JP6508525B2 - Ground improvement method - Google Patents
Ground improvement method Download PDFInfo
- Publication number
- JP6508525B2 JP6508525B2 JP2015131403A JP2015131403A JP6508525B2 JP 6508525 B2 JP6508525 B2 JP 6508525B2 JP 2015131403 A JP2015131403 A JP 2015131403A JP 2015131403 A JP2015131403 A JP 2015131403A JP 6508525 B2 JP6508525 B2 JP 6508525B2
- Authority
- JP
- Japan
- Prior art keywords
- addition
- soil
- cement slurry
- cement
- slurry
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 46
- 239000002689 soil Substances 0.000 claims description 98
- 239000004568 cement Substances 0.000 claims description 87
- 239000002002 slurry Substances 0.000 claims description 84
- 239000000463 material Substances 0.000 claims description 56
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 47
- 239000003795 chemical substances by application Substances 0.000 claims description 23
- 239000002245 particle Substances 0.000 claims description 23
- 239000010419 fine particle Substances 0.000 claims description 11
- 230000002708 enhancing effect Effects 0.000 claims description 3
- 230000000052 comparative effect Effects 0.000 description 11
- 239000004576 sand Substances 0.000 description 9
- JOPOVCBBYLSVDA-UHFFFAOYSA-N chromium(6+) Chemical compound [Cr+6] JOPOVCBBYLSVDA-UHFFFAOYSA-N 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 239000011398 Portland cement Substances 0.000 description 3
- 239000004927 clay Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 239000003673 groundwater Substances 0.000 description 2
- 229910052602 gypsum Inorganic materials 0.000 description 2
- 239000010440 gypsum Substances 0.000 description 2
- 239000003415 peat Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- LFYJSSARVMHQJB-QIXNEVBVSA-N bakuchiol Chemical compound CC(C)=CCC[C@@](C)(C=C)\C=C\C1=CC=C(O)C=C1 LFYJSSARVMHQJB-QIXNEVBVSA-N 0.000 description 1
- 239000011400 blast furnace cement Substances 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 235000011116 calcium hydroxide Nutrition 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 238000012669 compression test Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000010881 fly ash Substances 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 238000010907 mechanical stirring Methods 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 238000007613 slurry method Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Landscapes
- Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
Description
本発明は、細粒分が少ない砂質土等の地盤にセメント系固化材を混合して地盤強度を高める地盤改良方法において、上記固化材の使用量を低減して地盤強度を高める方法に関する。 The present invention relates to a method for improving ground strength by mixing a cement-based solidifying material with ground such as sandy soil having a small amount of fine particles, and to a method for reducing the amount of the solidifying material to improve ground strength.
セメントあるいはセメントに石膏を添加したセメント系固化材を軟弱地盤などの土壌に混合して地盤を固める地盤改良工法が従来から知られており、土質の種類に応じてセメント系固化材の成分も検討されている。例えば、有機質土や関東ロームなどの火山灰質粘性土の地盤改良には専用のセメント系固化材が開発され、使用する固化材添加量を低減することが行われている(非特許文献1)。 A ground improvement method for solidifying the ground by mixing cement-based solidifying material obtained by adding gypsum to cement or cement to soil such as soft ground has been known conventionally, and the composition of cement-based solidifying material is also considered according to the type of soil It is done. For example, a dedicated cement-based solidifying material has been developed for the ground improvement of volcanic clay-like clay such as organic soil or Kanto loam, and the amount of solidifying material used has been reduced (Non-Patent Document 1).
一方、細粒分の少ない砂質土については締固めて地盤改良することが多く、セメントやセメント系固化材を使用するケースは少ないが、セメントやセメント系固化材を用いた地盤改良も知られており、普通ポルトランドセメントや高炉セメントを用いた地盤改良が行われている。特に、東日本大震災における浦安市の液状化による被害などからも明らかなように、細粒分の少ない砂質土では液状化しやすい土質であるため、今後、液状化対策として地盤改良が必要になり、工期短縮やコスト低減の面から、地下水位の低減やサンドコンパクション工法より、セメントやセメント系固化材を用いた地盤改良工法が多く適用されることが予想される。 On the other hand, sandy soil with little fine grain content is often compacted to improve the ground, and there are few cases using cement or cement-based solidifying material, but ground improvement using cement or cement-based solidifying material is also known The ground improvement using ordinary Portland cement and blast furnace cement is carried out. In particular, as is clear from the damage caused by liquefaction in Urayasu City after the Great East Japan Earthquake, sandy soils with small fine particles are easy to liquefy, so soil improvement will be necessary as a countermeasure for liquefaction in the future, From the viewpoint of shortening construction period and cost, it is expected that the ground improvement method using cement or cement-based solidifying material is applied more than the reduction of the groundwater level or the sand compaction method.
セメントやセメント系固化材を用いた地盤改良工法の代表的な機械式撹拌工法として、粉体添加方式とスラリー添加方式が知られているが、粉体添加方式は周辺地盤の摩擦抵抗が大きいと土壌と固化材の混合が不十分になるケースが多くみられる。また、セメントスラリー方式においても、固化材量が少ないセメントスラリーでは固化材が土壌に十分に混合されないため地盤改良が不十分になるので、多量の固化材を使用するケースが多く、そのため、施工コストが高くなる問題点がある。 The powder addition method and the slurry addition method are known as a typical mechanical stirring method of the ground improvement method using cement and cement-based solidifying material, but when the powder addition method has large frictional resistance of the surrounding ground In many cases, the mixing of soil and solidifying material is insufficient. Also, in the case of cement slurry method, if the cement slurry has a small amount of solidifying material, the solidifying material is not sufficiently mixed with the soil and the ground improvement is insufficient. Therefore, in many cases, a large amount of solidifying material is used. There is a problem that
この固化材の使用量を抑制するために、固化材の添加時期を事前添加と本添加の二段階に分け、事前添加量と本添加量を1/14〜2/1にする方法が知られている(特許文献1)。しかし、この地盤改良方法は含水量が500wt%以上であって有機物含有量が60wt%以上のピート質土壌などを対象としており、処理対象の土壌が特殊なものに限られ、砂質土などへの適用は考慮されていない。 In order to suppress the amount of solidifying material used, a method is known in which the adding time of the solidifying material is divided into two stages of pre-addition and main addition, and the pre-addition amount and main addition amount are made 1/14 to 2/1. (Patent Document 1). However, this ground improvement method is intended for peat soils with a moisture content of 500 wt% or more and an organic matter content of 60 wt% or more, and the soil to be treated is limited to special soils such as sandy soils. Application of is not considered.
また、セメント系固化材の添加時期を二段階に分ける地盤改良法として、1回目の固化材添加によって土壌が凝結準備期に達した以降に2回目の固化材添加を行い、少なくとも何れかの固化材添加の時に六価クロム溶出低減剤を添加する処理方法が知られている(特許文献2)。しかし、この地盤改良法は、地盤強度を高めると共に六価クロムの溶出抑制効果を高める方法であって、六価クロム量の多い土壌を対象にしている。 In addition, as a ground improvement method that divides the addition time of the cement-based solidifying material into two stages, the solidifying material addition is performed a second time after the soil reaches the preparation stage by the first solidifying material addition, and at least any solidifying A treatment method is known in which a hexavalent chromium elution reducing agent is added at the time of material addition (Patent Document 2). However, this ground improvement method is a method of enhancing the ground strength and the elution suppression effect of hexavalent chromium, and is intended for soils with a large amount of hexavalent chromium.
本発明の地盤改良方法は、従来の上記地盤改良法がピート質土壌や六価クロム含有土壌などを処理対象にしていたものとは異なり、細粒分が少ない砂質土等を対象とした地盤改良方法である。また、本発明の地盤改良方法は、固化材の添加時期を単に二段階行う従来の従来の地盤改良法とは異なり、固化材スラリーの添加時期を第1添加と第2添加に分けると共に、第1添加と第2添加において固化材濃度を変えたスラリーを用いることによって、固化材の使用量を低減し、かつ地盤強度を効果的に高めた地盤改良方法であり、従来の地盤改良法では十分な効果が得られなかった土壌について、優れた地盤改良効果を発揮する方法を提供する。 The ground improvement method according to the present invention is different from the conventional ground improvement methods in which peat soils, hexavalent chromium-containing soils, etc. are treated, and grounds for sandy soils with a small amount of fine particles are different. It is an improvement method. The ground improvement method of the present invention is different from the conventional ground improvement method in which the addition time of the solidifying material is simply two steps, and the addition time of the solidifying material slurry is divided into the first addition and the second addition, It is a ground improvement method that reduces the amount of solidifying material used and effectively increases the ground strength by using a slurry in which the concentration of solidifying material is changed in 1 addition and 2nd addition, which is sufficient with conventional ground improvement methods Provide a method to exert an excellent ground improvement effect for soils that have not been effective.
本発明は以下の構成を有する地盤改良方法である。
〔1〕セメント系固化材のスラリー(セメントスラリーと云う)を土壌に添加混合して地盤強度を高める地盤改良方法において、粒径0.075mm未満の細粒分が50%未満であって含水比が30%以下である砂質土について、セメントスラリーの添加混合を第1添加と第2添加に分け、第1添加において水固化材比100%以上のセメントスラリーを用い、該第1添加後の第2添加において水固化材比100%未満のセメントスラリーを用い、セメントスラリーの第1添加量が第2添加量の1/5倍量〜等量であるようにセメントスラリーを土壌に混合することを特徴とする地盤改良方法。
〔2〕セメントスラリーの第1添加の水固化材比が100%〜300%であり、第2添加の水固化材比が50%〜95%である上記[1]に記載する地盤改良方法。
〔3〕セメントスラリーの全添加量が土壌重量に対して10〜40%である上記[1]または上記[2]に記載する地盤改良方法。
The present invention is a ground improvement method having the following configuration.
[1] In the ground improvement method of enhancing the ground strength by adding and mixing a slurry of cement-based solidifying material (referred to as cement slurry) to the soil, the fine particles having a particle size of less than 0.075 mm are less than 50% and the water content ratio For sandy soils with a content of 30% or less , the addition and mixing of the cement slurry is divided into a first addition and a second addition, and a cement slurry having a water solidifying material ratio of 100% or more in the first addition is used after the first addition. Mixing cement slurry with soil using a cement slurry having a water solidifying agent ratio of less than 100% in the second addition, and the first addition amount of the cement slurry being 1/5 times to the equivalent of the second addition amount; Ground improvement method characterized by
[2] The ground improvement method described in the above [1], wherein the water solidifying material ratio of the first addition of cement slurry is 100% to 300%, and the water solidifying material ratio of the second addition is 50% to 95%.
[3] The ground improvement method as described in said [1] or said [2] whose total addition amount of cement slurry is 10 to 40% with respect to soil weight.
〔具体的な説明〕
以下、本発明を具体的に説明する。なお、%は各々の一般的な定義に従い、また特に説明がない限りwt%である。
[Specific description]
Hereinafter, the present invention will be specifically described. In addition,% is wt% according to each general definition and unless otherwise indicated.
本発明は、セメント系固化材のスラリー(セメントスラリーと云う)を土壌に添加混合して地盤強度を高める地盤改良方法において、粒径0.075mm未満の細粒分が50%未満であって含水比が30%以下である砂質土について、セメントスラリーの添加混合を第1添加と第2添加に分け、第1添加において水固化材比100%以上のセメントスラリーを用い、該第1添加後の第2添加において水固化材比100%未満のセメントスラリーを用い、セメントスラリーの第1添加量が第2添加量の1/5倍量〜等量であるようにセメントスラリーを土壌に混合することを特徴とする地盤改良方法である。
The present invention relates to a method for improving ground strength by adding and mixing a slurry of a cement-based solidifying material (referred to as a cement slurry) to soil, wherein fine particles having a particle size of less than 0.075 mm are less than 50% and contain water. For sandy soils with a ratio of 30% or less , the addition and mixing of cement slurry is divided into the first addition and the second addition, and a cement slurry with a water solidifying material ratio of 100% or more in the first addition is used after the first addition The cement slurry is mixed with the soil such that the first addition amount of the cement slurry is 1⁄5 times to the equivalent of the second addition amount using cement slurry having a water solidifying material ratio of less than 100% in the second addition of It is a ground improvement method characterized by
本発明の地盤改良方法の対象土壌は、粒径0.075mm未満の細粒分が50%未満であって含水比が30%以下の土壌である。好ましくは、粒径0.075mm未満の細粒分が50%未満であって含水比が30%以下の砂質土である。 The target soil of the ground improvement method of the present invention is a soil having a fine particle fraction of less than 0.075 mm in particle size less than 50% and a water content ratio of 30% or less. Preferably, it is a sandy soil having a fine particle fraction of less than 0.075 mm in particle size less than 50% and a water content ratio of 30% or less.
土壌構成材料はその粒径によって粒径0.075mm未満の細粒分、粒径0.075mm以上〜75mm未満の粗粒分、75mm以上の石分に区分される。細粒分は粒径0.05mm未満の粘土と、粘土よりやや粒径の大きいシルトに分かれる。粗粒分は粒径0.075mm以上〜粒径2mm未満の砂と、砂より粒径の大きい礫に分かれる。土壌はこれらの細粒分や粗粒分の含有量に応じて細粒土、粗粒土に大きく区分される。 Soil constituent materials are classified into fine particles having a particle diameter of less than 0.075 mm, coarse particles having a particle diameter of 0.075 mm or more and less than 75 mm, and stones having a particle diameter of 75 mm or more according to their particle sizes. The fine particles are divided into clay having a particle size of less than 0.05 mm and silt having a particle size slightly larger than that of clay. The coarse grain fraction is divided into sand having a particle size of at least 0.075 mm and less than 2 mm, and a weir having a larger particle size than sand. The soil is roughly divided into fine-grained soil and coarse-grained soil according to the content of these fine-grained and coarse-grained components.
本発明の地盤改良方法の対象土壌は、細粒分が50%未満であり、従って粗粒分を50%以上含む粗粒土である。粗粒土は砂分が多い砂質土と礫分が多い礫質土に分かれるが、本発明の地盤改良方法の対象土壌は、好ましくは、砂分の多い砂質土である。 The target soil of the ground improvement method of the present invention is a coarse soil having a fine fraction of less than 50% and thus containing 50% or more of coarse fractions. Coarse-grained soil is divided into sandy soil with high sand content and sandy soil with high content, but the target soil of the ground improvement method of the present invention is preferably sandy soil with high sand content.
砂質土は液状化し易いことが知られている。砂を多く含む砂質土や砂地盤は砂粒子の剪断応力による摩擦によって地盤は安定を保っているが、地下水位の高い場所で地震や建設工事などの連続した振動が加わると、その繰り返し剪断によって体積が減少して間隙水圧が増加し、これに伴い剪断応力が減少して液状化を生じ、地盤は急激に耐力を失う。本発明の地盤改良方法は、このような砂分の多い砂質土について、地盤強度を高めて液状化を抑制することができる。 Sandy soil is known to be easily liquefied. In sandy soils containing a large amount of sand and sand ground, the ground is kept stable by friction due to shear stress of sand particles, but when continuous vibrations such as earthquakes and construction work are added at locations where the groundwater level is high, repeated shearing is performed. The volume decreases and the pore water pressure increases, and the shear stress decreases accordingly, causing liquefaction, and the ground rapidly loses its strength. The ground improvement method of the present invention can suppress the liquefaction by increasing the ground strength of such sandy soil with a lot of sand.
また、含水比が少ない土壌は一般に締め固まった状態であるものが多く、例えば、含水比30%以下の砂質土は水分が少ない状態であるので、セメントスラリーなどに対して貫入抵抗が大きく、セメントスラリーが地盤に十分に混合され難い。本発明の地盤改良方法はこのような含水比30%以下の粗粒土、特に砂質土についてセメントスラリーを効率よく混合することができる。
一方、含水比が30%を上回る土壌は、土壌粒子間の間隙水が多いので土壌が緩く堆積した状態であり、セメントスラリーが入り込み易いので、セメントスラリーを段階的に分けて混合する効果は小さい。
In addition, soils with a low water content ratio are generally in a clumped state, for example, sandy soils with a water content ratio of 30% or less have a low water content, so they have high penetration resistance to cement slurry, etc. It is difficult for cement slurry to be sufficiently mixed in the ground. The ground improvement method of the present invention can efficiently mix cement slurry with such coarse soil having a water content ratio of 30% or less, particularly sandy soil.
On the other hand, soil with a moisture content over 30% is in a state where soil is loosely deposited because there is much pore water between soil particles, and cement slurry easily penetrates, so the effect of dividing cement slurry in stages and mixing is small .
本発明の地盤改良方法に用いるセメントスラリーは、セメントを主体とした固化材のスラリーであり、セメントを固化材とするもの、セメントに石膏、高炉スラグ、フライアッシュ、消石灰などを配合した固化材のスラリーを用いることができる。セメントスラリーの水固化材比は土壌に混合する段階によって調整される。 The cement slurry used in the ground improvement method of the present invention is a slurry of a solidifying material mainly composed of cement, which uses cement as a solidifying material, and is a solidifying material in which gypsum, blast furnace slag, fly ash, slaked lime, etc. is blended with cement. A slurry can be used. The water-solidifier ratio of the cement slurry is adjusted by the step of mixing in the soil.
本発明の地盤改良方法は、セメントスラリーの添加を第1添加と第2添加に分け、第1添加において水固化材比100%以上(固化材濃度50%以下)のセメントスラリーを土壌に混合し、該第1添加後の第2添加において、水固化材比100%未満(固化材濃度50%超)のセメントスラリーを土壌に混合する。 The ground improvement method of the present invention divides the addition of cement slurry into the first addition and the second addition, and mixes the cement slurry with a water solidifying agent ratio of 100% or more (solidifying agent concentration 50% or less) in the first addition to the soil In the second addition after the first addition, a cement slurry having a water solidifying agent ratio of less than 100% (solidifying agent concentration of more than 50%) is mixed with the soil.
第1添加において水固化材比100%以上のセメントスラリーを用いる理由は、例えば含水比30%以下の砂質土では、土壌粒子間の空隙にスラリーが入り込む際に土壌粒子の摩擦抵抗が大きいため、スラリーの固化材濃度が高いと、固化材粒子が土壌粒子の抵抗を受けてスラリーが土壌粒子の間に入り込み難くなる。一方、水分量が多く固化材濃度の低いセメントスラリーはスラリーの水分が土壌粒子の間に容易に入り込むので、固化材粒子が受ける抵抗が小さくなり、セメントスラリーが土壌に入り込み易くなる。そこで、本発明の地盤改良方法では、第1添加において、水分量が固化材量と同等かそれより多い水固化材比100%以上(固化材濃度50%以下)のセメントスラリーを用いる。 The reason for using a cement slurry with a water solidifying agent ratio of 100% or more in the first addition is because, for example, in sandy soil with a water content ratio of 30% or less, the frictional resistance of the soil particles is large when the slurry enters the voids between the soil particles When the concentration of the solidifying material in the slurry is high, the solidifying material particles receive resistance of the soil particles, and the slurry is less likely to enter between the soil particles. On the other hand, in the case of a cement slurry having a large amount of water and a low solidifying agent concentration, the moisture of the slurry easily gets into the soil particles, so the resistance to the solidifying agent particles becomes small and the cement slurry easily enters the soil. Therefore, in the ground improvement method of the present invention, in the first addition, a cement slurry having a water content ratio of 100% or more (solidification material concentration of 50% or less) equal to or larger than the solidification material amount is used.
第1添加に用いるセメントスラリーの水固化材比100%以上の具体的な範囲は、土壌の状態(含水比および土質等)に応じて定めれば良い。一般的には、第1添加において水固化材比100%〜300%のセメントスラリーを用いると良い。 The specific range of the water solidifying material ratio of 100% or more of the cement slurry used for the first addition may be determined according to the state of the soil (water content ratio, soil quality, etc.). In general, it is preferable to use a cement slurry having a water solidifying agent ratio of 100% to 300% in the first addition.
本発明の地盤改良方法は、セメントスラリーの第1添加後の第2添加において、水固化材比100%未満のセメントスラリーを用いる。第1添加によって土壌にセメントスラリーが入り込んだ状態になるが、第1添加のセメントスラリーは水固化材比100%以上であって固化材濃度が低いので、第2添加として、水固化材比100%未満(固化材濃度50%超)の固化材濃度の高いセメントスラリーを添加して地盤強度を高める。 The ground improvement method of the present invention uses a cement slurry having a water solidifying agent ratio of less than 100% in the second addition after the first addition of the cement slurry. The cement slurry enters the soil by the first addition, but the cement slurry of the first addition has a water solidifying agent ratio of 100% or more and the solidifying agent concentration is low. Add cement slurry with high solidifying agent concentration of less than 50% (solidifying agent concentration> 50%) to improve ground strength.
セメントスラリーの第2添加では、第1添加によってセメントスラリーが土壌に入り込んだ状態になっているので、第2添加のセメントスラリーは土壌に入り込み易く、セメントスラリーの固化材粒子が土壌中によく分散するので、固化材量を低減して高い地盤強度を得ることができる。 In the second addition of cement slurry, since the cement slurry is in the state of being intruded into the soil by the first addition, the cement slurry of the second addition is easy to infiltrate into the soil, and the solidified material particles of the cement slurry are well dispersed in the soil Therefore, the amount of solidified material can be reduced to obtain high ground strength.
第2添加に用いるセメントスラリーの水固化材比100%未満の具体的な範囲は、第1添加後の土壌の状態に応じて定めれば良い。一般的には、第2添加において水固化材比50%〜95%のセメントスラリーを用いると良い。 The specific range of the water solidifying agent ratio of less than 100% of the cement slurry used for the second addition may be determined according to the state of the soil after the first addition. In general, it is better to use a cement slurry having a water solidifying agent ratio of 50% to 95% in the second addition.
セメントスラリーの全添加量は土壌の状態に応じて定められる。概ねセメントスラリーの全添加量は土壌重量に対して10〜40%が一般的である。また、第1添加のスラリー量は全添加量の1/5倍量〜1/2倍量、第2添加のスラリー量は全添加量の4/5倍量〜1/2倍量が好ましい。従って、セメントスラリーの第1添加量は第2添加量の概ね1/5倍量〜等量が好ましい。 The total amount of cement slurry added is determined according to the condition of the soil. Generally, the total amount of cement slurry added is generally 10 to 40% based on the weight of the soil. The amount of the first addition slurry is preferably 1⁄5 to 1⁄2 times the total addition, and the amount of the second addition slurry is preferably 4⁄5 to 1⁄2 times the total addition. Therefore, it is preferable that the first addition amount of the cement slurry is approximately 1/5 times to the equivalent amount of the second addition amount.
セメントスラリーの添加後には土壌を撹拌してスラリーを土壌中に十分に混合すると良い。第1添加後に引き続き第2添加を行っても良く、第1添加後に数分〜数時間の間隔を設けて第2添加を行っても良い。 After addition of the cement slurry, the soil may be agitated to thoroughly mix the slurry into the soil. After the first addition, the second addition may be performed continuously, or after the first addition, the second addition may be performed with an interval of several minutes to several hours.
本発明の地盤改良方法は、含水比の低い砂質土等において、セメントスラリーが土壌中に良く分散するので大きな地盤強度を得ることができ、固化材の添加量を低減することができる。従って、現場において排出土量を減らすことができ、これが建設コスト低減および環境負荷低減に寄与する。具体的には、例えば、一般に固化材添加量を50kg/m3低減できれば、産業廃棄物になる建設汚泥を概ね9%削減できると云われているので、建設工事の規模が大きいほど、そのコスト低減効果は大きなものになる。 According to the ground improvement method of the present invention, in a sandy soil or the like having a low water content ratio, cement slurry is well dispersed in the soil, so that a large ground strength can be obtained, and the amount of solidifying material can be reduced. Therefore, the amount of soil discharged can be reduced at the site, which contributes to the reduction of construction cost and environmental load. Specifically, for example, if it is possible to reduce the amount of solidifying material added by 50 kg / m 3 in general, it is said that construction sludge that is industrial waste can be reduced by about 9%. The reduction effect is significant.
以下、本発明の実施例を比較例と共に示す。各実施例および各比較例において、セメントスラリーを土壌(1m3)に添加混合した後に、土壌の一部を供試体(直径50mm、高さ100mm)に成形し、7日材齢の一軸圧縮試験によって地盤強度を測定した。一軸圧縮強さは規格(JIS A 1216「土の一軸圧縮試験法」)に従って測定した。 Hereinafter, examples of the present invention will be shown together with comparative examples. In each example and each comparative example, after adding and mixing cement slurry to soil (1 m 3 ), a part of the soil is formed into a sample (diameter 50 mm, height 100 mm) and uniaxial compression test of 7 days age The ground strength was measured by The uniaxial compressive strength was measured in accordance with the standard (JIS A 1216 "uniaxial compressive test method of soil").
〔実施例1〕
千葉県浦安市産砂質土(湿潤密度1.980g/cm3、含水比16.8%、細粒分20.5%)を用い、この土壌に対して、普通ポルトランドセメントに水を加えて調製したセメントスラリーを添加混合して地盤強度を測定した。セメントスラリーを第1添加と第2添加の二回に分け、水固化材比(W/C比)を、表1に示すように、第1添加の水固化材比を100%以上、第2添加の水固化材比を100%未満に調整した。第1添加の後に1分間隔をおいて第2添加を行った(実施例A1〜A4)。この結果を表1に示した。
セメントスラリーの添加を2回に分けずに行ったものを比較例B1、セメントスラリーの第1添加と第2添加の水固化材比が何れも100%のものを比較例B2とし、これらの結果を表1に示した。
表1に示すように、本実施例のA1〜A4は、スラリーの第1添加と第2添加の合計量500kgにおいて、地盤強度は何れも3000kN/m2以上である。一方、比較試料B1、B2はスラリーの全添加量500kgにおいて、地盤強度は2810〜2820kN/m2であり、本実施例のA1〜A4より大幅に低い。
Example 1
A cement slurry prepared by adding water to ordinary portland cement to this soil using sandy soil from Urayasu City, Chiba Prefecture (wet density 1.980 g / cm 3 , water content ratio 16.8%, fine particle 20.5%) The ground strength was measured by additive mixing. The cement slurry is divided into two steps of the first addition and the second addition, and the water solidifying material ratio (W / C ratio) is, as shown in Table 1, the water solidifying material ratio of the first addition 100% or more, the second The water solidifying agent ratio of the addition was adjusted to less than 100%. The second addition was performed at intervals of 1 minute after the first addition (Examples A1 to A4). The results are shown in Table 1.
A comparative example B1 was obtained without dividing the addition of the cement slurry twice, and a comparative example B2 having a water solidifying agent ratio of 100% for each of the first addition and the second addition of the cement slurry was taken as a comparative example B2. Is shown in Table 1.
As shown in Table 1, each of A1 to A4 in this example has a ground strength of 3000 kN / m 2 or more in a total amount of 500 kg of the first addition and the second addition of the slurry. On the other hand, the comparative samples B1 and B2 have ground strength of 2810 to 2820 kN / m 2 at a total addition amount of 500 kg of the slurry, which is significantly lower than A1 to A4 of this example.
〔実施例2〕
試験土壌として、(イ)埼玉県川口市産砂質土(湿潤密度1.915g/cm3、含水比24.4%、細粒分31.8%)、(ロ)東京都北区産砂質土(湿潤密度1.889g/cm3、含水比28.4%、細粒分42.2%)、(ハ)神奈川県川崎市川崎区産粘性土(湿潤密度1.754g/cm3、含水比31.7%、細粒分51.6%)を使用した。土壌(ハ)は比較用の粘性土である。
普通ポルトランドセメントに水を加えて調製したセメントスラリーを試験土壌(イ)(ロ)(ハ)におのおの添加混合して地盤強度を測定した。本実施例(A5〜A8)では、土壌(イ)(ロ)について、セメントスラリーを第1添加と第2添加の二回に分け、水固化材比(W/C比)を、表2に示すように、第1添加の水固化材比200%、150%、第2添加の水固化材比を75%、50%に調整した。第1添加の後に1分間隔をおいて第2添加を行った。この結果を表2に示した。
比較例(B3、B4)として、土壌(イ)(ロ)について、セメントスラリーの添加を2回に分けずに行った。この結果を表2に示した。また、比較例(B5、B6)として、粘性土の土壌(ハ)について、上記A6ないしA7、B3ないしB4と同様の試験を行った。この結果を表2に示した。
表2に示すように、土壌(イ)(ロ)について、比較試料B3、B4は、スラリー量が500kgにおいて地盤強度は2300kN/m2未満であるが、本実施例A5、A6は、スラリーの合計量が500kgにおいて、2300kN/m2以上の地盤強度を示している。
また、本実施例A7、A8は、スラリーの合計添加量350kg(固化材量200kg)において、土壌(イ)について2255kN/m2、土壌(ロ)について1995kN/m2の地盤強度を有しており、比較試料B3、B4の固化材量(250kg)よりも固化材量が少なくてもB3、B4と同等の地盤強度を有しており、固化材量を低減しても高い地盤強度が得られることを示している。
また、試料A9は、第2添加のときに水に分散剤(フローリック社製品:商品名ジオスーパーK)を1%添加した例であり、分散剤を添加することによって第2添加スラリーの水固化材比を50%に下げて(固化材濃度は高くなる)、地盤強度を高めることができる。
なお、粘性土の土壌(ハ)については、比較試料B5、B6に示すように、スラリーの添加を二回に分けても地盤強度は大差ない。
Example 2
(I) Sandy soil from Kawaguchi City, Saitama Prefecture (wet density 1.915 g / cm 3 , moisture ratio 24.4%, fine grain 31.8%), (ii) Sandy soil from Kita Ward, Tokyo (wet density) 1.889 g / cm 3 , moisture content 28.4%, fine content 42.2%), (C) Cohesive soil from Kawasaki-ku, Kanagawa Prefecture (wet density 1.754 g / cm 3 , moisture content 31.7%, fine content 51.6%) It was used. Soil (c) is a cohesive soil for comparison.
The cement slurry prepared by adding water to ordinary portland cement was added to and mixed with the test soil (B) (B) to measure the ground strength. In the present embodiment (A5 to A8), with regard to the soil (i) (ii), the cement slurry is divided into two, the first addition and the second addition, and the water solidifying material ratio (W / C ratio) is shown in Table 2 As shown, the water solidifying agent ratio of the first addition was adjusted to 200%, 150%, and the water solidifying agent ratio of the second addition was adjusted to 75%, 50%. The second addition was performed at intervals of 1 minute after the first addition. The results are shown in Table 2.
As a comparative example (B3, B4), the addition of the cement slurry was carried out without dividing it twice for the soil (A) (B). The results are shown in Table 2. Further, as a comparative example (B5, B6), the same test as the above A6 to A7 and B3 to B4 was conducted on the soil (3) of the viscous soil. The results are shown in Table 2.
As shown in Table 2, with regard to the soil (i) (ii), the comparative samples B3 and B4 have a ground strength of less than 2300 kN / m 2 when the amount of slurry is 500 kg, but the present examples A5 and A6 It shows ground strength of 2300 kN / m 2 or more when the total amount is 500 kg.
Further, this embodiment A7, A8, in total amount of the slurry 350 kg (weight solidifying material 200kg), 2255kN / m 2 Soil (b), a ground strength of 1995kN / m 2 Soil (b) Even if the amount of solidified material is smaller than the amount of solidified material (250 kg) of Comparative Samples B3 and B4, it has ground strength equivalent to B3 and B4, and high ground strength is obtained even if the amount of solidified material is reduced. It shows that it is possible.
Sample A9 is an example in which 1% of dispersing agent (Flowric Co., Ltd. product: Geosuper K) was added to water at the time of the second addition, and the water of the second addition slurry is added by adding the dispersing agent. The solidifying material ratio can be reduced to 50% (the solidifying material concentration is high) to enhance the ground strength.
In addition, as for the soil (3) of the cohesive soil, as shown in Comparative Samples B5 and B6, even if the addition of the slurry is divided twice, the ground strength does not differ much.
Claims (3)
The ground improvement method according to claim 1 or 2, wherein the total addition amount of the cement slurry is 10 to 40% with respect to the weight of the soil.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015131403A JP6508525B2 (en) | 2015-06-30 | 2015-06-30 | Ground improvement method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015131403A JP6508525B2 (en) | 2015-06-30 | 2015-06-30 | Ground improvement method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017014780A JP2017014780A (en) | 2017-01-19 |
JP6508525B2 true JP6508525B2 (en) | 2019-05-08 |
Family
ID=57830106
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015131403A Active JP6508525B2 (en) | 2015-06-30 | 2015-06-30 | Ground improvement method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6508525B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6498716B2 (en) * | 2017-04-07 | 2019-04-10 | 花王株式会社 | Ground improvement method |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5310512A (en) * | 1976-07-15 | 1978-01-31 | Konoikegumi Kk | Subsoil improving method |
JPH079092B2 (en) * | 1987-11-26 | 1995-02-01 | 株式会社大林組 | Low strength adjustment ground improvement method |
JPH03100222A (en) * | 1989-09-14 | 1991-04-25 | Oomic:Kk | Control of pouring-in of grout and pouring controller and pouring control circuit |
JP3719824B2 (en) * | 1997-06-23 | 2005-11-24 | 東都電機工業株式会社 | Grout ratio control device |
JP2004076520A (en) * | 2002-08-22 | 2004-03-11 | Maeda Corp | Grout injection method |
JP4101146B2 (en) * | 2003-10-08 | 2008-06-18 | 東都電機工業株式会社 | Grout injection control method and apparatus |
JP2008150774A (en) * | 2006-12-14 | 2008-07-03 | Dream Dome Lab:Kk | Two step high/low concentration grout construction method |
JP5530736B2 (en) * | 2010-02-10 | 2014-06-25 | 鹿島建設株式会社 | Ground strengthening method |
JP5538000B2 (en) * | 2010-03-08 | 2014-07-02 | ケミカルグラウト株式会社 | Seismic reinforcement method for existing revetment |
JP5399573B2 (en) * | 2012-02-10 | 2014-01-29 | Willコンサルタント株式会社 | Cement-based deep-mixing additive and method for constructing improved cement-based deep-mixing treatment using this additive |
JP2013177264A (en) * | 2012-02-28 | 2013-09-09 | Hikari Kobayashi | METHOD FOR FORMING THIN FILM LAYER BY Si FINE PARTICLE, SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE, AND SOLAR CELL AND METHOD OF MANUFACTURING SOLAR CELL |
-
2015
- 2015-06-30 JP JP2015131403A patent/JP6508525B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017014780A (en) | 2017-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tran et al. | Improved mechanical and microstructure of cement-stabilized lateritic soil using recycled materials replacement and natural rubber latex for pavement applications | |
JP4696851B2 (en) | Simple paving slag and simple paving body, civil engineering slag and civil engineering construction body | |
JP6032013B2 (en) | Soft soil improvement material, soft soil improvement method using the same, and soft ground improvement method | |
JP2012031618A5 (en) | ||
JP2007204974A (en) | Cement-solidified soil composition | |
Rathore et al. | Green concrete: Using quarry waste of sandstone as fine aggregate with high levels of microfines | |
JP5907246B2 (en) | Manufacturing method of solidified body | |
TWI434818B (en) | Manufacture of artificial stone | |
JP6508525B2 (en) | Ground improvement method | |
JP5799585B2 (en) | Manufacturing method of artificial stone | |
JP2018193515A (en) | High organic soil and solidification material for humus soil | |
JP2019059886A (en) | Solidification material | |
JPH0782984A (en) | Fluidization treatment method | |
JP6487133B1 (en) | Ground improvement method | |
JPH10236862A (en) | Backfilling material | |
JP7042016B1 (en) | How to make soil cement | |
Bayraktar et al. | Stabilization and solidification of electric arc furnace dust originating from steel industry by using low grade MgO | |
JP2015059350A (en) | Liquefaction countermeasure method of ground | |
JP2001040652A (en) | Soil improvement method and solidifying material | |
WO2011136395A1 (en) | Method for producing artificial stone material | |
Potgieter et al. | Mining backfill formulations from various cementitious and waste materials | |
JP2006225475A (en) | Solidifier and method for improving solidification of soil by using the solidifier | |
JP6124519B2 (en) | Fluidized soil | |
JP2503771B2 (en) | Solidifying material for cohesive soil of volcanic ash | |
JP2016074559A (en) | Cement slurry and ground improvement method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180327 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20181107 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181114 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181227 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190307 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190320 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6508525 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |