JP2007204974A - Cement-solidified soil composition - Google Patents

Cement-solidified soil composition Download PDF

Info

Publication number
JP2007204974A
JP2007204974A JP2006023048A JP2006023048A JP2007204974A JP 2007204974 A JP2007204974 A JP 2007204974A JP 2006023048 A JP2006023048 A JP 2006023048A JP 2006023048 A JP2006023048 A JP 2006023048A JP 2007204974 A JP2007204974 A JP 2007204974A
Authority
JP
Japan
Prior art keywords
soil
cement
mass
concrete
silty
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006023048A
Other languages
Japanese (ja)
Other versions
JP4814643B2 (en
Inventor
Shigeki Seko
繁喜 瀬古
Fujio Koyama
富士夫 小山
Minoru Aoki
実 青木
Izumi Kobayakawa
泉 小早川
Daisuke Saegusa
大介 三枝
Kunio Yanagibashi
邦生 柳橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2006023048A priority Critical patent/JP4814643B2/en
Publication of JP2007204974A publication Critical patent/JP2007204974A/en
Application granted granted Critical
Publication of JP4814643B2 publication Critical patent/JP4814643B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/0031Heavy materials, e.g. concrete used as ballast material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cement-solidified soil composition which can be suitably used for temporary soil improvement and as a substitute for ballasting in the execution of construction work, which is excellent in fluidity during construction, and which can form solidified matter with sufficient strength. <P>SOLUTION: The cement-solidified soil composition contains silty soil, sandy soil, concrete-crushed powder, Portland cement, water, and a surface-active agent. Preferably, the mixing ratio of the amount of the concrete-crushed powder to the total amount of the silty soil and the sandy soil, which is 100 pts.mass, is in the range of >40 pts.mass and ≤90 pts.mass; and the 1.0-1.5 pts.mass water, the 2.5-4.5 pts.mass mixture of the silty soil, the sandy soil and the concrete-crushed powder, and the 0.0002-0.02 pt.mass surface-active agent is contained with respect to the 1 pt.mass Portland cement. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、セメント固化土組成物に関し、詳細には、建設工事を行うときの作業用床、重機等の移動のための仮設地盤改良、基礎を支えるための下に設けた敷き砂利等の代わりなど、一般的な構造体以外の部位においてある程度の強度が必要となる部材を構築する場合に使用するセメント固化土組成物に関する。   The present invention relates to a cement solidified soil composition, and more particularly, in place of working floors for construction work, temporary ground improvement for moving heavy equipment, etc., laid gravel provided below to support the foundation, etc. The present invention relates to a cement solidified earth composition used for constructing a member that requires a certain level of strength at a site other than a general structure.

建設工事を行うときの作業用床、重機等の移動のための仮設地盤改良、基礎を支えるための下に設けた敷き砂利等の代わりなど、一般的な構造体以外の部位においては、これまで、市販の生コンクリートを使用していた。しかし、前記のような部位に必要なコンクリート強度は10〜15N/mm程度であるのに対し、生コンクリートは18N/mm以上もの強度を発現するために過剰な品質となり、使用目的に比べてコストが高いという問題がある。
管の埋め戻しや地盤改良のための低価格材料として利用されている材料に、建設発生土をスラリー化させたものにセメントなどの固化材を混入する流動化処理土と呼ばれる材料があるが、この材料は、先に述べた仮設地盤改良などの目的として使用する場合、必要強度の1/10から1/5程度以下しか性能が無く、その利用範囲が制限されていた。
Until now, in areas other than general structures, such as working floors for construction work, temporary ground improvement for moving heavy machinery, etc., instead of shining gravel under the foundation, etc. Commercially available ready-mixed concrete was used. However, concrete strength necessary sites, such as above with respect to the range of about 10 to 15 N / mm 2, raw concrete becomes excessive quality to express the strength of 18N / mm 2 or more even, compared to the intended use The cost is high.
There is a material called fluidized soil that is used as a low-priced material for pipe backfilling and ground improvement, in which construction-generated soil is slurried and mixed with cement or other solidifying material. When this material is used for the purpose of improving the temporary ground described above, it has a performance of about 1/10 to 1/5 or less of the required strength, and its range of use has been limited.

一方、前記流動化処理土に対してセメント使用量を増大させれば強度の向上が期待できるため、作業床の構築にコンクリートを使用する方法が提案されているが(例えば、特許文献1参照。)、コンクリートを使用する方法では、必要とする以上の強度を有する過剰な品質が実現され、且つ、コストが大幅に増大することから、構造体の構築以外の部位、即ち、仮設地盤改良などに使用することが適さないという問題がある。また、過剰品質であるために、作業終了後に、作業床を掘削して搬出する際にも、掘削時の破砕手間が大きくなるという問題があった。
他方、埋め戻しや仮設土壌の構築に、建設発生土を原材料とした泥水にセメント等の固化材を混合して製造する流動化処理土を用いることも提案されている(例えば、特許文献2参照。)。しかしながら、ここに記載の流動化処理土は、セメント等の固化材の使用割合が水の使用量に比べて少なく、そのために発現強度が1N/mm〜3N/mm程度にとどまっており、重機等の移動のための仮設地盤改良、基礎を支えるための下に設けた敷き砂利等の代わりなどの用途に用いることができない。
品質の安定した、泥状土の固化などに使用される流動化処理土として、発生土とコンクリート廃材を加熱、摩砕して得られた微粉末を含む調整泥水を混合してなるものが提案されている(例えば、特許文献3参照。)。この流動化処理土は、比重や品質の調整は容易になるものの、ここで使用されるコンクリート廃材を加熱、摩砕して得られる微粉末は、比表面積が大きく細かな粒子となるため、十分な流動性向上効果が得難く、また、廃材を加熱することで微粉末の水硬性が低下するため、硬化した後の固化物の強度に寄与し難く、本発明において目的とするような十分な強度が得られないという問題があった。
特公平4−21767号公報 特許第3605709号公報 特開平2003−261962公報
On the other hand, if the amount of cement used is increased with respect to the fluidized soil, an improvement in strength can be expected. Therefore, a method of using concrete for construction of a work floor has been proposed (see, for example, Patent Document 1). ) In the method using concrete, an excessive quality having a strength higher than necessary is realized, and the cost is greatly increased. Therefore, it is necessary to improve the structure other than the construction of the structure, that is, temporary ground improvement. There is a problem that it is not suitable for use. In addition, because of the excessive quality, there is a problem in that when the work floor is excavated and carried out after the work is completed, the crushing labor during excavation increases.
On the other hand, it has also been proposed to use fluidized soil that is produced by mixing a solidifying material such as cement with mud water using construction generated soil as a raw material for backfilling or temporary soil construction (see, for example, Patent Document 2). .) However, fluidization treated soil described herein is less proportion of solidifying material such as cement as compared with the amount of water used, the expression strength for it is only about 1N / mm 2 ~3N / mm 2 , It cannot be used for purposes such as temporary ground improvement for the movement of heavy machinery and the like, instead of laying gravel provided below to support the foundation.
Proposal of fluidized soil used for solidification of mud soil with stable quality, which is a mixture of generated soil and adjusted mud containing fine powder obtained by heating and grinding concrete waste. (For example, see Patent Document 3). Although this fluidized soil can be easily adjusted for specific gravity and quality, the fine powder obtained by heating and grinding the concrete waste used here is sufficient because it has a large specific surface area and becomes fine particles. It is difficult to obtain a sufficient fluidity improving effect, and since the hydraulic properties of the fine powder are reduced by heating the waste material, it is difficult to contribute to the strength of the solidified product after being cured, which is sufficient as intended in the present invention There was a problem that strength could not be obtained.
Japanese Patent Publication No. 4-21767 Japanese Patent No. 3605709 JP-A-2003-261196

上記問題点を考慮してなされた本発明の目的は、建設工事を行うときの仮設地盤改良や敷き砂利代替品として好適に使用することができる、施工時の流動性に優れ、十分な強度の固化物を形成しうるセメント固化土組成物を提供することにある。   The object of the present invention made in consideration of the above problems is excellent in fluidity during construction and sufficient strength, which can be suitably used as a temporary ground improvement or a gravel substitute for construction work. It is providing the cement solidified earth composition which can form a solidified material.

本発明者らは、検討の結果、シルト質および砂質の土、好ましくは、シルト質及び砂質の建設発生土に、コンクリート破砕時に発生する微粉末とポルトランドセメントを併用することで、上記目的を達成しうることを見出し、本発明を完成した。
本発明の構成は以下の通りである。
<1> シルト質土、砂質土、コンクリート破砕粉末、ポルトランドセメント、水、及び、界面活性剤を含有するセメント固化土組成物。
<2> 前記シルト質土と砂質土との総量100質量部に対するコンクリート破砕粉末の混合割合が40質量部を超え、且つ、90質量部までの範囲である<1>記載のセメント固化土組成物。
<3> 前記ポルトランドセメント1質量部に対して、水1.0〜1.5質量部、シルト質土と砂質土とコンクリート破砕粉末の混合物2.5〜4.5質量部、及び、界面活性剤0.0002〜0.02質量部を含有する<1>又は<2>に記載のセメント固化土組成物。
As a result of the study, the present inventors have used the above object by combining the fine powder generated during concrete crushing and Portland cement in silty and sandy soil, preferably silty and sandy construction generated soil. The present invention has been completed.
The configuration of the present invention is as follows.
<1> A cement solidified soil composition containing silty soil, sandy soil, concrete crushed powder, Portland cement, water, and a surfactant.
<2> The cement solidified soil composition according to <1>, wherein a mixing ratio of the concrete pulverized powder to a total amount of 100 parts by mass of the silty soil and the sandy soil exceeds 40 parts by mass and up to 90 parts by mass. object.
<3> For 1.0 part by weight of Portland cement, 1.0 to 1.5 parts by weight of water, 2.5 to 4.5 parts by weight of a mixture of silty soil, sandy soil and concrete crushed powder, and the interface Cement solidified earth composition as described in <1> or <2> containing 0.0002-0.02 mass part of activators.

<4> 前記シルト質土と砂質土との混合質量比が3:7〜7:3の範囲である<1>乃至<3>のいずれか1項に記載のセメント固化土組成物。
<5> 前記コンクリート破砕粉末が、コンクリート解体材を圧搾して細粒化し、開口径13.2mmのふるいを通過する細粒である<1>乃至<4>のいずれか1項に記載のセメント固化土組成物。
<6> 前記コンクリート破砕粉末が、コンクリート解体材を圧搾して細粒化し、開口径4.5mm乃至開口径13.2mmのふるいに滞留し、且つ、開口径63mmのふるいを通過するコンクリート塊を摩砕して得られる開口径4.75mmのふるいを通過する細粒である<1>乃至<4>のいずれか1項に記載のセメント固化土組成物。
<7> 前記シルト質土及び砂質土が、JIS A 1228に規定されるコーン指数が200kN/m以上の値を示すシルト質発生土及び砂質発生土である<1>乃至<4>のいずれか1項に記載のセメント固化土組成物。
<4> The cement solidified soil composition according to any one of <1> to <3>, wherein a mixing mass ratio of the silty soil and the sandy soil is in a range of 3: 7 to 7: 3.
<5> The cement according to any one of <1> to <4>, wherein the concrete crushed powder is a fine granule that is obtained by pressing a concrete demolition material into fine particles and passing through a sieve having an opening diameter of 13.2 mm. Solidified soil composition.
<6> The concrete crushing powder squeezes the concrete demolition material into fine particles, stays in a sieve having an opening diameter of 4.5 mm to 13.2 mm, and passes through a sieve having an opening diameter of 63 mm. The cement solidified earth composition according to any one of <1> to <4>, which is a fine particle passing through a sieve having an opening diameter of 4.75 mm obtained by grinding.
<7> The silty soil and sandy soil are <1> to <4>, which are silty-generated soil and sandy-generated soil having a corn index defined by JIS A 1228 of 200 kN / m 2 or more. The cement solidified earth composition according to any one of the above.

本発明のセメント固化土組成物は。シルト質及び砂質の土、コスト的に好ましくはシルト質及び砂質の建設発生土と、ポルトランドセメント、水、およびセメント分散界面活性剤に対して、コンクリート破砕時に発生する微粉末を混合撹拌して用いたため、施工に適する十分な流動性が得られるとともに、仮設床に必要なコンクリート強度10〜15N/mm程度を、材齢28日程度で得ることができた。ここで用いるコンクリート破砕粉末として、例えば、人頭大のコンクリート解体材を圧搾して細粒化し、開口径13.2mmのふるいを通過する細粒成分か、或いは、開口径4.75mmのふるいに滞留し、且つ、63mmのふるいを通過するコンクリート塊を摩砕して得られる4.75mmのふるいを通過する細粒成分を用いることができる。 The cement solidified soil composition of the present invention. Mix and agitate the fine powder generated during concrete crushing to silty and sandy soil, preferably from silty and sandy construction generated soil, and Portland cement, water, and cement dispersing surfactant. Therefore, sufficient fluidity suitable for construction was obtained, and a concrete strength of about 10 to 15 N / mm 2 necessary for the temporary floor could be obtained in about 28 days of age. As the concrete crushed powder used here, for example, a large-sized concrete demolition material is squeezed into fine particles and passed through a sieve having an opening diameter of 13.2 mm, or a sieve having an opening diameter of 4.75 mm. A fine-grained component passing through a 4.75 mm sieve obtained by grinding a concrete mass that stays and passes through a 63 mm sieve can be used.

本発明によれば、建設工事を行うときの仮設地盤改良や敷き砂利代替品として好適に使用することができる、施工時の流動性に優れ、十分な強度の固化物を形成しうるセメント固化土組成物を提供することができる。本発明によれば、必要最小限のセメント量で、必要な強度発現と、作業性の良い流動性を実現する材料を提供することができ、さらには、ここで用いるコンクリート破砕粉末、また、ここで用いられる土として建設発生土を用いた場合にはいずれも廃棄物を有効に使用しうるため、一般的な構造体以外の部位に対して、必要十分な強度を発現する材料を安価に提供できるという利点をも有するものである。   According to the present invention, a cement solidified soil that can be suitably used as a temporary ground improvement or a gravel substitute for construction work, has excellent fluidity during construction, and can form a solidified product with sufficient strength. A composition can be provided. According to the present invention, it is possible to provide a material that realizes necessary strength development and fluidity with good workability with a minimum amount of cement. Further, the concrete crushed powder used here, When construction-generated soil is used as the soil used in the construction, waste can be used effectively, so materials that exhibit the necessary and sufficient strength can be provided at low cost for parts other than general structures. It also has the advantage of being able to.

本発明のセメント固化土組成物は、シルト質土、砂質土コンクリート破砕粉末、ポルトランドセメント、水、及び、界面活性剤を含有することを特徴とする。
以下、本発明の組成物に用いられる各成分について順次説明する。
〔シルト質土、砂質土〕
本発明に用いられるシルト質土と砂質土としては、特に制限はなく、このような特性を有する土であれば任意に用いられるが、コスト、入手容易性の観点から、シルト質発生土、砂質発生土を用いるのが好ましく、これらシルト質発生土、砂質発生土を用いる場合には、効果の観点から、好ましくは、2003年度国土交通省が政令により制定した建設発生土のうち、JIS A 1228に規定されるコーン指数が200kN/m以上の値を示す、第4種建設発生土以上の土質区分に属するシルト質発生土、砂質発生土が、いずれも好適に用いられる。
The cement solidified soil composition of the present invention comprises silty soil, sandy soil concrete pulverized powder, Portland cement, water, and a surfactant.
Hereinafter, each component used for the composition of this invention is demonstrated one by one.
[Silty soil, sandy soil]
The silty soil and sandy soil used in the present invention are not particularly limited and can be arbitrarily used as long as the soil has such characteristics. From the viewpoint of cost and availability, silty-generating soil, It is preferable to use sandy soil, and when these silty soil and sandy soil are used, from the viewpoint of effectiveness, preferably, among construction soils established by the Ministry of Land, Infrastructure, Transport and Tourism in 2003, Silty-generated soil and sandy-generated soil belonging to the soil classification more than the fourth type construction generated soil, in which the corn index defined in JIS A 1228 shows a value of 200 kN / m 2 or more, are preferably used.

シルト質土、砂質土の組成物における含有量は、本発明の組成物に使用されるセメント1質量部に対してシルト質土と砂質土とコンクリート破砕粉末の総和で、2.5〜4.5質量部であることが、施工に適する流動性確保の観点から好ましく、3〜4質量部の範囲であることがさらに好ましい。また、これらの内訳では、シルト質土と砂質土との総量100質量部に対して後述するコンクリート破砕粉末の混合割合が40質量部を超え、且つ、90質量部の範囲であることが好ましく、このように、セメントやコンクリート破砕粉末との関係で、目的とする強度、流動性に応じて適宜選択すればよい。
また、シルト質土と砂質土との混合質量比は、3:7〜7:3の範囲であることが好ましい。
Content in the composition of silty soil and sandy soil is the sum of silty soil, sandy soil and concrete crushed powder with respect to 1 part by mass of cement used in the composition of the present invention. It is preferable from a viewpoint of ensuring the fluidity | liquidity suitable for construction that it is 4.5 mass parts, and it is still more preferable that it is the range of 3-4 mass parts. Moreover, in these breakdowns, it is preferable that the mixing ratio of the concrete crushed powder described later exceeds 40 parts by mass and is in the range of 90 parts by mass with respect to 100 parts by mass of the silty soil and sandy soil. Thus, it may be appropriately selected according to the intended strength and fluidity in relation to cement and concrete crushed powder.
Moreover, it is preferable that the mixing mass ratio of silty soil and sandy soil is in the range of 3: 7 to 7: 3.

〔コンクリート破砕粉末〕
本発明においては、前記シルト質土、砂質土、好ましくは、建設発生土であるシルト発生土、砂質発生土にコンクリート破砕粉末を併用することを特徴とするが、先に述べたように、その含有量は、施工に適する流動性確保の観点から、シルト質土と砂質土との総量100質量部に対して後述するコンクリート破砕粉末の混合割合が40質量部を超え、且つ、90質量部の範囲であることが好ましく、50〜70質量部の範囲であることがさらに好ましい。
ここで用いるコンクリート破砕粉末は、微細な粉末であることが流動性向上の観点から好ましい。この作用機構は明らかではないが、本発明のセメント固化土組成物においては、このコンクリート破砕粉末の微粉末がシルト質土や砂質土における粒子間に水とともに入り込むことにより粒子間の摩擦力を下げ、流動化向上に寄与するものと考えられる。
[Concrete crushing powder]
In the present invention, the silty soil, the sandy soil, preferably the silt-generated soil that is the construction-generated soil, and the sand-generated soil are used in combination with the concrete crushed powder, as described above. From the viewpoint of securing fluidity suitable for construction, the mixing ratio of the crushed concrete powder described later with respect to 100 parts by mass of the silty soil and sandy soil exceeds 40 parts by mass, and 90% The range is preferably in the range of parts by mass, and more preferably in the range of 50 to 70 parts by mass.
The concrete crushed powder used here is preferably a fine powder from the viewpoint of improving fluidity. Although the mechanism of this action is not clear, in the cement solidified soil composition of the present invention, the fine powder of the crushed concrete powder enters between the particles in the silty soil and sandy soil together with water, thereby reducing the frictional force between the particles. This is considered to contribute to the improvement of liquidity.

本発明に好適に用いうるコンクリート破砕粉末のサイズとしては、コンクリート解体材を圧搾して細粒化して得られた、開口径13.2mmのふるいを通過する細粒であることが好ましく、目標とする強度を確保する観点から開口径4.75mmのふるいを通過する細粒であることがさらに好ましい。
また、別の好ましい態様としては、コンクリート解体材を圧搾して細粒化し、開口径4.5mm乃至開口径13.2mmのふるいに滞留し、且つ、開口径63mmのふるいを通過するコンクリート塊を得た後、このコンクリート塊を摩砕して得られる開口径4.75mmのふるいを通過する細粒が挙げられる。
ここで粒径の分別に使用されるふるいとしては、JIS Z 8801に規定されるふるいを使用するものである。
上記細粒の好ましい粒度構成は、10mmふるいを通過する質量百分率が95〜100%、5mmふるいを通過する質量百分率が75〜100%、2.5mmふるいを通過する質量百分率が60〜90%、1.2mmふるいを通過する質量百分率が50〜80%、0.6mmふるいを通過する質量百分率が20〜60%、0.3mmふるいを通過する質量百分率が10〜35%、0.15mmふるいを通過する質量百分率が5〜15%の範囲である。
The size of the concrete crushed powder that can be suitably used in the present invention is preferably a fine granule that passes through a sieve having an opening diameter of 13.2 mm, obtained by squeezing a concrete demolition material into fine particles. From the viewpoint of securing the strength to be used, it is more preferable that the fine particles pass through a sieve having an opening diameter of 4.75 mm.
Further, as another preferred embodiment, the concrete demolition material is squeezed into fine particles, retained in a sieve having an opening diameter of 4.5 mm to 13.2 mm, and passing through a sieve having an opening diameter of 63 mm. After being obtained, fine particles passing through a sieve having an opening diameter of 4.75 mm obtained by grinding this concrete block can be mentioned.
Here, a sieve defined in JIS Z 8801 is used as a sieve used for classification of particle diameter.
The preferred particle size composition of the fine granules is 95 to 100% by mass passing through a 10 mm sieve, 75 to 100% by mass passing through a 5 mm sieve, 60 to 90% by mass passing through a 2.5 mm sieve, The mass percentage that passes through the 1.2 mm sieve is 50-80%, the mass percentage that passes through the 0.6 mm sieve is 20-60%, the mass percentage that passes through the 0.3 mm sieve is 10-35%, and the 0.15 mm sieve. The mass percentage passing through is in the range of 5-15%.

〔ポルトランドセメント〕
本発明の組成物に用いうるセメントとしては、特に制限はなく、公知のセメントを任意に選択して使用することができる。
例えば、普通ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント、高炉セメント、早強セメントなどを、本発明のセメント固化土組成物の用途に応じて、前記した各種セメント類の中から、適宜選択することができる。
が使用できる。
本発明のセメント固化土組成物における前記ポルトランドセメントと水との混和比は、良好な作業性を実現する流動性の確保といった観点からは、ポルトランドセメント1質量部に対して、水が1.0〜1.5質量部であることが好ましく、より好ましくは、1.1〜1.3質量部の範囲である。
[Portland cement]
There is no restriction | limiting in particular as a cement which can be used for the composition of this invention, A well-known cement can be selected arbitrarily and used.
For example, ordinary Portland cement, moderately hot Portland cement, low heat Portland cement, blast furnace cement, early-strength cement, and the like are appropriately selected from the various cements described above according to the use of the cement solidified earth composition of the present invention. be able to.
Can be used.
The mixing ratio of the Portland cement and water in the cement-solidified soil composition of the present invention is such that, from the viewpoint of ensuring fluidity to achieve good workability, water is 1.0% relative to 1 part by mass of Portland cement. It is preferable that it is -1.5 mass parts, More preferably, it is the range of 1.1-1.3 mass parts.

〔界面活性剤〕
本発明のセメント固化土組成物には、流動性向上を目的として、セメント分散用の界面活性剤を併用することが好ましい。
本発明に好適に用いうるセメント分散用界面活性剤としては、リグニンスルホン酸系界面活性剤、ポリカルボン酸系界面活性剤、オキシカルボン酸系界面活性剤、ナフタレンスルホン酸系界面活性剤などが挙げられ、これらから目的に応じて選択して使用すればよい。
界面活性剤は、セメント1質量部に対して、0.0002〜0.02質量部の割合で用いられることが好ましく、0.002〜0.01質量部の割合であることがさらに好ましい。
界面活性剤は上記各成分とともに添加することもできるが、上記各成分に水を加えて所定時間攪拌、混合した後に、添加することも可能である。
[Surfactant]
For the purpose of improving fluidity, it is preferable to use a cement dispersing surfactant in the cement solidified earth composition of the present invention.
Examples of the surfactant for dispersing cement that can be suitably used in the present invention include lignin sulfonic acid surfactants, polycarboxylic acid surfactants, oxycarboxylic acid surfactants, and naphthalene sulfonic acid surfactants. These may be selected and used according to the purpose.
The surfactant is preferably used in a proportion of 0.0002 to 0.02 parts by mass, more preferably 0.002 to 0.01 parts by mass with respect to 1 part by mass of cement.
The surfactant can be added together with each of the above components. However, it is also possible to add the surfactant after adding water to each of the above components and stirring and mixing for a predetermined time.

本発明のセメント固化土組成物は、これらの有効成分に水を加えて調整されるが、本発明の効果を損なわない限りにおいて、公知のコンクリート組成物用の添加剤、例えば、前記のオキシカルボン酸系界面活性剤や硅弗化物のような遅延剤などを併用することができる。   The cement-solidified soil composition of the present invention is prepared by adding water to these active ingredients. However, as long as the effects of the present invention are not impaired, known additives for concrete compositions, for example, the above oxycarboxyl An acid surfactant or a retarder such as a fluoride can be used in combination.

本発明のセメント固化土組成物の物性としては、固化後の強度が、建設工事を行うときの作業用床、重機等の移動のための仮設地盤改良、基礎を支えるための下に設けた敷き砂利等の代わりなど、一般的な構造体以外の部位においてある程度の強度が必要となる部材を構築する場合に有効な数値、即ち、10〜15N/mmの圧縮強度を達成することが好ましい。
また、作業性の観点からは、JIS R 5201セメントの物理試験方法の(11.フロー試験)に準じて測定した0打フローで、2方向ともに100mmを超える大きさであれば問題はなく、好ましくは120mm以上である。
As the physical properties of the cement solidified earth composition of the present invention, the strength after solidification is the floor provided for supporting the foundation, improvement of temporary ground for moving work floors, heavy machinery, etc. during construction work It is preferable to achieve a numerical value effective when constructing a member that requires a certain level of strength in a portion other than a general structure, such as gravel, ie, a compressive strength of 10 to 15 N / mm 2 .
Also, from the viewpoint of workability, there is no problem if the size is over 100 mm in both directions in a zero stroke flow measured according to (11. Flow test) of the physical test method of JIS R 5201 cement. Is 120 mm or more.

本発明のセメント固化土組成物は、固化した改良土による作業床などの使用後、粉砕、解体することが必要となるが、解体時に粉砕しやすいという観点からは、静弾性率が硬化したコンクリートのそれよりも小さいことが望ましい。
コンクリートの場合の一般的な静弾性係数と圧縮強度の関係は、例えば建築学会では次式で示す値を採用している。
The cement solidified soil composition of the present invention needs to be pulverized and disassembled after use of a work floor or the like with the solidified improved soil. Desirably smaller than that.
As for the relationship between the general static elastic modulus and compressive strength in the case of concrete, for example, the Architectural Institute of Japan adopts a value represented by the following equation.

Figure 2007204974
Figure 2007204974

これを用いて、密度2.2g/cmで圧縮強度15N/mm(≒150kgf/cm2)のコンクリートの静弾性係数を求めると、1.67×10N/mmとなる。このことから、本発明のセメント固化土組成物において、固化後の圧縮強度15N/mm程度の改良土における静弾性係数は、1.5×10N/mm以下、好ましくはコンクリートに比較して約2/3程度である0.8〜1.0N/mmの範囲であることが好ましい。静弾性係数が小さいことは、同じ応力を掛けた場合のひずみが大きいことを示すものであることから、静弾性係数がこの範囲であれば、解体時に破砕しやすい材料といえる。 Using this, the static elastic modulus of concrete having a density of 2.2 g / cm 3 and a compressive strength of 15 N / mm 2 (≈150 kgf / cm 2) is 1.67 × 10 4 N / mm 2 . From this, in the cement solidified soil composition of the present invention, the static elastic modulus of the improved soil having a compressive strength of about 15 N / mm 2 after solidification is 1.5 × 10 4 N / mm 2 or less, preferably compared with concrete. Thus, it is preferably in the range of about 0.8 to 1.0 4 N / mm 2 which is about 2/3. A small static elastic modulus indicates a large strain when the same stress is applied. Therefore, if the static elastic coefficient is within this range, it can be said that the material is easily crushed during disassembly.

このようにして得られた本発明のセメント固化土組成物は、攪拌、混合した後、常法により作業用床などの形成に用いることができる。
代表的な使用態様としては、底盤コンクリートや基礎コンクリートの床付け面のレベルを揃えて正確な部材寸法を定めるための用途、その他、構造体の形成に使用しない「捨てコン」と総称されるコンクリート全般の代用、また、逆打ち工法において地下の先行コンクリート床版を施工するための作業用下地床、工事事務所など撤去を前提とする構造体用、或いは、仮設設備機器設置用として適用される改良地盤基礎、などが挙げられる。
The cement solidified earth composition of the present invention thus obtained can be used for forming a working floor or the like by a conventional method after stirring and mixing.
Typical uses include concrete for the purpose of aligning the level of flooring surface of bottom concrete and foundation concrete to determine accurate member dimensions, and other concrete that is not used to form a structure. Used as a substitute for general use, as a foundation floor for work to construct underground concrete floor slabs in the reverse casting method, for structures such as construction offices to be removed, or for installation of temporary equipment Improved ground foundation.

以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例1〜18)
以下に示す、シルト質発生土、砂質発生土、コンクリート破砕粉末、ポルトランドセメント、水、及び界面活性剤を表1に示すセメント固化土組成物の処方に従って配合し、攪拌、混合してセメント改良固化土を得た。
(1)使用材料
・シルト質発生土と砂質発生土の混合土:砂礫混合土(密度2.7g/cm,吸水率18.8%、シルト質発生土と砂質発生土との混合比:6/4)
・コンクリート破砕微粉末A(以下、摩砕微粉末と略記する):4.5mmのふるいに滞留し63mmのふるいを通過するコンクリート塊を摩砕して得られる4.5mm以下の細粒成分(密度2.2g/cm,吸水率14.0%)
・コンクリート破砕微粉末B(以下、圧搾微粉末と略記する):人頭大のコンクリート解体材を圧搾して細粒化したものから13.2mmのふるいで通過する細粒成分(密度2.14g/cm、吸水率14.3%)
・セメント
(a)普通ポルトランドセメント(N:密度3.16g/cm:太平洋セメント社製)
(b)早強ポルトランドセメント(H:密度3.14g/cm:太平洋セメント社製)
(c)高炉セメントB種(BB:密度3.02g/cm:太平洋セメント社製)
・水:千葉県印西市 工業用水
・界面活性剤:ポリカルボン酸系界面活性剤(竹本油脂社製、HP−8)
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, this invention is not limited to these.
(Examples 1-18)
The following silty-generating soil, sandy-generating soil, concrete crushed powder, Portland cement, water, and surfactant are blended according to the formulation of the cement solidified soil composition shown in Table 1, and stirred to mix to improve the cement. Solidified soil was obtained.
(1) Materials used: Mixed soil of silty-generated soil and sandy-generated soil: Gravel mixed soil (density 2.7 g / cm 3 , water absorption 18.8%, mixing of silty-generated soil and sand-generated soil Ratio: 6/4)
Concrete crushing fine powder A (hereinafter abbreviated as grinding fine powder): A fine grain component of 4.5 mm or less obtained by grinding a concrete lump that stays in a 4.5 mm sieve and passes through a 63 mm sieve ( (Density 2.2g / cm 3 , water absorption 14.0%)
・ Concrete crushing fine powder B (hereinafter abbreviated as pulverized fine powder): Fine-grained component (density 2.14 g) that passes through a 13.2 mm sieve from a finely crushed concrete demolition material. / Cm 3 , water absorption 14.3%)
Cement (a) Ordinary Portland cement (N: density 3.16 g / cm 3 : manufactured by Taiheiyo Cement)
(B) Early strong Portland cement (H: density 3.14 g / cm 3 : manufactured by Taiheiyo Cement)
(C) Blast furnace cement type B (BB: density 3.02 g / cm 3 : manufactured by Taiheiyo Cement)
・ Water: Inzai City, Chiba Industrial water ・ Surfactant: Polycarboxylic acid surfactant (manufactured by Takemoto Yushi Co., Ltd., HP-8)

Figure 2007204974
Figure 2007204974

なお、前記表1における砂礫混合土と破砕微粉末の単位量は絶乾状態のものを指す。
(3)材料の練り混ぜ方法
表1に示した材料の練り混ぜは、JIS R 5201セメントの物理試験方法の10.4.3練り混ぜに準じ、練り混ぜ量を8リットルとし、容量10リットルのモルタルミキサで行った。すなわち、練り鉢に規定量の水を入れ、次にセメントを入れた。その後直ちに低速でパドルを30秒間回転させ、固雲合土と微粉末を次の30秒間で投入した。パドル回転数を高速に切り替えて30秒間練り混ぜた後、90秒間停止させてパドルや練り鉢の周りを掻き落した。休止が終わったら60秒間練り混ぜて終了した。
In addition, the unit amount of the gravel mixed soil and the crushed fine powder in Table 1 refers to those in an absolutely dry state.
(3) Material kneading method The material kneading shown in Table 1 is based on 10.4.3 kneading of the physical test method of JIS R 5201 cement, the kneading amount is 8 liters, and the volume is 10 liters. This was done with a mortar mixer. That is, a specified amount of water was put into a kneading bowl, and then cement was put. Immediately after that, the paddle was rotated at low speed for 30 seconds, and solid cloud clay and fine powder were added in the next 30 seconds. The paddle rotation speed was switched to a high speed and kneaded for 30 seconds, then stopped for 90 seconds and scraped around the paddle and kneading bowl. When the pause was over, it was finished by mixing for 60 seconds.

(4)セメント改良固化土の評価
〔圧縮強度〕
圧縮強度は、JIS A 1142有機不純物を含む細骨材のモルタルの圧縮強度による試験方法に準じて測定した。すなわち、練り混ぜが終了した試料を、直径50mm×高さ100mmの型枠に二層に分けて詰め、試験材齢まで温度20℃の湿空状態で保管した。圧縮強度試験材齢の前日にJIS A 1132 3.4供試体の上面の仕上げに従って成型し、JIS A 1101に準じて圧縮強度試験を行った。なお、試験材齢は、28日とした。結果を、前記表1に示す。なお、表1においては、コンクリート破砕粉末を用いない対照例1〜5の処方とその試験結果を併記した。
表1に明らかなように、本発明のセメント固化土組成物により得られたセメント改良固化土は、硬化後の圧縮強度はいずれも10N/mm以上であり、実用上望ましい強度を達成していることがわかる。また、対照例と比較しても、大きく強度が低下する例はないことがわかる。
また、普通セメントを使用した場合の水セメント比について検討するに、水/セメント比を1.3とした場合に、微粉使用量と圧縮強度の関係は、微粉使用量が多いほど若干圧縮強度が低下するものの、13〜15N/mmの範囲となり、十分な強度を示すことがわかる。また、水セメント比と圧縮強度の関係は、高炉セメントB種(BB)の微粉末無しで水セメント比1.5の1ケースを除くと、概ね水セメント比が大きいほど圧縮強度は低い傾向にある。このことから、本発明において好ましい強度である10〜15N/mmの圧縮強度の改良土を得るには、水セメント比1.2〜1.5の範囲とするのが適当である。また、水セメント比が1.0〜1.2の範囲にすると、より一層の圧縮強度が実現する。これは通常の実施例上必要とされる強度を上回るものの、目的に応じてこの水セメント比を選択することも可能である。
(4) Evaluation of cement improved solidified soil [Compressive strength]
The compressive strength was measured according to a test method based on the compressive strength of fine aggregate mortar containing JIS A 1142 organic impurities. That is, the sample after kneading was packed in two layers in a mold having a diameter of 50 mm and a height of 100 mm, and stored in a humid air state at a temperature of 20 ° C. until the test material age. Compressive strength test The material was molded according to the finish of the upper surface of JIS A 1132 3.4 specimen on the day before the material age, and the compressive strength test was performed according to JIS A 1101. The test material age was 28 days. The results are shown in Table 1 above. In Table 1, the prescriptions of Comparative Examples 1 to 5 that do not use crushed concrete powder and the test results are also shown.
As is apparent from Table 1, the cement-improved solidified soil obtained from the cement-solidified soil composition of the present invention has a compressive strength after curing of 10 N / mm 2 or more, achieving a practically desirable strength. I understand that. Moreover, it turns out that there is no example in which intensity | strength falls large compared with a control example.
In addition, when examining the water-cement ratio when ordinary cement is used, when the water / cement ratio is 1.3, the relationship between the amount of fine powder used and the compressive strength is that the compressive strength is slightly higher as the amount of fine powder used is larger. Although it falls, it turns out that it becomes the range of 13-15 N / mm < 2 >, and shows sufficient intensity | strength. The relationship between the water cement ratio and the compressive strength is that the compressive strength tends to be lower as the water cement ratio is higher, except for one case of water cement ratio 1.5 without fine powder of blast furnace cement type B (BB). is there. Therefore, in order to obtain a modified soil compressive strength of 10 to 15 N / mm 2 is preferred strength in the present invention is suitably in the range of water-cement ratio 1.2-1.5. Further, when the water cement ratio is in the range of 1.0 to 1.2, further compressive strength is realized. Although this exceeds the strength required in a normal embodiment, it is possible to select this water cement ratio according to the purpose.

次に、本発明のセメント固化土組成物の他の物性について、以下のように評価した。その結果を表2に示す。
(フロー試験)
フロー試験は、JIS R 5201セメントの物理試験方法の11.フロー試験に準じた。すなわち、直径300mmの鋼製フローテーブルの上に、内径の下側が100mmで上側が70mm、高さ60mmのフローコーンを設置してコーンの中に試料を二層に詰める。フローコーンの上面を均し、フローコーンを上の方に抜き取って、試料の広がりを直交する2方向で測定し、これを0打フローとする。その後、15秒間に15回の落下振動を与え、試料の広がりを直交する2方向で測定し、これを15打フローとする。
このフロー値が大きいほど、流動性、作業性に優れると評価する。
Next, other physical properties of the cement solidified earth composition of the present invention were evaluated as follows. The results are shown in Table 2.
(Flow test)
The flow test is a physical test method for JIS R 5201 cement. According to the flow test. That is, on a 300 mm diameter steel flow table, a flow cone having a lower inner diameter of 100 mm, an upper side of 70 mm, and a height of 60 mm is installed, and samples are packed in two layers in the cone. The top surface of the flow cone is leveled, the flow cone is extracted upward, and the spread of the sample is measured in two directions perpendicular to each other. Thereafter, 15 drop vibrations are given for 15 seconds, and the spread of the sample is measured in two directions orthogonal to each other.
It is evaluated that the larger the flow value, the better the fluidity and workability.

(静弾性係数)
JIS A 1149コンクリートの静弾性係数試験方法に準じて、前記圧縮強度試験実施時に同時に測定した。
静弾性係数が小さいものほど、同じ応力を掛けた場合のひずみが大きいことを示すものであり、静弾性係数が大きいと、ひずみに対する抵抗力が大きくなるが、解体時には破壊しがたく、そのような観点から、0.8〜1.5×10N/mmの範囲であれば、本発明の好ましい範囲であり、解体時に破砕しやすい材料と評価することができる。
(Static modulus)
According to the static elastic modulus test method of JIS A 1149 concrete, it was measured simultaneously with the compressive strength test.
The smaller the static elastic modulus, the greater the strain when the same stress is applied. The larger the static elastic modulus, the greater the resistance to strain, but it is difficult to break during dismantling. From a simple viewpoint, if it is the range of 0.8-1.5 * 10 < 4 > N / mm < 2 >, it is the preferable range of this invention, and it can evaluate that it is a material which is easy to crush at the time of a disassembly.

Figure 2007204974
Figure 2007204974

本発明のセメント固化土組成物のフロー試験における0打フローの大きさは、本発明の改良固化土の流動性能を示す代表的な指標となる。本発明の改良固化土組成物を敷き均す用途とした場合の施工性においては、実用上この数値が100mmを超える大きさであることが好ましく、さらに好ましくは120mm以上である。
表2の結果より、本発明のセメント固化土組成物は、すべて100mmを超える大きさを達成しており、実用上十分な流動性を示すことがわかる。また、コンクリート破砕粉末の使用量が50%のものが、0打フローが大きくなり、流動性に優れることがわかる。
この結果は、いずれの水セメント比でも再生微粉が50%使用されることによって、コンクリート破砕粉末を加えない対照例に比較し、0打フローが大きくなり、流動性が大きく改善される結果となった。また、早強セメントの粉末度が他のセメントに比べて大きいため、微粒分が過多となり、著しい流動性の改良は見られなかった。
また、対照例の結果より、コンクリート破砕粉末を添加せず発生土のみを使用する場合に、十分な流動性を得るためには、単位水量とセメント量を増加させなければならないため、セメントのコストアップの影響が大きくなり、コストメリットが十分に得られないことがわかる。
The magnitude of the zero hit flow in the flow test of the cement solidified soil composition of the present invention is a representative index showing the flow performance of the improved solidified soil of the present invention. In terms of workability when the improved solidified earth composition of the present invention is used for leveling, it is practically preferable that this value exceeds 100 mm, and more preferably 120 mm or more.
From the results shown in Table 2, it can be seen that the cement solidified earth compositions of the present invention all achieved a size exceeding 100 mm and exhibited practically sufficient fluidity. Further, it can be seen that when the amount of the concrete crushed powder used is 50%, the zero hit flow becomes large and the fluidity is excellent.
This result shows that, by using 50% of recycled fine powder at any water cement ratio, compared to the control example in which no concrete crushed powder is added, the zero hit flow becomes larger and the fluidity is greatly improved. It was. Moreover, since the fineness of early-strength cement was larger than that of other cements, the amount of fine particles was excessive, and no significant improvement in fluidity was observed.
Also, from the results of the control example, when only the generated soil is used without adding the concrete crushed powder, the unit water amount and the cement amount must be increased in order to obtain sufficient fluidity. It can be seen that the effect of the increase becomes large and the cost merit cannot be obtained sufficiently.

静弾性係数試験結果によれば、表2に記載のように、普通セメントを使用し、水セメント比1.3とした場合に、微粉使用量と静弾性係数の関係は、微粉使用量が多いほど若干静弾性係数が低下する傾向にあるが、実施例はいずれも、目的とする0.8〜1.3×10N/mmの範囲となり、必要な耐ひずみ力を満たしながら、使用後の破砕を容易に行いうることがわかる。 According to the static elastic modulus test results, as shown in Table 2, when ordinary cement is used and the water cement ratio is 1.3, the relationship between the fine powder use amount and the static elastic modulus is large. Although the static elastic modulus tends to decrease somewhat, the examples all have a target range of 0.8 to 1.3 × 10 4 N / mm 2 and are used while satisfying the required strain resistance. It can be seen that the subsequent crushing can be performed easily.

このような実施例より、本発明のセメント固化土組成物によれば、建設工事を行うときの作業用床、重機等の移動のための仮設地盤改良、基礎を支えるための下に設けた敷き砂利等の代わりなど、一般的な構造体以外の部位に対して、必要十分な強度を発現する材料を安価に提供できること、必要な強度発現のためにセメント量が比較的多い配合比となる場合でも、必要最小限のセメント量で作業性の良い流動性を持つ材料を提供しうることがわかる。
本発明では、コンクリート破砕粉末、さらには、所望により建設発生土などのシルト質発生土、砂質発生土という、廃棄物を有効に利用することができる。また、使用後に再生する場合においても、本発明に係るセメント改良固化土は、コンクリート硬化物に比べて静弾性係数が低く、破砕処理が容易であるという利点をも有するものであり、材料の繰り返し利用により、簡易に、環境保全に貢献できる。
From such an example, according to the cement solidified earth composition of the present invention, the floor for working when carrying out construction work, the temporary ground improvement for moving heavy equipment, etc., the laying provided under the foundation to support the foundation For materials other than general structures such as gravel, etc. that can provide a material that exhibits the necessary and sufficient strength at a low cost, and when the blending ratio is relatively high due to the required strength. However, it can be seen that a material having good workability and fluidity can be provided with a minimum amount of cement.
In the present invention, wastes such as concrete crushed powder, silty-generated soil such as construction-generated soil, and sand-generated soil can be effectively used as desired. In addition, even when reclaimed after use, the cement-improved solidified soil according to the present invention has an advantage that the static elastic modulus is lower than that of a hardened concrete and easy crushing treatment. Use can easily contribute to environmental conservation.

Claims (7)

シルト質土、砂質土、コンクリート破砕粉末、ポルトランドセメント、水、及び、界面活性剤を含有するセメント固化土組成物。   A cement solidified soil composition containing silty soil, sandy soil, concrete crushed powder, Portland cement, water and a surfactant. 前記シルト質土と砂質土との総量100質量部に対するコンクリート破砕粉末の混合割合が40質量部を超え、且つ、90質量部までの範囲である請求項1記載のセメント固化土組成物。   The cement solidified soil composition according to claim 1, wherein a mixing ratio of the crushed concrete powder to a total amount of 100 parts by mass of the silty soil and the sandy soil exceeds 40 parts by mass and up to 90 parts by mass. 前記ポルトランドセメント1質量部に対して、水1.0〜1.5質量部、シルト質土と砂質土とコンクリート破砕粉末の混合物2.5〜4.5質量部、及び、界面活性剤0.0002〜0.02質量部を含有する請求項1又は請求項2に記載のセメント固化土組成物。   1.0 to 1.5 parts by mass of water, 2.5 to 4.5 parts by mass of a mixture of silty soil, sandy soil and concrete crushed powder, and 0 surfactant for 1 part by mass of Portland cement The cement solidified earth composition according to claim 1 or 2, comprising .0002 to 0.02 parts by mass. 前記シルト質土と砂質土との混合質量比が3:7〜7:3の範囲である請求項1乃至請求項3のいずれか1項に記載のセメント固化土組成物。   The cement solidified soil composition according to any one of claims 1 to 3, wherein a mixing mass ratio of the silty soil and the sandy soil is in a range of 3: 7 to 7: 3. 前記コンクリート破砕粉末が、コンクリート解体材を圧搾して細粒化し、開口径13.2mmのふるいを通過する細粒である請求項1乃至請求項4のいずれか1項に記載のセメント固化土組成物。   The cement solidified soil composition according to any one of claims 1 to 4, wherein the concrete pulverized powder is a fine granule that is obtained by pressing a concrete demolition material into fine particles and passing through a sieve having an opening diameter of 13.2 mm. object. 前記コンクリート破砕粉末が、コンクリート解体材を圧搾して細粒化し、開口径4.5mm乃至開口径13.2mmのふるいに滞留し、且つ、開口径63mmのふるいを通過するコンクリート塊を摩砕して得られる開口径4.75mmのふるいを通過する細粒である請求項1乃至請求項4のいずれか1項に記載のセメント固化土組成物。   The concrete crushed powder is squeezed into a concrete demolition material, pulverized, and retained in a sieve having an opening diameter of 4.5 mm to an opening diameter of 13.2 mm. The cement-solidified soil composition according to any one of claims 1 to 4, wherein the cement-solidified soil composition is a fine particle that passes through a sieve having an opening diameter of 4.75 mm obtained in the above. 前記シルト質土及び砂質土が、JIS A 1228に規定されるコーン指数が200kN/m以上の値を示す請求項1乃至請求項4のいずれか1項に記載のセメント固化土組成物。 The cement solidified soil composition according to any one of claims 1 to 4, wherein the silty soil and the sandy soil have a cone index defined by JIS A 1228 of 200 kN / m 2 or more.
JP2006023048A 2006-01-31 2006-01-31 Cement solidified soil composition Expired - Fee Related JP4814643B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006023048A JP4814643B2 (en) 2006-01-31 2006-01-31 Cement solidified soil composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006023048A JP4814643B2 (en) 2006-01-31 2006-01-31 Cement solidified soil composition

Publications (2)

Publication Number Publication Date
JP2007204974A true JP2007204974A (en) 2007-08-16
JP4814643B2 JP4814643B2 (en) 2011-11-16

Family

ID=38484673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006023048A Expired - Fee Related JP4814643B2 (en) 2006-01-31 2006-01-31 Cement solidified soil composition

Country Status (1)

Country Link
JP (1) JP4814643B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010215741A (en) * 2009-03-16 2010-09-30 Penta Ocean Construction Co Ltd Cement-based solidification-treated soil and method for producing the same
CN106747001A (en) * 2016-12-26 2017-05-31 上海中冶环境工程科技有限公司 A kind of porous pavement system and its construction method
CN106830816A (en) * 2016-12-26 2017-06-13 上海中冶环境工程科技有限公司 A kind of cement stabilized macadam for pervious concrete
CN108358529A (en) * 2018-05-04 2018-08-03 中铁二十三局集团第工程有限公司 A kind of compound improvement roadbed material of low liquid limit silt and preparation method thereof
CN110759689A (en) * 2019-11-07 2020-02-07 福建建工建材科技开发有限公司 Sponge-like solidified soil with strong water absorption and slow water release
JP2020033731A (en) * 2018-08-29 2020-03-05 株式会社不動テトラ Production method of fluidized sand and fluidized sand
EP4001377A1 (en) 2020-11-24 2022-05-25 RGS Nordic A/S A method of preparing a construction site and the prepared construction site
CN115536324A (en) * 2022-10-21 2022-12-30 河海大学 High-content waste sand wall post-grouting material and grouting method
CN116081965A (en) * 2022-08-31 2023-05-09 青岛市地铁六号线有限公司 Clay curing agent and pumpable concrete using clay curing agent and preparation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000170154A (en) * 1998-12-04 2000-06-20 Nitto Techno Group:Kk Material for improving ground
JP2001011844A (en) * 1999-06-30 2001-01-16 Kyoei Sangyo Kk Improved soil
JP2003160369A (en) * 2001-11-21 2003-06-03 Arumaare Engineering Kk Concrete and its manufacturing method
JP2003313537A (en) * 2001-06-15 2003-11-06 Kao Corp Slurry
JP2005262008A (en) * 2004-03-16 2005-09-29 Daicel Chem Ind Ltd Solidification agent and method for wet sludge treatment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000170154A (en) * 1998-12-04 2000-06-20 Nitto Techno Group:Kk Material for improving ground
JP2001011844A (en) * 1999-06-30 2001-01-16 Kyoei Sangyo Kk Improved soil
JP2003313537A (en) * 2001-06-15 2003-11-06 Kao Corp Slurry
JP2003160369A (en) * 2001-11-21 2003-06-03 Arumaare Engineering Kk Concrete and its manufacturing method
JP2005262008A (en) * 2004-03-16 2005-09-29 Daicel Chem Ind Ltd Solidification agent and method for wet sludge treatment

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010215741A (en) * 2009-03-16 2010-09-30 Penta Ocean Construction Co Ltd Cement-based solidification-treated soil and method for producing the same
CN106747001A (en) * 2016-12-26 2017-05-31 上海中冶环境工程科技有限公司 A kind of porous pavement system and its construction method
CN106830816A (en) * 2016-12-26 2017-06-13 上海中冶环境工程科技有限公司 A kind of cement stabilized macadam for pervious concrete
CN108358529A (en) * 2018-05-04 2018-08-03 中铁二十三局集团第工程有限公司 A kind of compound improvement roadbed material of low liquid limit silt and preparation method thereof
JP2020033731A (en) * 2018-08-29 2020-03-05 株式会社不動テトラ Production method of fluidized sand and fluidized sand
JP7213609B2 (en) 2018-08-29 2023-01-27 株式会社不動テトラ Method for producing fluidized sand
CN110759689A (en) * 2019-11-07 2020-02-07 福建建工建材科技开发有限公司 Sponge-like solidified soil with strong water absorption and slow water release
EP4001377A1 (en) 2020-11-24 2022-05-25 RGS Nordic A/S A method of preparing a construction site and the prepared construction site
CN116081965A (en) * 2022-08-31 2023-05-09 青岛市地铁六号线有限公司 Clay curing agent and pumpable concrete using clay curing agent and preparation method
CN115536324A (en) * 2022-10-21 2022-12-30 河海大学 High-content waste sand wall post-grouting material and grouting method

Also Published As

Publication number Publication date
JP4814643B2 (en) 2011-11-16

Similar Documents

Publication Publication Date Title
JP4814643B2 (en) Cement solidified soil composition
Nguyen et al. Valorization of seashell by-products in pervious concrete pavers
Elinwa et al. Assessing of the fresh concrete properties of self-compacting concrete containing sawdust ash
JP6022747B2 (en) High strength mortar composition
JP5130359B2 (en) Counter weight
Meko et al. Enhancement of self-compactability of fresh self-compacting concrete: A review
Ravitheja et al. Impact on cementitious materials on high strength concrete–A review
Rathore et al. Green concrete: Using quarry waste of sandstone as fine aggregate with high levels of microfines
JPH0813413A (en) Improvement method for poor subgrade soil
Kohandelnia et al. Multiscale investigation of self-consolidating earthen materials using a novel concrete-equivalent mortar approach
KR100639298B1 (en) Method for solidifying soil and industrial wastes, and soil and industrial wastes solidified by the method
JP2012229376A (en) Wet sand of coal ash and various construction methods utilizing the wet sand of coal ash
JP4890822B2 (en) Joint filling concrete and tunnel secondary lining concrete
JP5812623B2 (en) High-strength porous concrete composition and high-strength porous concrete cured body
Valdez et al. Use of waste from the marble industry as filler for the production of self-compacting concretes
JP2018065708A (en) Concrete composition for pavement, and cured body of concrete for pavement
JP2004155636A (en) Construction or building material using slag or fly ash as main material
JP7042016B1 (en) How to make soil cement
JP2003128454A (en) Cast-in-site, permeable concrete and pavement
JP2004345885A (en) Hydraulic composition, backfill material for ground using the same, non-high strength hardened part structural material and backfill process for excavated ground
Fapohunda et al. Strength characteristics of concrete having crushed bone as partial replacement of fine aggregates at different water-cement ratios
JP2011052442A (en) Pavement structure and construction method of paving
JP6983522B2 (en) Cement composition
JP4979365B2 (en) Concrete using concrete admixture
Sam et al. Self compacting concrete with recycled coarse aggregates

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110826

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees