しかし、該流動化処理工法における流動化処理土は、地下空洞や狭い空間の埋め戻しや充填が主であり、構造物の基礎を直接支持する地盤への適用を目的としたものではない。従って、構造物の基礎を直接支持する地盤からの掘削土を被処理土とし、これから体積収縮やクラックの発生の無い、所定の強度以上の構造物の基礎を直接支持する地盤に適用可能な処理土が得られれば、環境負荷が軽減できると共に、高品質の構造物直接支持地盤が得られて極めて都合がよい。
【0004】
【発明が解決しようとする課題】
従って、本発明の目的は、建設予定の構造物の基礎を直接支持する地盤からの掘削土を被処理土とし、これを処理して得られる体積収縮やクラックの発生の無い、所定の強度を有する高品質の処理土、その製造方法及び構造物直接支持地盤を提供することにある。
【0005】
【課題を解決するための手段】
かかる実情において、本発明者らは鋭意検討を行った結果、建設予定の構造物の基礎を直接支持する地盤からの掘削土を被処理土とし、特定の処理を施し、且つ特定の強度基準を満たしたものが、体積収縮やクラックの発生が無く、高品質の構造物直接支持地盤として使用できることなどを見出し、本発明を完成するに至った。
【0007】
すなわち、本発明は、構造物建設発生土を被処理土とし、該被処理土に水を加えて解泥して原泥水を得、次いで、該原泥水を篩にかけて最大粒径が10〜20mmの調整泥水を得る第1泥水製造工程と、該調整泥水に砂質土を加えて、密度1.45±0.2ton/mの泥水を得る第2泥水製造工程と、該泥水にセメント系固化材を加えて密度1.70±0.3ton/m、フロー値160±40mm、ブリージング率1.0%以下の流動化処理土を得る流動化処理土製造工程と、を有する構造物直接支持地盤用処理土の製造方法を提供するものである。
【0008】
また、本発明は、前記処理土を前記構造物の基礎を直接支持する地盤部分に充填して得られるものであって、一軸圧縮強度が500〜3000KN/m2 であることを特徴とする構造物直接支持地盤を提供するものである。
【0009】
【発明の実施の形態】
本発明の実施の形態に係る構造物直接支持地盤用処理土を図1〜図3を参照して説明する。図1は本例の構造物直接支持地盤用処理土を製造する工程を説明する図、図2は直接基礎が浅い構造物の地中部分を示し、図3は直接基礎が深い構造物の地中部分を示す。
【0010】
本発明の構造物直接支持地盤用処理土は、構造物建設発生土から得られた泥水に、砂質土及びセメント系固化材を加えて得られる、密度1.70±0.3ton/m3、フロー値160±40mm、ブリージング率1.0%以下の流動化処理土である。密度、フロー値及びブリージング率が前記範囲にある流動化処理土は、構造物建設予定場所の直下にある所定の良好な支持地盤上に充填する際、円滑な充填を行うことができると共に、固化後は、体積収縮やクラックの発生が無い、所定の圧縮強度を有する高品質の構造物直接支持地盤とすることができる。構造物建設発生土は、例えば、図2に示すような良好な支持地盤12と建設予定の構造物の直接基礎14aとの間に存在する軟弱地盤であり、従来、構造物の直接支持地盤としてラップルコンクリートを使用する場合には、産業廃棄物などとして処分されていたものである。従って、発生土の種類によって土質が異なり一定しないものである。
【0011】
フロー値は、JHS A 313-1992「エアモルタル及びエアミルクの試験方法」の1.2シリンダー法によって求められるもので、土の流動性を示す指標である。また、ブリージング率は泥水にセメント系固化材を加えて攪拌した後に、処理土から滲みだす水の量を示す指標であり、JSCE-1986 「プレパックドコンクリートの注入モルタルのブリージング率及び膨張率試験方法」に準拠して求められる。
【0012】
本発明の構造物直接支持地盤用処理土は、例えば、次に示す方法で製造される。すなわち、構造物建設発生土を被処理土とし、該被処理土に水を加えて解泥して原泥水を得、次いで、該原泥水を篩にかけてDMAX が10〜20mmの調整泥水を得る第1泥水製造工程と、該調整泥水に砂質土を加えて、密度1.45±0.2ton/m3の泥水を得る第2泥水製造工程と、該泥水にセメント系固化材を加えて密度1.70±0.3ton/m3、フロー値160±40mm、ブリージング率1.0%以下の流動化処理土を得る流動化処理土製造工程と、を有する方法である。以下、各工程毎に説明する。
【0013】
(第1泥水製造工程)
構造物建設発生土は前述の軟弱土であり、掘削された軟弱土は、例えば、プラントに搬入される。第1泥水製造工程は該軟弱土に水を加えて解泥して原泥水を得、次いで、該原泥水を篩にかけて調整泥水を得る工程である。本例では、解泥槽1で構造物建設発生土と水道水を混合し、必要に応じて攪拌混合を行う。構造物建設発生土に対する水道水の配合量は、特に制限されず、解泥するに必要な量で、且つ過度に大量にならない範囲で適宜に決定される。また、粒径が150mm以上の大きな塊状物は手やショベルで予め除去しておけばよい。この解泥を行うことにより、次いで行われる篩い分けがし易くなる。
【0014】
解泥槽1で解泥された原泥水は、その全量が振動篩機2に供給される。振動篩機2は、例えば、篩目が10〜20mm角、本例では13mm角の所定の強度を有する金網を枠体に取り付けた平面型のもので、枠体を振動機に載置したものが使用できる。本例ではこの振動篩機2をやや傾斜して設置し、振動篩機2の上方に原泥水の全量を流し込む。原泥水は振動篩機2の振動と傾斜により下方に移動しつつ篩分けされる。この操作により、篩下としてDMAX が10〜20mm、本例では13mm以下の中礫、細礫、粗砂、中砂、細砂、シルト、粘土及び水が貯泥槽4に採取される。また、篩上として粒径10〜20mmを越えるもの、本例では13mmを越える中礫、粗礫などがベルトコンベア3に採取され、場外搬出される。貯泥槽4に採取された篩下は、攪拌機5aの混合により混合された後、ポンプ6aにより、調整槽7に送られる。
【0015】
(第2泥水製造工程)
第2泥水製造工程は、調整泥水に砂質土9を加えて、密度1.45±0.2ton/m3の泥水を得る工程である。この泥水において、密度が上記範囲外であると、その後固化材を適量配合しても、これを構造物直接支持地盤に適用した場合、体積収縮やクラックが発生し易くなったりすると共に、所定の強度が得られないものとなってしまう。具体的には、調整槽7に送られた調整泥水に砂質土9を加え、モニタリングを行いつつ、上記密度の範囲に調製する。該砂質土9は粒径0.075〜2.0mmの細砂、中砂及び粗砂を含むもので、前記構造物建設発生土から製造される砂質土であっても、別の良質な土から製造される砂質土であってもよい。構造物建設発生土から製造される砂質土の場合、通常、前記調整泥水を更に、濾過装置にかけて得ることができる。構造物建設発生土由来の砂質土を使用すれば、構造物建設発生土の利用率が更に高まり、環境負荷を一層低減できる。本工程で得られる泥水は、密度の他、フロー値などの物性を求め、これとセメント系固化材配合後の物性との関係を把握し、当該データを蓄積し、これを有効利用すれば、効率よく且つ安定した品質の構造物直接支持地盤用の処理土が得られる。また、第2泥水製造工程は、別途の調整槽7を設けることなく、第1泥水製造工程の貯泥槽4をそのまま使用し、貯泥槽4の調整泥水に砂質土を配合する方法で行ってもよい。
【0016】
(流動化処理土製造工程)
流動化処理土製造工程は、第2泥水製造工程で得られた泥水にセメント系固化材10を加えて、密度1.70±0.3ton/m3、フロー値160±40mm、ブリージング率1.0%以下の流動化処理土を得る工程である。また、本流動化処理土は、密度1.70±0.2ton/m3、フロー値160±30mm、ブリージング率0.8%以下のものがより好ましい。当該方法で得られる流動化処理土は、上記の特定の密度、フロー値及びブリージング率を有するため、これを構造物建設予定場所の直下にある所定の良好な支持地盤上に充填する際、円滑な充填を行うことができると共に、固化後は、体積収縮やクラックの発生が無い、所定の圧縮強度を有する高品質の構造物直接支持地盤とすることができる。具体的には、調合槽8に送られた泥水にセメント系固化材10を加え、モニタリングを行いつつ、上記物性値の範囲に調製する。また、作製した流動化処理土の配合試験の結果、必要な強度が得られ難いと判断される場合には、スラグ等の骨材を配合してもよい。セメント系固化材10としては、特に制限されず、公知の流動化処理工法で使用されるものが適用できる。流動化処理土製造工程は、調合槽8を使用することなく、前記第2泥水製造工程における調整槽7において実施してもよい。すなわち、調整槽7において砂質土9を配合した後、セメント系固化材10を続いて配合してもよい。また、前記第1泥水製造工程における貯泥槽4において、前記第2泥水製造工程及び流動化処理土製造工程を実施してもよい。
【0017】
流動化処理土の調合強度の設定は、品質基準強度を目標値とし、構造物建設発生土の土質、調整泥水や泥水の物性及びセメント系固化材などを考慮し、配合量などが適宜決定されるが、流動化処理土の調合強度を次の計算方法により決定すれば、十分な強度の構造物直接支持地盤をより安定して得ることができる。
【0018】
F=0.85(Fq +T)+3σ (1)
q =αFc (2)
(式中、Fは流動化処理土の調合強度(kN/m2)を示し、Fq は流動化処理土の品質基準強度(kN/m2)を示し、Tは流動化処理土の強度管理の材齢を28日とした場合の打ち込みから28日までの予想平均気温による強度の補正値を示し、品質基準強度がFq =2000kN/m2 以下の場合には表1による。σは流動化処理土の強度の標準偏差(kN/m2)で、0.15Fq に等しい。Fc は設計基準強度(kN/m2)を示し、αは現場搬入時の強度の割増係数で、1.2を示す。)
【0019】
【表1】

Figure 0004375645
【0020】
例えば、設計基準強度Fc が1500kN/m2 で、流動化処理土の打ち込みから28日までの期間の予想平均気温が15℃の場合、品質基準強度Fq は1800kN/m2 であり、これを上記(1)式に代入して、流動化処理土の調合強度をF=0.85(1800+300)+3(0.15×1800)=2595kN/m2 とすればよい。
【0021】
本発明の構造物直接支持地盤は、前記流動化処理土を前記構造物の基礎を直接支持する地盤部分に充填して得られるものであって、一軸圧縮強度が500〜3000KN/m2 (5.0〜30.0kgf/cm2 )である。すなわち、上記方法で製造された流動化処理土は、例えば、アジテータ車により現場に搬入し、ポンプ車又は直接充填により、構造物建設予定の直下にある所定の良好な支持地盤上に充填される。
【0022】
掘削による構造物現場発生土の搬出から構造物の直接基礎の造成までを図2及び図3を参照して説明する。図2に示すように構造物の直接基礎14aが浅い場合、所定の良好な支持地盤12上の構造物基礎造成予定領域について、逆台形状の掘削が行われる。掘削土は前述の如く、プラントへの搬出、前記流動化処理土の調合を経て、アジテータ車により現場に搬入され、構造物建設予定の直下にある所定の良好な支持地盤上、すなわち、符号11aの斜線部分に充填される。所定期間経過後、固化した高品質の構造物直接支持地盤11a上に構造物の基礎14aが造成され、その後、前記の掘削土の一部を埋め戻し土13として、構造物の基礎14a周りに埋め戻し、基礎工事を終了する。一方、図3に示すように、地下階41があり、構造物の直接基礎14bが深い場合、山留め板15が計画されており、所定の良好な支持地盤12上の構造物基礎造成予定領域について掘削が行われる。掘削土のプラントへの搬出、流動化処理土の調合、符号11bの斜線部分への充填方法などは、図2の場合と同様である。このような方法で造成された後の構造物直接支持地盤11a、11bは体積収縮やクラックの発生がなく、長期間に亘って安定して構造物を支持することができる。
【0023】
【発明の効果】
本発明の処理土は、建設予定の構造物の基礎を直接支持する地盤からの掘削土を被処理土としており、その大部分が有効利用できるため、産業廃棄物などとして処分するものが減り、環境負荷を低減できる。また、処理土は比較的簡易な方法で得られるため、コストの上昇を抑えることができる。また、造成された構造物直接支持地盤は、体積収縮やクラックの発生の無い、所定の強度を有する高品質なものであるため、長期間に亘って安定して構造物を支持することができる。
【図面の簡単な説明】
【図1】本例の構造物直接支持地盤用処理土を製造する工程を説明する図である。
【図2】直接基礎が浅い構造物の地中部分を示す図である。
【図3】直接基礎が深い構造物の地中部分を示す図である。
【符号の説明】
1 解泥槽
2 振動篩機
3 ベルトコンベア
4 貯泥槽
5a、5b、5c 攪拌機
6a、6b ポンプ
7 調整槽
8 調合槽
9 砂質土
10 セメント系固化材
11a、11b 構造物直接支持地盤
12 良好な支持地盤
13 埋め戻し土
14a 浅い直接基礎
14b 深い直接基礎
15 山留め板[0001]
BACKGROUND OF THE INVENTION
The present invention provides a treated soil that directly supports a foundation of a structure obtained by treating residual soil generated at a structure construction site, a manufacturing method thereof, and a structure direct support ground.
[0002]
[Prior art]
The ground directly supporting the foundation of the structure is usually required to have a predetermined strength or higher, which is covered on a good supporting ground and does not cause volume shrinkage or cracks. Conventionally, wrinkle concrete has been applied to the ground directly supporting the foundation of this structure. The construction of the wrinkle concrete is a replacement method that is performed by excavating soft soil on a good supporting ground and filling the portion.
[0003]
In this case, all of the excavated soil must be treated as construction generated soil, and when disposed as industrial waste, there is a problem in terms of environmental load. Japanese Patent Application Laid-Open No. 7-82984 proposes a fluidization treatment method in which construction residual soil is applied as a backfill material. However, the fluidized soil in the fluidized treatment method is mainly used for backfilling and filling underground cavities and narrow spaces, and is not intended for application to the ground directly supporting the foundation of the structure. Therefore, excavated soil from the ground that directly supports the foundation of the structure is treated soil, and treatment applicable to the ground that directly supports the foundation of the structure with a predetermined strength or higher without volume shrinkage or cracking. If soil is obtained, the environmental load can be reduced, and a high-quality structure direct support ground can be obtained, which is very convenient.
[0004]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a predetermined strength without volume shrinkage and occurrence of cracks obtained by treating excavated soil from the ground directly supporting the foundation of the structure to be constructed and treating it. An object of the present invention is to provide a high-quality treated soil, a manufacturing method thereof, and a structure direct support ground.
[0005]
[Means for Solving the Problems]
In such a situation, the present inventors have conducted intensive studies, and as a result, excavated soil from the ground that directly supports the foundation of the structure to be constructed is treated soil, subjected to specific treatment, and specified strength standards. As a result, it was found that the filled material can be used as a high-quality structure directly supporting ground without causing volume shrinkage and cracks, and the present invention has been completed.
[0007]
That is , in the present invention, the structure construction generated soil is treated soil, water is added to the treated soil to thaw to obtain raw mud water, and then the raw mud water is sieved to have a maximum particle size of 10 to 20 mm. The first mud production process for obtaining the adjusted mud, the second mud production process for adding the sandy soil to the adjusted mud to obtain the mud having a density of 1.45 ± 0.2 ton / m 3 , and the mud A fluidized treated soil manufacturing process for obtaining a fluidized treated soil having a density of 1.70 ± 0.3 ton / m 3 , a flow value of 160 ± 40 mm, and a breathing rate of 1.0% or less by adding a solidified material directly The manufacturing method of the processing soil for support ground is provided.
[0008]
Further, the present invention is obtained by filling the treated soil into a ground portion that directly supports the foundation of the structure, and has a uniaxial compressive strength of 500 to 3000 KN / m 2. It provides a direct support ground.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The structure direct support ground processing soil according to the embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a diagram for explaining the process of manufacturing the soil for directly supporting the structure of this example, FIG. 2 shows the underground portion of the structure with a shallow direct foundation, and FIG. 3 shows the ground of the structure with a deep direct foundation. The middle part is shown.
[0010]
The structure direct support ground treated soil of the present invention has a density of 1.70 ± 0.3 ton / m 3 obtained by adding sandy soil and cement-based solidifying material to muddy water obtained from the structure construction generated soil. , Fluidized soil with a flow value of 160 ± 40 mm and a breathing rate of 1.0% or less. The fluidized soil whose density, flow value, and breathing rate are in the above ranges can be smoothly filled and solidified when filling on a predetermined good support ground immediately below the planned construction site. After that, a high-quality structure directly supporting ground having a predetermined compressive strength without causing volume shrinkage and cracks can be obtained. The structure construction generated soil is, for example, soft ground existing between a good support ground 12 as shown in FIG. 2 and a direct foundation 14a of a structure to be constructed, and conventionally, as a direct support ground of a structure. When using the wrinkle concrete, it was disposed of as industrial waste. Therefore, the soil quality varies depending on the type of generated soil and is not constant.
[0011]
The flow value is determined by the 1.2 cylinder method of JHS A 313-1992 “Testing methods for air mortar and air milk” and is an index indicating the fluidity of soil. Breathing rate is an indicator of the amount of water that exudes from the treated soil after the cement-based solidified material is added to the mud and stirred. JSCE-1986 Is required in accordance with
[0012]
The structure soil for structure direct support ground of the present invention is manufactured, for example, by the following method. That is, the structure construction generated soil is treated soil, water is added to the treated soil to thaw to obtain raw mud water, and then the raw mud water is sieved to obtain adjusted mud water having a D MAX of 10 to 20 mm. A first muddy water production process, a second muddy water production process for adding a sandy soil to the adjusted muddy water to obtain a muddy water having a density of 1.45 ± 0.2 ton / m 3 , and a cement-based solidifying material added to the muddy water A fluidized soil production process for obtaining a fluidized soil having a density of 1.70 ± 0.3 ton / m 3 , a flow value of 160 ± 40 mm, and a breathing rate of 1.0% or less. Hereinafter, each step will be described.
[0013]
(First muddy water production process)
The structure construction generated soil is the aforementioned soft soil, and the excavated soft soil is carried into a plant, for example. The first mud water production step is a step of adding water to the soft soil to thaw and obtain raw mud water, and then sieving the raw mud water to obtain adjusted mud water. In this example, the structure construction generated soil and tap water are mixed in the mud tank 1 and agitated and mixed as necessary. The blending amount of tap water with respect to the construction construction soil is not particularly limited, and is appropriately determined within a range that is necessary for thawing and does not become excessively large. A large lump with a particle size of 150 mm or more may be removed in advance with a hand or an excavator. By performing this defatting, the subsequent sieving is facilitated.
[0014]
The entire amount of the raw mud that has been thawed in the thaw tank 1 is supplied to the vibrating screen machine 2. The vibration sieve machine 2 is a flat type in which a wire mesh having a predetermined strength of 10 to 20 mm square, in this example 13 mm square, is attached to the frame body, and the frame body is placed on the vibrator. Can be used. In this example, the vibrating screen 2 is installed with a slight inclination, and the entire amount of raw mud water is poured above the vibrating screen 2. The raw mud water is sieved while moving downward by the vibration and inclination of the vibration sieve machine 2. By this operation, medium gravel, fine gravel, coarse sand, medium sand, fine sand, silt, clay and water having a D MAX of 10 to 20 mm, in this example, 13 mm or less are collected in the mud storage tank 4 as a sieve. In addition, those having a particle size exceeding 10 to 20 mm on the sieve, in this example, medium gravel and coarse gravel exceeding 13 mm are collected on the belt conveyor 3 and carried out of the field. The sieve below collected in the mud storage tank 4 is mixed by mixing with the stirrer 5a, and then sent to the adjustment tank 7 by the pump 6a.
[0015]
(Second muddy water production process)
The second muddy water production process is a process in which sandy soil 9 is added to the adjusted muddy water to obtain muddy water having a density of 1.45 ± 0.2 ton / m 3 . In this muddy water, if the density is out of the above range, even if an appropriate amount of the solidified material is blended thereafter, when this is applied to the structure directly supporting ground, volume shrinkage and cracks are likely to occur, Strength will not be obtained. Specifically, the sandy soil 9 is added to the adjusted muddy water sent to the adjusting tank 7, and it is adjusted to the above density range while monitoring. The sandy soil 9 includes fine sand, medium sand and coarse sand having a particle size of 0.075 to 2.0 mm, and even if it is sandy soil produced from the construction construction generated soil, another good quality Sandy soil produced from natural soil may be used. In the case of sandy soil produced from structure construction generated soil, the adjusted muddy water can usually be obtained through a filtration device. If sandy soil derived from structure construction generated soil is used, the utilization rate of structure construction generated soil is further increased, and the environmental load can be further reduced. In addition to density, the muddy water obtained in this process requires physical properties such as flow value, grasps the relationship between this and the physical properties after blending cement-based solidifying material, accumulates the data, and effectively uses this, Efficient and stable quality soil for direct support ground of the structure is obtained. In addition, the second mud water production process uses the mud tank 4 of the first mud water production process as it is without providing a separate adjustment tank 7, and mixes the sandy soil with the adjusted mud water in the mud tank 4. You may go.
[0016]
(Fluidized soil manufacturing process)
In the fluidized soil manufacturing process, the cement solidified material 10 is added to the mud obtained in the second mud manufacturing process, the density is 1.70 ± 0.3 ton / m 3 , the flow value is 160 ± 40 mm, the breathing rate is 1. This is a step of obtaining fluidized soil of 0% or less. The fluidized soil is more preferably one having a density of 1.70 ± 0.2 ton / m 3 , a flow value of 160 ± 30 mm, and a breathing rate of 0.8% or less. Since the fluidized soil obtained by this method has the above-mentioned specific density, flow value, and breathing rate, when filling it on a predetermined good support ground directly under the planned construction site, In addition to being able to perform filling, after solidification, it is possible to obtain a high-quality structure directly supporting ground having a predetermined compressive strength without causing volume shrinkage or cracking. Specifically, the cement-based solidifying material 10 is added to the muddy water sent to the blending tank 8, and it is adjusted within the range of the above physical properties while monitoring. Moreover, when it is judged as a result of the blending test of the produced fluidized soil that it is difficult to obtain the required strength, an aggregate such as slag may be blended. The cement-based solidifying material 10 is not particularly limited, and those used in a known fluidization processing method can be applied. The fluidized soil treatment process may be performed in the adjustment tank 7 in the second mud water production process without using the mixing tank 8. That is, after the sandy soil 9 is blended in the adjustment tank 7, the cement-based solidifying material 10 may be blended subsequently. Moreover, you may implement a said 2nd muddy water manufacturing process and a fluidization treatment soil manufacturing process in the mud storage tank 4 in a said 1st muddy water manufacturing process.
[0017]
The blending strength of the fluidized soil is set as a target value based on the quality standard strength, and the amount of blending is determined appropriately in consideration of the soil quality of the structure construction soil, the properties of the adjusted mud and mud, the cement-based solidified material, etc. However, if the blending strength of the fluidized soil is determined by the following calculation method, a structure direct support ground with sufficient strength can be obtained more stably.
[0018]
F = 0.85 (F q + T) + 3σ (1)
F q = αF c (2)
(In the formula, F indicates the mixing strength (kN / m 2 ) of the fluidized soil, F q indicates the quality standard strength (kN / m 2 ) of the fluidized soil, and T indicates the strength of the fluidized soil. It shows the correction value of the strength based on the predicted average temperature from the setting when the management age is 28 days to 28 days, and when the quality standard strength is less than F q = 2000 kN / m 2 , according to Table 1. σ is The standard deviation (kN / m 2 ) of the strength of the fluidized soil is equal to 0.15F q, where F c is the design reference strength (kN / m 2 ), and α is an additional factor of strength at the time of on-site delivery. 1.2.)
[0019]
[Table 1]
Figure 0004375645
[0020]
For example, when the design standard strength F c is 1500 kN / m 2 and the expected average temperature during the period from the placement of the fluidized soil to 28 days is 15 ° C., the quality standard strength F q is 1800 kN / m 2. Is substituted into the above equation (1), and the blending strength of the fluidized soil is set to F = 0.85 (1800 + 300) +3 (0.15 × 1800) = 2595 kN / m 2 .
[0021]
The structure direct support ground of the present invention is obtained by filling the fluidized soil into a ground portion that directly supports the foundation of the structure, and has a uniaxial compressive strength of 500 to 3000 KN / m 2 (5 0.0 to 30.0 kgf / cm 2 ). That is, the fluidized soil produced by the above method is carried into the site by, for example, an agitator car, and is filled on a predetermined good supporting ground directly under a structure construction schedule by a pump car or direct filling. .
[0022]
From the removal of the soil generated on the structure site by excavation to the creation of the direct foundation of the structure will be described with reference to FIGS. As shown in FIG. 2, when the direct foundation 14 a of the structure is shallow, the inverted trapezoidal excavation is performed on the planned structure foundation creation region on the predetermined good support ground 12. As described above, the excavated soil is transported to the plant, mixed with the fluidized soil, and then transported to the site by the agitator vehicle, on the predetermined good supporting ground immediately under the structure construction schedule, that is, reference numeral 11a. The hatched portion is filled. After a predetermined period, a structure foundation 14a is formed on the solidified high-quality structure direct support ground 11a, and then a part of the excavated soil is used as backfill soil 13 around the structure foundation 14a. Backfill and finish the foundation work. On the other hand, as shown in FIG. 3, when there is an underground floor 41 and the direct foundation 14 b of the structure is deep, the mountain retaining plate 15 is planned, and the structure foundation creation planned area on the predetermined good support ground 12 is planned. Drilling is performed. The excavated soil is carried out to the plant, the fluidized soil is mixed, and the method of filling the hatched portion 11b is the same as in FIG. The structure direct support grounds 11a and 11b after being formed by such a method can stably support the structure over a long period of time without generating volume shrinkage or cracks.
[0023]
【The invention's effect】
The treated soil of the present invention is treated soil from excavated soil from the ground that directly supports the foundation of the structure to be constructed, and most of it can be used effectively, so that less waste is disposed of as industrial waste, etc. Environmental load can be reduced. Further, since the treated soil can be obtained by a relatively simple method, an increase in cost can be suppressed. In addition, since the structure direct support ground thus formed is of high quality having a predetermined strength without causing volume shrinkage and cracking, the structure can be stably supported over a long period of time. .
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a diagram illustrating a process of manufacturing a soil for directly supporting a structure according to this example.
FIG. 2 is a diagram showing an underground portion of a structure having a shallow direct foundation.
FIG. 3 is a diagram showing an underground part of a structure having a deep direct foundation.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Thaw tank 2 Vibrating sieve 3 Belt conveyor 4 Mud storage tank 5a, 5b, 5c Stirrer 6a, 6b Pump 7 Adjustment tank 8 Mixing tank 9 Sandy soil 10 Cement-based solidification material 11a, 11b Structure direct support ground 12 Good Support ground 13 Backfill soil 14a Shallow direct foundation 14b Deep direct foundation 15 Mountain retaining plate

Claims (1)

構造物建設発生土を被処理土とし、該被処理土に水を加えて解泥して原泥水を得、次いで、該原泥水を篩にかけて最大粒径が10〜20mmの調整泥水を得る第1泥水製造工程と、該調整泥水に砂質土を加えて、密度1.45±0.2ton/mの泥水を得る第2泥水製造工程と、該泥水にセメント系固化材を加えて密度1.70±0.3ton/m、フロー値160±40mm、ブリージング率1.0%以下の流動化処理土を得る流動化処理土製造工程と、を有する構造物直接支持地盤用処理土の製造方法。The structure construction generated soil is treated soil, water is added to the treated soil to thaw to obtain raw mud water, and then the raw mud water is sieved to obtain adjusted mud water having a maximum particle size of 10 to 20 mm. 1 mud water production process, 2nd mud water production process of adding sandy soil to the adjusted mud water to obtain mud water with a density of 1.45 ± 0.2 ton / m 3 , and adding cement-based solidifying material to the mud water 1. Fluidized treated soil manufacturing process for obtaining fluidized treated soil having a flow value of 160 ± 40 mm, a breathing rate of 1.0% or less, and 1.70 ± 0.3 ton / m 3 , Production method.
JP2001184869A 2001-06-19 2001-06-19 Method of manufacturing soil for direct supporting ground of structures Expired - Lifetime JP4375645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001184869A JP4375645B2 (en) 2001-06-19 2001-06-19 Method of manufacturing soil for direct supporting ground of structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001184869A JP4375645B2 (en) 2001-06-19 2001-06-19 Method of manufacturing soil for direct supporting ground of structures

Publications (2)

Publication Number Publication Date
JP2002371588A JP2002371588A (en) 2002-12-26
JP4375645B2 true JP4375645B2 (en) 2009-12-02

Family

ID=19024554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001184869A Expired - Lifetime JP4375645B2 (en) 2001-06-19 2001-06-19 Method of manufacturing soil for direct supporting ground of structures

Country Status (1)

Country Link
JP (1) JP4375645B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4463140B2 (en) * 2005-03-31 2010-05-12 財団法人鉄道総合技術研究所 Seismic reinforcement method for masonry walls
JP2008075342A (en) * 2006-09-21 2008-04-03 Arumaare Engineering Kk Method of producing fluidized soil
JP5124747B2 (en) * 2007-12-28 2013-01-23 株式会社流動化処理工法総合監理 Quality control method for fluidized soil
JP5613786B2 (en) * 2013-03-07 2014-10-29 独立行政法人農業・食品産業技術総合研究機構 Fluidized foundation method for underground structures
JP6314357B2 (en) * 2014-06-19 2018-04-25 株式会社リアス Ground identification method
JP6329466B2 (en) * 2014-09-10 2018-05-23 株式会社流動化処理工法総合監理 Method of producing a mud tank and mud
JP2017141607A (en) * 2016-02-10 2017-08-17 清水建設株式会社 Ground improvement method
JP2021067019A (en) * 2019-10-18 2021-04-30 株式会社八幡 Fluidization treatment soil for back-filling
JP2021067020A (en) * 2019-10-18 2021-04-30 株式会社八幡 Fluidization treatment soil for back-filling
JP2021080789A (en) * 2019-11-21 2021-05-27 東急建設株式会社 Ground backfilling method, and stirring blade

Also Published As

Publication number Publication date
JP2002371588A (en) 2002-12-26

Similar Documents

Publication Publication Date Title
JP4375645B2 (en) Method of manufacturing soil for direct supporting ground of structures
CN211006711U (en) High groundwater level pipeline slot backfilling structure
JP2007131804A (en) Soil backfilling material
JP6032013B2 (en) Soft soil improvement material, soft soil improvement method using the same, and soft ground improvement method
JP2728846B2 (en) Fluidization method
SE512058C2 (en) Procedure for soil stabilization during road construction
JP4109376B2 (en) Method for producing soil mortar using lime-treated soil and embankment method using the same
JP4548686B2 (en) Concrete, concrete structure, concrete structure construction method, sabo dam and sabo dam construction method
JP2001019956A (en) Lime-improved soil mortar, its production and fluidization treating method of construction using the same
JP5894057B2 (en) Low strength concrete for pumping and manufacturing method of low strength concrete for pumping
JP4054848B2 (en) Method for producing fluidized soil
JP2006233424A (en) Construction method of impervious structure making use of dewatered sludge and the impervious structure by the construction method
JP2004225453A (en) Construction method of civil engineering structure
JP4108781B2 (en) Self-filling filling material and method of use thereof
JP2756112B2 (en) Method and apparatus for producing mud-type fluidized treated soil
JP2005120636A (en) Dam reconstruction method
JP6999253B1 (en) How to build a sabo dam
CN112513376A (en) Method and apparatus for setting W/C in deep mixing processing method
JP2003002725A (en) Construction material using site generated rock material
JP2004217870A (en) Soil-stabilized soil and method for producing the same
JP2003192409A (en) Method for producing granular construction material
JP3523051B2 (en) Ground improvement method
JP4021674B2 (en) Manufacturing method and construction method of cement mixture
JP2002227237A (en) Method for improving soil generated by construction
JP2500005B2 (en) Concrete foundation and method for forming the base of the structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090903

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4375645

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150918

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term