JP4463140B2 - Seismic reinforcement method for masonry walls - Google Patents
Seismic reinforcement method for masonry walls Download PDFInfo
- Publication number
- JP4463140B2 JP4463140B2 JP2005101707A JP2005101707A JP4463140B2 JP 4463140 B2 JP4463140 B2 JP 4463140B2 JP 2005101707 A JP2005101707 A JP 2005101707A JP 2005101707 A JP2005101707 A JP 2005101707A JP 4463140 B2 JP4463140 B2 JP 4463140B2
- Authority
- JP
- Japan
- Prior art keywords
- stone
- masonry
- injection
- stones
- masonry wall
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 132
- 230000002787 reinforcement Effects 0.000 title claims description 108
- 239000004575 stone Substances 0.000 claims description 248
- 239000000463 material Substances 0.000 claims description 187
- 238000002347 injection Methods 0.000 claims description 166
- 239000007924 injection Substances 0.000 claims description 166
- 239000011440 grout Substances 0.000 claims description 101
- 229910000831 Steel Inorganic materials 0.000 claims description 33
- 239000010959 steel Substances 0.000 claims description 33
- 238000002513 implantation Methods 0.000 claims description 30
- 238000003780 insertion Methods 0.000 claims description 25
- 230000037431 insertion Effects 0.000 claims description 25
- 241001070941 Castanea Species 0.000 claims description 17
- 235000014036 Castanea Nutrition 0.000 claims description 17
- 239000012530 fluid Substances 0.000 claims description 17
- 241000196324 Embryophyta Species 0.000 claims description 15
- 239000004568 cement Substances 0.000 claims description 14
- 239000002184 metal Substances 0.000 claims description 13
- 239000011435 rock Substances 0.000 claims description 12
- 238000003825 pressing Methods 0.000 claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- 238000012790 confirmation Methods 0.000 claims description 6
- 238000002156 mixing Methods 0.000 claims description 6
- 239000004576 sand Substances 0.000 claims description 6
- 230000000452 restraining effect Effects 0.000 claims description 3
- 239000007787 solid Substances 0.000 claims description 3
- 238000007711 solidification Methods 0.000 claims description 3
- 230000008023 solidification Effects 0.000 claims description 3
- 238000010276 construction Methods 0.000 description 19
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- 238000010586 diagram Methods 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 3
- 238000011417 postcuring Methods 0.000 description 3
- 239000011398 Portland cement Substances 0.000 description 2
- 239000004567 concrete Substances 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- -1 polypropylene Polymers 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- FBOUIAKEJMZPQG-AWNIVKPZSA-N (1E)-1-(2,4-dichlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pent-1-en-3-ol Chemical compound C1=NC=NN1/C(C(O)C(C)(C)C)=C/C1=CC=C(Cl)C=C1Cl FBOUIAKEJMZPQG-AWNIVKPZSA-N 0.000 description 1
- 241000168041 Mazama Species 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 235000002492 Rungia klossii Nutrition 0.000 description 1
- 244000117054 Rungia klossii Species 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000011400 blast furnace cement Substances 0.000 description 1
- 238000009933 burial Methods 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000010881 fly ash Substances 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000011150 reinforced concrete Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Landscapes
- Retaining Walls (AREA)
Description
本発明は、地盤法面に沿って積石材を積み上げ積石材と地盤との空隙に積石材よりも小径の栗石を充填して地盤法面の崩落を防止し土圧を支持する石積壁の地震時の変形を防止するとともに地震時強度を増加させる方法に関するものである。 The present invention piles up stones along the ground slope and fills the gap between the stones and the ground with a smaller diameter chestnut than the stones to prevent the ground slope from collapsing and to support the earth pressure The present invention relates to a method for preventing deformation at the time and increasing the strength at the time of earthquake.
従来、特に鉄道沿線に存在する石積壁の構成としては、図8に示されるものが一般的である。この石積壁1は、地盤Gの法面(急勾配の斜面)Sに沿って積石材2を積み上げるとともに、隣接する積石材2どうしの間の空隙に積石材2よりも小径の栗石である胴込石4を充填し、かつ、積石材2の背後でかつ地盤Gとの間の空間に積石材2よりも小径の栗石である裏込石5を充填することにより構成されている。このような構成により、石積壁1は、地盤Gの法面Sの崩落を防止し、地盤Gからの土圧を支持する擁壁としての機能を果たしている。図8において、符号3は、この石積壁1の基礎を示しており、一又は複数の石材、又はコンクリート(無筋コンクリート又は鉄筋コンクリート)からなっている。また、図8において、符号6は、この石積壁1の基礎3の下方と地盤表面との間に敷設される基礎栗石を示している。また、図8において、符号8は、この石積壁1の下端と、基礎3の上方を被覆するように設置される被り土を示している。
Conventionally, the structure shown in FIG. 8 is generally used as the structure of the stone walls existing along the railway. This
上記した従来の石積壁1に用いられる積石材2としては、一般に、図9に示す間知石(けんちいし)2Kが用いられる。図9に示すように、間知石2Kは、略角錐台形の立体の底部に厚板状の部分が接合されてなる形状に形成された石材である。間知石2Kのうち、厚板状部の底面に相当する符号23で示す部分は、「面(つら)」と呼ばれ、略長方形状又は略正方形状となっており、積まれた後は、石積壁1の表面となる。また、間知石2Kのうち、厚板状部の側面に相当する符号22で示す部分は、「合端(あいば)」と呼ばれ、積まれたときに間知石どうしが接触する部分である。また、間知石2Kのうち、角錐台形部に相当する符号21で示す部分は、「胴(どう)」と呼ばれ、隣り合う間知石どうしの胴21で囲まれた空間に充填されるのが、胴込石4である。間知石2Kのうち、角錐台形部の頂面に相当する符号24で示す部分は、「友(とも)」と呼ばれ、積まれた後は、間知石2Kの後端(地盤Gに最も近い端部)となる部分である。図9においてL10で示す長さは、「控え長さ」と呼ばれ、間知石2Kが擁壁に積まれた場合、擁壁表面から地盤方の後端までの奥行き距離を示している。また、従来の鉄道沿線に存在する石積壁では、下段の積石材のうえに上段の積石材を積む場合に、モルタル等の接合材を用いない「空積み(からづみ)」という方式が採用されている。下段の積石材のうえに上段の積石材を積む場合に、モルタル等の接合材を用いて積む方式は、「練積み(ねりづみ)」と呼ばれている。
As the
また、従来、鉄道沿線に存在する石積壁では、下方から上方へと間知石を積み上げていくことになるが、ある段(その上方にさらに新たな間知石が積まれる状態)における間知石の上端の輪郭線は、略水平方向に、ジグザグした波線状となっており、略「V」字状に凹んだ箇所(以下、「谷(たに)」という。)に、新たな間知石が、その正面形状が略菱形状になる(いずれかの四隅角点が最も高さの高い頂点となる)ように積まれる。このような間知石の積み方を、「谷積(たにづみ)」という。 In addition, conventionally, stone walls along railway lines are piled up from the bottom to the top, but it is a common knowledge in a certain stage (a state where a new stone is stacked further above). The outline of the stone's upper end is a zigzag wavy line in a substantially horizontal direction, and a new space is formed in a portion recessed in a substantially “V” shape (hereinafter referred to as “tani”). Shiroishi is stacked so that its front shape is approximately rhombus (one of the four corner points is the highest vertex). This way of stacking Machinoku stones is called “Tanizumi”.
このような石積壁に地震が作用した場合には、大きな変形を生じたり、崩壊したりすることもあった。このため、鉄道事業者は、石積壁の地震時の変形を防止するとともに地震時強度を増加させる方法の確立を急いでいた。このような方法(以下、「石積壁の耐震補強方法」という。)の一つとして、以下に説明する方法が知られている(例えば、特許文献1参照)。 When an earthquake acts on such a masonry wall, it sometimes deformed or collapsed. For this reason, railway operators have rushed to establish a method to prevent the masonry walls from deforming during an earthquake and increase the strength during the earthquake. As one of such methods (hereinafter referred to as “a seismic reinforcement method for masonry walls”), a method described below is known (for example, see Patent Document 1).
まず、石積壁の目地(図8における9のような石材どうしが接して略線状となっている箇所)にシール材(早強セメントに珪砂と有機性接着剤を適宜に混合し水を加えて練ったもの等)を押し込んで固め、積石材どうしを一体化させる。この際、その後にグラウト注入を行う注入口の部分は、あらかじめ管などを差し込んだ状態でシールを施工し、シールの固化後に管などを抜くことにより注入口を形成する。シール工程の後には、注入口を用いて、市販のグラウト材を注入する。この注入工程により、積石材の背後の胴込石の箇所と裏込石の全部の箇所には、全面的にグラウト材が充填される。この注入工程の後、グラウト材がある程度固化した状態で、口径90ミリメートル、長さ45センチメートル程度の円柱状のコアを抜き除去する。このコア抜き工程の後、コアを抜いた空跡に水濾過体を設置する(排水部形成工程)。水濾過体としては、口径75ミリメートルで両端が開口し円筒部に多数の穴があけられた塩ビ管からなる外筒と、外筒の中に収容された円筒状の特殊フィルタ(内外面を形成するポリプロピレンの網目構造のパイプとこれらの間のポリエチレンテレフタール繊維充填材とが組み合わされた円筒体)とで構成されたものが用いられる。このような方法により、石積壁の地震時の変形を防止しかつ地震時強度を増加させることができ、かつ、石積壁の背後に浸透してきた雨水などを確実に排水することができ、石積壁の背後に充満した水による石積壁の崩壊や倒壊を防止することができる、というものである。 First, the seal material (the place where the stones are in contact with each other as indicated by 9 in FIG. 8 is a substantially linear shape) is mixed with silica sand and an organic adhesive as appropriate, and water is added. Squeezed and kneaded), and hardened to unite the stones. At this time, the portion of the injection port where the grouting is performed thereafter is sealed with a tube inserted in advance, and the injection port is formed by removing the tube after the seal is solidified. After the sealing step, a commercially available grout material is injected using an injection port. By this pouring step, the grout material is entirely filled in the place of the rocks and all the parts of the back stones behind the stone. After this injection step, with the grout material solidified to some extent, a cylindrical core having a diameter of about 90 mm and a length of about 45 cm is removed. After this core removal step, a water filter is installed in the empty space from which the core has been removed (drainage forming step). As the water filter body, an outer cylinder made of a PVC pipe having a diameter of 75 millimeters, open at both ends and having a large number of holes in the cylindrical portion, and a cylindrical special filter (inner and outer surfaces formed in the outer cylinder) And a cylindrical body in which a pipe having a mesh structure of polypropylene and a polyethylene terephthal fiber filler between them are combined. By such a method, the masonry wall can be prevented from being deformed at the time of earthquake and the strength at the time of the earthquake can be increased, and the rainwater that has penetrated behind the masonry wall can be drained reliably. It is possible to prevent the masonry walls from collapsing and collapsing due to the water filled behind.
しかしながら、石積壁の地震時の変形防止機能及び地震時強度増加機能が上記した従来の石積壁の耐震補強方法と同等以上で、かつ、建設コストも低廉となる石積壁の耐震補強方法の開発が現在強く要請されている。
本発明は上記の問題を解決するためになされたものであり、本発明の解決しようとする課題は、地震時の変形防止機能及び地震時強度増加機能が上記した従来方式と同等以上でかつ建設コストも低廉となる石積壁の耐震補強方法を提供することにある。 The present invention has been made to solve the above problems, and the problem to be solved by the present invention is that the deformation prevention function and the earthquake strength increase function at the time of an earthquake are equivalent to or more than the conventional system described above and are constructed. The object is to provide a method for seismic reinforcement of masonry walls that is low in cost.
上記課題を解決するため、本発明の請求項1に係る石積壁の耐震補強方法は、
地盤の法面の崩落を防止し土圧を支持する擁壁のうち、前記地盤法面に沿って積石材を積み上げるとともに隣接する前記積石材どうしの間の空隙に前記積石材よりも小径の栗石である胴込石を充填しかつ前記積石材の背後の地盤との間に前記積石材よりも小径の栗石である裏込石を充填することにより構築される石積壁の地震時の変形又は崩壊を防止するための耐震補強方法であって、
前記石積壁の表面において4個の積石材がほぼ会合する箇所である積石会合部付近の積石材をコア抜きカッターを用いて略円柱状に除去し外部から前記胴込石領域に到達可能な挿入開口を形成し、
金属からなる中空円筒の前端を閉塞して錐状の尖端部とするとともに前記円筒の後端を開口させて流入口としかつ前記尖端部と流入口の間に複数個の吐出孔を開設した打込注入管を、前記挿入開口から前記胴込石領域の前部に挿入した後、衝打を加えて胴込石領域の内部方向へ押し込み、前記打込注入管の裏込部吐出孔を裏込石領域の後部の地盤手前位置付近まで到達させ、
前記打込注入管の胴込部吐出孔と裏込部吐出孔が略鉛直上方に向くように設定し、前記打込注入管の流入口に注入プラント側の注入ホースを連結し流動体状のグラウト材を前記注入プラントの注入ポンプから前記注入ホースを経て所定の注入量だけ注入した後に前記打込注入管を引き抜いて前記グラウト材を硬化させ、前記胴込石及び裏込石とこれらの空隙に充填された前記グラウト材を硬化させることにより略球根状の固化領域を前記4個の積石材の背後と前記地盤との間に形成し、
前記工程を繰り返すことにより、前記略球根状固化領域を、前記積石材の背後と前記地盤との間に、前記石積壁の表面から見た平面配置が略散点状になるように複数形成させること
を特徴とする。
In order to solve the above-described problem, a method for seismic reinforcement of a masonry wall according to
Among retaining walls that prevent earth slope from falling and support earth pressure, pile stones along the ground slope and pile up stones smaller in diameter than stones in the gap between adjacent stones Deformation or collapse at the time of an earthquake of a masonry wall that is constructed by filling a boring stone that is a stone and a back stone that is a chestnut with a diameter smaller than that of the masonry material between the stone and the ground behind the stone A seismic reinforcement method for preventing
The masonry material in the vicinity of the masonry gathering portion, where the four masonry materials meet approximately on the surface of the stone masonry wall, can be removed in a substantially cylindrical shape by using a coring cutter and can reach the intrusion stone region from the outside. Forming an insertion opening,
The front end of a hollow cylinder made of metal is closed to form a conical point, and the rear end of the cylinder is opened to serve as an inlet, and a plurality of discharge holes are opened between the tip and the inlet. After inserting the injection pipe into the front part of the intrusion stone area through the insertion opening, the inner injection pipe is pushed toward the inside of the intrusion stone area, and the back injection hole of the injection injection pipe is To reach the near-ground position at the rear of the Kazuishi area,
The body injection hole and the back part discharge hole of the implantation injection pipe are set so as to face substantially vertically upward, and an injection hose on the injection plant side is connected to the inlet of the implantation injection pipe to form a fluid. After injecting the grout material from the injection pump of the injection plant through the injection hose by a predetermined injection amount, the grout material is hardened by pulling out the driving injection pipe, and the intruder stone and the back stone and their gaps. Forming a substantially bulbous solidified region between the back of the four stones and the ground by curing the grout material filled in
By repeating the above steps, a plurality of the substantially bulbous solidified regions are formed between the back of the masonry material and the ground so that the planar arrangement viewed from the surface of the masonry wall is substantially scattered. It is characterized by this.
また、本発明の請求項2に係る石積壁の耐震補強方法は、
請求項1記載の石積壁の耐震補強方法において、
前記所定の注入量は、前記胴込石又は裏込石の空隙に前記グラウト材が充填されて硬化した場合に、略球根状の固化領域が前記4個の積石材の背後と前記地盤との間に形成されるのに必要な前記グラウト材の量をあらかじめ計算によって算出しておくこと
を特徴とする。
Moreover, the seismic reinforcement method for masonry walls according to
In the earthquake-proof reinforcement method of the masonry wall of
The predetermined injection amount is such that when the grout material is filled and hardened in the gap between the rocks or back stones, a substantially bulbous solidified region is formed between the back of the four stones and the ground. The amount of the grout material necessary to be formed between them is calculated in advance.
また、本発明の請求項3に係る石積壁の耐震補強方法は、
請求項1記載の石積壁の耐震補強方法において、
前記4個の積石材の目地のうち前記積石会合部が略中央部となるような外縁目地部の適宜の箇所に小孔を開設し管状部材である注入確認管を前記胴込石中まで差し込んでおき、前記注入確認管から前記グラウト材が漏出してきたときをもって、前記所定の注入量が注入されたと判断すること
を特徴とする。
Moreover, the seismic reinforcement method for a masonry wall according to
In the earthquake-proof reinforcement method of the masonry wall of
A small hole is opened at an appropriate location of the outer edge joint portion where the stone assembly meeting portion becomes a substantially central portion of the joints of the four stone stone materials, and an injection confirmation tube as a tubular member is inserted into the body stone. It is inserted, and it is judged that the predetermined injection amount is injected when the grout material leaks from the injection confirmation tube.
また、本発明の請求項4に係る石積壁の耐震補強方法は、
請求項1記載の石積壁の耐震補強方法において、
前記積石材は、壁の表面となる石面が略長方形状又は略正方形状で全体が略角錐台形の立体の底部に厚板状の部分が接合されてなる形状に形成された間知石であること
を特徴とする。
Moreover, the seismic reinforcement method for a masonry wall according to
In the earthquake-proof reinforcement method of the masonry wall of
The masonry stone is a stone that is formed into a shape in which a thick plate-like part is joined to the bottom of a solid body whose surface is a substantially rectangular shape or a substantially square shape and has a substantially truncated pyramid shape. It is characterized by being.
また、本発明の請求項5に係る石積壁の耐震補強方法は、
請求項4記載の石積壁の耐震補強方法において、
前記間知石は、壁面の略水平方向の目地のなす線がジグザグの波線状となる谷積方式で積まれること
を特徴とする。
Moreover, the seismic reinforcement method for masonry walls according to
In the seismic reinforcement method of the masonry wall according to
The Machinokushi is stacked by a valley method in which a line formed by a substantially horizontal joint of the wall surface is a zigzag wavy line.
また、本発明の請求項6に係る石積壁の耐震補強方法は、
請求項1記載の石積壁の耐震補強方法において、
前記打込注入管の前記尖端部と流入口を結ぶ一つの線上に1列に並ぶように胴込部吐出孔と裏込部吐出孔を一又は複数開設すること
を特徴とする。
Moreover, the seismic reinforcement method for masonry walls according to
In the earthquake-proof reinforcement method of the masonry wall of
One or a plurality of body-portion discharge holes and back-portion discharge holes are provided so as to be arranged in a line on one line connecting the tip end portion and the inlet of the implantation injection pipe.
また、本発明の請求項7に係る石積壁の耐震補強方法は、
請求項1記載の石積壁の耐震補強方法において、
前記打込注入管の胴込部吐出孔は1個、前記裏込部吐出孔は2個設けられること
を特徴とする。
Moreover, the seismic reinforcement method for a masonry wall according to
In the earthquake-proof reinforcement method of the masonry wall of
The injecting injection pipe is provided with one barrel discharge hole and two back discharge holes.
また、本発明の請求項8に係る石積壁の耐震補強方法は、
請求項1記載の石積壁の耐震補強方法において、
前記打込注入管の前記流入口付近を大径部とし、前記大径部を前記積石材の表面に定着させること
を特徴とする。
Moreover, the seismic reinforcement method for a masonry wall according to
In the earthquake-proof reinforcement method of the masonry wall of
The vicinity of the inlet of the implantation pipe is a large diameter part, and the large diameter part is fixed to the surface of the stone.
また、本発明の請求項9に係る石積壁の耐震補強方法は、
請求項1記載の石積壁の耐震補強方法において、
前記打込注入管の前記流入口の付近に雄ネジ又は雌ネジである流入口ネジを形成しておくとともに、前記注入ホースの前記流入口側の端部に前記流入口ネジに螺合可能なホース端ネジを形成しておくこと
を特徴とする。
Moreover, the seismic reinforcement method for masonry walls according to
In the earthquake-proof reinforcement method of the masonry wall of
An inlet screw which is a male screw or a female screw is formed in the vicinity of the inlet of the implantation injection pipe, and can be screwed to the inlet screw at an end of the injection hose on the inlet side. It is characterized by forming a hose end screw.
また、本発明の請求項10に係る石積壁の耐震補強方法は、
請求項1記載の石積壁の耐震補強方法において、
前記グラウト材は、セメントと砂と水を混合して生成されること
を特徴とする。
Moreover, the seismic reinforcement method for a masonry wall according to claim 10 of the present invention includes:
In the earthquake-proof reinforcement method of the masonry wall of
The grout material is produced by mixing cement, sand and water.
また、本発明の請求項11に係る石積壁の耐震補強方法は、
請求項10記載の石積壁の耐震補強方法において、
前記グラウト材の材料の配合割合は、生成された流動体状のグラウト材のフロー値が15〜18cmの範囲の値となるように設定されること
を特徴とする。
Moreover, the seismic reinforcement method for a masonry wall according to claim 11 of the present invention includes:
In the seismic reinforcement method of the masonry wall of
The mixing ratio of the material of the grout material is set so that the flow value of the generated fluid grout material becomes a value in the range of 15 to 18 cm.
また、本発明の請求項12に係る石積壁の耐震補強方法は、
請求項1記載の石積壁の耐震補強方法において、
前記グラウト材の注入に際しては圧力を付加し、前記注入圧は0.05〜0.06メガパスカル程度の値に設定されること
を特徴とする。
Moreover, the seismic reinforcement method for a masonry wall according to claim 12 of the present invention includes:
In the earthquake-proof reinforcement method of the masonry wall of
A pressure is applied when the grout material is injected, and the injection pressure is set to a value of about 0.05 to 0.06 megapascals.
また、本発明の請求項13に係る石積壁の耐震補強方法は、
請求項1記載の石積壁の耐震補強方法において、
前記略球根状固化領域が形成された後、前記積石会合部付近から前記コア抜きカッターを用いて前記略球根状固化領域を略円柱状に除去しさらに奥の地盤を略円柱状に除去して外部から前記裏込石の奥の地盤中に到達可能な定着空間を形成し、前記定着空間内に前記流動体状のグラウト材を注入し、定着鋼材を前記定着空間内の流動体状のグラウト材の中に挿入し、前記グラウト材を硬化させ、その後外部に突出した前記定着鋼材の端部に、前記積石会合部付近の積石材の表面を押さえ付けた状態で押さえ鋼板を固定させること
を特徴とする。
Moreover, the seismic reinforcement method for a masonry wall according to claim 13 of the present invention includes:
In the earthquake-proof reinforcement method of the masonry wall of
After the substantially bulbous solidified region is formed, the substantially bulbous solidified region is removed into a substantially cylindrical shape by using the coring cutter from the vicinity of the stone-masoning gathering portion, and the deep ground is further removed into a substantially cylindrical shape. Forming a fixing space that is reachable from the outside into the ground behind the back stone, injecting the fluid-like grout material into the fixing space, and fixing the steel material to the fluid-like shape in the fixing space. Insert into the grout material, harden the grout material, and then fix the pressing steel plate in a state where the surface of the stone material near the stone meeting part is pressed to the end of the fixing steel material protruding outside It is characterized by this.
また、本発明の請求項14に係る石積壁の耐震補強方法は、
地盤の法面の崩落を防止し土圧を支持する擁壁のうち、前記地盤法面に沿って積石材を積み上げるとともに隣接する前記積石材どうしの間の空隙に前記積石材よりも小径の栗石である胴込石を充填しかつ前記積石材の背後の地盤との間に前記積石材よりも小径の栗石である裏込石を充填することにより構築される石積壁の地震時の変形又は崩壊を防止するための耐震補強方法であって、
前記石積壁の表面において4個の積石材がほぼ会合する箇所である積石会合部付近の積石材をコア抜きカッターを用いて略円柱状に除去し外部から前記胴込石領域に到達可能な挿入開口を形成し、
金属からなる中空円筒の前端を閉塞して錐状の尖端部とするとともに前記円筒の後端を開口させて流入口とし前記流入口の端部に雄ネジ又は雌ネジである流入口ネジを形成しておきかつ前記尖端部と流入口の間に複数個の吐出孔を開設した打込注入管を、前記挿入開口から前記胴込石領域の前部に挿入した後、衝打を加えて胴込石領域の内部方向へ押し込み、前記打込注入管の裏込部吐出孔を裏込石領域の後部の地盤手前位置付近まで到達させ、前記打込注入管の胴込部吐出孔と裏込部吐出孔が略鉛直上方に向くように設定し、前記打込注入管の流入口に注入プラント側の注入ホースを連結し流動体状のグラウト材を前記注入プラントの注入ポンプから前記注入ホースを経て所定の注入量だけ注入した後に前記グラウト材を硬化させ、前記胴込石及び裏込石とこれらの空隙に充填されるとともに前記打込注入管に定着鋼材の機能を発揮させるようにして前記グラウト材を硬化させることにより前記打込注入管により補強された略球根状の固化領域を前記4個の積石材の背後と前記地盤との間に形成し、その後外部に突出した前記打込注入管の流入口付近に、抑えプレートに開設しておいたプレート挿通孔を挿通させ、前記流入口ネジに螺合可能な固定具を、前記抑えプレートから突出した前記流入口ネジに螺合させることにより前記積石会合部付近の積石材の表面を前記抑えプレートで押さえ付けた状態で固定し、
前記工程を繰り返すことにより、前記打込注入管により補強された前記略球根状固化領域を、前記積石材の背後と前記地盤との間に、前記石積壁の表面から見た平面配置が略散点状になるように複数形成させること
を特徴とする。
Moreover, the seismic reinforcement method for a masonry wall according to claim 14 of the present invention includes:
Among retaining walls that prevent earth slope from falling and support earth pressure, pile stones along the ground slope and pile up stones smaller in diameter than stones in the gap between adjacent stones Deformation or collapse at the time of an earthquake of a masonry wall that is constructed by filling a boring stone that is a stone and a back stone that is a chestnut with a diameter smaller than that of the masonry material between the stone and the ground behind the stone A seismic reinforcement method for preventing
The masonry material in the vicinity of the masonry gathering portion, where the four masonry materials meet approximately on the surface of the stone masonry wall, can be removed in a substantially cylindrical shape by using a coring cutter and can reach the intrusion stone region from the outside Forming an insertion opening,
The front end of a hollow cylinder made of metal is closed to form a conical pointed end, and the rear end of the cylinder is opened to form an inlet, and an inlet screw that is a male screw or a female screw is formed at the end of the inlet. A driving injection tube having a plurality of discharge holes between the pointed end and the inflow port is inserted into the front portion of the intruding stone region from the insertion opening, and then a barrel is added by striking. Push in the inward direction of the piling stone area, let the back injection hole of the implantation injection pipe reach the position near the ground near the rear of the back injection stone area, The injection hole on the injection plant side is connected to the inlet of the injection injection pipe, and the fluid grout material is supplied from the injection pump of the injection plant to the injection hose. Then, after injecting a predetermined injection amount, the grout material is cured, A substantially bulbous shape that is reinforced by the implanting injection tube by filling the gap between these stones and backside stones and hardening the grout material so that the implantation injection tube functions as a fixing steel. The solidification region is formed between the back of the four masonry materials and the ground, and then a plate insertion hole opened in the restraining plate is formed near the inlet of the implantation pipe that protrudes to the outside. A fixing tool that can be inserted and screwed into the inlet screw is screwed into the inlet screw that protrudes from the holding plate, thereby pressing down the surface of the stone material near the stone meeting portion with the holding plate. Fixed in the
By repeating the step, the substantially bulbous solidified region reinforced by the implantation injection pipe is substantially dispersed in a plane arrangement when viewed from the surface of the stone masonry wall between the back of the masonry material and the ground. It is characterized by forming a plurality of dots.
また、本発明の請求項15に係る石積壁の耐震補強方法は、
地盤の法面の崩落を防止し土圧を支持する擁壁のうち、前記地盤法面に沿って積石材を積み上げるとともに隣接する前記積石材どうしの間の空隙に前記積石材よりも小径の栗石である胴込石を充填しかつ前記積石材の背後の地盤との間に前記積石材よりも小径の栗石である裏込石を充填することにより構築される石積壁の地震時の変形又は崩壊を防止するための耐震補強方法であって、
前記石積壁の表面において4個の積石材がほぼ会合する箇所である積石会合部付近の積石材をコア抜きカッターを用いて略円柱状に除去し外部から前記地盤法面よりも奥の地盤領域に到達可能な挿入開口を形成し、
金属からなる中空円筒の前端を閉塞して錐状の尖端部とするとともに前記円筒の後端を開口させて流入口としかつ前記尖端部と流入口の間に複数個の吐出孔を開設した打込注入管を、前記挿入開口から挿入した後、衝打を加えて内部方向へ押し込み、前記打込注入管の裏込部吐出孔を胴込石領域付近まで到達させ、
前記打込注入管の胴込部吐出孔が略鉛直上方に向くように設定し、前記打込注入管の流入口に注入プラント側の注入ホースを連結し流動体状のグラウト材を前記注入プラントの注入ポンプから前記注入ホースを経て所定の注入量だけ注入した後に前記打込注入管を引き抜いて前記グラウト材を硬化させ、前記胴込石とその空隙に充填された前記グラウト材を硬化させることにより胴込石領域のみを包含する表面付近固化領域を前記4個の積石材の周囲の胴込石領域付近に形成し、
前記工程を繰り返すことにより、前記表面付近固化領域を、前記積石材の周囲の胴込石領域付近に、前記石積壁の表面から見た平面配置が略散点状になるように複数形成させ、
前記積石会合部付近から前記コア抜きカッターを用いて前記表面付近固化領域を略円柱状に除去しさらに奥の地盤を略円柱状に除去して外部から前記裏込石の奥の地盤中に到達可能な定着空間を形成し、前記定着空間内に前記流動体状のグラウト材を注入し、定着鋼材を前記定着空間内の流動体状のグラウト材の中に挿入し、前記グラウト材を硬化させ、その後外部に突出した前記定着鋼材の端部に、前記積石会合部付近の積石材の表面を押さえ付けた状態で押さえ鋼板を固定させること
を特徴とする。
Moreover, the seismic reinforcement method for a masonry wall according to claim 15 of the present invention includes:
Among retaining walls that prevent earth slope from falling and support earth pressure, pile stones along the ground slope and pile up stones smaller in diameter than stones in the gap between adjacent stones Deformation or collapse at the time of an earthquake of a masonry wall that is constructed by filling a boring stone that is a stone and a back stone that is a chestnut with a diameter smaller than that of the masonry material between the stone and the ground behind the stone A seismic reinforcement method for preventing
The masonry material near the masonry gathering portion, where the four masonry materials meet approximately on the surface of the stone masonry wall, is removed into a substantially cylindrical shape by using a coring cutter, and the ground deeper than the ground slope from the outside. Forming an insertion opening that can reach the area,
The front end of a hollow cylinder made of metal is closed to form a conical point, and the rear end of the cylinder is opened to serve as an inlet, and a plurality of discharge holes are opened between the tip and the inlet. After inserting the injection pipe from the insertion opening, it is pushed inward with an impact, and the back injection hole of the injection injection pipe reaches the vicinity of the intrusion stone region,
An injection hose on the injection plant side is connected to an inlet of the injection injection pipe, and a fluid grout material is connected to the injection plant. After injecting a predetermined injection amount from the injection pump through the injection hose, the injection pipe is pulled out to harden the grout material, and the grout material filled in the body stone and the gap is cured. By forming a solidified area near the surface including only the rock stone area by the vicinity of the rock stone area around the four stones,
By repeating the above steps, a plurality of the solidified areas near the surface are formed in the vicinity of the intrusion stone area around the masonry material so that the planar arrangement viewed from the surface of the masonry wall is substantially scattered.
The solidified area near the surface is removed in a substantially cylindrical shape by using the coring cutter from the vicinity of the stone assembly, and the ground in the back is removed in a substantially cylindrical shape from the outside into the ground behind the back stone. A reachable fixing space is formed, the fluid grout material is injected into the fixing space, the fixing steel material is inserted into the fluid grout material in the fixing space, and the grout material is cured. After that, a holding steel plate is fixed to the end portion of the fixing steel material protruding to the outside in a state where the surface of the stone material in the vicinity of the stone building meeting portion is pressed.
本発明に係る石積壁の耐震補強方法によれば、石積壁の表面で4個の積石材がほぼ会合する積石会合部付近の積石材をコア抜きカッターで除去し外部から胴込石領域に到達する挿入開口を形成し、金属からなり前端が尖端部で開口した後端が流入口となる打込注入管を、挿入開口から挿入し衝打を加えて押し込み、打込注入管の吐出孔が略鉛直上方に向くようにしてグラウト材を注入した後に打込注入管を引き抜いてグラウト材を硬化させ略球根状の固化領域を4個の積石材の背後と地盤との間に形成する工程を繰り返し、固化領域を石積壁の表面から見た平面配置が略散点状になるように複数形成させるように構成したので、打込注入管等が小型であるため、鉄道線路のわきの狭隘な施工現場であっても、小型機械と人力の併用によって、石積壁の耐震補強施工作業を実施可能であるため、営業している鉄道線路の線路閉鎖手続をとらずに施工を行うことができるほか、従来の石積壁の耐震補強方法のように、積石材の背後の栗石の略全容積分をグラウト材で固化させる必要は無く、積石材の背後の栗石の略全容積分の約1/9程度をグラウト材で固化させれば十分であり、施工コストを大幅に低減でき、かつ、全体の施工期間を大幅に短縮できる、という利点を有している。 According to the seismic reinforcement method for masonry walls according to the present invention, the masonry material in the vicinity of the masonry gathering area where the four masonry materials almost meet on the surface of the masonry wall is removed with a cored cutter to enter the intrusion stone region from the outside. Insert the injection injection tube that forms the reaching insertion opening, is made of metal, has the front end opened at the pointed end, and the rear end is the inflow port. Injecting the grout material in such a manner that it faces substantially vertically upward, and then pulling out the implantation tube to harden the grout material to form a substantially bulbous solidified region between the back of the four stones and the ground Was repeated, and the solidified area was formed so that the planar arrangement as viewed from the surface of the masonry wall was almost scattered. Even in a difficult construction site, the combination of small machines and human power It is possible to perform seismic reinforcement work for building walls, so it is possible to carry out construction without taking steps to close the railway lines that are in operation, and stone materials like conventional methods for seismic reinforcement of stone walls. It is not necessary to solidify the entire volume of chestnut stone behind the stone with grout material, it is enough to solidify about 1/9 of the total volume of chestnut stone behind the stone material with grout material, which greatly increases the construction cost And the overall construction period can be greatly shortened.
以下に説明する実施例は、例えば、石積壁の表面で4個の積石材がほぼ会合する積石会合部付近の積石材をコア抜きカッターで除去し外部から胴込石領域に到達する挿入開口を形成し、金属からなり前端が尖端部で開口した後端が流入口となる打込注入管を、挿入開口から挿入し衝打を加えて押し込み、打込注入管の吐出孔が略鉛直上方に向くようにしてグラウト材を注入した後に打込注入管を引き抜いてグラウト材を硬化させ略球根状の固化領域を4個の積石材の背後と地盤との間に形成する工程を繰り返し、固化領域を石積壁の表面から見た平面配置が略散点状になるように複数形成させるようにした石積壁の耐震補強方法であり、打込注入管等が小型であるため、鉄道線路のわきの狭隘な施工現場であっても、小型機械と人力の併用によって、石積壁の耐震補強施工作業を実施可能であるため、営業している鉄道線路の線路閉鎖手続をとらずに施工を行うことができるほか、従来の石積壁の耐震補強方法のように、積石材の背後の栗石の略全容積分をグラウト材で固化させる必要は無く、積石材の背後の栗石の略全容積分の約1/9程度をグラウト材で固化させれば十分であり、施工コストを大幅に低減でき、かつ、全体の施工期間を大幅に短縮でき、本発明を実現するための構成として最良の形態である。 In the embodiment described below, for example, an insertion opening that removes the masonry material in the vicinity of the masonry meeting portion where the four masonry materials substantially meet on the surface of the stone masonry wall, and reaches the intrusion stone region from the outside The injection injection tube is made of metal and the front end is open at the pointed end and the rear end is the inflow port. The insertion injection tube is inserted through the insertion opening and pushed in, and the discharge hole of the injection injection tube is substantially vertically upward. After injecting the grout material so as to face the surface, the driving tube is pulled out to harden the grout material and form a substantially bulbous solidified area between the back of the four stones and the ground, and solidify This is a method for seismic reinforcement of masonry walls in which the area of the masonry wall is formed so that the planar arrangement when viewed from the surface of the masonry wall is substantially scattered. Even in a narrow construction site, you can use both small machines and human power. Because it is possible to carry out seismic reinforcement work for masonry walls, it is possible to carry out construction without taking steps to close the railway tracks that are in operation, as well as conventional methods for seismic reinforcement of masonry walls. It is not necessary to solidify almost the entire volume of chestnut stone behind stones with grout material, it is enough to solidify about 1/9 of the total volume of chestnut stones behind stones with grout material. The cost can be greatly reduced, and the entire construction period can be greatly shortened, which is the best mode for realizing the present invention.
以下、本発明の第1実施例について、図面を参照しながら説明する。図1は、本発明の第1実施例である石積壁の耐震補強方法の手順を示す第1の図である。 Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a first diagram showing the procedure of the seismic reinforcement method for masonry walls according to the first embodiment of the present invention.
図1(A)は、本発明の第1実施例である石積壁の耐震補強方法が施工される石積壁の表面を正面から見た図である。この石積壁の全体構成は、上記した図8の場合と同様であるので、その説明は省略する。また、図1(B)〜図1(D)は、図1(A)に示す石積壁の表面の断面図であり、図1(B)〜図1(D)の左側の輪郭線が、この石積壁の外表面である。また、図2は、本発明の第1実施例である石積壁の耐震補強方法に用いる打込注入管13の構成を示す側面図であり、図2(A)は打込注入管13の全体構成を示し、図2(B)は打込注入管13のキャップ取付部13f付近の拡大断面を示す。また、図3は、本発明の第1実施例である石積壁の耐震補強方法の手順を示す第2の図である。また、図4は、本発明の第1実施例である石積壁の耐震補強方法により補強された領域の配置状態を示す図である。
FIG. 1 (A) is a view of the surface of a masonry wall on which a method for seismic reinforcement of a masonry wall according to a first embodiment of the present invention is viewed from the front. Since the entire structure of the stone wall is the same as that in the case of FIG. 8 described above, the description thereof is omitted. 1 (B) to FIG. 1 (D) are cross-sectional views of the surface of the masonry wall shown in FIG. 1 (A), and the outline on the left side of FIG. 1 (B) to FIG. This is the outer surface of this masonry wall. FIG. 2 is a side view showing the configuration of the driving
図1(A)に示す石積壁の積石材の積み方は、「矢羽小谷積(やばねこたにづみ)」と呼ばれる方式であり、積まれる下方の段の凹部である「谷」に、積石材(例えば間知石。図1(A)における2A〜2Dなど)の表面の長方形又は正方形の辺の2/3が落とし込まれるようにして積む方式である。本発明の石積壁の耐震補強方法の対象となる「谷積」には、図1(A)に示す「矢羽小谷積」のほか、「矢羽積(やばねづみ。うってがえしづみともいう)」、「綾織積(あやおりづみ)」、「堤防谷積(ていぼうたにづみ)」なども含まれる。 1A is a method called “Yaba Kotani (Yaban Kotani)”, which is a concave portion of the lower step where it is stacked. In this method, 2/3 of the rectangular or square side of the surface of the stone material (for example, Machi-ishi, 2A to 2D in FIG. 1A) is dropped. In addition to “Yaba Kodani” shown in FIG. 1 (A), “Yaware” (Yabane-Zami), which is the target of the seismic reinforcement method for masonry walls of the present invention. It is also called “Sumi”, “Ayaorizumi”, “Tsuboi Tanizumi” and so on.
本発明の第1実施例である石積壁の耐震補強方法では、まず最初に、石積壁の表面において4個の積石材2A及び2B及び2C及び2Dがほぼ会合する箇所P1(以下、「積石会合部」という。)の付近の積石材、図1(A)の場合は積石材2D及び積石材2Bを、図1(B)に示すように、略円柱状のコア抜きカッター11を用いて略円柱状に除去し、外部から胴込石4の領域(以下、「胴込石領域」という。)に到達可能な挿入開口12を形成する。
In the seismic reinforcement method for masonry walls according to the first embodiment of the present invention, first, a place P1 where the four
上記したコア抜きカッター11の略円柱状のカッター部の外径(直径)は、後述する打込注入管13の中空パイプ13aの部分の外径(直径)が約30ミリメートル程度の値となっているため、中空パイプ13aの部分を挿入する場合の挿入し易さを考慮して、少なくとも32ミリメートル以上であることが望ましい。
The outer diameter (diameter) of the substantially cylindrical cutter portion of the above-described cored
次に、図1(C)に示すように、打込注入管13を、コア抜きカッター11で形成した挿入開口12から胴込石領域(胴込石4からなる領域)の前部(石積壁の表面が前方で、地盤Gが後方となる)に挿入した後、カケヤなどの衝打工具14等による衝打を加えて、胴込石領域の内部方向(地盤Gへ接近する方向)へ押し込む。
Next, as shown in FIG. 1 (C), the
打込注入管13は、図2(A)の全体構成側面図に示すように、鋼等の金属からなる中空円筒状の中空パイプ13aの前端を閉塞して錐状の尖端部13bとするとともに、中空パイプ13aの円筒の後端を開口させて流入口13cとし、かつ尖端部13bと流入口13cの間には、第1吐出孔13d1と第2吐出孔13d2と第3吐出孔13d3が開設されている。ここに、第3吐出孔13d3は、特許請求の範囲における胴込部吐出孔に相当しており、第1吐出孔13d1及び第2吐出孔13d2は、特許請求の範囲における裏込部吐出孔に相当している。
As shown in the side view of the overall configuration of FIG. 2A, the driving
この場合、打込注入管13が、挿入開口12から胴込石領域の前部に挿入された後、衝打を加えて胴込石領域の内部方向へ押し込まれ、打込注入管13の第1吐出孔13d1を裏込石領域の後部の地盤Gの手前の位置付近まで到達させるようにする(図1(D)参照)。
In this case, after the driving
ここで、打込注入管13のさらに詳細な構成と、標準寸法について説明しておく。中空パイプ13aの流入口13c側(後端側)付近の外側には、図2(B)の拡大断面図に示すように、鋼等の金属からなる短い円筒状のキャップ取付部13fが嵌め付けられている。キャップ取付部13fの流入口13c側(後端側)の外側の円筒面には、雄ネジが形成され、雄ネジ部13g(図2(A)参照)となっている。また、キャップ取付部13fの尖端部13b側(前端側)の部分であるプレート取付部13eの外側には、鋼等の金属からなる板状のプレート13iが嵌め付けられている。また、キャップ取付部13fの雄ネジ部13gには、蓋の機能を果たす金属製又は硬質プラスチックス材料製のキャップ13hが螺合により取り付け可能となっている。キャップ13hは、一端(図2(A)における左上端)が閉塞され、他端(図2(A)における右下端)が開放された円筒状の部材で、開放口の側となる円筒内壁面には、雄ネジ部13gの雄ネジと螺合可能な雌ネジが形成されている。また、キャップ取付部13fの雄ネジ部13gには、後述する注入ホース15の前端部であり、鋼等の金属からなる口金部15aが螺合により取り付け可能となっている。口金部15aは、一端(図2(B)における左上端)と他端(図2(B)における右下端)の両方が開放された円筒状の部材で、開放口の側となる円筒内壁面には、雄ネジ部13gの雄ネジと螺合可能な雌ネジ部15cが形成されている。口金部15aの後端(図2(B)における左上端)の側には、小径の筒状部であるホース接続筒部25a1が設けられ、ゴムホース15bの前端が嵌合により接続可能となっている。
Here, a more detailed configuration and standard dimensions of the
上記の打込注入管13の具体的寸法値としては、以下の通りである。まず、中空パイプ13aの外径(直径)は、約30ミリメートル程度の値となっており、中空パイプ13aの内径(直径)は、約22ミリメートル以上の値となっている。また、プレート13iは、例えば、150ミリメートル×150ミリメートル以上の正方形板状の部材、その厚さは、例えば9ミリメートル以上となっている。また、尖端部13bの先端からプレート13iの前面(図2(A)における右下面)までの距離L1は、約900ミリメートルとなっている。また、尖端部13bの先端から第1吐出孔13d1の中央部までの距離L2は、約150ミリメートルとなっている。また、第1吐出孔13d1の中央部から第2吐出孔13d2の中央部までの距離L3は、約150ミリメートルとなっている。また、第2吐出孔13d2の中央部から第3吐出孔13d3の中央部までの距離L4は、約300ミリメートルとなっている。また、各吐出孔13d1〜13d3の寸法は、中空パイプ13aの長手方向への長さが約20〜50ミリメートル程度で、中空パイプ13aの長手方向の垂直方向の幅が約10ミリメートル程度となっている。これらの寸法値を採用すれば、従来の鉄道沿線に存在するほぼ全タイプの石積壁の補強に用いることができる。
Specific dimension values of the
上記の図1(D)に示した状態においては、打込注入管13の前部の吐出孔13d1〜13d3が略鉛直上方に向くように設定する。次に、打込注入管13の流入口13c付近のキャップ取付部13fの雄ネジ部13gに、注入プラント(図示せず)の側の注入ホース15の口金部15aを雄ネジと雌ネジの螺合により連結し、流動体状のグラウト材16(図1(D)及び図2(B)参照)を注入プラント(図示せず)の注入ポンプ(図示せず)から注入ホース15を経て所定の注入量だけ注入する(図1(D))。グラウト材16(図1(D)及び図2(B)参照)は、注入ホース15の口金部15aから打込注入管13の流入口13cに入って中空パイプ13a内へ流れ込み、第3吐出孔13d3から上方へ流出してその付近の胴込石領域内の胴込石相互間の空隙を充填するとともに、第2吐出孔13d2から上方へ流出してその付近の裏込石領域内の裏込石相互間の空隙を充填し、かつ、第1吐出孔13d1から上方へ流出してその付近の裏込石領域内の裏込石相互間の空隙を充填する。
In the state shown in FIG. 1D, the discharge holes 13d1 to 13d3 in the front portion of the driving
注入するグラウト材は、セメント(例えばポルトランドセメント)と砂と水を混合して生成される。混和材又は混和剤(可塑剤など)は使用しない。砂としては、例えば細目砂などが用いられる。また、グラウト材の材料の配合割合は、生成された流動体状のグラウト材のフロー値が15〜18cmの範囲の値となるように設定される。また、グラウト材の注入に際しては、圧力を付加して加圧注入を行い、注入圧は、0.05〜0.06メガパスカル程度の値に設定される。 The grout material to be injected is produced by mixing cement (for example, Portland cement), sand and water. Do not use admixtures or admixtures (plasticizers, etc.). As the sand, fine sand is used, for example. Moreover, the mixing ratio of the material of the grout material is set so that the flow value of the generated fluid grout material is a value in the range of 15 to 18 cm. In addition, when injecting the grout material, pressure injection is performed by applying pressure, and the injection pressure is set to a value of about 0.05 to 0.06 megapascals.
ここで、グラウト材の注入量の決定方法として、2つの方法を説明する。第1の方法は、後述するように、4個1組の積石材2A〜2Dの背後の栗石領域に形成しようとする略球根状固化領域Z1(図3参照)の体積が、あらかじめ計算によって決定可能であることを利用するグラウト材注入量決定方法である。すなわち、この第1のグラウト材注入量決定方法では、グラウト材の所定の注入量は、胴込石4又は裏込石5の空隙にグラウト材が充填されて硬化した場合に、略球根状の固化領域Z1が4個の積石材の背後と地盤Gとの間に形成されるのに必要なグラウト材の量をあらかじめ計算によって算出しておく。
Here, two methods will be described as a method for determining the injection amount of the grout material. In the first method, as will be described later, the volume of the substantially bulbous solidified region Z1 (see FIG. 3) to be formed in the chestnut region behind the set of four
また、第2のグラウト材注入量決定方法は、図1(A)において、4個の積石材2A、2B、2C、2Dの目地のうち、積石会合部P1が略中央部となるような外縁目地部の適宜の箇所、例えば、箇所P2、又は箇所P3、又は箇所P4、又は箇所P5のうちのいずれか1箇所、若しくは2箇所程度に、小孔を開設し、この小孔に、管状部材(以下、「注入確認管」という。図示せず。)を胴込石4の中付近まで差し込んでおき、注入確認管からグラウト材が漏出してきたときをもって、所定の注入量のグラウト材が注入された、と判断する方法である。
Further, in the second grout material injection amount determination method, in FIG. 1 (A), among the four
その後に、打込注入管13を引き抜いて、グラウト材を硬化させ、胴込石4及び裏込石5とこれらの空隙に充填されたグラウト材(図1(D)及び図2(B)における符号16を参照)を硬化させることにより、略球根状の固化領域Z1を、4個の積石材2A及び2B及び2C及び2Dの背後と地盤Gとの間に形成することができる(図3参照)。
Thereafter, the
前記した工程を繰り返すことにより、略球根状固化領域Z1(図3参照)を、積石材2等の背後と地盤Gとの間に、石積壁1Aの表面から見た範囲Eの平面配置が略散点状になるように複数形成させることができる(図4参照)。図4においては、石積壁1Aの表面から内部を透視した状態では、4個1組の積石材Eの背後が略球根状固化領域Z1となっており、略球根状固化領域Z1の石積壁表面での範囲Eの配置状態においては、略球根状固化領域Z1(その表面の4個1組の積石材の範囲E)は、どの1つとしても、互いに隣接はしない。すなわち、略球根状固化領域Z1(その表面の4個1組の積石材の範囲E)は、その全方位の周囲に、略球根状固化領域Z1が背後に形成されていない8組の4個積石材範囲を有している。
By repeating the above-described steps, the substantially bulbous solidified region Z1 (see FIG. 3) is substantially arranged in a plane E in the range E as seen from the surface of the
上記した本発明の第1実施例である石積壁の耐震補強方法によれば、以下のような利点がある。 The above-described seismic reinforcement method for masonry walls according to the first embodiment of the present invention has the following advantages.
1)打込注入管13の全長が、約1メートル程度であるため、鉄道線路のわきの狭隘な施工現場であっても、非常に小型のコア抜きカッター11や、非常に小型の注入プラント等の小型機械と、人力の併用によって、石積壁の耐震補強施工作業を実施することができる。すなわち、大型機械の導入は不要であり、営業している鉄道線路に「線路閉鎖」手続をとらずに、作業現場を通過する列車と列車の間合い時間を有効活用して施工を行うことができ、鉄道事業者にとってメリットが大きい。
1) Since the total length of the
2)従来の石積壁の耐震補強方法のように、積石材の背後の栗石の略全容積分をグラウト材で固化させる必要は無く、積石材の背後の栗石の略全容積分の約1/9程度をグラウト材で固化させれば十分であり、施工コストが大幅に低減されるとともに、全体の施工期間を大幅に短縮することが可能である。 2) Unlike conventional methods for seismic reinforcement of masonry walls, it is not necessary to solidify the entire volume of chestnut stone behind the masonry material with grout material, but about 1/9 of the total volume of chestnut stone behind the masonry material. It is sufficient to solidify with grout material, and the construction cost can be greatly reduced and the entire construction period can be greatly shortened.
本発明は、上記の第1実施例とは異なる構成によっても実現可能である。以下、本発明の第2実施例について、図5(本発明の第2実施例である石積壁の耐震補強方法の手順を示す図)を参照しながら説明する。図5(A)〜図5(D)は、図1(B)〜図1(D)と同様に、石積壁の表面の断面図であり、図5(A)〜図5(D)の左側の輪郭線が、この石積壁の外表面を示している。 The present invention can be realized by a configuration different from that of the first embodiment. Hereinafter, a second embodiment of the present invention will be described with reference to FIG. 5 (a diagram showing a procedure of the seismic reinforcement method for a masonry wall according to the second embodiment of the present invention). 5 (A) to 5 (D) are cross-sectional views of the surface of the masonry wall, similar to FIGS. 1 (B) to 1 (D), and FIG. 5 (A) to FIG. 5 (D). The contour line on the left shows the outer surface of this masonry wall.
本発明の第2実施例である石積壁の耐震補強方法は、上記した本発明の第1実施例の石積壁の耐震補強方法により、図3に示す状態(胴込石4及び裏込石5とこれらの空隙に充填されたグラウト材が硬化することにより、略球根状の固化領域Z1が、4個の積石材2A及び2B及び2C及び2Dの背後と地盤Gとの間に形成された状態)の後に施工される方法である。
The seismic reinforcement method for masonry walls according to the second embodiment of the present invention is based on the above-described seismic reinforcement method for masonry walls according to the first embodiment of the present invention as shown in FIG. And the grout material filled in the gaps are hardened, so that a substantially bulbous solidified region Z1 is formed between the back of the four
図3に示すように、略球根状固化領域Z1が4個1組の積石材2A〜2Dの背後と地盤Gとの間に形成された後、積石会合部P1の付近から、上記と同様のコア抜きカッター11を用いて、略球根状固化領域Z1を略円柱状に除去する(図5(A)参照)。
As shown in FIG. 3, after the substantially bulbous solidified region Z1 is formed between the back of the set of four
そして、コア抜きカッター11によるくり抜き作業を、さらに奥の地盤Gまで行い、奥の地盤Gを略円柱状に除去し、外部から裏込石2A〜2Dの奥の地盤G中に到達可能な定着空間17を形成する(図5(B)参照)。
Then, the hollowing work by the
そして、次に、この定着空間17の内部に、流動体状のグラウト材19を注入する。このグラウト注入作業には、注入具18などを用いる。注入具18は、例えば、上記した注入ホース15bの先端に、定着空間17の入口(図5(C)における定着空間17の左上端部の開口)に差し込み可能な管状部材を装着しておき、これにより、定着空間17の内部に、流動体状のグラウト材19を注入するようにする。グラウト材19としては、上記した第1実施例に用いたグラウト材16(図1(D)及び図2(B)参照)と同様のものが使用可能である。
Next, a
次に、定着空間17の内部に注入した流動体状のグラウト材が硬化する前に、定着鋼材20aを、定着空間17内の流動体状のグラウト材19の中に挿入する。その後、グラウト材19を硬化させ、硬化したグラウト材19´の状態にする。次に、定着空間17の外部に突出した定着鋼材20aの端部(図5(D)における左上端部)に、積石会合部P1付近の積石材(例えば2B及び2D。2A〜2Dの全部を押さえるようにしてもよい。)の表面を押さえ付けた状態で、定着具20cにより押さえ鋼板20bを固定する。この固定には、例えば、定着鋼材20aの端部(図5(D)における左上端部)の外周円筒面に雄ネジを形成しておくとともに、押さえ鋼板20bに定着鋼材20aが挿通可能な孔をあらかじめ形成しておき、定着鋼材20aに押さえ鋼板20bを挿通させた後、定着鋼材20aの端部(図5(D)における左上端部)の外周円筒面の雄ネジに螺合するナットを定着具20cとして用いることにより、固定を行うことができる。
Next, the fixing
上記した本発明の第2実施例である石積壁の耐震補強方法によれば、以下のような利点がある。 The above-described seismic reinforcement method for masonry walls according to the second embodiment of the present invention has the following advantages.
3)略球根状固化領域Z1が4個1組の積石材2A〜2Dの背後と地盤Gとの間に形成されたうえ、さらに、4個1組の積石材2A〜2Dは、押さえ鋼板20bと定着具20cと定着空間17内の硬化後グラウト材19´と定着鋼材20aにより、背後の地盤Gに、縫い付けられるような状態で固定される。あるいは、押さえ鋼板20bと定着具20cと定着空間17内の硬化後グラウト材19´と定着鋼材20aにより、いわゆる地盤アンカー(アース・アンカー)のような機能を発揮させることができる。
3) The substantially bulbous solidified region Z1 is formed between the back of the four
本発明は、上記の第1実施例や第2実施例とは異なる構成によっても実現可能である。以下、本発明の第3実施例について、図6(本発明の第3実施例である石積壁の耐震補強方法の施工後の状態を示す図)を参照しながら説明する。図6は、図1(B)〜図1(D)と同様に、石積壁の表面の断面図であり、図6の左側の輪郭線が、この石積壁の外表面を示している。 The present invention can also be realized by a configuration different from the first and second embodiments. Hereinafter, a third embodiment of the present invention will be described with reference to FIG. 6 (a diagram showing a state after the construction of the seismic reinforcement method for masonry walls according to the third embodiment of the present invention). FIG. 6 is a cross-sectional view of the surface of the masonry wall as in FIGS. 1B to 1D, and the contour line on the left side of FIG. 6 shows the outer surface of the masonry wall.
本発明の第3実施例である石積壁の耐震補強方法は、上記した本発明の第1実施例の石積壁の耐震補強方法の応用(変化)例である。 The seismic reinforcement method for masonry walls according to the third embodiment of the present invention is an application (change) example of the seismic reinforcement method for masonry walls according to the first embodiment of the present invention.
すなわち、上記した本発明の第1実施例の石積壁の耐震補強方法では、図1(D)に示すグラウト注入作業の後には、打込注入管13を引き抜いて、グラウト材を硬化させ、胴込石4及び裏込石5とこれらの空隙に充填されたグラウト材(図1(D)及び図2(B)における符号16を参照)を硬化させることにより、略球根状の固化領域Z1を、4個の積石材2A及び2B及び2C及び2Dの背後と地盤Gとの間に形成する(図3参照)。
That is, in the seismic reinforcement method for a masonry wall according to the first embodiment of the present invention described above, after the grouting operation shown in FIG. 1 (D), the driving
しかし、本発明の第3実施例である石積壁の耐震補強方法では、図1(D)に示すグラウト注入作業の後には、打込注入管13を引き抜かず、打込注入管13を差し込んだ状態のまま、グラウト材を硬化させ、胴込石4及び裏込石5とこれらの空隙に充填されたグラウト材(図1(D)及び図2(B)における符号16を参照)を硬化させることにより、略球根状の固化領域Z1を、4個の積石材2A及び2B及び2C及び2Dの背後と地盤Gとの間に形成する。そして、その後、外部に突出した打込注入管13の流入口13c付近に、プレート13iに開設しておいたプレート孔13i1を挿通させ、キャップ取付部13fの雄ネジ部13gに螺合可能な雌ネジを有するキャップ13hを、プレート13iに挿通されて突出したキャップ取付部13fの雄ネジ部13gに螺合させることにより、積石会合部P1付近の積石材(例えば2B及び2D。2A〜2Dの全部を押さえるようにしてもよい。)の表面をプレート13iで押さえ付けた状態で固定する(図6参照)。ここに、プレート13iは、特許請求の範囲における抑えプレートに相当し、プレート孔13i1は、特許請求の範囲におけるプレート挿通孔に相当し、キャップ取付部13fの雄ネジ部13gは、特許請求の範囲における流入口ネジに相当し、キャップ13hは、特許請求の範囲における固定具に相当している。
However, in the seismic reinforcement method for a masonry wall according to the third embodiment of the present invention, after the grout injection operation shown in FIG. 1 (D), the
上記した本発明の第3実施例である石積壁の耐震補強方法によれば、以下のような利点がある。 The above-described seismic reinforcement method for masonry walls according to the third embodiment of the present invention has the following advantages.
4)略球根状固化領域Z1が4個1組の積石材2A〜2Dの背後と地盤Gとの間に形成されたうえ、さらに、4個1組の積石材2A〜2Dは、プレート13iとキャップ13hと略球根状固化領域Z1内の硬化後グラウト材と打込注入管13により、背後の地盤Gに、縫い付けられるような状態で固定される。あるいは、プレート13iとキャップ13hと略球根状固化領域Z1内の硬化後グラウト材と打込注入管13により、いわゆる地盤アンカー(アース・アンカー)のような機能を発揮させることができる。さらに、打込注入管13は、略球根状固化領域Z1内に埋設された状態で残置され、いわゆる「埋め殺し」の状態にするため、石積壁の耐震補強方法に用いた資材を施工後に廃棄することなく、すべて使い切ることになり、建設コストのさらなる低減につながる。
4) The substantially bulbous solidified region Z1 is formed between the back of the four
本発明は、上記の第1実施例〜第3実施例とは異なる構成によっても実現可能である。以下、本発明の第4実施例について、図7(本発明の第4実施例である石積壁の耐震補強方法の手順を示す図)を参照しながら説明する。図7は、図1(B)〜図1(D)と同様に、石積壁の表面の断面図であり、図7の左側の輪郭線が、この石積壁の外表面を示している。 The present invention can also be realized by a configuration different from the first to third embodiments. Hereinafter, a fourth embodiment of the present invention will be described with reference to FIG. 7 (a diagram showing a procedure of the seismic reinforcement method for a masonry wall according to the fourth embodiment of the present invention). FIG. 7 is a cross-sectional view of the surface of the masonry wall, as in FIGS. 1B to 1D, and the outline on the left side of FIG. 7 shows the outer surface of the masonry wall.
本発明の第4実施例である石積壁の耐震補強方法は、上記した本発明の第2実施例の石積壁の耐震補強方法の応用(変化)例である。 The seismic reinforcement method for masonry walls according to the fourth embodiment of the present invention is an application (change) example of the seismic reinforcement method for masonry walls according to the second embodiment of the present invention.
すなわち、上記した本発明の第2実施例の石積壁の耐震補強方法では、まず、図3に示すようにして、グラウト材を硬化させ、胴込石4及び裏込石5とこれらの空隙に充填されたグラウト材(図1(D)及び図2(B)における符号16を参照)を硬化させることにより、略球根状の固化領域Z1を、4個の積石材2A及び2B及び2C及び2Dの背後と地盤Gとの間に形成する(図3参照)。
That is, in the above-described seismic reinforcement method for masonry walls according to the second embodiment of the present invention, first, as shown in FIG. By hardening the filled grout material (see
しかし、本発明の第4実施例である石積壁の耐震補強方法では、硬化したグラウト材による固化領域の範囲(大きさ)が、上記した本発明の第2実施例の石積壁の耐震補強方法よりも小さい。すなわち、本発明の第4実施例である石積壁の耐震補強方法では、硬化したグラウト材による固化領域Z2の範囲(大きさ)は、胴込石4とこの空隙からなる胴込石領域付近に限定された小さな領域である。その後の施工手順は、上記した本発明の第2実施例の石積壁の耐震補強方法の場合と同様である。
However, in the seismic reinforcement method for masonry walls according to the fourth embodiment of the present invention, the range (size) of the solidified region by the hardened grout material is the seismic reinforcement method for masonry walls according to the second embodiment of the present invention described above. Smaller than. That is, in the seismic reinforcement method for masonry walls according to the fourth embodiment of the present invention, the range (size) of the solidified region Z2 by the hardened grout material is in the vicinity of the intrusion stone region composed of the
上記した本発明の第4実施例である石積壁の耐震補強方法によれば、以下のような利点がある。 The above-described seismic reinforcement method for masonry walls according to the fourth embodiment of the present invention has the following advantages.
5)硬化したグラウト材による固化領域Z2の範囲(大きさ)は、第1実施例の固化領域Z1の半分以下であるため、グラウト材の量も、第1実施例の場合より相当に少なくてよく、施工コストが第1実施例の場合よりもさらに低減されるとともに、全体の施工期間も第1実施例の場合よりもさらに短縮することが可能である。 5) Since the range (size) of the solidified region Z2 by the hardened grout material is less than half of the solidified region Z1 of the first embodiment, the amount of the grout material is also considerably smaller than that of the first embodiment. Well, the construction cost is further reduced as compared with the case of the first embodiment, and the entire construction period can be further shortened as compared with the case of the first embodiment.
なお、本発明は、上記した実施例に限定されるものではない。上記した各実施例は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 In addition, this invention is not limited to an above-described Example. Each of the above-described embodiments is an exemplification, and has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same operational effects. Are also included in the technical scope of the present invention.
例えば、上記した各実施例は、空積み方式による石積壁を例に挙げて説明したが、本発明はこの例には限定されず、練積み方式による石積壁に適用されてもよい。 For example, each of the above-described embodiments has been described by taking an example of a masonry wall by an empty stacking method, but the present invention is not limited to this example, and may be applied to a masonry wall by a kneading method.
また、石積壁の積み方についても、「谷積(別名「乱層積」)」以外の積み方の石積壁、例えば、「布積(ぬのづみ。別名「整層積」。)」、「乱整層積」、「乱積」、「くずれ積」などであってもよい。 In addition, as for the method of stacking stone walls, stone walls other than “Tanizumi (also known as“ turbostratum ”)”, for example, “Nuzumi (also known as“ stratified area ”)”, “Random layer product”, “random product”, “deformation product” and the like may be used.
また、積石材についても、「間知石」以外の積石材、例えば、雑割石、布石、桝石などであってもよい。 In addition, the stone material may also be a stone material other than “Machinishi”, for example, miscellaneous stone, cloth stone, meteorite and the like.
また、上記の第1実施例では、胴込部吐出孔(第3吐出孔13d3)が1個、裏込部吐出孔(第1吐出孔13d1及び第2吐出孔13d2)が2個である例を挙げたが、他の構成であってもよい。要は、打込注入管の尖端部と流入口を結ぶ一つの線上に1列に並ぶように胴込部吐出孔と裏込部吐出孔を一又は複数開設すればよい。 Further, in the first embodiment, there is an example in which there is one trunk portion discharge hole (third discharge hole 13d3) and two back portion discharge holes (first discharge hole 13d1 and second discharge hole 13d2). However, other configurations may be used. In short, it is only necessary to open one or a plurality of barrel discharge holes and back discharge holes so that they are arranged in a line on a single line connecting the tip of the implantation pipe and the inlet.
また、図1(C)の場合とは異なり、図2(A)に示すようなキャップ13hを装着した状態で、キャップ13hの後端面(図2(A)における左上面)をカケヤなどの衝打工具14等による衝打を加えて、胴込石領域の内部方向(地盤Gへ接近する方向)へ押し込むようにしてもよい。このようにすれば、打込注入管13の流入口13c付近のプレート13iが特許請求の範囲における大径部となり、この大径部により、打込注入管13が積石材の表面に定着され、それ以上内部には押し込まれないので、胴込部吐出孔と裏込部吐出孔の位置をつねに略一定の深さ(石積壁の表面からの深さ)の位置とすることができる、という利点がある。
In addition, unlike the case of FIG. 1C, the rear end surface of the
なお、図2における雄ネジ部と雌ネジ部の関係は逆であってもよい。要は、打込注入管の流入口の端部に雄ネジ又は雌ネジである流入口ネジを形成しておくとともに、注入ホースの流入口側の端部に流入口ネジに螺合可能なホース端ネジを形成しておけばよい。第1実施例においては、雄ネジ部13gは、特許請求の範囲における流入口ネジに相当し、雌ネジ部15cは、特許請求の範囲におけるホース端ネジに相当している。
Note that the relationship between the male screw portion and the female screw portion in FIG. 2 may be reversed. In short, an inlet screw, which is a male screw or a female screw, is formed at the end of the inlet of the driving injection tube, and a hose that can be screwed into the inlet screw at the inlet of the injection hose An end screw may be formed. In the first embodiment, the male screw portion 13g corresponds to the inlet screw in the claims, and the
また、グラウト材に用いるセメントとしては、ポルトランドセメントのほか、混合セメントと特殊セメントも使用可能である。混合セメントとしては、高炉セメント、フライアッシュセメント、シリカセメントが含まれる。また、特殊セメントとしては、超速硬セメント、アルミナセメント、膨張セメント、コロイドセメントが含まれる。 In addition to Portland cement, mixed cement and special cement can be used as cement for the grout material. Examples of the mixed cement include blast furnace cement, fly ash cement, and silica cement. In addition, examples of the special cement include ultrafast cement, alumina cement, expanded cement, and colloid cement.
本発明は、石積壁の耐震補強方法の施工を行う土木・建築業、擁壁として石積壁を有する鉄道事業者等で実施可能であり、これらの産業で利用可能である。 INDUSTRIAL APPLICABILITY The present invention can be implemented by a civil engineering / building industry that performs a seismic reinforcement method for masonry walls, a railway company having a masonry wall as a retaining wall, and the like, and can be used in these industries.
1 石積壁
1A 補強後石積壁
2〜2D 積石材
2K 間知石
3 基礎
4 胴込石
5 裏込石
6 基礎栗石
7 天端石
8 被り土
9 目地
11 コア抜きカッター
12 挿入開口
13 打込注入管
13a 中空パイプ
13b 尖端部
13c 流入口
13d1 第1吐出孔
13d2 第2吐出孔
13d3 第3吐出孔
13e プレート取付部
13f キャップ取付部
13g 雄ネジ部
13h キャップ
13i プレート
13i1 プレート孔
14 衝打工具
15 注入ホース
15a 口金部
25a1 ホース接続筒部
15b ゴムホース
15c 雌ネジ部
16 グラウト材
17 定着空間
18 注入具
19 流動体状グラウト材
19´ 硬化後グラウト材
20a 定着鋼材
20b 押さえ鋼板
20c 締結具
21 胴
22 合端
23 面
24 友
D1 衝打方向
E 固化領域の積石材表面から見た範囲
G 地盤
L1〜L4 打込注入管における各長さ
L10 控え長さ
P1 積石会合部
P2〜P5 注入確認管差し込み箇所
S 地盤法面
Z1、Z2 固化領域
DESCRIPTION OF
Claims (15)
前記石積壁の表面において4個の積石材がほぼ会合する箇所である積石会合部付近の積石材をコア抜きカッターを用いて略円柱状に除去し外部から前記胴込石領域に到達可能な挿入開口を形成し、
金属からなる中空円筒の前端を閉塞して錐状の尖端部とするとともに前記円筒の後端を開口させて流入口としかつ前記尖端部と流入口の間に複数個の吐出孔を開設した打込注入管を、前記挿入開口から前記胴込石領域の前部に挿入した後、衝打を加えて胴込石領域の内部方向へ押し込み、前記打込注入管の裏込部吐出孔を裏込石領域の後部の地盤手前位置付近まで到達させ、
前記打込注入管の胴込部吐出孔と裏込部吐出孔が略鉛直上方に向くように設定し、前記打込注入管の流入口に注入プラント側の注入ホースを連結し流動体状のグラウト材を前記注入プラントの注入ポンプから前記注入ホースを経て所定の注入量だけ注入した後に前記打込注入管を引き抜いて前記グラウト材を硬化させ、前記胴込石及び裏込石とこれらの空隙に充填された前記グラウト材を硬化させることにより略球根状の固化領域を前記4個の積石材の背後と前記地盤との間に形成し、
前記工程を繰り返すことにより、前記略球根状固化領域を、前記積石材の背後と前記地盤との間に、前記石積壁の表面から見た平面配置が略散点状になるように複数形成させること
を特徴とする石積壁の耐震補強方法。 Among retaining walls that prevent earth slope from falling and support earth pressure, pile stones along the ground slope and pile up stones smaller in diameter than stones in the gap between adjacent stones Deformation or collapse at the time of an earthquake of a masonry wall that is constructed by filling a boring stone that is a stone and a back stone that is a chestnut with a diameter smaller than that of the masonry material between the stone and the ground behind the stone A seismic reinforcement method for preventing
The masonry material in the vicinity of the masonry gathering portion, where the four masonry materials meet approximately on the surface of the stone masonry wall, can be removed in a substantially cylindrical shape by using a coring cutter and can reach the intrusion stone region from the outside. Forming an insertion opening,
The front end of a hollow cylinder made of metal is closed to form a conical point, and the rear end of the cylinder is opened to serve as an inlet, and a plurality of discharge holes are opened between the tip and the inlet. After inserting the injection pipe into the front part of the intrusion stone area through the insertion opening, the inner injection pipe is pushed toward the inside of the intrusion stone area, and the back injection hole of the injection injection pipe is To reach the near-ground position at the rear of the Kazuishi area,
The body injection hole and the back part discharge hole of the implantation injection pipe are set so as to face substantially vertically upward, and an injection hose on the injection plant side is connected to the inlet of the implantation injection pipe to form a fluid. After injecting the grout material from the injection pump of the injection plant through the injection hose by a predetermined injection amount, the grout material is hardened by pulling out the driving injection pipe, and the intruder stone and the back stone and their gaps. Forming a substantially bulbous solidified region between the back of the four stones and the ground by curing the grout material filled in
By repeating the above steps, a plurality of the substantially bulbous solidified regions are formed between the back of the masonry material and the ground so that the planar arrangement viewed from the surface of the masonry wall is substantially scattered. Seismic reinforcement method for masonry walls.
前記所定の注入量は、前記胴込石又は裏込石の空隙に前記グラウト材が充填されて硬化した場合に、略球根状の固化領域が前記4個の積石材の背後と前記地盤との間に形成されるのに必要な前記グラウト材の量をあらかじめ計算によって算出しておくこと
を特徴とする石積壁の耐震補強方法。 In the earthquake-proof reinforcement method of the masonry wall of Claim 1,
The predetermined injection amount is such that when the grout material is filled and hardened in the gap between the rocks or back stones, a substantially bulbous solidified region is formed between the back of the four stones and the ground. A method for seismic reinforcement of masonry walls, characterized in that the amount of grout material required to be formed between them is calculated in advance.
前記4個の積石材の目地のうち前記積石会合部が略中央部となるような外縁目地部の適宜の箇所に小孔を開設し管状部材である注入確認管を前記胴込石中まで差し込んでおき、前記注入確認管から前記グラウト材が漏出してきたときをもって、前記所定の注入量が注入されたと判断すること
を特徴とする石積壁の耐震補強方法。 In the earthquake-proof reinforcement method of the masonry wall of Claim 1,
A small hole is opened at an appropriate location of the outer edge joint portion where the stone assembly meeting portion becomes a substantially central portion of the joints of the four stone stone materials, and an injection confirmation tube as a tubular member is inserted into the body stone. A seismic reinforcement method for a masonry wall, characterized in that it is determined that the predetermined injection amount has been injected when the grout material leaks from the injection confirmation pipe.
前記積石材は、壁の表面となる石面が略長方形状又は略正方形状で全体が略角錐台形の立体の底部に厚板状の部分が接合されてなる形状に形成された間知石であること
を特徴とする石積壁の耐震補強方法。 In the earthquake-proof reinforcement method of the masonry wall of Claim 1,
The masonry stone is a stone that is formed into a shape in which a thick plate-like part is joined to the bottom of a solid body whose surface is a substantially rectangular shape or a substantially square shape and has a substantially truncated pyramid shape. Seismic reinforcement method for masonry walls, characterized by being.
前記間知石は、壁面の略水平方向の目地のなす線がジグザグの波線状となる谷積方式で積まれること
を特徴とする石積壁の耐震補強方法。 In the seismic reinforcement method of the masonry wall according to claim 4,
The method of seismic reinforcement of masonry walls, wherein the machinite stones are stacked by a valley method in which lines formed by joints in a substantially horizontal direction of the wall surface are zigzag wavy lines.
前記打込注入管の前記尖端部と流入口を結ぶ一つの線上に1列に並ぶように胴込部吐出孔と裏込部吐出孔を一又は複数開設すること
を特徴とする石積壁の耐震補強方法。 In the earthquake-proof reinforcement method of the masonry wall of Claim 1,
Seismic resistance of a masonry wall characterized in that one or a plurality of barrel discharge holes and back discharge holes are arranged in a line on one line connecting the tip and inlet of the injection pipe. Reinforcement method.
前記打込注入管の胴込部吐出孔は1個、前記裏込部吐出孔は2個設けられること
を特徴とする石積壁の耐震補強方法。 In the earthquake-proof reinforcement method of the masonry wall of Claim 1,
A method for seismic reinforcement of a masonry wall, characterized in that there is provided one barrel discharge hole and two back discharge holes in the implantation injection pipe.
前記打込注入管の前記流入口付近を大径部とし、前記大径部を前記積石材の表面に定着させること
を特徴とする石積壁の耐震補強方法。 In the earthquake-proof reinforcement method of the masonry wall of Claim 1,
A method for seismic reinforcement of a masonry wall, characterized in that the vicinity of the inlet of the implantation pipe is a large-diameter portion, and the large-diameter portion is fixed on the surface of the masonry material.
前記打込注入管の前記流入口の付近に雄ネジ又は雌ネジである流入口ネジを形成しておくとともに、前記注入ホースの前記流入口側の端部に前記流入口ネジに螺合可能なホース端ネジを形成しておくこと
を特徴とする石積壁の耐震補強方法。 In the earthquake-proof reinforcement method of the masonry wall of Claim 1,
An inlet screw which is a male screw or a female screw is formed in the vicinity of the inlet of the implantation injection pipe, and can be screwed to the inlet screw at an end of the injection hose on the inlet side. Seismic reinforcement method for masonry walls, characterized by forming hose end screws.
前記グラウト材は、セメントと砂と水を混合して生成されること
を特徴とする石積壁の耐震補強方法。 In the earthquake-proof reinforcement method of the masonry wall of Claim 1,
The grouting material is produced by mixing cement, sand, and water.
前記グラウト材の材料の配合割合は、生成された流動体状のグラウト材のフロー値が15〜18cmの範囲の値となるように設定されること
を特徴とする石積壁の耐震補強方法。 In the seismic reinforcement method of the masonry wall of Claim 10,
The mixing ratio of the material of the grout material is set so that the flow value of the generated fluid-like grout material becomes a value in the range of 15 to 18 cm.
前記グラウト材の注入に際しては圧力を付加し、前記注入圧は0.05〜0.06メガパスカル程度の値に設定されること
を特徴とする石積壁の耐震補強方法。 In the earthquake-proof reinforcement method of the masonry wall of Claim 1,
A method of seismic reinforcement of a masonry wall, wherein pressure is applied when the grout material is injected, and the injection pressure is set to a value of about 0.05 to 0.06 megapascals.
前記略球根状固化領域が形成された後、前記積石会合部付近から前記コア抜きカッターを用いて前記略球根状固化領域を略円柱状に除去しさらに奥の地盤を略円柱状に除去して外部から前記裏込石の奥の地盤中に到達可能な定着空間を形成し、前記定着空間内に前記流動体状のグラウト材を注入し、定着鋼材を前記定着空間内の流動体状のグラウト材の中に挿入し、前記グラウト材を硬化させ、その後外部に突出した前記定着鋼材の端部に、前記積石会合部付近の積石材の表面を押さえ付けた状態で押さえ鋼板を固定させること
を特徴とする石積壁の耐震補強方法。 In the earthquake-proof reinforcement method of the masonry wall of Claim 1,
After the substantially bulbous solidified region is formed, the substantially bulbous solidified region is removed into a substantially cylindrical shape by using the coring cutter from the vicinity of the stone-masoning gathering portion, and the deep ground is further removed into a substantially cylindrical shape. Forming a fixing space that is reachable from the outside into the ground behind the back stone, injecting the fluid-like grout material into the fixing space, and fixing the steel material to the fluid-like shape in the fixing space. Insert into the grout material, harden the grout material, and then fix the pressing steel plate in a state where the surface of the stone material near the stone meeting part is pressed to the end of the fixing steel material protruding outside Seismic reinforcement method for masonry walls.
前記石積壁の表面において4個の積石材がほぼ会合する箇所である積石会合部付近の積石材をコア抜きカッターを用いて略円柱状に除去し外部から前記胴込石領域に到達可能な挿入開口を形成し、
金属からなる中空円筒の前端を閉塞して錐状の尖端部とするとともに前記円筒の後端を開口させて流入口とし前記流入口の端部に雄ネジ又は雌ネジである流入口ネジを形成しておきかつ前記尖端部と流入口の間に複数個の吐出孔を開設した打込注入管を、前記挿入開口から前記胴込石領域の前部に挿入した後、衝打を加えて胴込石領域の内部方向へ押し込み、前記打込注入管の裏込部吐出孔を裏込石領域の後部の地盤手前位置付近まで到達させ、前記打込注入管の胴込部吐出孔と裏込部吐出孔が略鉛直上方に向くように設定し、前記打込注入管の流入口に注入プラント側の注入ホースを連結し流動体状のグラウト材を前記注入プラントの注入ポンプから前記注入ホースを経て所定の注入量だけ注入した後に前記グラウト材を硬化させ、前記胴込石及び裏込石とこれらの空隙に充填されるとともに前記打込注入管に定着鋼材の機能を発揮させるようにして前記グラウト材を硬化させることにより前記打込注入管により補強された略球根状の固化領域を前記4個の積石材の背後と前記地盤との間に形成し、その後外部に突出した前記打込注入管の流入口付近に、抑えプレートに開設しておいたプレート挿通孔を挿通させ、前記流入口ネジに螺合可能な固定具を、前記抑えプレートから突出した前記流入口ネジに螺合させることにより前記積石会合部付近の積石材の表面を前記抑えプレートで押さえ付けた状態で固定し、
前記工程を繰り返すことにより、前記打込注入管により補強された前記略球根状固化領域を、前記積石材の背後と前記地盤との間に、前記石積壁の表面から見た平面配置が略散点状になるように複数形成させること
を特徴とする石積壁の耐震補強方法。 Among retaining walls that prevent earth slope from falling and support earth pressure, pile stones along the ground slope and pile up stones smaller in diameter than stones in the gap between adjacent stones Deformation or collapse at the time of an earthquake of a masonry wall that is constructed by filling a boring stone that is a stone and a back stone that is a chestnut with a diameter smaller than that of the masonry material between the stone and the ground behind the stone A seismic reinforcement method for preventing
The masonry material in the vicinity of the masonry gathering portion, where the four masonry materials meet approximately on the surface of the stone masonry wall, can be removed in a substantially cylindrical shape by using a coring cutter and can reach the intrusion stone region from the outside. Forming an insertion opening,
The front end of a hollow cylinder made of metal is closed to form a conical point, and the rear end of the cylinder is opened to form an inlet, and an inlet screw, which is a male screw or a female screw, is formed at the end of the inlet. A driving injection tube having a plurality of discharge holes between the pointed end and the inflow port is inserted into the front portion of the intruding stone region from the insertion opening, and then a barrel is added by striking. Push in the inward direction of the piling stone area, let the back injection hole of the implantation injection pipe reach the position near the ground near the rear of the back injection stone area, The injection hole on the injection plant side is connected to the inlet of the injection injection pipe, and the fluid grout material is supplied from the injection pump of the injection plant to the injection hose. Then, after injecting a predetermined injection amount, the grout material is cured, A substantially bulbous shape that is reinforced by the implanting injection tube by filling the gap between these stones and backside stones and hardening the grout material so that the implantation injection tube functions as a fixing steel. The solidification region is formed between the back of the four masonry materials and the ground, and then a plate insertion hole opened in the restraining plate is formed near the inlet of the implantation pipe that protrudes to the outside. A fixing tool that can be inserted and screwed into the inlet screw is screwed into the inlet screw protruding from the holding plate, thereby pressing the surface of the stone material near the stone meeting portion with the holding plate. Fixed in the
By repeating the step, the substantially bulbous solidified region reinforced by the implantation injection pipe is substantially dispersed in a plane arrangement when viewed from the surface of the stone masonry wall between the back of the masonry material and the ground. A method for seismic reinforcement of masonry walls, characterized in that a plurality of points are formed so as to form dots.
前記石積壁の表面において4個の積石材がほぼ会合する箇所である積石会合部付近の積石材をコア抜きカッターを用いて略円柱状に除去し外部から前記地盤法面よりも奥の地盤領域に到達可能な挿入開口を形成し、
金属からなる中空円筒の前端を閉塞して錐状の尖端部とするとともに前記円筒の後端を開口させて流入口としかつ前記尖端部と流入口の間に複数個の吐出孔を開設した打込注入管を、前記挿入開口から挿入した後、衝打を加えて内部方向へ押し込み、前記打込注入管の裏込部吐出孔を胴込石領域付近まで到達させ、
前記打込注入管の胴込部吐出孔が略鉛直上方に向くように設定し、前記打込注入管の流入口に注入プラント側の注入ホースを連結し流動体状のグラウト材を前記注入プラントの注入ポンプから前記注入ホースを経て所定の注入量だけ注入した後に前記打込注入管を引き抜いて前記グラウト材を硬化させ、前記胴込石とその空隙に充填された前記グラウト材を硬化させることにより胴込石領域のみを包含する表面付近固化領域を前記4個の積石材の周囲の胴込石領域付近に形成し、
前記工程を繰り返すことにより、前記表面付近固化領域を、前記積石材の周囲の胴込石領域付近に、前記石積壁の表面から見た平面配置が略散点状になるように複数形成させ、
前記積石会合部付近から前記コア抜きカッターを用いて前記表面付近固化領域を略円柱状に除去しさらに奥の地盤を略円柱状に除去して外部から前記裏込石の奥の地盤中に到達可能な定着空間を形成し、前記定着空間内に前記流動体状のグラウト材を注入し、定着鋼材を前記定着空間内の流動体状のグラウト材の中に挿入し、前記グラウト材を硬化させ、その後外部に突出した前記定着鋼材の端部に、前記積石会合部付近の積石材の表面を押さえ付けた状態で押さえ鋼板を固定させること
を特徴とする石積壁の耐震補強方法。 Among retaining walls that prevent earth slope from falling and support earth pressure, pile stones along the ground slope and pile up stones smaller in diameter than stones in the gap between adjacent stones Deformation or collapse at the time of an earthquake of a masonry wall that is constructed by filling a boring stone that is a stone and a back stone that is a chestnut with a diameter smaller than that of the masonry material between the stone and the ground behind the stone A seismic reinforcement method for preventing
The masonry material near the masonry gathering portion, where the four masonry materials meet approximately on the surface of the stone masonry wall, is removed into a substantially cylindrical shape by using a coring cutter, and the ground deeper than the ground slope from the outside. Forming an insertion opening that can reach the area,
The front end of a hollow cylinder made of metal is closed to form a conical point, and the rear end of the cylinder is opened to serve as an inlet, and a plurality of discharge holes are opened between the tip and the inlet. After inserting the injection pipe from the insertion opening, it is pushed inward with an impact, and the back injection hole of the injection injection pipe reaches the vicinity of the intrusion stone region,
An injection hose on the injection plant side is connected to an inlet of the injection injection pipe, and a fluid grout material is connected to the injection plant. After injecting a predetermined injection amount from the injection pump through the injection hose, the injection pipe is pulled out to harden the grout material, and the grout material filled in the body stone and the gap is cured. By forming a solidified area near the surface including only the rock stone area by the vicinity of the rock stone area around the four stones,
By repeating the above steps, a plurality of the solidified areas near the surface are formed in the vicinity of the intrusion stone area around the masonry material so that the planar arrangement viewed from the surface of the masonry wall is substantially scattered.
The solidified area near the surface is removed in a substantially cylindrical shape by using the coring cutter from the vicinity of the stone assembly, and the ground in the back is removed in a substantially cylindrical shape from the outside into the ground behind the back stone. A reachable fixing space is formed, the fluid grout material is injected into the fixing space, the fixing steel material is inserted into the fluid grout material in the fixing space, and the grout material is cured. A seismic reinforcement method for a masonry wall, characterized in that a pressing steel plate is fixed to an end portion of the fixing steel material projecting to the outside in a state where the surface of the stone material in the vicinity of the stone meeting place is pressed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005101707A JP4463140B2 (en) | 2005-03-31 | 2005-03-31 | Seismic reinforcement method for masonry walls |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005101707A JP4463140B2 (en) | 2005-03-31 | 2005-03-31 | Seismic reinforcement method for masonry walls |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006283309A JP2006283309A (en) | 2006-10-19 |
JP4463140B2 true JP4463140B2 (en) | 2010-05-12 |
Family
ID=37405508
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005101707A Active JP4463140B2 (en) | 2005-03-31 | 2005-03-31 | Seismic reinforcement method for masonry walls |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4463140B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE112007001546B4 (en) | 2006-06-29 | 2014-12-18 | Nsk Ltd. | Continuously variable toroidal transmission unit |
JP5026829B2 (en) * | 2007-03-20 | 2012-09-19 | 株式会社大林組 | Seismic reinforcement facilities and methods for seismic reinforcement of masonry walls |
JP6054334B2 (en) * | 2014-05-16 | 2016-12-27 | 株式会社アライ | Retaining method of retaining wall |
JP6800559B2 (en) * | 2014-12-09 | 2020-12-16 | 矢作建設工業株式会社 | Reinforcement structure of masonry retaining wall and reinforcement method of masonry retaining wall |
JP6638937B2 (en) * | 2016-02-10 | 2020-02-05 | 五洋建設株式会社 | Structure for preventing suction of seawall structures and method for preventing suction |
JP6263598B2 (en) * | 2016-11-30 | 2018-01-17 | 株式会社アライ | Retaining method of retaining wall |
JP7160767B2 (en) * | 2019-07-16 | 2022-10-25 | 大成建設株式会社 | Drive-in injection pipe, double pipe for drive-in injection pipe, and soil remediation method |
KR102600811B1 (en) * | 2023-07-19 | 2023-11-09 | 장재완 | Artificial stone stacking structure for holding wall and construction method for holding |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS608732U (en) * | 1983-06-27 | 1985-01-22 | 株式会社 佐藤工業所 | wall reinforcement device |
JPS63240984A (en) * | 1987-03-27 | 1988-10-06 | 株式会社 パイプボ−イエンジニアリング | Method of controlling earth pressure-resistant structure |
JP3015646U (en) * | 1995-03-09 | 1995-09-05 | 重信 齋喜 | Concrete block for earth retaining |
JP2836060B2 (en) * | 1996-03-22 | 1998-12-14 | 謙三 村上 | Masonry reinforcement method |
JPH11131467A (en) * | 1997-10-29 | 1999-05-18 | Port & Harbour Res Inst Ministry Of Transport | Consolidation improvement method of sand ground by chemical injection |
JP3481508B2 (en) * | 1999-06-15 | 2003-12-22 | 三協エンジニアリング株式会社 | Stone masonry retaining wall reinforcement method |
JP4375645B2 (en) * | 2001-06-19 | 2009-12-02 | 株式会社不動テトラ | Method of manufacturing soil for direct supporting ground of structures |
JP4073763B2 (en) * | 2002-11-19 | 2008-04-09 | 佳章 外川 | Rehabilitation method for existing railway tracks |
JP4316940B2 (en) * | 2003-06-20 | 2009-08-19 | 財団法人鉄道総合技術研究所 | Masonry wall reinforcement method |
JP4316939B2 (en) * | 2003-06-20 | 2009-08-19 | 財団法人鉄道総合技術研究所 | Masonry wall reinforcement method |
JP4316941B2 (en) * | 2003-06-20 | 2009-08-19 | 財団法人鉄道総合技術研究所 | Masonry wall reinforcement method |
-
2005
- 2005-03-31 JP JP2005101707A patent/JP4463140B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2006283309A (en) | 2006-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4463140B2 (en) | Seismic reinforcement method for masonry walls | |
KR100559978B1 (en) | A pile for cofferdam and cofferdam method using it | |
JP6632028B2 (en) | Concrete assembly retaining wall | |
CN104074197A (en) | Large-diameter thin-walled tubular pile composite anchor rod type foundation pit support structure and construction method thereof | |
CN105019472A (en) | Composite fender pile for building basement | |
KR101627410B1 (en) | Screw anchor pile and manufacturing method for the same | |
JP2006057312A (en) | Joint method of pile body and pre-cast slab | |
JP2003027462A (en) | Construction method of underground continuous wall, and construction method of underground structure | |
CN114960640A (en) | Post-grouting steel pipe pile at pile end and construction method thereof | |
JP2009068203A (en) | Earth retaining wall composed of horizontal sheathing with soldier beam, and cut-off structure, construction method and cut-off method for the earth retaining wall | |
KR100869369B1 (en) | The ground reinforcement apparatus and method grouting type using bundle steel pipe | |
JPH0813495A (en) | Earth retaining wall and method thereof | |
JP2005256571A (en) | Continuous wall body and its construction method | |
JPH0613770B2 (en) | Method of constructing mountain retaining wall with parent pile | |
JP3082054B2 (en) | Large-scale, deep steel continuous basement wall and method of constructing the same | |
JPH0328416A (en) | Construction method to build up pile | |
JP3239947B2 (en) | Construction method of foundation work | |
JPH0133607B2 (en) | ||
JPS6160921A (en) | Method of constructing impervious wall | |
JPH07252829A (en) | Steel pipe sheet pile construction method and steel pipe sheet pile | |
JPH0483018A (en) | Water stop wall | |
JPH0137529B2 (en) | ||
JPH0133610B2 (en) | ||
JPS6251332B2 (en) | ||
JPH0213612A (en) | Construction method of underground wall |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20070110 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20070110 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070723 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090729 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100202 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100216 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130226 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4463140 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130226 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130226 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130226 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140226 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |