JP7068831B2 - 研磨装置 - Google Patents

研磨装置 Download PDF

Info

Publication number
JP7068831B2
JP7068831B2 JP2018006358A JP2018006358A JP7068831B2 JP 7068831 B2 JP7068831 B2 JP 7068831B2 JP 2018006358 A JP2018006358 A JP 2018006358A JP 2018006358 A JP2018006358 A JP 2018006358A JP 7068831 B2 JP7068831 B2 JP 7068831B2
Authority
JP
Japan
Prior art keywords
optical fiber
light
throwing
polishing
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018006358A
Other languages
English (en)
Other versions
JP2019125733A (ja
JP2019125733A5 (ja
Inventor
利文 金馬
信行 高橋
将毅 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2018006358A priority Critical patent/JP7068831B2/ja
Priority to KR1020190004473A priority patent/KR102384828B1/ko
Priority to SG10201900354WA priority patent/SG10201900354WA/en
Priority to TW108101492A priority patent/TWI750444B/zh
Priority to US16/248,599 priority patent/US10663287B2/en
Priority to CN201910043492.5A priority patent/CN110052961B/zh
Publication of JP2019125733A publication Critical patent/JP2019125733A/ja
Publication of JP2019125733A5 publication Critical patent/JP2019125733A5/ja
Application granted granted Critical
Publication of JP7068831B2 publication Critical patent/JP7068831B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
    • G01B11/0625Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating with measurement of absorption or reflection
    • G01B11/0633Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating with measurement of absorption or reflection using one or more discrete wavelengths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/005Control means for lapping machines or devices
    • B24B37/013Devices or means for detecting lapping completion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/005Control means for lapping machines or devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/34Accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/12Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
    • G01B11/0625Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating with measurement of absorption or reflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/264Optical coupling means with optical elements between opposed fibre ends which perform a function other than beam splitting
    • G02B6/266Optical coupling means with optical elements between opposed fibre ends which perform a function other than beam splitting the optical element being an attenuator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67092Apparatus for mechanical treatment
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3502Optical coupling means having switching means involving direct waveguide displacement, e.g. cantilever type waveguide displacement involving waveguide bending, or displacing an interposed waveguide between stationary waveguides
    • G02B6/3506Translating the waveguides along the beam path, e.g. by varying the distance between opposed waveguide ends, or by translation of the waveguide ends
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Description

本発明は、膜が表面に形成されているウェーハを研磨する研磨装置に関し、特に、ウェーハからの反射光に含まれる光学情報を解析することによりウェーハの膜厚を検出しながらウェーハを研磨する研磨装置に関する。
半導体デバイスの製造プロセスには、SiOなどの絶縁膜を研磨する工程や、銅、タングステンなどの金属膜を研磨する工程などの様々な工程が含まれる。裏面照射型CMOSセンサおよびシリコン貫通電極(TSV)の製造工程では、絶縁膜や金属膜の研磨工程の他にも、シリコン層(シリコンウェーハ)を研磨する工程が含まれる。ウェーハの研磨は、その表面を構成する膜(絶縁膜、金属膜、シリコン層など)の厚さが所定の目標値に達したときに終了される。
ウェーハの研磨は研磨装置を使用して行われる。絶縁膜やシリコン層などの非金属膜の膜厚を測定するために、研磨装置は、一般に、光学式膜厚測定装置を備える。この光学式膜厚測定装置は、光源から発せられた光をウェーハの表面に導き、ウェーハからの反射光の強度を分光器で測定し、反射光のスペクトルを解析することで、ウェーハの膜厚を測定するように構成される。
特開2017-5014号公報
光学式膜厚測定装置においては、光源が発する光の量は、ウェーハの膜厚測定に影響を与える。例えば、ウェーハ上の複数の測定点に導かれる光の量が異なると、光学的条件の違いに起因して膜厚の測定精度が変化する。結果として、ウェーハの膜厚が同じである場合でも、膜厚の測定値が変わりうる。さらに、分光器の有効測定範囲に対してウェーハからの反射光の量が大きすぎると、正確な膜厚測定が阻害されてしまう。
そこで、本発明は、ウェーハに照射される光の量を調整することで正確な膜厚測定を行うことができる研磨装置を提供することを目的とする。
本発明の一態様は、研磨パッドを支持するための研磨テーブルと、ウェーハを前記研磨パッドに押し付けるための研磨ヘッドと、光源と、前記研磨テーブル内の異なる位置に配置された複数の先端を有する投光ファイバーと、前記研磨テーブル内の前記異なる位置に配置された複数の先端を有する受光ファイバーと、前記受光ファイバーに接続され、前記受光ファイバーを通じて伝送されるウェーハからの反射光を波長に従って分解して各波長での反射光の強度を測定する分光器と、前記反射光の強度と波長との関係を示す分光波形に基づいてウェーハの膜厚を決定する処理部と、前記投光ファイバーを伝達される前記光源からの光の量を減じる第1減光器および第2減光器とを備え、前記投光ファイバーは、第1投光ファイバーおよび第2投光ファイバーを有し、前記第1投光ファイバーおよび前記第2投光ファイバーの一端は前記光源に接続され、前記第1投光ファイバーおよび前記第2投光ファイバーの他端は、前記異なる位置に配置された前記投光ファイバーの先端を構成し、前記第1減光器は前記第1投光ファイバーおよび前記第2投光ファイバーに取り付けられ、前記第2減光器は前記第1投光ファイバーおよび前記第2投光ファイバーのうちの少なくとも1つに取り付けられ、前記第2減光器は、前記第1投光ファイバーおよび前記第2投光ファイバーから前記ウェーハに導かれる光の量が同じになるように、前記第1投光ファイバーおよび前記第2投光ファイバーのうちの少なくとも1つを伝達される前記光源からの光の量を減じるように構成されていることを特徴とする研磨装置である。
本発明の好ましい態様は、前記第1減光器および前記第2減光器のそれぞれは、内部に光通路が形成されたベース部材と、前記光通路に挿入された光ファイバー保持体と、前記光ファイバー保持体の前記ベース部材に対する相対位置を調節する相対位置調節機構を備えることを特徴とする。
本発明の好ましい態様は、前記光ファイバー保持体の外面には目盛りが付されていることを特徴とする。
本発明の好ましい態様は、前記相対位置調節機構は、前記光ファイバー保持体を前記ベース部材に対して移動させるモータ駆動型移動機構を備えていることを特徴とする。
本発明の好ましい態様は、前記投光ファイバーから発せられた光の量が目標値に達するまで、前記第1減光器の前記モータ駆動型移動機構を操作する動作制御部をさらに備えたことを特徴とする。
本発明の好ましい態様は、前記第1投光ファイバーおよび前記第2投光ファイバーから発せられた光の量が互いに等しくなるまで、前記第2減光器の前記モータ駆動型移動機構を操作する動作制御部をさらに備えたことを特徴とする。
本発明の好ましい態様は、前記第1減光器および前記第2減光器のそれぞれは、前記光通路に配置された絞りをさらに備えることを特徴とする。
本発明の好ましい態様は、前記第1投光ファイバーおよび前記第2投光ファイバーの一部は束ねられて幹光ファイバーを構成し、前記第1投光ファイバーおよび前記第2投光ファイバーの他の部分は、前記幹光ファイバーから分岐した複数の枝光ファイバーを構成し、前記第1減光器は前記幹光ファイバーに取り付けられ、前記第2減光器は前記複数の枝光ファイバーのうちの少なくとも1つに取り付けられていることを特徴とする。
本発明の好ましい態様は、前記光源と前記分光器に接続されたモニタリング光ファイバーと、前記モニタリング光ファイバーに取り付けられた第3減光器をさらに備えたことを特徴とする。
本発明の一参考例は、研磨パッドを支持するための研磨テーブルと、ウェーハを前記研磨パッドに押し付けるための研磨ヘッドと、光源と、前記研磨テーブル内の所定の位置に配置された先端を有する投光ファイバーと、前記研磨テーブル内の前記所定の位置に配置された先端を有する受光ファイバーと、前記受光ファイバーに接続され、前記受光ファイバーを通じて伝送されるウェーハからの反射光を波長に従って分解して各波長での反射光の強度を測定する分光器と、前記反射光の強度と波長との関係を示す分光波形に基づいてウェーハの膜厚を決定する処理部と、前記投光ファイバーに取り付けられた減光器を備えたことを特徴とする研磨装置である。
上記参考例の好ましい態様は、前記減光器は、内部に光通路が形成されたベース部材と、前記光通路に挿入された光ファイバー保持体と、前記光ファイバー保持体の前記ベース部材に対する相対位置を調節する相対位置調節機構を備えることを特徴とする。
上記参考例の好ましい態様は、前記光ファイバー保持体の外面には目盛りが付されていることを特徴とする。
上記参考例の好ましい態様は、前記相対位置調節機構は、前記光ファイバー保持体を前記ベース部材に対して移動させるモータ駆動型移動機構を備えていることを特徴とする。
上記参考例の好ましい態様は、前記投光ファイバーから発せられた光の量が目標値に達するまで、前記モータ駆動型移動機構を操作する動作制御部をさらに備えたことを特徴とする。
上記参考例の好ましい態様は、前記減光器は、前記光通路に配置された絞りをさらに備えることを特徴とする。
本発明によれば、第1減光器は、光源から発せられた光の全体の量を調整することができる。より具体的には、ウェーハからの反射光の量が分光器の有効測定範囲内に収まるように、光源からの光の量を第1減光器によって調整することができる。したがって、分光器は、反射光の波長ごとの強度を正しく測定することができ、結果として正確な膜厚測定が達成できる。
第2減光器は、第1投光ファイバーおよび第2投光ファイバーからウェーハに導かれる光の量をバランスさせる、すなわち複数の投光ファイバーからウェーハに導かれる光の量を同じとすることができる。結果として、ウェーハ上の複数の測定点において同一の光学的条件下でウェーハの膜厚を測定することができる。
さらに、本発明によれば、光ファイバー保持体のベース部材に対する相対的な位置を調節することにより、投光ファイバーを伝送される光の量を微調整することができる。さらに、ウェーハからの反射光の量が分光器の有効測定範囲内に収まるように、光源からの光の量を減光器によって調整することができる。したがって、分光器は、反射光の波長ごとの強度を正しく測定することができ、結果として正確な膜厚測定が達成できる。
本発明の一実施形態に係る研磨装置を示す図である。 研磨パッドおよび研磨テーブルを示す上面図である。 光学式膜厚測定器の原理を説明するための模式図である。 分光波形の一例を示すグラフである。 図4に示す分光波形にフーリエ変換処理を行って得られた周波数スペクトルを示すグラフである。 光学式膜厚測定器(膜厚測定装置)の一実施形態を示す拡大図である。 第1減光器の構成の一実施形態を示す模式図である。 第1減光器の外観を示す図である。 相対位置調節機構の他の実施形態を示す図である。 図9に示す第1減光器の構造を示す断面図である。 第2減光器の構成の一実施形態を示す模式図である。 第1減光器の構成の他の実施形態を示す模式図である。 光学式膜厚測定器(膜厚測定装置)の他の実施形態を示す拡大図である。 光学式膜厚測定器(膜厚測定装置)のさらに他の実施形態を示す拡大図である。
以下、本発明の実施形態について図面を参照して説明する。図1は、本発明の一実施形態に係る研磨装置を示す図である。図1に示すように、研磨装置は、研磨パッド1を支持する研磨テーブル3と、ウェーハWを保持しウェーハWを研磨テーブル3上の研磨パッド1に押し付ける研磨ヘッド5と、研磨パッド1に研磨液(例えばスラリー)を供給するための研磨液供給ノズル10と、ウェーハWの研磨を制御する動作制御部12とを備えている。
研磨テーブル3は、テーブル軸3aを介してその下方に配置されるテーブルモータ19に連結されており、このテーブルモータ19により研磨テーブル3が矢印で示す方向に回転されるようになっている。この研磨テーブル3の上面には研磨パッド1が貼付されており、研磨パッド1の上面がウェーハWを研磨する研磨面1aを構成している。研磨ヘッド5は研磨ヘッドシャフト16の下端に連結されている。研磨ヘッド5は、真空吸引によりその下面にウェーハWを保持できるように構成されている。研磨ヘッドシャフト16は、図示しない上下動機構により上下動できるようになっている。
ウェーハWの研磨は次のようにして行われる。研磨ヘッド5および研磨テーブル3をそれぞれ矢印で示す方向に回転させ、研磨液供給ノズル10から研磨パッド1上に研磨液(スラリー)を供給する。この状態で、研磨ヘッド5は、ウェーハWを研磨パッド1の研磨面1aに押し付ける。ウェーハWの表面は、研磨液の化学的作用と研磨液に含まれる砥粒の機械的作用により研磨される。
研磨装置は、ウェーハWの膜厚を測定する光学式膜厚測定器(膜厚測定装置)25を備えている。この光学式膜厚測定器25は、光を発する光源30と、研磨テーブル3内の異なる位置に配置された複数の先端34a,34bを有する投光ファイバー34と、研磨テーブル3内の前記異なる位置に配置された複数の先端50a,50bを有する受光ファイバー50と、受光ファイバー50を通じて伝送されるウェーハWからの反射光を波長に従って分解して各波長での反射光の強度を測定する分光器26と、反射光の強度と波長との関係を示す分光波形を生成する処理部27とを備えている。処理部27は動作制御部12に接続されている。処理部27および動作制御部12は、それぞれ専用または汎用コンピュータから構成されている。処理部27および動作制御部12は、1つのコンピュータから構成されてもよい。
投光ファイバー34は光源30に接続されており、光源30から発せられた光をウェーハWの表面に導くように配置されている。受光ファイバー50は分光器26に接続されており、ウェーハWの表面からの反射光を分光器26に導くように配置されている。光源30は、ハロゲンランプ、またはキセノンランプなどの発光体を備えている。
投光ファイバー34の一方の先端34aと、受光ファイバー50の一方の先端50aは、互いに隣接しており、これらの先端34a,50aは第1センサヘッド61を構成する。投光ファイバー34の他方の先端34bと、受光ファイバー50の他方の先端50bは、互いに隣接しており、これらの先端34b,50bは第2センサヘッド62を構成する。研磨パッド1は、第1センサヘッド61および第2センサヘッド62の上方に位置する通孔1b,1cを有しており、第1センサヘッド61および第2センサヘッド62は、これらの通孔1b,1cを通じて研磨パッド1上のウェーハWに光を導き、ウェーハWからの反射光を受けることができるようになっている。
一実施形態では、投光ファイバー34は研磨テーブル3内の所定の位置に配置された1つの先端のみを有してもよく、同様に受光ファイバー50は研磨テーブル3内の前記所定の位置に配置された1つの先端のみを有してもよい。この場合も、投光ファイバー34の先端と受光ファイバー50の先端は互いに隣接して配置され、投光ファイバー34の先端と受光ファイバー50の先端は、研磨パッド1上のウェーハWに光を導き、ウェーハWからの反射光を受けるセンサヘッドを構成する。
図2は、研磨パッド1および研磨テーブル3を示す上面図である。第1センサヘッド61および第2センサヘッド62は、研磨テーブル3の中心から異なる距離に位置しており、かつ研磨テーブル3の周方向において互いに離れて配置されている。図2に示す実施形態では、第2センサヘッド62は、研磨テーブル3の中心に関して第1センサヘッド61の反対側に配置されている。第1センサヘッド61および第2センサヘッド62は、研磨テーブル3が一回転するたびに異なる軌跡を描いてウェーハWを交互に横切る。具体的には、第1センサヘッド61はウェーハWの中心を横切り、第2センサヘッド62はウェーハWのエッジ部のみを横切る。第1センサヘッド61および第2センサヘッド62は、交互にウェーハWに光を導き、ウェーハWからの反射光を受ける。
ウェーハWの研磨中は、投光ファイバー34から光がウェーハWに照射され、受光ファイバー50によってウェーハWからの反射光が受光される。ウェーハWからの反射光は受光ファイバー50を通って分光器26に導かれる。分光器26は、反射光を波長に従って分解して各波長での反射光の強度を所定の波長範囲に亘って測定し、得られた光強度データを処理部27に送る。この光強度データは、ウェーハWの膜厚を反映した光学信号であり、反射光の強度及び対応する波長から構成される。処理部27は、光強度データから波長ごとの光の強度を表わす分光波形を生成する。
図3は、光学式膜厚測定器25の原理を説明するための模式図である。図3に示す例では、ウェーハWは、下層膜と、その上に形成された上層膜とを有している。上層膜は、例えばシリコン層または絶縁膜などの、光の透過を許容する膜である。ウェーハWに照射された光は、媒質(図3の例では水)と上層膜との界面、および上層膜と下層膜との界面で反射し、これらの界面で反射した光の波が互いに干渉する。この光の波の干渉の仕方は、上層膜の厚さ(すなわち光路長)に応じて変化する。このため、ウェーハWからの反射光から生成される分光波形は、上層膜の厚さに従って変化する。
分光器26は、反射光を波長に従って分解し、反射光の強度を波長ごとに測定する。処理部27は、分光器26から得られた反射光の強度データ(光学信号)から分光波形を生成する。この分光波形は、光の波長と強度との関係を示す線グラフとして表される。光の強度は、後述する相対反射率などの相対値として表わすこともできる。
図4は、分光波形の一例を示すグラフである。図4において、縦軸はウェーハWからの反射光の強度を示す相対反射率を表し、横軸は反射光の波長を表す。相対反射率とは、反射光の強度を示す指標値であり、光の強度と所定の基準強度との比である。各波長において光の強度(実測強度)を所定の基準強度で割ることにより、装置の光学系や光源固有の強度のばらつきなどの不要なノイズが実測強度から除去される。
基準強度は、各波長について予め測定された光の強度であり、相対反射率は各波長において算出される。具体的には、各波長での光の強度(実測強度)を、対応する基準強度で割り算することにより相対反射率が求められる。基準強度は、例えば、第1センサヘッド61または第2センサヘッド62から発せられた光の強度を直接測定するか、または第1センサヘッド61または第2センサヘッド62から鏡に光を照射し、鏡からの反射光の強度を測定することによって得られる。あるいは、基準強度は、膜が形成されていないシリコンウェーハ(ベアウェーハ)を研磨パッド1上で水の存在下で水研磨しているとき、または上記シリコンウェーハ(ベアウェーハ)が研磨パッド1上に置かれているときに分光器26により測定されたシリコンウェーハからの反射光の強度としてもよい。実際の研磨では、実測強度からダークレベル(光を遮断した条件下で得られた背景強度)を引き算して補正実測強度を求め、さらに基準強度から上記ダークレベルを引き算して補正基準強度を求め、そして、補正実測強度を補正基準強度で割り算することにより、相対反射率が求められる。具体的には、相対反射率R(λ)は、次の式(1)を用いて求めることができる。
Figure 0007068831000001
ここで、λは波長であり、E(λ)はウェーハから反射した光の波長λでの強度であり、B(λ)は波長λでの基準強度であり、D(λ)は光を遮断した条件下で測定された波長λでの背景強度(ダークレベル)である。
処理部27は、分光波形にフーリエ変換処理(例えば、高速フーリエ変換処理)を行って周波数スペクトルを生成し、周波数スペクトルからウェーハWの膜厚を決定する。図5は、図4に示す分光波形にフーリエ変換処理を行って得られた周波数スペクトルを示すグラフである。図5において、縦軸は分光波形に含まれる周波数成分の強度を表し、横軸は膜厚を表す。周波数成分の強度は、正弦波として表される周波数成分の振幅に相当する。分光波形に含まれる周波数成分は、所定の関係式を用いて膜厚に変換され、図5に示すような膜厚と周波数成分の強度との関係を示す周波数スペクトルが生成される。上述した所定の関係式は、周波数成分を変数とした、膜厚を表す一次関数であり、膜厚の実測結果、光学的膜厚測定シミュレーション、理論式などから求めることができる。
図5に示すグラフにおいて、周波数成分の強度のピークは膜厚t1で現れる。言い換えれば、膜厚t1において、周波数成分の強度が最も大きくなる。つまり、この周波数スペクトルは、膜厚がt1であることを示している。このようにして、処理部27は、周波数成分の強度のピークに対応する膜厚を決定する。
処理部27は、膜厚測定値として膜厚t1を動作制御部12に出力する。動作制御部12は、処理部27から送られた膜厚t1に基づいて研磨動作(例えば、研磨終了動作)を制御する。例えば、動作制御部12は、膜厚t1が予め設定された目標値に達したときに、ウェーハWの研磨を終了する。
図6は、光学式膜厚測定器(膜厚測定装置)25の一実施形態を示す拡大図である。投光ファイバー34は、第1投光ファイバー36および第2投光ファイバー37を有している。第1投光ファイバー36および第2投光ファイバー37のそれぞれは、複数の素線光ファイバーから構成されている。第1投光ファイバー36を構成する複数の素線光ファイバーの端部は結束具32で束ねられている。同様に、第2投光ファイバー37を構成する複数の素線光ファイバーの端部は結束具33で束ねられている。第1投光ファイバー36および第2投光ファイバー37の一端は光源30に接続され、第1投光ファイバー36および第2投光ファイバー37の他端は、投光ファイバー34の先端34a,34bを構成する。
第1投光ファイバー36および第2投光ファイバー37の一部は結束具31で束ねられて幹光ファイバー35を構成している。第1投光ファイバー36および第2投光ファイバー37の他の部分は、幹光ファイバー35から分岐した第1枝光ファイバー36Aおよび第2枝光ファイバー37Bをそれぞれ構成している。枝光ファイバー36A,37Bの先端は投光ファイバー34の先端34a,34bを構成する。以下の説明では、枝光ファイバー36Aの先端を先端34aと称し、枝光ファイバー37Bの先端を先端34bと称することがある。
幹光ファイバー35の端部(すなわち、第1投光ファイバー36および第2投光ファイバー37の光源側端部)は、第1減光器70を介して光源30に接続されている。第1減光器70は、光源30から発せられた光の量を調整する、すなわち光量を減じる機能を有する。第1減光器70は、幹光ファイバー35に取り付けられている。すなわち、第1減光器70は、第1投光ファイバー36および第2投光ファイバー37の両方に取り付けられている。
本実施形態では、幹光ファイバー35の端部は第1減光器70に接続され、第1減光器70は光源30に固定されている。一実施形態では、第1減光器70は、幹光ファイバー35に組み込まれてもよい。具体的には、幹光ファイバー35は、直線上に並ぶ上流側幹光ファイバーおよび下流側幹光ファイバーを有し、第1減光器70は上流側幹光ファイバーと下流側幹光ファイバーの間に配置されてもよい。
図6に示す実施形態では、1本の幹光ファイバー35が2本の枝光ファイバー36A,37Bに分岐しているが、素線光ファイバーを追加することにより、3本以上の枝光ファイバーに分岐することも可能である。さらに、素線光ファイバーを追加することにより、ファイバーの径を簡単に大きくすることができる。このような多数の素線光ファイバーから構成される光ファイバーは、曲げやすく、かつ折れにくいという利点を備えている。
受光ファイバー50は、第1受光ファイバー56および第2受光ファイバー57を備えている。第1受光ファイバー56および第2受光ファイバー57のそれぞれは、複数の素線光ファイバーから構成されている。第1受光ファイバー56を構成する複数の素線光ファイバーの端部は結束具51で結束されている。同様に、第2受光ファイバー57を構成する複数の素線光ファイバーの端部は結束具52で結束されている。受光ファイバー50の先端50a,50bは、第1受光ファイバー56および第2受光ファイバー57の先端からそれぞれ構成されている。
第1枝光ファイバー36Aの先端34aと第1受光ファイバー56の先端50aは第1センサヘッド61を構成し、第2枝光ファイバー37Bの先端34bと第2受光ファイバー57の先端50bは第2センサヘッド62を構成している。第1受光ファイバー56および第2受光ファイバー57の一部は結束具53により束ねられて幹光ファイバー58を構成している。第1受光ファイバー56および第2受光ファイバー57の他の部分は、幹光ファイバー58から分岐した枝光ファイバーを構成する。幹光ファイバー58は、分光器26に接続されている。分光器26は処理部27に電気的に接続されている。
本実施形態では、受光ファイバー50を構成する第1受光ファイバー56および第2受光ファイバー57は分光器26に接続されている。ウェーハWの研磨中は第1受光ファイバー56および第2受光ファイバー57の両方を通じて光が分光器26に伝達されるが、ウェーハWからの反射光以外の光の強度は極めて低いので、あるしきい値以上の強度を持つ光のみを膜厚測定に使用することで、正確な膜厚測定が可能である。一実施形態では、第1受光ファイバー56または第2受光ファイバー57のいずれか一方を分光器26に選択的に接続する光スイッチを、受光ファイバー56,57と分光器26との間に配置してもよい。
本実施形態では、第2減光器72は第1枝光ファイバー36A(すなわち第1投光ファイバー36)に取り付けられている。この第2減光器72は、第1枝光ファイバー36Aを伝達される光の量を調整する、すなわち光量を減じる機能を有する。第1減光器70と第2減光器72は同じ構成を有している。
図7は、第1減光器70の構成の一実施形態を示す模式図である。第1減光器70は、内部に光通路81が形成されたベース部材80と、光通路81に挿入された光ファイバー保持体82と、光ファイバー保持体82のベース部材80に対する相対位置を調節する相対位置調節機構85を有している。相対位置調節機構85は、光ファイバー保持体82が挿入された通孔86aを有するフランジ86と、フランジ86にねじ込まれたセットねじ88と、フランジ86をベース部材80に固定する袋ナット89を有している。ただし、相対位置調節機構85は、光ファイバー保持体82のベース部材80に対する相対的な位置を調節することが可能に構成されている限りにおいて、本実施形態に限定されない。
第1投光ファイバー36および第2投光ファイバー37から構成される幹光ファイバー35は、その端部が光通路81内に露出した状態で、光ファイバー保持体82に固定されている。光ファイバー保持体82の幅は光通路81の幅よりも小さく、光ファイバー保持体82は光通路81内をその長手方向に移動可能である。セットねじ88は、フランジ86をその半径方向に貫通している。フランジ86の通孔86aの幅は、光ファイバー保持体82の幅よりも大きく、フランジ86は光ファイバー保持体82に対して相対的に光ファイバー保持体82の長手方向に移動可能である。セットねじ88の先端はフランジ86の通孔86a内に位置し、かつ光ファイバー保持体82の外面に接触している。フランジ86は、光通路81の幅よりも広い幅を有している。光ファイバー保持体82がフランジ86の通孔86aに挿入された状態でセットねじ88を締め付けると、フランジ86は光ファイバー保持体82に固定される。
光ファイバー保持体82は袋ナット89を貫通して延びている。袋ナット89は、内側に張り出すヘッド部89aを有している。フランジ86は袋ナット89のヘッド部89aとベース部材80の端面との間に配置されている。ベース部材80は円筒形状を有している。ベース部材80の外周面にはねじ80bが形成されており、袋ナット89の内周面にもねじ89bが形成されている。袋ナット89のねじ89bは、ベース部材80のねじ80bに係合している。袋ナット89を締め付けると、フランジ86は袋ナット89によってベース部材80に押し付けられ、これによりフランジ86がベース部材80に固定される。光ファイバー保持体82はセットねじ88によりフランジ86に固定されているので、ベース部材80に対する光ファイバー保持体82の相対的な位置が固定される。
幹光ファイバー35は、光ファイバー保持体82に固定されており、光ファイバー保持体82と幹光ファイバー35は一体に移動可能である。光ファイバー保持体82のベース部材80に対する相対的な位置は可変である。すなわち、袋ナット89をベース部材80から取り外し、セットねじ88を緩めると、光ファイバー保持体82の先端が光通路81内に位置したまま、光ファイバー保持体82をベース部材80に対して移動させることができる。その後、セットねじ88を締め付け、さらに袋ナット89をベース部材80に締め付けると、光ファイバー保持体82のベース部材80に対する相対的な位置が固定される。幹光ファイバー35は光ファイバー保持体82に固定されているので、光ファイバー保持体82のベース部材80に対する相対位置を調節することで、光通路81に対する幹光ファイバー35の相対位置を調節することが可能である。
光源30から発せられた光は、光通路81を通って光ファイバー保持体82に保持された幹光ファイバー35に到達する。幹光ファイバー35に到達する光の量、すなわち幹光ファイバー35を伝送される光の量は、光ファイバー保持体82のベース部材80に対する相対的な位置により調整することができる。具体的には、光通路81の入口81aから光ファイバー保持体82までの距離が短くなる方向に光ファイバー保持体82を移動させると、幹光ファイバー35に到達する光の量は増加する。これに対し、光通路81の入口81aから光ファイバー保持体82までの距離が長くなる方向に光ファイバー保持体82を移動させると、幹光ファイバー35に到達する光の量は減少する。光ファイバー保持体82の位置は、フランジ86およびセットねじ88によって自由に調節することが可能である。したがって、第1減光器70は、幹光ファイバー35を伝送される光の量を微調整することができる。
図8は、第1減光器70の外観を示す図である。図8に示すように、光ファイバー保持体82の外面には目盛り91が付されている。この目盛り91は、光ファイバー保持体82のベース部材80に対する相対位置の調節作業を容易にすることができる。
このように、光ファイバー保持体82のベース部材80に対する相対的な位置を調節することで、幹光ファイバー35を伝送される光の量を調整することができる。したがって、光源30からウェーハWに導かれる光の量は、第1減光器70によって調整することができる。第1枝光ファイバー36Aに取り付けられた第2減光器72も第1減光器70と同じ構成を有しているので、第2減光器72は同様にして第1枝光ファイバー36Aを伝送される光の量を調整することができる。
本実施形態では、ベース部材80は光源30に固定されているが、一実施形態では、ベース部材80も、光ファイバー保持体82と同様に、幹光ファイバー35に固定されてもよい。具体的には、幹光ファイバー35は、直線上に並ぶ上流側幹光ファイバーおよび下流側幹光ファイバーを有し、ベース部材80は上流側幹光ファイバーに固定され、光ファイバー保持体82は下流側幹光ファイバーに固定されてもよい。
第1減光器70は、第1投光ファイバー36および第2投光ファイバー37の両方に取り付けられている。したがって、第1減光器70は、光源30から発せられた光の全体の量を減少させるために使用される。理由は次の通りである。もし、分光器26の有効測定範囲を超えた量の反射光が分光器26に導かれると、分光器26は反射光の波長ごとの強度を正しく測定することができない。そこで、ウェーハWからの反射光の量が、分光器26の有効測定範囲内に収まるように光源30から発せられた光の全体の量を第1減光器70によって減少させる。第1減光器70が光の量を適切に減少させることにより、分光器26は反射光の強度を正しく測定することができる。結果として、ウェーハWの膜厚を正確に測定することができる。
図9は、相対位置調節機構85の他の実施形態を示す図である。相対位置調節機構85は、光ファイバー保持体82をベース部材80に対して相対的に移動させるモータ駆動型移動機構92を備えている。モータ駆動型移動機構92は、ベース部材80に固定された電動機93と、電動機93の回転軸93aに固定されたプーリー95と、プーリー95と袋ナット89の外周面に掛けられたベルト97を備えている。
プーリー95は、回転軸93aのトルクを受けることができる一方で、回転軸93aに対してその軸方向に移動可能に構成されている。例えば、プーリー95と回転軸93aは、キーおよびキー溝との係合により連結されてもよいし、またはボールスプライン軸受により連結されてもよい。電動機93には、サーボモータまたはステッピングモータが使用される。電動機93は、連結部材98を介してベース部材80に固定されている。電動機93が動作すると、電動機93のトルクは、プーリー95およびベルト97を通じて袋ナット89に伝達され、袋ナット89が回転する。
図10は、図9に示す第1減光器70の構造を示す断面図である。図10に示す第1減光器70の特に説明しない構造は、図7に示す第1減光器70の構造と同じであるので、その重複する説明を省略する。モータ駆動型移動機構92は、光通路81内に配置されたばね99を更に備えている。ばね99の一端は光ファイバー保持体82の端部に接触しており、ばね99は光ファイバー保持体82および幹光ファイバー35を光通路81の入口81aから離れる方向に付勢している。
セットねじ88が締め付けられている状態で、袋ナット89が緩む方向に電動機93が袋ナット89を回転させると、ばね99は光ファイバー保持体82および幹光ファイバー35を光通路81の入口81aから離れる方向に移動させる。袋ナット89が締まる方向に電動機93が袋ナット89を回転させると、袋ナット89は、ばね99の反発力に抗して光ファイバー保持体82および幹光ファイバー35を光通路81の入口81aに近づく方向に移動させる。このように、電動機93の動作によって光ファイバー保持体82と光通路81の入口81aとの間の距離が変化し、結果として、幹光ファイバー35に到達する光の量が変化する。
モータ駆動型移動機構92は動作制御部12に接続されており、モータ駆動型移動機構92の動作は動作制御部12によって制御される。動作制御部12は、投光ファイバー34から発せられた光の量が目標値に達するまで、モータ駆動型移動機構92を操作するように構成されている。具体的には、研磨パッド1の研磨面1a上に図示しない反射体(ウェーハ、ダミーウェーハ、鏡など)を置き、第1投光ファイバー36または第2投光ファイバー37から光を反射体に導き、反射体からの反射光の強度を分光器26で測定し、測定された反射光の強度が、上記目標値に対応する設定値に達するまで、動作制御部12はモータ駆動型移動機構92の電動機93を操作する。
図11は、第2減光器72の構成の一実施形態を示す模式図である。第2減光器72は第1減光器70と基本的に同じ構成を有しているので、第1減光器70と同じ構成要素には同じ符号を付し、第2減光器72の詳細な説明は省略する。図11に示すように、第2減光器72は、第1投光ファイバー36、すなわち第1枝光ファイバー36Aに取り付けられている。この第2減光器72は、第1投光ファイバー36および第2投光ファイバー37からウェーハWに導かれる光の量をバランスさせるために使用される。より具体的には、第1投光ファイバー36および第2投光ファイバー37からウェーハWに導かれる光の量が同じになるように、第2減光器72は第1投光ファイバー36(すなわち第1枝光ファイバー36A)を伝送される光の量を減少させる。結果として、第1センサヘッド61および第2センサヘッド62は、同一の光学的条件下でウェーハWの膜厚を測定することができる。
第2投光ファイバー37からウェーハWに導かれる光の量が、第1投光ファイバー36からウェーハWに導かれる光の量よりも多い場合は、第2減光器72は第2投光ファイバー37(すなわち第2枝光ファイバー37B)に取り付けられる。この場合でも、第1投光ファイバー36および第2投光ファイバー37からウェーハWに導かれる光の量が同じになるように、第2投光ファイバー37を伝送される光の量が第2減光器72によって調整される。
図9および図10に示すモータ駆動型移動機構92は、図11に示す第2減光器72にも適用することができる。動作制御部12は、第1投光ファイバー36および第2投光ファイバー37から発せられた光の量が互いに等しくなるまで、モータ駆動型移動機構92を操作するように構成されている。第2減光器72が第1投光ファイバー36に取り付けられている場合は、次のようにして光の量が調整される。図示しない反射体(ウェーハ、ダミーウェーハ、鏡など)を第2投光ファイバー37の先端34bに対向するように研磨パッド1の研磨面1a上に置き、第2投光ファイバー37から光を反射体に導き、反射体からの反射光の強度を分光器26で測定して基準値を取得し、上記反射体を第1投光ファイバー36の先端34aに対向するように研磨パッド1の研磨面1a上に置き、第1投光ファイバー36から光を反射体に導き、反射体からの反射光の強度を分光器26で測定し、測定された反射光の強度が上記基準値に等しくなるまで、動作制御部12はモータ駆動型移動機構92の電動機93を操作する。
第2減光器72が、第1投光ファイバー36ではなく、第2投光ファイバー37に取り付けられている場合も、同様にして、光の量の調整が行われる。すなわち、上記反射体を第1投光ファイバー36の先端34aに対向するように研磨パッド1の研磨面1a上に置き、第1投光ファイバー36から光を反射体に導き、反射体からの反射光の強度を分光器26で測定して基準値を取得し、上記反射体を第2投光ファイバー37の先端34bに対向するように研磨パッド1の研磨面1a上に置き、第2投光ファイバー37から光を反射体に導き、反射体からの反射光の強度を分光器26で測定し、測定された反射光の強度が上記基準値に等しくなるまで、動作制御部12はモータ駆動型移動機構92の電動機93を操作する。
図12は、第1減光器70の他の実施形態の構成を示す模式図である。特に説明しない構成は、図7に示す構成と同じであるので、その重複する説明を省略する。本実施形態の第1減光器70は、光通路81内に配置された絞り(アパーチャー)90を備えている。絞り90は、開口90aを有する部材である。絞り90は取り外し可能に光通路81内に配置されている。絞り90は光通路81の入口81aと光ファイバー保持体82との間に位置している。絞り90を通過できる光の量は、絞り90の開口90aの大きさに依存する。したがって、大きさの異なる開口を有する複数の絞りの中から、使用すべき絞りを適宜選択することにより、光量を調整することができる。
本実施形態によれば、光源30から発せられた光の量は2段階で減少される。すなわち、光の量は、まず絞り90によって減少され、さらにベース部材80に対する光ファイバー保持体82の相対位置に従って光の量が減少される。本実施形態の第1減光器70は、光源30から発せられた光の量が多い場合であっても、適切なレベルまで光量を下げることができ、かつ光量の微調整が可能である。図示しないが、第2減光器72も図12に示す実施形態の構成を備えてもよい。図9および図10に示すモータ駆動型移動機構92は、図12に示す第1減光器70にも適用することができる。
図13は、光学式膜厚測定器(膜厚測定装置)25の他の実施形態を示す拡大図である。特に説明しない構成は、図6に示す構成と同じであるので、その重複する説明を省略する。光学式膜厚測定器25は、光源30と分光器26とに接続されたモニタリング光ファイバー110と、モニタリング光ファイバー110に取り付けられた第3減光器111をさらに備えている。モニタリング光ファイバー110の一端は、第1減光器70を介して光源30に接続され、モニタリング光ファイバー110の他端は、光スイッチ115および接続光ファイバー117を介して分光器26に接続されている。接続光ファイバー117は光スイッチ115と分光器26との間を延びており、光スイッチ115を分光器26に接続している。
光スイッチ115は、受光ファイバー50またはモニタリング光ファイバー110のいずれか一方を、接続光ファイバー117を介して分光器26に光学的に接続するように構成される。より具体的には、光スイッチ115が作動して受光ファイバー50を分光器26に光学的に接続すると、ウェーハWからの反射光は受光ファイバー50、光スイッチ115、および接続光ファイバー117を通って分光器26に導かれる。光スイッチ115が作動してモニタリング光ファイバー110を分光器26に光学的に接続すると、光源30から発せられた光は、モニタリング光ファイバー110、光スイッチ115、および接続光ファイバー117を通って分光器26に導かれる。光スイッチ115の動作は動作制御部12によって制御される。
第1投光ファイバー36、第2投光ファイバー37、およびモニタリング光ファイバー110の一部は、結束具31で束ねられた幹光ファイバー35を構成している。幹光ファイバー35の端部(すなわち、投光ファイバー34およびモニタリング光ファイバー110の光源側端部)は、第1減光器70を介して光源30に接続されている。
受光ファイバー50は、結束具51で結束された複数の素線光ファイバーからなる第1受光ファイバー56、および結束具52で結束された複数の素線光ファイバーからなる第2受光ファイバー57を備えている。受光ファイバー50の先端50a,50bは、第1受光ファイバー56および第2受光ファイバー57の先端から構成されている。第1受光ファイバー56および第2受光ファイバー57は光スイッチ115に接続されている。
ウェーハWを研磨するときは、動作制御部12は光スイッチ115を操作して、受光ファイバー50を分光器26に光学的に接続する。より具体的には、研磨テーブル3が一回転するたびに、動作制御部12は光スイッチ115を操作して、第1受光ファイバー56および第2受光ファイバー57を交互に分光器26に接続する。第1受光ファイバー56の先端50aがウェーハWの下にある間は、第1受光ファイバー56は分光器26に接続され、第2受光ファイバー57の先端50bがウェーハWの下にある間は、第2受光ファイバー57は分光器26に接続される。光スイッチ115は、図6に示す実施形態に適用してもよい。
本実施形態では、光スイッチ115は、第1受光ファイバー56、第2受光ファイバー57、およびモニタリング光ファイバー110のうちのいずれか1つを光学的に分光器26に接続するように構成されている。一実施形態では、光スイッチ115は、受光ファイバー56,57またはモニタリング光ファイバー110のいずれかを光学的に分光器26に接続するように構成されてもよい。この場合は、ウェーハWの研磨中は受光ファイバー56,57の両方を通じて光が分光器26に伝達されるが、ウェーハWからの反射光以外の光の強度は極めて低いので、あるしきい値以上の強度を持つ光のみを膜厚測定に使用することで、正確な膜厚測定は可能である。
モニタリング光ファイバー110には第3減光器111が取り付けられている。この第3減光器111は、図7および図8を参照して説明した第1減光器70、または図11を参照して説明した第2減光器72と同じ構成を有しているので、その重複する説明を省略する。モニタリング光ファイバー110の一端は第1減光器70を介して光源30に接続され、モニタリング光ファイバー110の他端は光スイッチ115を介して分光器26に接続されている。光源30から発せられた光の量が分光器26の有効測定範囲内に収まるように、光量は第1減光器70によって減少され、さらに第3減光器111によって減少される。第3減光器111は、図12に示す構成を有してもよい。モニタリング光ファイバー110の一端は第1減光器70を介さずに光源30に直接接続されてもよい。図9および図10に示すモータ駆動型移動機構92は、図13に示す第3減光器111にも適用することができる。
通常、光源30の光量は、光源30の使用時間とともに徐々に低下する。結果として、真の膜厚と、測定された膜厚との間の誤差が大きくなってしまう。そこで、本実施形態では、光学式膜厚測定器25は、モニタリング光ファイバー110を通じて分光器26に導かれた光の強度に基づいて、ウェーハWからの反射光の強度を補正し、光源30の光量の低下を補償するように構成されている。
処理部27は、上記式(1)に代えて、次の補正式(2)を用いて反射光の補正された強度を算出する。
Figure 0007068831000002
ここで、R'(λ)は補正された反射光の強度、すなわち補正された相対反射率を表し、E(λ)は研磨されるウェーハWからの反射光の波長λでの強度を表し、B(λ)は波長λでの基準強度を表し、D1(λ)は基準強度B(λ)を測定する直前または直後に光を遮断した条件下で測定された波長λでのダークレベルを表し、F(λ)は基準強度B(λ)を測定する直前または直後にモニタリング光ファイバー110を通じて分光器26に導かれた光の波長λでの強度を表し、D2(λ)は強度F(λ)を測定する直前または直後に光を遮断した条件下で測定された波長λでのダークレベルを表し、G(λ)は強度E(λ)を測定する前にモニタリング光ファイバー110を通じて分光器26に導かれた光の波長λでの強度を表し、D3(λ)は強度E(λ)を測定する前であって、かつ強度G(λ)を測定する直前または直後に光を遮断した条件下で測定された波長λでのダークレベルを表す。
E(λ)、B(λ)、D1(λ)、F(λ)、D2(λ)、G(λ)、D3(λ)は、所定の波長範囲内で波長ごとに測定される。ダークレベルD1(λ)、D2(λ)、D3(λ)を測定するための光が遮断された環境は、分光器26に内蔵されたシャッター(図示せず)で光を遮ることにより作り出すことができる。
処理部27は、ウェーハWからの反射光の強度を補正するための上記補正式を内部に予め格納している。この補正式は、ウェーハWからの反射光の強度と、モニタリング光ファイバー110を通じて分光器26に導かれた光の強度を少なくとも変数として含む関数である。基準強度B(λ)は、各波長について予め測定された光の強度である。例えば、基準強度B(λ)は、第1センサヘッド61または第2センサヘッド62から発せられた光の強度を直接測定するか、または第1センサヘッド61または第2センサヘッド62から鏡に光を照射し、鏡からの反射光の強度を測定することによって得られる。あるいは、基準強度B(λ)は、膜が形成されていないシリコンウェーハ(ベアウェーハ)を研磨パッド1上で水の存在下で水研磨しているとき、または上記シリコンウェーハ(ベアウェーハ)が研磨パッド1上に置かれているときに分光器26により測定されたシリコンウェーハからの反射光の強度としてもよい。基準強度B(λ)の正しい値を得るために、基準強度B(λ)は、同一条件下で測定された光の強度の複数の値の平均であってもよい。
基準強度B(λ)、ダークレベルD1(λ)、強度F(λ)、ダークレベルD2(λ)は、予め測定され、定数として上記補正式に予め入力される。強度E(λ)はウェーハWの研磨中に測定される。強度G(λ)およびダークレベルD3(λ)はウェーハWの研磨前(好ましくはウェーハWの研磨直前)に測定される。例えば、ウェーハWが研磨ヘッド5に保持される前に、処理部27は、光スイッチ115を操作して、モニタリング光ファイバー110を分光器26に接続し、光源30の光をモニタリング光ファイバー110を通じて分光器26に導く。分光器26は、強度G(λ)およびダークレベルD3(λ)を測定し、それらの測定値を処理部27に送る。処理部27は、強度G(λ)およびダークレベルD3(λ)の測定値を上記補正式に入力する。強度G(λ)およびダークレベルD3(λ)の測定が完了すると、処理部27は、光スイッチ115を操作して受光ファイバー50を分光器26に接続する。その後、ウェーハWが研磨され、ウェーハWの研磨中に強度E(λ)が分光器26によって測定される。
処理部27は、ウェーハWの研磨中に、強度E(λ)の測定値を上記補正式に入力し、補正された相対反射率R'(λ)を各波長において算出する。より具体的には、処理部27は、補正された相対反射率R'(λ)を所定の波長範囲において算出する。したがって、処理部27は、補正された相対反射率(すなわち補正された光の強度)と光の波長との関係を示す分光波形を作成することができる。処理部27は、図3乃至図5を参照して説明した方法でウェーハWの膜厚を分光波形に基づいて決定する。分光波形は、補正された光の強度に基づいて作成されるので、処理部27は、ウェーハWの正確な膜厚を決定することができる。
図14は、光学式膜厚測定器(膜厚測定装置)25のさらに他の実施形態を示す拡大図である。特に説明しない構成は、図6に示す構成と同じであるので、その重複する説明を省略する。本実施形態の光学式膜厚測定器25は、1つのセンサヘッド61のみを備えている。投光ファイバー34を構成する複数の素線光ファイバーの端部は結束具31,32で束ねられている。受光ファイバー50を構成する複数の素線光ファイバーの端部は結束具51,52で束ねられている。
投光ファイバー34には減光器120が取り付けられている。この減光器120は、図7および図8を参照して説明した第1減光器70、または図11を参照して説明した第2減光器72と同じ構成を有しているので、その重複する説明を省略する。光源30から発せられた光の量は、減光器120によって調整(減少)される。減光器120は、図12に示す構成を備えてもよい。
図9および図10に示すモータ駆動型移動機構92は、図14に示す減光器120にも適用することができる。動作制御部12は、投光ファイバー34から発せられた光の量が目標値に達するまで、モータ駆動型移動機構92を操作するように構成されている。具体的には、図示しない反射体(ウェーハ、ダミーウェーハ、鏡など)を研磨パッド1の研磨面1a上に置き、投光ファイバー34から光を反射体に導き、反射体からの反射光の強度を分光器26で測定し、測定された反射光の強度が、上記目標値に対応する設定値に達するまで、動作制御部12はモータ駆動型移動機構92の電動機93を操作する。
上述した実施形態は、本発明が属する技術分野における通常の知識を有する者が本発明を実施できることを目的として記載されたものである。上記実施形態の種々の変形例は、当業者であれば当然になしうることであり、本発明の技術的思想は他の実施形態にも適用しうる。したがって、本発明は、記載された実施形態に限定されることはなく、特許請求の範囲によって定義される技術的思想に従った最も広い範囲に解釈されるものである。
1 研磨パッド
3 研磨テーブル
5 研磨ヘッド
10 研磨液供給ノズル
12 動作制御部
16 研磨ヘッドシャフト
19 テーブルモータ
25 光学式膜厚測定器(膜厚測定装置)
26 分光器
27 処理部
30 光源
31,32,33 結束具
34 投光ファイバー
35 幹光ファイバー
36 第1投光ファイバー
36A 第1枝光ファイバー
37 第2投光ファイバー
37B 第2枝光ファイバー
50 受光ファイバー
51,52,53 結束具
56 第1受光ファイバー
57 第2受光ファイバー
58 幹光ファイバー
61 第1センサヘッド
62 第2センサヘッド
70 第1減光器
72 第2減光器
80 ベース部材
81 光通路
82 光ファイバー保持体
85 相対位置調節機構
86 フランジ
88 セットねじ
89 袋ナット
90 絞り(アパーチャー)
91 目盛り
92 モータ駆動型移動機構
93 電動機
93a 回転軸
95 プーリー
97 ベルト
98 連結部材
99 ばね
110 モニタリング光ファイバー
111 第3減光器
115 光スイッチ
117 接続光ファイバー
120 減光器

Claims (9)

  1. 研磨パッドを支持するための研磨テーブルと、
    ウェーハを前記研磨パッドに押し付けるための研磨ヘッドと、
    光源と、
    前記研磨テーブル内の異なる位置に配置された複数の先端を有する投光ファイバーと、
    前記研磨テーブル内の前記異なる位置に配置された複数の先端を有する受光ファイバーと、
    前記受光ファイバーに接続され、前記受光ファイバーを通じて伝送されるウェーハからの反射光を波長に従って分解して各波長での反射光の強度を測定する分光器と、
    前記反射光の強度と波長との関係を示す分光波形に基づいてウェーハの膜厚を決定する処理部と、
    前記投光ファイバーを伝達される前記光源からの光の量を減じる第1減光器および第2減光器とを備え、
    前記投光ファイバーは、第1投光ファイバーおよび第2投光ファイバーを有し、
    前記第1投光ファイバーおよび前記第2投光ファイバーの一端は前記光源に接続され、
    前記第1投光ファイバーおよび前記第2投光ファイバーの他端は、前記異なる位置に配置された前記投光ファイバーの先端を構成し、
    前記第1減光器は前記第1投光ファイバーおよび前記第2投光ファイバーに取り付けられ、前記第2減光器は前記第1投光ファイバーおよび前記第2投光ファイバーのうちの少なくとも1つに取り付けられ、前記第2減光器は、前記第1投光ファイバーおよび前記第2投光ファイバーから前記ウェーハに導かれる光の量が同じになるように、前記第1投光ファイバーおよび前記第2投光ファイバーのうちの少なくとも1つを伝達される前記光源からの光の量を減じるように構成されていることを特徴とする研磨装置。
  2. 前記第1減光器および前記第2減光器のそれぞれは、
    内部に光通路が形成されたベース部材と、
    前記光通路に挿入された光ファイバー保持体と、
    前記光ファイバー保持体の前記ベース部材に対する相対位置を調節する相対位置調節機構を備えることを特徴とする請求項1に記載の研磨装置。
  3. 前記光ファイバー保持体の外面には目盛りが付されていることを特徴とする請求項2に記載の研磨装置。
  4. 前記相対位置調節機構は、前記光ファイバー保持体を前記ベース部材に対して移動させるモータ駆動型移動機構を備えていることを特徴とする請求項2に記載の研磨装置。
  5. 前記投光ファイバーから発せられた光の量が目標値に達するまで、前記第1減光器の前記モータ駆動型移動機構を操作する動作制御部をさらに備えたことを特徴とする請求項4に記載の研磨装置。
  6. 前記第1投光ファイバーおよび前記第2投光ファイバーから発せられた光の量が互いに等しくなるまで、前記第2減光器の前記モータ駆動型移動機構を操作する動作制御部をさらに備えたことを特徴とする請求項4に記載の研磨装置。
  7. 前記第1減光器および前記第2減光器のそれぞれは、前記光通路に配置された絞りをさらに備えることを特徴とする請求項2乃至6のいずれか一項に記載の研磨装置。
  8. 前記第1投光ファイバーおよび前記第2投光ファイバーの一部は束ねられて幹光ファイバーを構成し、
    前記第1投光ファイバーおよび前記第2投光ファイバーの他の部分は、前記幹光ファイバーから分岐した複数の枝光ファイバーを構成し、
    前記第1減光器は前記幹光ファイバーに取り付けられ、前記第2減光器は前記複数の枝光ファイバーのうちの少なくとも1つに取り付けられていることを特徴とする請求項1乃至7のいずれか一項に記載の研磨装置。
  9. 前記光源と前記分光器に接続されたモニタリング光ファイバーと、
    前記モニタリング光ファイバーに取り付けられた第3減光器をさらに備えたことを特徴とする請求項1乃至8のいずれか一項に記載の研磨装置。
JP2018006358A 2018-01-18 2018-01-18 研磨装置 Active JP7068831B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2018006358A JP7068831B2 (ja) 2018-01-18 2018-01-18 研磨装置
SG10201900354WA SG10201900354WA (en) 2018-01-18 2019-01-14 Polishing apparatus
KR1020190004473A KR102384828B1 (ko) 2018-01-18 2019-01-14 연마 장치
US16/248,599 US10663287B2 (en) 2018-01-18 2019-01-15 Polishing apparatus
TW108101492A TWI750444B (zh) 2018-01-18 2019-01-15 研磨裝置
CN201910043492.5A CN110052961B (zh) 2018-01-18 2019-01-17 研磨装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018006358A JP7068831B2 (ja) 2018-01-18 2018-01-18 研磨装置

Publications (3)

Publication Number Publication Date
JP2019125733A JP2019125733A (ja) 2019-07-25
JP2019125733A5 JP2019125733A5 (ja) 2020-11-26
JP7068831B2 true JP7068831B2 (ja) 2022-05-17

Family

ID=67213754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018006358A Active JP7068831B2 (ja) 2018-01-18 2018-01-18 研磨装置

Country Status (6)

Country Link
US (1) US10663287B2 (ja)
JP (1) JP7068831B2 (ja)
KR (1) KR102384828B1 (ja)
CN (1) CN110052961B (ja)
SG (1) SG10201900354WA (ja)
TW (1) TWI750444B (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7364217B2 (ja) * 2019-11-05 2023-10-18 スピードファム株式会社 研磨装置
JP2023094723A (ja) * 2021-12-24 2023-07-06 株式会社荏原製作所 膜厚測定方法および膜厚測定装置
JP2024093464A (ja) 2022-12-27 2024-07-09 株式会社荏原製作所 光学式膜厚測定器の光量調整方法および研磨装置
JP2024117029A (ja) * 2023-02-16 2024-08-28 株式会社東京精密 研磨終点検出装置及び方法並びにcmp装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004039482A (ja) 2002-07-04 2004-02-05 Kurihara Kogyo:Kk Led面光源装置
JP2005322939A (ja) 2005-06-08 2005-11-17 Tokyo Seimitsu Co Ltd ウェーハ研磨方法
JP2011029505A (ja) 2009-07-28 2011-02-10 Fujitsu Semiconductor Ltd 研磨終点検出方法及び半導体製造装置
JP2014504041A (ja) 2011-01-28 2014-02-13 アプライド マテリアルズ インコーポレイテッド 多数の光ヘッドからのスペクトルの収集
JP2015036714A (ja) 2013-08-12 2015-02-23 三菱電機株式会社 光減衰器
JP2017005014A (ja) 2015-06-05 2017-01-05 株式会社荏原製作所 研磨装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3730299B2 (ja) * 1996-02-07 2005-12-21 富士通株式会社 光等化増幅器および光等化増幅方法
JP3506114B2 (ja) * 2000-01-25 2004-03-15 株式会社ニコン モニタ装置及びこのモニタ装置を具えた研磨装置及び研磨方法
US6806948B2 (en) * 2002-03-29 2004-10-19 Lam Research Corporation System and method of broad band optical end point detection for film change indication
JP4542324B2 (ja) * 2002-10-17 2010-09-15 株式会社荏原製作所 研磨状態監視装置及びポリッシング装置
CN100488729C (zh) * 2002-10-17 2009-05-20 株式会社荏原制作所 抛光状态监测装置和抛光装置以及方法
GB2478590A (en) * 2010-03-12 2011-09-14 Precitec Optronik Gmbh Apparatus and method for monitoring a thickness of a silicon wafer
TW201223703A (en) * 2010-09-01 2012-06-16 Applied Materials Inc Feedback control of polishing using optical detection of clearance
US8774958B2 (en) * 2011-04-29 2014-07-08 Applied Materials, Inc. Selection of polishing parameters to generate removal profile
US20140224425A1 (en) * 2013-02-13 2014-08-14 Kabushiki Kaisha Toshiba Film thickness monitoring method, film thickness monitoring device, and semiconductor manufacturing apparatus
JP6105371B2 (ja) * 2013-04-25 2017-03-29 株式会社荏原製作所 研磨方法および研磨装置
CN105636501B (zh) * 2014-06-09 2017-11-21 奥林巴斯株式会社 内窥镜系统
CN104932066B (zh) * 2015-06-30 2016-05-11 武汉光迅科技股份有限公司 一种硅波导耦合对准装置
JP6861116B2 (ja) * 2017-07-14 2021-04-21 株式会社荏原製作所 膜厚測定装置、研磨装置、および研磨方法
CN107520740A (zh) * 2017-09-18 2017-12-29 北京半导体专用设备研究所(中国电子科技集团公司第四十五研究所) 一种化学机械抛光中光谱终点的检测方法、装置及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004039482A (ja) 2002-07-04 2004-02-05 Kurihara Kogyo:Kk Led面光源装置
JP2005322939A (ja) 2005-06-08 2005-11-17 Tokyo Seimitsu Co Ltd ウェーハ研磨方法
JP2011029505A (ja) 2009-07-28 2011-02-10 Fujitsu Semiconductor Ltd 研磨終点検出方法及び半導体製造装置
JP2014504041A (ja) 2011-01-28 2014-02-13 アプライド マテリアルズ インコーポレイテッド 多数の光ヘッドからのスペクトルの収集
JP2015036714A (ja) 2013-08-12 2015-02-23 三菱電機株式会社 光減衰器
JP2017005014A (ja) 2015-06-05 2017-01-05 株式会社荏原製作所 研磨装置

Also Published As

Publication number Publication date
JP2019125733A (ja) 2019-07-25
US20190219381A1 (en) 2019-07-18
CN110052961A (zh) 2019-07-26
SG10201900354WA (en) 2019-08-27
US10663287B2 (en) 2020-05-26
TWI750444B (zh) 2021-12-21
KR102384828B1 (ko) 2022-04-11
KR20190088413A (ko) 2019-07-26
CN110052961B (zh) 2021-11-02
TW201933466A (zh) 2019-08-16

Similar Documents

Publication Publication Date Title
JP7068831B2 (ja) 研磨装置
KR102283692B1 (ko) 막 두께 측정 방법, 막 두께 측정 장치, 연마 방법 및 연마 장치
US7774086B2 (en) Substrate thickness measuring during polishing
KR101324644B1 (ko) 화학적 기계적 폴리싱의 스펙트럼 기반 모니터링을 위한 장치 및 방법
KR101423579B1 (ko) 화학적 기계적 폴리싱의 스펙트럼 기반 모니터링을 위한 장치 및 방법
JP6473050B2 (ja) 研磨装置
TWI758478B (zh) 研磨裝置及研磨方法
TW201910051A (zh) 基板研磨裝置及方法
KR20230069017A (ko) 연마 장치 및 연마 방법
JP6902452B2 (ja) 研磨装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201013

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220502

R150 Certificate of patent or registration of utility model

Ref document number: 7068831

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150