JP2013177264A - METHOD FOR FORMING THIN FILM LAYER BY Si FINE PARTICLE, SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE, AND SOLAR CELL AND METHOD OF MANUFACTURING SOLAR CELL - Google Patents

METHOD FOR FORMING THIN FILM LAYER BY Si FINE PARTICLE, SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE, AND SOLAR CELL AND METHOD OF MANUFACTURING SOLAR CELL Download PDF

Info

Publication number
JP2013177264A
JP2013177264A JP2012041708A JP2012041708A JP2013177264A JP 2013177264 A JP2013177264 A JP 2013177264A JP 2012041708 A JP2012041708 A JP 2012041708A JP 2012041708 A JP2012041708 A JP 2012041708A JP 2013177264 A JP2013177264 A JP 2013177264A
Authority
JP
Japan
Prior art keywords
fine particles
thin film
film layer
semiconductor device
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012041708A
Other languages
Japanese (ja)
Inventor
Hikari Kobayashi
光 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2012041708A priority Critical patent/JP2013177264A/en
Publication of JP2013177264A publication Critical patent/JP2013177264A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Silicon Compounds (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To form silicon (Si) fine particles having high surface stability and a particle size of at least several hundreds nm or less from the so-called chips of a silicon substrate, and to create a solar cell by using the same.SOLUTION: Si fine particles having a particle size of at least several hundreds nm or less, and obtained by being pulverized by a bead mill method after being pulverized from chips of a silicon substrate are treated with hydrofluoric acid, dispersed into ethanol, dropped and applied onto a substrate to obtain a thin film layer. Then, the thin film layer is subjected to a nitric acid oxidation treatment to remove surface impurities, and simultaneously a tunnel junction layer between Si fine particles by a silicon oxide film formed on the Si fine particle is achieved, and a solar cell is created by using it, to thereby obtain stable and effective photoelectric conversion characteristics.

Description

本発明は、シリコンウェハ材料から、低コストのプリンタブル電子材料としても利用できて、薄膜の太陽電池やシリコン(以下、Siと記す)半導体装置形成するのに好適なSi微細粒子として、粒径が数百ナノメートル(nm)以下のSi微細粒子を得ること、その際に、表面近傍の不純物を除去できて、かつSi微細粒子を酸化膜を介してのトンネル接合による薄膜層に形成する方法、半導体装置および半導体装置の製造方法、並びに太陽電池および太陽電池の製造方法に関する。 The present invention can be used as a low-cost printable electronic material from a silicon wafer material, and has a particle size as a Si fine particle suitable for forming a thin-film solar cell or a silicon (hereinafter referred to as Si) semiconductor device. A method of obtaining Si fine particles of several hundred nanometers (nm) or less, in which case impurities near the surface can be removed, and Si fine particles are formed in a thin film layer by tunnel junction through an oxide film, The present invention relates to a semiconductor device, a semiconductor device manufacturing method, a solar cell, and a solar cell manufacturing method.

従来、この種のSi微細粒子を得る場合に、例えば、粒径50〜1000ミクロン(μm)のSi粒子をフッ化水素酸(以下、フッ酸という)と硝酸との混合酸で処理して、Si微細粒子を製造すること、そして、その酸処理工程ではフッ酸と硝酸とを同時に用いることが知られている(特開平6-148822号公報参照)。しかし、この酸エッチング工程では、Si表面のエッチングでポーラス化を図るのであり、粒径数百nm以下の微細粒子を得ることには不向きであった。 Conventionally, when obtaining this kind of Si fine particles, for example, Si particles having a particle size of 50 to 1000 microns (μm) are treated with a mixed acid of hydrofluoric acid (hereinafter referred to as hydrofluoric acid) and nitric acid, It is known to produce Si fine particles and to simultaneously use hydrofluoric acid and nitric acid in the acid treatment step (see JP-A-6-148822). However, in this acid etching step, the porous surface is formed by etching the Si surface, which is unsuitable for obtaining fine particles having a particle size of several hundred nm or less.

一方、Siの微細粒子は、プリンタブル電子材料としても注目されるが、薄膜電子材料として利用されるには、粒径数百ナノミクロン(nm)以下の粒子が望ましい。そのような粒子を製造するには、主としてレーザーアブレーション法、CVD法あるいは高周波スパッター法により行うが、製造設備が高価であり、また、量産性に欠けるなど、製造性や低コスト性に難点がある。 On the other hand, although fine particles of Si are attracting attention as printable electronic materials, particles having a particle size of several hundred nanomicrons (nm) or less are desirable for use as thin film electronic materials. Such particles are produced mainly by a laser ablation method, a CVD method or a high-frequency sputtering method, but the production equipment is expensive and the productivity and the low cost are disadvantageous, such as lack of mass productivity. .

また、粒径数百nm以下のSi微細粒子となると、粒径に対する表面積比率が著しく大きいので、上述の従来の酸エッチング工程では粒子径制御が難しく、工業的利用には現実的でない。 Further, when Si fine particles having a particle size of several hundred nm or less are used, the surface area ratio with respect to the particle size is remarkably large. Therefore, it is difficult to control the particle size in the above-described conventional acid etching process, which is not practical for industrial use.

特開平6-148822号公報Japanese Unexamined Patent Publication No. 6-148822

本発明の目的は、プリンタブル電子材料として利用可能なSi微細粒子の一層の微細化により、少なくとも粒径数百nm以下のSi粒子を実現する技術と共に、そのSi微細粒子の表面近傍の不純物を除去するとともに,酸化膜を介してのトンネル接合による薄膜層に形成することを含む半導体装置の製造方法、およびそれにより高性能な太陽電池や半導体装置を実現することにある。 The object of the present invention is to further reduce the size of Si fine particles that can be used as a printable electronic material, and to remove impurities in the vicinity of the surface of the Si fine particles together with a technique for realizing Si particles having a particle size of several hundred nm or less. In addition, a semiconductor device manufacturing method including forming a thin film layer by a tunnel junction through an oxide film, and a high-performance solar cell or semiconductor device thereby.

本発明は、Si微細粒子を,予めフッ酸で表面処理して,エタノール等の溶媒に分散させた溶液で供給して所定基体面に前記Si微細粒子による薄膜層を形成する過程、および前記Si微細粒子による薄膜層上へ硝酸を供給して、前記Si微細粒子の表面を酸化することで、前記薄膜層内の前記Si微細粒子の相互間をトンネル接合に形成する過程をそなえたSi微細粒子による薄膜層の形成方法、半導体装置および半導体装置の製造方法、並びに太陽電池および太陽電池の製造方法である。 The present invention provides a process of forming a thin film layer of Si fine particles on a predetermined substrate surface by supplying Si fine particles with a solution that has been surface-treated with hydrofluoric acid in advance and dispersed in a solvent such as ethanol. Si fine particles having a process of forming a tunnel junction between the Si fine particles in the thin film layer by supplying nitric acid onto the thin film layer by the fine particles and oxidizing the surface of the Si fine particles The thin film layer forming method, the semiconductor device, the semiconductor device manufacturing method, the solar cell, and the solar cell manufacturing method.

本発明の要旨は、Siの切粉から細粉砕して得たSi微細粒子をエタノール等の溶媒に分散させた溶液で供給して、所定基体面に前記Si微細粒子による薄膜層を形成し、さらに前記Si薄膜層上へ硝酸を供給して、前記Si微細粒子の表面を酸化することで、前記Si薄膜層内の前記Si微細粒子の相互間をトンネル接合で一体化するところにある。 The gist of the present invention is to supply Si fine particles obtained by finely pulverizing Si chips, in a solution dispersed in a solvent such as ethanol, to form a thin film layer of the Si fine particles on a predetermined substrate surface, Further, nitric acid is supplied onto the Si thin film layer to oxidize the surface of the Si fine particles, thereby integrating the Si fine particles in the Si thin film layer with a tunnel junction.

本発明は、たとえば粒径数百nm以下のSi微細粒子をエタノール等の溶媒に分散させた溶液で供給して、所定基体面に前記Si微細粒子によるSi薄膜層を形成し、さらに前記Si薄膜層上へ硝酸を供給して、前記Si微細粒子の表面を酸化することで、前記Si薄膜層内をSi粒子間トンネル接合層に形成する過程をそなえたものである。 The present invention provides, for example, a Si thin particle having a particle size of several hundred nm or less dispersed in a solvent such as ethanol to form a Si thin film layer of the Si fine particle on a predetermined substrate surface. Nitric acid is supplied onto the layer to oxidize the surface of the Si fine particles, thereby forming a process of forming the inside of the Si thin film layer as a tunnel junction layer between Si particles.

本発明によると、Si微細粒子を所定の溶媒に分散させた溶液で供給して、所定基板面にSi微細粒子によるSi薄膜層を形成して、ついで、前記Si薄膜層上に硝酸を供給して、Si微細粒子表面に酸化膜を形成することで、前記Si薄膜層内のSi微細粒子間をトンネル接合で一体化した所定半導体機能層となして、この半導体機能層を活用した所望の半導体装置が容易に実現できる。 According to the present invention, Si fine particles are supplied in a solution dispersed in a predetermined solvent to form a Si thin film layer of Si fine particles on a predetermined substrate surface, and then nitric acid is supplied onto the Si thin film layer. Then, by forming an oxide film on the surface of the Si fine particles, a predetermined semiconductor functional layer in which the Si fine particles in the Si thin film layer are integrated by a tunnel junction is formed, and a desired semiconductor utilizing the semiconductor functional layer is formed. The device can be easily realized.

本発明によると、Si微細粒子をエタノール等の溶媒に分散させた溶液で供給して、所定基体面に前記Si微細粒子による薄膜層を形成し、さらに前記Si薄膜層上へ硝酸を供給して、前記Si微細粒子表面に酸化膜を形成し、前記Si薄膜層内の前記Si微細粒子間をトンネル接合で一体化することで、前記Si薄膜層が電荷移動の容易な半導体層となり、各種の高性能な半導体装置が実現できる。 According to the present invention, Si fine particles are supplied in a solution dispersed in a solvent such as ethanol, a thin film layer is formed by the Si fine particles on a predetermined substrate surface, and nitric acid is further supplied onto the Si thin film layer. By forming an oxide film on the surface of the Si fine particles and integrating the Si fine particles in the Si thin film layer with a tunnel junction, the Si thin film layer becomes a semiconductor layer that is easy to transfer electric charge, A high-performance semiconductor device can be realized.

また、本発明によると、少なくとも粒径数百nm以下のSi粒子をエタノール等の溶媒に分散させた溶液で供給して、所定基体面に前記Si微細粒子による薄膜層を形成し、さらに前記Si薄膜層上へ硝酸を供給して、前記Si微細粒子表面に酸化膜を形成して、前記Si薄膜層内のSi微細粒子を粒子間トンネル接合で一体化することで電荷移動の容易な半導体層となり、例えば太陽電池構造で同層を光電変換層として用いるときには、厚みが0.01〜数十μmの薄膜層であっても変換効率の高い太陽電池を実現できる。 According to the present invention, at least Si particles having a particle size of several hundred nm or less are supplied in a solution dispersed in a solvent such as ethanol to form a thin film layer of the Si fine particles on a predetermined substrate surface, and further, the Si Nitric acid is supplied onto the thin film layer, an oxide film is formed on the surface of the Si fine particles, and the Si fine particles in the Si thin film layer are integrated by a tunnel junction between particles, thereby easily transferring the semiconductor layer. Thus, for example, when the same layer is used as a photoelectric conversion layer in a solar cell structure, a solar cell with high conversion efficiency can be realized even with a thin film layer having a thickness of 0.01 to several tens of μm.

本発明は、Siウェーハをインゴットからスライスするときに大量に生成される切り屑(切粉)が利用され、近年のSiウェーハの薄型化に伴って、その切粉の生成割合も増大し、例えば厚さ180nmのSiウェーハではそのウェーハ重量と同量の切粉が発生するので、これを利用して低コストで有益な半導体デバイスや太陽電池を創製することができる。 In the present invention, chips (chips) generated in large quantities when a Si wafer is sliced from an ingot are used, and with the recent thinning of Si wafers, the generation ratio of the chips increases. Since a 180 nm-thick Si wafer generates the same amount of chips as the weight of the wafer, it can be used to create low-cost and useful semiconductor devices and solar cells.

また、本発明によれば、粒子サイズを制御し、量子サイズ効果によって制御したバンドギャップを持つ高効率太陽電池の創製にも寄与することができる。 In addition, according to the present invention, it is possible to contribute to the creation of a high-efficiency solar cell having a band gap controlled by the particle size and controlled by the quantum size effect.

本発明の実施で得られたSi微細粒子による薄膜層の透過電子顕微鏡(TEM)による観察図である。It is an observation figure by the transmission electron microscope (TEM) of the thin film layer by Si fine particle obtained by implementation of this invention. 本発明の実施で得られたn型半導体基板とSi微細粒子による薄膜層とによるpn接合の電流―電圧特性図である。FIG. 4 is a current-voltage characteristic diagram of a pn junction formed by an n-type semiconductor substrate obtained by the practice of the present invention and a thin film layer made of Si fine particles. 本発明の実施例で得られた太陽電池の光起電力−光電流特性図である。It is a photovoltaic-photocurrent characteristic figure of the solar cell obtained in the Example of this invention.

つぎに、本発明を、実施の形態である実施例により、図面を参照して詳細に述べる。 Next, the present invention will be described in detail by way of examples which are embodiments with reference to the drawings.

p型結晶Siのインゴットから固定砥粒切断法により生成した切粉を、直径0.5mmのZrOビーズを用いたビーズミル法により、エタノール中で粉砕して、次いで、遠心分離法によりエタノールとSi微細粒子とを分離し、さらにそのSi微細粒子を、50%のフッ酸により、室温で約20分間浸漬処理して、表面に形成されている酸化膜を除去した後、超純水でリンスした。このときのフッ酸薬液中のフッ化水素(HF)の濃度は、作用上の制限はないが、実際上は5%では効果が小さかったので、好ましくは30wt%超〜99wt%のフッ酸が適宜選択して利用すること、とりわけ、濃度50wt%超〜99wt%のフッ酸薬液を用いると短時間の処理に適当であった。なお、ここで利用される切粉は、p型に限らず、i型および/またはn型でもよく、導電度も任意に選択することが可能である。 Chips produced by a fixed abrasive cutting method from a p-type crystal Si ingot are pulverized in ethanol by a bead mill method using ZrO 2 beads having a diameter of 0.5 mm, and then centrifuged with ethanol and Si. The fine particles were separated, and the Si fine particles were immersed in 50% hydrofluoric acid at room temperature for about 20 minutes to remove the oxide film formed on the surface, and then rinsed with ultrapure water. . At this time, the concentration of hydrogen fluoride (HF) in the hydrofluoric acid chemical solution is not limited in action, but since the effect was small at 5% in practice, preferably more than 30 wt% to 99 wt% hydrofluoric acid is used. It was appropriate to select and use as appropriate, especially when a hydrofluoric acid chemical solution having a concentration of more than 50 wt% to 99 wt% was used. The chips used here are not limited to p-type, but may be i-type and / or n-type, and the conductivity can be arbitrarily selected.

次に、このSi微細粒子を,高濃度のエタノール中に分散した溶液により、2.5cm角のn型単結晶Siウェーハ上全面に滴下供給し、室温減圧雰囲気中で乾燥して、約1μmの厚さの薄膜層を形成した。その後、この薄膜層上に、濃度70%の硝酸を滴下供給し、150℃のホットプレート上で1分間加熱処理した。これにより、同薄膜層はSi微細粒子表面の,硝酸酸化で形成された薄いシリコン酸化膜によりトンネル接合されたp型半導体の薄膜層となった。また、この硝酸処理後に行ったXPS測定の結果、この硝酸処理の過程でSi微細粒子からの不純物の減少が進み、特にカーボンが確実に除去されていることが明らかであった。なお、2.5cm角のn型単結晶Siウェーハ上全面へのSi微細粒子の供給を,高濃度のエタノール中に分散した溶液により滴下供給したが、その他の供給法、例えば塗布供給も可能である。また、硝酸の加熱処理にマイクロ波を用いることで、処理時間の短時間化やSi微細粒子のアニール効果の向上も可能である。 Next, the Si fine particles are dropped and supplied onto the entire surface of a 2.5 cm square n-type single crystal Si wafer with a solution dispersed in high-concentration ethanol, and dried in a room-temperature reduced-pressure atmosphere. A thin film layer having a thickness was formed. Thereafter, nitric acid having a concentration of 70% was dropped onto the thin film layer, and heat treatment was performed on a hot plate at 150 ° C. for 1 minute. As a result, the thin film layer became a thin film layer of a p-type semiconductor tunneled by a thin silicon oxide film formed by nitric acid oxidation on the surface of the Si fine particles. Further, as a result of XPS measurement performed after the nitric acid treatment, it was clear that impurities from the Si fine particles progressed in the course of the nitric acid treatment, and in particular, carbon was reliably removed. Note that the supply of Si fine particles to the entire surface of a 2.5 cm square n-type single crystal Si wafer was dropped by a solution dispersed in high-concentration ethanol, but other supply methods such as coating supply are also possible. is there. Further, by using microwaves for the nitric acid heat treatment, the treatment time can be shortened and the annealing effect of Si fine particles can be improved.

図1は、硝酸加熱処理直後におけるSi微細粒子により形成された薄膜層の透過型電子顕微鏡(TEM)図である。図中の中央部の丸囲いで示すように約5nmから約10nmの大きさのSi微細粒子が確認された。また、図1のTEM画像により、結晶性を有するSi微細粒子でありことが確認された。 FIG. 1 is a transmission electron microscope (TEM) view of a thin film layer formed of Si fine particles immediately after nitric acid heat treatment. Si fine particles having a size of about 5 nm to about 10 nm were confirmed as indicated by a circle in the center of the figure. Further, from the TEM image of FIG. 1, it was confirmed that the Si fine particles had crystallinity.

また、図1は、Si微細粒子により形成された薄膜層を断面的に見ているが、実態は、粒子径が数nm〜数十nmのSi微細粒子が分布して存在し、立体的にはSi酸化膜の粒子間トンネル接合でつながったSi薄膜層である。そして、かかるSi薄膜層をXPSにより、測定した結果、その形成されたシリコン酸化膜の膜厚は約2.6nmであることが確認された。 FIG. 1 is a cross-sectional view of a thin film layer formed of Si fine particles. Actually, however, Si fine particles having a particle diameter of several nanometers to several tens of nanometers are distributed and exist three-dimensionally. Is a Si thin film layer connected by a tunnel junction between Si oxide films. And as a result of measuring this Si thin film layer by XPS, it was confirmed that the film thickness of the formed silicon oxide film is about 2.6 nm.

次いで、このウェーハを窒素中900℃で熱処理を行う。
さらに、表面の電極は膜厚0.2μmのアルミニウム層を蒸着し、温度650度で短時間アニール処理して形成し、裏面の電極は、膜厚0.2μmのアルミニウム層を蒸着形成して、アニール処理なしで太陽電池構造を作成した。
The wafer is then heat treated at 900 ° C. in nitrogen.
Further, the surface electrode is formed by vapor-depositing a 0.2 μm-thick aluminum layer and annealing at a temperature of 650 ° C. for a short time, and the back electrode is formed by depositing a 0.2 μm-thick aluminum layer, A solar cell structure was prepared without annealing.

図2は、n型単結晶Siウェーハ上に作成した太陽電池のpn接合間の電気特性を測定した電圧−電流特性図を、本実施例の硝酸酸化処理ありの実線曲線と硝酸酸化処理なしの点線曲線との比較で示したものである。この結果から、本実施例によるp型Si微細粒子薄膜層とn型単結晶Si基板面との構造界面は、整流性の良さを示す理想係数n(最高値n=1)で表すとき、実線曲線の場合ではn値が1.7の良好な整流性を示し、点線曲線の場合でのn値4.5に比べて、顕著に優れたpn接合が形成されていることが分かった。 FIG. 2 is a voltage-current characteristic diagram obtained by measuring electrical characteristics between pn junctions of a solar cell formed on an n-type single crystal Si wafer. The solid line curve with and without nitric acid oxidation treatment of this example and This is shown in comparison with a dotted curve. From this result, when the structural interface between the p-type Si fine particle thin film layer and the n-type single crystal Si substrate surface according to this example is expressed by an ideal coefficient n (maximum value n = 1) indicating good rectification, a solid line In the case of the curve, the n value is 1.7, which is a good rectifying property, and it has been found that a significantly superior pn junction is formed compared to the n value of 4.5 in the case of the dotted curve.

図3は、n型単結晶Siウェーハに塗布形成したp型Si微細粒子による薄膜層に光を照射して観測された電流−電圧曲線、すなわち光起電力と光電流との関係特性図を、本実施例の硝酸酸化処理ありの実線曲線と硝酸酸化処理なしの点線曲線との対比で示したものである。本実施例での太陽電池構造は、太陽光の照射により十分な光起電力及び光電流を発生し、光電変換層として機能しており、変換効率が実線曲線の硝酸酸化処理ありの場合0.01%となり、点線曲線の硝酸酸化なしの場合の1.8×10−4%に比べても、硝酸酸化処理した場合には太陽電池に極めて有効な効果を持つことを示している。 FIG. 3 shows a current-voltage curve observed by irradiating light to a thin film layer of p-type Si fine particles applied and formed on an n-type single crystal Si wafer, that is, a relationship characteristic diagram between photovoltaic power and photocurrent. The solid line curve with nitric acid oxidation treatment of this example is shown in comparison with the dotted line curve without nitric acid oxidation treatment. The solar cell structure in this example generates sufficient photovoltaic power and photocurrent upon irradiation with sunlight, functions as a photoelectric conversion layer, and has a conversion efficiency of 0. Even when compared with 1.8 × 10 −4 % without nitric acid oxidation in the dotted curve, it shows that the nitric acid oxidation treatment has a very effective effect on the solar cell.

ビーズミル法での処理は、Si粒体を適度なビーズ球とともに容器内で揺動再粉砕するもので、ビーズ球の寸径及び揺動時間を適宜選定して、所望の微細粒子状態に再現加工することが可能である。 The processing by the bead mill method involves re-grinding Si particles in a container together with appropriate bead spheres, and by appropriately selecting the bead sphere size and oscillating time, reproduction processing to the desired fine particle state Is possible.

また、Siの粒子化に当たっては、固定砥粒切断法により生成したp型結晶Siの切粉から粉砕して極微細粒子化したものに限らず、単結晶または多結晶のSi基材(インゴット)から薄板の基板(ウェーハ)を形成する際の,いわゆる切粉と称されるSi粒子を素材として、これをボールミル法、ビーズミル法、衝撃波法あるいはジェットミル法で再微細化処理したものが実用できる。この場合に生じる切粉は、通常は廃棄対象ほどの低廉価であり、これを用いれば、極めて低コストのSi微細粒子を製造できる。 In addition, the formation of Si particles is not limited to those obtained by pulverizing p-type crystalline Si chips produced by the fixed abrasive cutting method into ultrafine particles, but also single-crystal or polycrystalline Si substrates (ingots) When forming a thin substrate (wafer) from a material, so-called chips are used as a raw material, and this can be re-miniaturized by the ball mill method, bead mill method, shock wave method or jet mill method. . The chips generated in this case are usually as inexpensive as the objects to be discarded, and if this is used, extremely low-cost Si fine particles can be produced.

本実施の形態で得られるSi粒子表面のシリコン酸化膜は極薄で安定であるため、薄膜層内で近接の相互Si粒子間における電荷の移動はトンネル効果で移動が可能であり、太陽電池等での光電効果で生じたキャリア(電荷)の移動には殆ど支障がない。したがって、この種のSi微細粒子により、例えばプリント技術等でpin型薄膜半導体層を形成して、太陽電池や、p型,n型のTFTやそれらを用いたCMOS−TFTなどの半導体デバイスを創製することは、本発明の好ましい実施形態である。 Since the silicon oxide film on the surface of the Si particles obtained in this embodiment is extremely thin and stable, the movement of electric charges between adjacent Si particles in the thin film layer can be moved by a tunnel effect, such as a solar cell. There is almost no hindrance to the movement of carriers (charges) generated by the photoelectric effect in Therefore, a pin-type thin film semiconductor layer is formed with this kind of Si fine particles, for example, by printing technology, etc., and semiconductor devices such as solar cells, p-type and n-type TFTs, and CMOS-TFTs using them are created. This is a preferred embodiment of the present invention.

本実施の形態によると、少なくとも数百nm以下の粒径に得られたSi微細粒子がフッ化水素濃度20%以上のフッ酸中に分散させて処理するエッチング工程および硝酸による化学的酸化工程を含むSi微細粒子の処理方法または製造方法により、表面安定性が極めて高く実現でき、低コストにSi微細粒子薄膜層を創製することが可能で、工業的利用上の意義は真に大である。また本Si微細粒子に適宜なバインダー材料や分散材を調合して、さらに有効なSiインク材料を製造することが可能である。 According to this embodiment, an etching process in which Si fine particles obtained to a particle size of at least several hundred nm or less are dispersed in hydrofluoric acid having a hydrogen fluoride concentration of 20% or more and a chemical oxidation process with nitric acid are performed. By the processing method or manufacturing method of the Si fine particles included, the surface stability can be realized extremely high, and the Si fine particle thin film layer can be created at a low cost, and the significance for industrial use is really great. Further, it is possible to produce a more effective Si ink material by blending an appropriate binder material or dispersion material with the Si fine particles.

また、本実施の形態によると、太陽電池用の薄膜を塗布形成するプリンタブル材料として用いて、光電変換層の厚みが0.01〜数十μmの極めて薄膜層で、変換効率にも優れた高性能の機能素子、あるいは、結晶性Si基板、多結晶Si基板または非結晶性Si基板やガラス基板やプラスチック基板に本Si微細粒子による第一の光電変換層に重ねてSi微細粒子による塗布形成の第二の薄膜光電変換層を順次形成した多層構造の太陽電池に適用して、光電変換効率をさらに向上させた高性能太陽電池を実現できる。 In addition, according to the present embodiment, it is used as a printable material for applying and forming a thin film for a solar cell, and the photoelectric conversion layer is a very thin film layer having a thickness of 0.01 to several tens of μm, and has high conversion efficiency A functional element of performance, or a crystalline Si substrate, a polycrystalline Si substrate, a non-crystalline Si substrate, a glass substrate, or a plastic substrate is formed on the first photoelectric conversion layer by the present Si fine particles and formed by coating with Si fine particles. It can be applied to a solar cell having a multilayer structure in which the second thin film photoelectric conversion layer is sequentially formed, and a high-performance solar cell with further improved photoelectric conversion efficiency can be realized.

本発明では、Si結晶の切粉の粉砕から得たSi微細粒子、たとえば粒径数百nm以下のSi微細粒子に硝酸酸化処理を行い、表面近傍の不純物を除去できて、かつSi微細粒子を酸化膜を介してのトンネル接合による薄膜層に形成する方法、半導体装置および半導体装置の製造方法、並びに太陽電池および太陽電池の製造方法に適用可能であり、その産業応用上の効果は極めて大きい。また、得られたSi微細粒子は薄膜形成用のプリンタブル材料としての利用性が高く、このSi微細粒子を用いて作製したSiペーストは太陽電池の外にも、半導体デバイスや液晶TFT等に適する薄膜形成の素材として利用できることに寄与する。したがって、本発明によると、安定性、信頼性の高いSi微細粒子が低コストで得られ、また、このSi微細粒子を利用した薄膜層を用いた太陽電池や半導体装置が工業的に容易に実現できる。
In the present invention, nitric acid oxidation treatment is performed on Si fine particles obtained by pulverization of Si crystal chips, for example, Si fine particles having a particle size of several hundred nm or less, and impurities near the surface can be removed. The present invention can be applied to a method for forming a thin film layer by tunnel junction through an oxide film, a semiconductor device, a method for manufacturing a semiconductor device, a solar cell, and a method for manufacturing a solar cell, and its industrial application effects are extremely large. The obtained Si fine particles are highly usable as a printable material for forming a thin film, and the Si paste produced using these Si fine particles is a thin film suitable for semiconductor devices, liquid crystal TFTs, etc. in addition to solar cells. Contributes to being able to be used as a forming material. Therefore, according to the present invention, highly stable and reliable Si fine particles can be obtained at low cost, and solar cells and semiconductor devices using thin film layers using these Si fine particles can be easily realized industrially. it can.

Claims (10)

インゴットから切断切粉として生成され、同切粉を粉砕機で微粉砕して得たSi微細粒子を、硝酸で表面処理する工程をそなえたSi微細粒子による薄膜層の形成方法。 A method for forming a thin film layer from Si fine particles, comprising a step of surface-treating Si fine particles produced from ingot as cut chips and finely pulverized with a pulverizer with nitric acid. シリコンの微粉砕法として、ビーズミル、ボールミル、ジェットミル、衝撃波粉砕法のいずれかまたはそれらの組み合わせ工程によって形成する請求項1に記載のSi微細粒子による薄膜層の形成方法。 2. The method for forming a thin film layer using Si fine particles according to claim 1, wherein the silicon fine pulverization method is formed by any one of a bead mill, a ball mill, a jet mill, a shock wave pulverization method, or a combination thereof. Si微細粒子を溶媒に分散し所定基体面上に供給してSi薄膜層を形成する工程、および前記Si薄膜層上へ硝酸を供給してSi微細粒子表面に酸化膜を形成し、Si粒子間トンネル接合の薄膜半導体層を形成する工程をそなえた半導体装置の製造方法。 A process of forming Si thin film layers by dispersing Si fine particles in a solvent and supplying them on a predetermined substrate surface, and supplying nitric acid onto the Si thin film layers to form an oxide film on the surface of the Si fine particles. A method of manufacturing a semiconductor device comprising a step of forming a thin film semiconductor layer of a tunnel junction. Si微細粒子を予めフッ酸中で分散して表面処理する工程、前記Si微細粒子を溶媒分散して所定基体面上に供給してSi薄膜層を形成する工程、前記Si薄膜層上に硝酸を供給して前記Si微細粒子表面に酸化膜を形成する工程、をそなえた半導体装置の製造方法。 The step of dispersing Si fine particles in hydrofluoric acid in advance and surface-treating, the step of dispersing the Si fine particles in a solvent and supplying them onto a predetermined substrate surface to form a Si thin film layer, and adding nitric acid on the Si thin film layer A method of manufacturing a semiconductor device, comprising: supplying and forming an oxide film on the surface of the Si fine particles. Siの切粉を細粉砕して得たSi微細粒子を予めフッ酸中に分散させて表面処理した後、前記Si微細粒子を溶媒に分散して所定基体面上に供給して前記Si微細粒子からなるSi薄膜層を形成し、さらに前記Si薄膜層上へ硝酸を供給して前記Si微細粒子表面に酸化膜を形成し、前記Si薄膜層内の前記Si微細粒子間を酸化膜によるトンネル接合で一体化する半導体装置の製造方法。 Si fine particles obtained by finely pulverizing Si chips are pre-dispersed in hydrofluoric acid and surface-treated, and then the Si fine particles are dispersed in a solvent and supplied onto a predetermined substrate surface. Forming a Si thin film layer, further supplying nitric acid onto the Si thin film layer to form an oxide film on the surface of the Si fine particles, and tunnel bonding by the oxide film between the Si fine particles in the Si thin film layer A method for manufacturing a semiconductor device integrated in a semiconductor. Si微細粒子を酸化膜介在で粒子間トンネル接合させたSi薄膜層をそなえた半導体装置。 A semiconductor device having a Si thin film layer in which Si fine particles are tunnel-bonded between particles through an oxide film. 請求項1〜2のいずれか1つに記載のSi微細粒子の製造方法で得られた,Si極微細粒子による酸化膜を含む粒子間接合半導体層をそなえた半導体装置。 A semiconductor device comprising an interparticle junction semiconductor layer including an oxide film made of Si ultrafine particles, obtained by the method for producing Si fine particles according to claim 1. 請求項1〜2のいずれか1つに記載のSi微細粒子を酸化膜で被って粒子間トンネル接合させた半導体層による光電変換層をそなえた太陽電池。 A solar cell comprising a photoelectric conversion layer made of a semiconductor layer in which the Si fine particles according to claim 1 are covered with an oxide film and tunnel-bonded between the particles. Si微細粒子を予めフッ酸中で分散処理する工程、前記Si微細粒子を溶媒分散して所定基体面上に供給して、Si微細粒子によるSi薄膜層に形成する工程、同薄膜層上に硝酸を供給して、前記Si微細粒子表面に酸化膜を形成して前記Si微細粒子間トンネル接合を形成する工程、をそなえた太陽電池の製造方法。 A step of dispersing Si fine particles in hydrofluoric acid in advance, a step of dispersing the Si fine particles in a solvent and supplying the solution onto a predetermined substrate surface, forming a Si thin film layer with the Si fine particles, nitric acid on the thin film layer And a step of forming an oxide film on the surface of the Si fine particles to form a tunnel junction between the Si fine particles. 請求項1〜4のいずれか1つに記載のSi微細粒子の製造方法で得られた,Si極微細粒子による酸化膜を含む粒子間接合でなる光電変換層をそなえた太陽電池。
A solar cell provided with a photoelectric conversion layer comprising an interparticle junction including an oxide film of Si ultrafine particles, obtained by the method for producing Si fine particles according to any one of claims 1 to 4.
JP2012041708A 2012-02-28 2012-02-28 METHOD FOR FORMING THIN FILM LAYER BY Si FINE PARTICLE, SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE, AND SOLAR CELL AND METHOD OF MANUFACTURING SOLAR CELL Pending JP2013177264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012041708A JP2013177264A (en) 2012-02-28 2012-02-28 METHOD FOR FORMING THIN FILM LAYER BY Si FINE PARTICLE, SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE, AND SOLAR CELL AND METHOD OF MANUFACTURING SOLAR CELL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012041708A JP2013177264A (en) 2012-02-28 2012-02-28 METHOD FOR FORMING THIN FILM LAYER BY Si FINE PARTICLE, SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE, AND SOLAR CELL AND METHOD OF MANUFACTURING SOLAR CELL

Publications (1)

Publication Number Publication Date
JP2013177264A true JP2013177264A (en) 2013-09-09

Family

ID=49269355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012041708A Pending JP2013177264A (en) 2012-02-28 2012-02-28 METHOD FOR FORMING THIN FILM LAYER BY Si FINE PARTICLE, SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE, AND SOLAR CELL AND METHOD OF MANUFACTURING SOLAR CELL

Country Status (1)

Country Link
JP (1) JP2013177264A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015189926A1 (en) * 2014-06-11 2015-12-17 小林 光 Negative electrode material for lithium ion batteries, lithium ion battery, method and apparatus for producing negative electrode for lithium ion batteries, and method and apparatus for producing negative electrode material for lithium ion batteries
WO2016056373A1 (en) * 2014-10-08 2016-04-14 小林 光 Negative electrode material of lithium ion battery, lithium ion battery, method and apparatus for manufacturing negative electrode or negative electrode material of lithium ion battery
JP2017014780A (en) * 2015-06-30 2017-01-19 三菱マテリアル株式会社 Ground improvement method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015189926A1 (en) * 2014-06-11 2015-12-17 小林 光 Negative electrode material for lithium ion batteries, lithium ion battery, method and apparatus for producing negative electrode for lithium ion batteries, and method and apparatus for producing negative electrode material for lithium ion batteries
JP5866589B1 (en) * 2014-06-11 2016-02-17 小林 光 Method for producing negative electrode or negative electrode material of lithium ion battery
CN106415897A (en) * 2014-06-11 2017-02-15 小林光 Negative electrode material for lithium ion batteries, lithium ion battery, method and apparatus for producing negative electrode for lithium ion batteries, and method and apparatus for producing negative electrode material for lithium ion batteries
WO2016056373A1 (en) * 2014-10-08 2016-04-14 小林 光 Negative electrode material of lithium ion battery, lithium ion battery, method and apparatus for manufacturing negative electrode or negative electrode material of lithium ion battery
JP2017014780A (en) * 2015-06-30 2017-01-19 三菱マテリアル株式会社 Ground improvement method

Similar Documents

Publication Publication Date Title
Ma et al. High efficiency graphene/MoS2/Si Schottky barrier solar cells using layer-controlled MoS2 films
Liu et al. Non-planar vertical photodetectors based on free standing two-dimensional SnS 2 nanosheets
US7704866B2 (en) Methods for forming composite nanoparticle-metal metallization contacts on a substrate
Vermang et al. Rear surface optimization of CZTS solar cells by use of a passivation layer with nanosized point openings
WO1997045880A1 (en) METHOD FOR FORMING CdTe FILM AND SOLAR BATTERY USING THE FILM
KR20100075467A (en) Group iv nanoparticle junctions and devices therefrom
JP2011515867A (en) Improved connection of substrate structure solar cells
Wang et al. Simple fabrication and improved photoresponse of ZnO–Cu2O core–shell heterojunction nanorod arrays
JP2011515852A (en) Improved back contact for thin film solar cells
JP2015512150A (en) Thermal surface treatment for wafer reuse after epitaxial lift-off
AU2008352028B2 (en) Semiconductor-based, large-area, flexible, electronic devices on {110}less than100greater than oriented substrates
JP5850055B2 (en) SOLAR CELL AND METHOD FOR PRODUCING THE SOLAR CELL
AU2011302584B2 (en) Fabrication of solar cells with silicon nano-particles
JP2012229146A (en) METHOD FOR MANUFACTURING SILICON FINE PARTICLE, AND Si INK, SOLAR CELL AND SEMICONDUCTOR DEVICE USING THE SILICON FINE PARTICLE
JP2005332913A (en) Method for forming silicon film for solar battery, and solar battery
JP2013177264A (en) METHOD FOR FORMING THIN FILM LAYER BY Si FINE PARTICLE, SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE, AND SOLAR CELL AND METHOD OF MANUFACTURING SOLAR CELL
Sood et al. Doping and transfer of high mobility graphene bilayers for room temperature mid-wave infrared photodetectors
US11515443B2 (en) Tandem solar cell manufacturing method
Es et al. Performance of nanowire decorated mono-and multi-crystalline Si solarcells
Curtin et al. Thermoelectric properties of silicon nanowire array and spin-on glass composites fabricated with CMOS-compatible techniques
Lin et al. Optimization of graphene/silicon heterojunction solar cells
Kuboki et al. Low temperature annealing of nanocrystalline Si paste for pn junction formation
JP2014179368A (en) Solar cell
Solanki et al. c-Si Solar Cells: Physics and Technology
Yang et al. CdCl2 activation annealing of CdTe microwires grown by close-spaced sublimation method