JP7068166B2 - ファージミドベクター - Google Patents

ファージミドベクター Download PDF

Info

Publication number
JP7068166B2
JP7068166B2 JP2018521571A JP2018521571A JP7068166B2 JP 7068166 B2 JP7068166 B2 JP 7068166B2 JP 2018521571 A JP2018521571 A JP 2018521571A JP 2018521571 A JP2018521571 A JP 2018521571A JP 7068166 B2 JP7068166 B2 JP 7068166B2
Authority
JP
Japan
Prior art keywords
phagemid
aav
vector
recombinant
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018521571A
Other languages
English (en)
Other versions
JP2018533949A5 (ja
JP2018533949A (ja
Inventor
ハジトウ,アミン
アサヴァルト,パラッド
ヤタ,ティーラポン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ip2ipo Innovations Ltd
Original Assignee
Imperial College Innovations Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Imperial College Innovations Ltd filed Critical Imperial College Innovations Ltd
Publication of JP2018533949A publication Critical patent/JP2018533949A/ja
Publication of JP2018533949A5 publication Critical patent/JP2018533949A5/ja
Priority to JP2022075036A priority Critical patent/JP2022115934A/ja
Application granted granted Critical
Publication of JP7068166B2 publication Critical patent/JP7068166B2/ja
Priority to JP2024076613A priority patent/JP2024102282A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/53Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with three nitrogens as the only ring hetero atoms, e.g. chlorazanil, melamine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/525Virus
    • A61K2039/5256Virus expressing foreign proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14134Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14141Use of virus, viral particle or viral elements as a vector
    • C12N2750/14143Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14141Use of virus, viral particle or viral elements as a vector
    • C12N2750/14144Chimeric viral vector comprising heterologous viral elements for production of another viral vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14151Methods of production or purification of viral material
    • C12N2750/14152Methods of production or purification of viral material relating to complementing cells and packaging systems for producing virus or viral particles
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2795/00Bacteriophages
    • C12N2795/00011Details
    • C12N2795/00041Use of virus, viral particle or viral elements as a vector
    • C12N2795/00043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2795/00Bacteriophages
    • C12N2795/00011Details
    • C12N2795/00041Use of virus, viral particle or viral elements as a vector
    • C12N2795/00044Chimeric viral vector comprising heterologous viral elements for production of another viral vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2795/00Bacteriophages
    • C12N2795/00011Details
    • C12N2795/00041Use of virus, viral particle or viral elements as a vector
    • C12N2795/00045Special targeting system for viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2795/00Bacteriophages
    • C12N2795/00011Details
    • C12N2795/14011Details ssDNA Bacteriophages
    • C12N2795/14111Inoviridae
    • C12N2795/14134Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2795/00Bacteriophages
    • C12N2795/00011Details
    • C12N2795/14011Details ssDNA Bacteriophages
    • C12N2795/14111Inoviridae
    • C12N2795/14141Use of virus, viral particle or viral elements as a vector
    • C12N2795/14143Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2795/00Bacteriophages
    • C12N2795/00011Details
    • C12N2795/14011Details ssDNA Bacteriophages
    • C12N2795/14111Inoviridae
    • C12N2795/14141Use of virus, viral particle or viral elements as a vector
    • C12N2795/14144Chimeric viral vector comprising heterologous viral elements for production of another viral vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2795/00Bacteriophages
    • C12N2795/00011Details
    • C12N2795/14011Details ssDNA Bacteriophages
    • C12N2795/14111Inoviridae
    • C12N2795/14151Methods of production or purification of viral material
    • C12N2795/14152Methods of production or purification of viral material relating to complementing cells and packaging systems for producing virus or viral particles
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2799/00Uses of viruses
    • C12N2799/02Uses of viruses as vector
    • C12N2799/021Uses of viruses as vector for the expression of a heterologous nucleic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2799/00Uses of viruses
    • C12N2799/02Uses of viruses as vector
    • C12N2799/04Uses of viruses as vector in vivo
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2799/00Uses of viruses
    • C12N2799/02Uses of viruses as vector
    • C12N2799/06Uses of viruses as vector in vitro
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2810/00Vectors comprising a targeting moiety
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2810/00Vectors comprising a targeting moiety
    • C12N2810/40Vectors comprising a peptide as targeting moiety, e.g. a synthetic peptide, from undefined source
    • C12N2810/405Vectors comprising RGD peptide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2820/00Vectors comprising a special origin of replication system
    • C12N2820/10Vectors comprising a special origin of replication system multiple origins of replication
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2820/00Vectors comprising a special origin of replication system
    • C12N2820/55Vectors comprising a special origin of replication system from bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2820/00Vectors comprising a special origin of replication system
    • C12N2820/60Vectors comprising a special origin of replication system from viruses

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Epidemiology (AREA)
  • Immunology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Virology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Description

本発明は、ファージミドベクター及び関連するファージミド粒子、特にハイブリッド及び組換えファージミドベクター、粒子及び発現系に関する。本発明は、研究ツールとして、及び種々の遺伝子治療用途における導入遺伝子の送達、DNA及び/またはペプチドワクチンの送達及び画像化技術のためにそのようなファージミド粒子及び発現系の使用に及ぶ。本発明は、インビトロ、インビボまたはインサイチュにおける、組換えアデノ随伴ウイルス(rAAV)またはレンチウイルスベクター(rLV)のようなウイルスベクターを産生するための方法及びそのような方法で使用される遺伝子構築物に及ぶ。
過去10年間に、多数のウイルス及び非ウイルスベクターが、産業及び治療用途の潜在的な送達ベクターとして出現した。ベクターの重要な特性は、遺伝子を送達するのに有効であることに加えて、容易に産生され、商業的に実現可能でなければならないということである。ベクターの設計と精製を支えるために必要な大量の基礎研究にもかかわらず、ベクター産生は、商業化を成功させるために取り組まなければならない領域である。アデノ随伴ウイルス(AAV)媒介遺伝子治療は、ベクター産生が臨床への転換の支障となっている代表例である。組換えAAV(rAAV)は、遺伝子治療における魅力的なベクターである。しかし、商業規模での効率的なベクター産生は未だ不可能である。rAAV産生のための様々な発現系が開発されている。トランスフェクションに基づくプロトコルは、高純度の実験室規模の産生のゴールドスタンダードであったが、商業規模のプロトコルに効率的に転換することはできない。商業規模の産生のための現在の方法は、プロデューサー細胞株からAAVベクターをレスキューするための真核生物ウイルスの使用に依存している。より効率的であるにもかかわらず、感染性真核生物ウイルスの使用は、ウイルス粒子を精製するときだけでなく、インビボでの使用についての安全性に関しても、主要な懸念事項である。
AAVは、末端逆位反復配列(ITR)に隣接する4.7Kb野生型ゲノムを有する非エンベロープウイルスである。ゲノムは、ウイルスゲノムの複製及びカプシド形成に必要なタンパク質を提供する2つのオープンリーディングフレーム、rep及びcapを含有する。本質的に、野生型AAVは、AAVゲノムの正二十面体ビリオンへのパッケージングに不可欠なアデノヘルパータンパク質を提供するため、アデノウイルス(Ad)の存在下で見出される。したがって、AAV産生は、ITRが隣接するゲノム、rep及びcapと、アデノヘルパー遺伝子との3つの重要な要素に依存する。
現在、rAAVの実験室規模での生産は、DNAトランスフェクションを使用して、本質的に不死化由来のアデノヘルパータンパク質を発現するので適切な哺乳動物プロデューサー細胞である、ヒト胚性腎臓HEK293細胞に3つの遺伝子要素をすべて導入する。実験室規模での生産は高純度のrAAVを提供するが、トランスフェクション法は大量生産には適しておらず、非効率性を含む大きな制限に直面し、rAAV収率が低く、コストが高くなる。また、多くの場合、ヘルパー機能を効率的に供給するために、アデノウイルスまたは単純ヘルペスウイルスなどの生ウイルスが使用され、インビボでの使用に重大な健康及び安全性の懸念がある。
rAAVの大規模な商業生産が可能であるが、非常に高コストであり、低純度rAAVの産生をもたらす。HEK293細胞の大規模な接着性培養を含むセルファクトリーシステムに加えて、バキュロウイルス発現ベクター(BEVS)及びSf9昆虫細胞系は、大規模なrAAV産生のための最も信頼できる候補系として役立っている。最近の研究では、この系は遺伝子改変に適しており、転写制御を用いてプロデューサー細胞に有毒であるrep遺伝子発現を調節することが示されている。それでも、その有利な能力にもかかわらず、BEVS/Sf9パラダイムは高価であり、洗練されておらず、rAAV調製物のバキュロウイルス汚染はほとんど不可避であり、高い免疫原性のリスクを有する。
2006年に、Hajitouらは、アデノ随伴ウイルス/ファージ(AAVP)と呼ばれる、組換えアデノ随伴ウイルス(rAAV)と糸状バクテリオファージ(すなわちファージ)との間のハイブリッドを作成することによってベクターの必要性を満たすことを試みた(Nature protocols 2,523-531(2007),Cell 125,385-398(2006))。AAVPは、遺伝子発現がAAV2の内部末端反復(ITR)に隣接し、バクテリオファージの遺伝子間領域に挿入された真核導入遺伝子カセットの制御下にあるハイブリッドファージベクターである。このベクターは、バクテリオファージベクターの特異性とAAVの遺伝的特性とを組み合わせて、原核宿主においてのみ複製し、rAAVと類似の発現プロファイルを有する哺乳動物細胞に形質転換することができるウイルスを産生する。重要なことに、rAAVは、rep-及びcap発現プラスミドによるトランスフェクション及びその後の野生型アデノウイルス5型感染後に、AAVPで形質導入されたHEK293細胞からレスキューすることができる。したがって、AAVPベクターは哺乳動物及び原核生物ウイルスの好ましい特性を有し、これらの個々のベクターが通常有する不利益を受けない。
しかし、AAVPは、依然としてバクテリオファージのある種の固有の制限を有しており、したがって、AAVPまたはファージベクターの一般的な改善の余地を残しており、したがって、新規で優れたファージに基づくベクターを設計する必要がある。例えば、AAVPは2つのウイルス種(すなわちバクテリオファージ及びAAV)の間のハイブリッドであり、AAVPベクターは真核生物及び原核生物ウイルスの両方のゲノムを含む。原核細胞ゲノムは、ウイルス複製に不可欠であるにもかかわらず、機能的または治療的に無関係である。ファージウイルスゲノムの包含は、ベクター効率及び生産方法に有害な影響を与え、哺乳動物ウイルスと比較した場合、AAVPの比較的低い遺伝子導入効率をもたらす。したがって、遺伝子治療技術及びアデノ随伴ウイルス(AAV)またはレンチウイルスなどの組換えウイルスベクターの大規模生産の両方に使用できる新規な改変バクテリオファージ系を提供する必要がある。
本明細書に記載の研究は、ファージミド/アデノ随伴ビリオン(すなわち、PAAV)と呼ばれる新しいファージミド粒子を有する、いわゆる「ハイブリッドファージミドウイルスベクター系」を開発した。本発明者らが作成した新規ベクターについて本発明者らが使用した別の名称は、「プラスミド」である。線状ファージゲノムに挿入されたrAAVカセットからなる先行技術のAAVPゲノムとは異なり、本発明のPAAVゲノムは構造バクテリオファージ遺伝子を全く含まないので、宿主におけるベクター組立てを容易にするために原核ヘルパーウイルスが必要とされる。
したがって、本発明の第1の態様によれば、組換えファージミド粒子が形質導入された標的細胞中に導入遺伝子を発現させるための組換えファージミド粒子であって、このファージミド粒子は、標的細胞に生物学的効果を及ぼす作用因子をコードする少なくとも1つの導入遺伝子発現カセットを含み、ファージミド粒子が、そのバクテリオファージゲノムの少なくとも50%を欠くゲノムを含むことを特徴とする、組換えファージミド粒子を提供する。
有利には、第1の態様によるファージミド粒子へのハイブリッドウイルスベクター(例えば、AAVまたはレンチウイルス)の再設計は、このファージミド粒子が由来するファージゲノムを実質的に欠き、得られるベクター(すなわち、ファージミド粒子)の機能的特性を劇的に高める。ウイルス発現系の本発明によるファージミドベース系への改変は、より広い意味でのファージミドウイルスベクターの適用の可能性を拡大する。この粒子のゲノムから、ゲノムサイズの50%を超える、バクテリオファージゲノムの少なくとも50%を排除することにより、得られるファージミド粒子の粒径が劇的に減少する。
用語「ファージミド粒子」は、ファージ由来コートタンパク質によってカプセル化されたハイブリッドファージミドゲノムを意味することができる。ハイブリッドファージミドゲノムは、「ファージミドゲノム」(すなわち、バクテリオファージ(例えばF1)由来のものと細菌由来のもの(例えばpUC1)の2つの複製起点を含む遺伝子構築物)である。一実施形態では、ファージミドゲノムは組込まれた「AAV由来の組換え導入遺伝子カセット」(rAAV)を含有することができ、したがってハイブリッドであり、正常(すなわち、一般的な非ウイルス性)組換え導入遺伝子発現カセットを有する通常のファージミドゲノムではない。ファージミド粒子は、トランス作用性作用因子(例えば、ヘルパーファージ)由来のファージタンパク質によってカプセル化されたハイブリッドファージミドゲノム(すなわち、本発明)を意味することができる。
非常に大きいまたは複数の導入遺伝子カセットを追加する能力を可能にする一方で、これらのより小さいファージミド粒子はまた、遺伝子導入、生産収率、生体内分布及び真核生物の細胞障壁からの回避の増強において付加的な利点を示す。本発明のファージミド粒子を使用することの別の重要な利点は、それらは、後述するように、極めて大きく多数の導入遺伝子カセットまたは遺伝子挿入物例えば、トランスフェクションによる組換えウイルス(例えば、rAAVまたはレンチウイルス)産生のために使用される3つのプラスミドの遺伝子、を収容する能力を有する。したがって、単一または複数のファージミドベクターにおけるウイルス産生のための遺伝子構成要素を組み合わせることにより、効率的な商業規模のウイルス産生遺伝子送達系が設計されている。
好ましくは、ファージミド粒子はビリオンを含む。
組換えファージミド粒子のゲノムの1つの好ましい実施形態を図3に示し、好ましい構成要素を図4~6に示す。
好ましくは、組換えファージミド粒子のゲノムは、ファージミドゲノムの一本鎖DNAへの複製を可能にするためのパッケージングシグナルを含み、続いて一本鎖DNAが、原核宿主内のファージミド粒子にパッケージングすることができる。パッケージングシグナルは、複製起点を含むことが好ましい。例えば、複製起点は好ましくはF1 ori、より好ましくはF1バクテリオファージを含む。F1 oriの一実施形態のDNA配列は、以下のように、本明細書において配列番号1として表される。
ACGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATTTGGGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGGCTATTCTTTTGATTTATAAGGGATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGCGAATTTTAACAAAATATTAACGTTTACAATTT
[配列番号1]
好ましくは、組換えファージミド粒子のゲノムは、原核宿主内で二本鎖ベクターの複製を可能にするための複製起点を含む。好ましくは、複製起点は、宿主内のベクターの高コピー数複製を可能にする。好ましくは、複製起点はpUC oriを含む。pUC oriの一実施形態のDNA配列は、以下のように、本明細書において配列番号2として表される。
TTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAA
[配列番号2]
あるいは、別の実施形態において、ファージミド粒子は、それが宿主細胞のゲノムに組込まれるように設計され得る。この場合、粒子のゲノムの標的化した組み込み(例えば、相同組換えによる)に有利な核酸配列が想定される。したがって、組換えファージミド粒子のゲノムは、宿主ゲノム内への標的化された組み込みに有利な1つ以上のDNA配列を含み得る。
一実施形態において、ファージミド粒子は、実験研究ツールとして使用され、エクスビボまたはインビトロで使用され得る。
別の実施形態では、好ましくは、ファージミド粒子は、ベクターがインビボで被験体に全身的または局所的に投与されるか、インビトロで細胞の混合物に適用されるか、またはエクスビボで臓器に適用されるかにかかわらず、組織特異的標的への導入遺伝子の送達のための組換えベクターとして使用することができる。好ましくは、少なくとも1つの導入遺伝子発現カセットは、ウイルス導入遺伝子発現カセット、より好ましくは哺乳動物ウイルス導入遺伝子発現カセットを含む。例えば、少なくとも1つの導入遺伝子発現カセットは、好ましい一実施形態では、レンチウイルス導入遺伝子発現カセットを含むことができる。少なくとも1つの導入遺伝子発現カセットは、好ましくはアデノ随伴ウイルス(AAV)導入遺伝子発現カセットである。
導入遺伝子発現カセットは、標的細胞または組織において治療的または工業的有用性を有し得る作用因子をコードする任意の核酸を含み得る。本発明の一実施形態では、核酸はDNAであってもよく、ゲノムDNAまたはcDNAであってもよい。いくつかの実施形態では、天然に存在しないcDNAが好ましい場合がある。別の実施形態では、核酸は、アンチセンスRNAまたはshRNAなどのRNAであってもよい。
1つの好ましい実施形態では、導入遺伝子発現カセットは、腫瘍細胞におけるmTOR発現を標的とするように構成されたshRNAを含み得る。実施例7に示すように、mTOR/shRNA(RGD4C-mTOR/shRNA)を保有するRGD4C-ファージミドによる処理により、腫瘍細胞(例えば髄芽腫細胞)におけるmTOR発現のダウンレギュレーションを達成することができる。
核酸によってコードされる作用因子は、ポリペプチドまたはタンパク質であり得る。例えば、第1の態様のファージミド粒子が癌を治療するために使用される実施形態では、導入遺伝子は、単純ヘルペスウイルスチミジンキナーゼ遺伝子をコードし得、続いて、標的腫瘍細胞に対して治療効果を発揮し得る。
したがって、別の好ましい実施形態では、導入遺伝子発現カセットは、腫瘍細胞における発現のためにTNFαをコードし得る。実施例7に示すように、RGD4C-ファージミドは、TNFαを選択的にDIPGに送達することができ、アポトーシス誘導をもたらす。したがって、RGD4C-ファージミド-TNFαは、DIPGに対する標的療法に使用する治療可能性を有する。
しかしながら、組換えファージミド粒子によって標的とされる細胞のタイプは、粒子の表面上に発現される細胞標的リガンドのタイプに依存することが理解される。
導入遺伝子発現カセットは、標的細胞における核酸の発現に必要な1つ以上の機能的要素を含み得る。例えば、好ましくは、導入遺伝子発現カセットは、CMVプロモーターなどのプロモーターを含む。CMVプロモーターの一実施形態のDNA配列は、以下のように、配列番号3として本明細書中に表される。
ACGCGTGGAGCTAGTTATTAATAGTAATCAATTACGGGGTCATTAGTTCATAGCCCATATATGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGTCAATAGGGACTTTCCATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGCCCAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCATGGTGATGCGGTTTTGGCAGTACATCAATGGGCGTGGATAGCGGTTTGACTCACGGGGATTTCCAAGTCTCCACCCCATTGACGTCAATGGGAGTTTGTTTTGCACCAAAATCAACGGGACTTTCCAAAATGTCGTAACAACTCCGCCCCATTGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATATAAGCAGAGCTCGTTTAGTGAACCGTCAGATCGCCTGGAGACGCCATCCACGCTGTTTTGACCTCCATAGAAGACACCGGGACCGATCCAGCCTCC
[配列番号3]
別の好ましい実施形態では、導入遺伝子発現カセットは、grp78プロモーターを含む。grp78プロモーターの一実施形態の核酸配列は、以下のように、配列番号8として本明細書中に表される。
CCCGGGGGCCCAACGTGAGGGGAGGACCTGGACGGTTACCGGCGGAAACGGTTTCCAGGTGAGAGGTCACCCGAGGGACAGGCAGCTGCTCAACCAATAGGACCAGCTCTCAGGGCGGATGCTGCCTCTCATTGGCGGCCGTTAAGAATGACCAGTAGCCAATGAGTCGGCTGGGGGGCGCGTACCAGTGACGTGAGTTGCGGAGGAGGCCGCTTCGAATCGGCAGCGGCCAGCTTGGTGGCATGAACCAACCAGCGGCCTCCAACGAGTAGCGAGTTCACCAATCGGAGGCCTCCACGACGGGGCTGCGGGGAGGATATATAAGCCGAGTCGGCGACCGGCGCGCTCGATACTGGCTGTGACTACACTGACTTGGAC
[配列番号8]
好ましくは、導入遺伝子発現カセットは、発現された作用因子に付着可能なポリAテールをコードする核酸を含む。ポリAテールをコードする核酸の一実施形態のDNA配列は、以下のように、配列番号4として本明細書中に表される。
ACGGGTGGCATCCCTGTGACCCCTCCCCAGTGCCTCTCCTGGCCCTGGAAGTTGCCACTCCAGTGCCCACCAGCCTTGTCCTAATAAAATTAAGTTGCATCATTTTGTCTGACTAGGTGTCCTTCTATAATATTATGGGGTGGAGGGGGGTGGTATGGAGCAAGGGGCAAGTTGGGAAGACAACCTGTAGGGCCTGCGGGGTCTATTGGGAACCAAGCTGGAGTGCAGTGGCACAATCTTGGCTCACTGCAATCTCCGCCTCCTGGGTTCAAGCGATTCTCCTGCCTCAGCCTCCCGAGTTGTTGGGATTCCAGGCATGCATGACCAGGCTCAGCTAATTTTTGTTTTTTTGGTAGAGACGGGGTTTCACCATATTGGCCAGGCTGGTCTCCAACTCCTAATCTCAGGTGATCTACCCACCTTGGCCTCCCAAATTGCTGGGATTACAGGCGTGAACCACTGCTCCCTTCCCTGTCCTT
[配列番号4]
好ましくは、導入遺伝子発現カセットは、左及び/または右末端逆位反復配列(ITR)を含む。ITRは、AAVまたはレンチウイルスの血清型に特異的であり得、二次構造にヘアピンループを形成する限り、任意の配列であり得る。例えば、AAV血清型はAAV1~9であり得るが、好ましくはAAV1、AAV2、AAV5、AAV6またはAAV8である。ITRの一実施形態のDNA配列(市販のAAVプラスミド由来の左ITR)は、以下のように、本明細書では配列番号5として表される。
CCTGCAGGCAGCTGCGCGCTCGCTCGCTCACTGAGGCCGCCCGGGCGTCGGGCGACCTTTGGTCGCCCGGCCTCAGTGAGCGAGCGAGCGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCT
[配列番号5]
ITRの別の実施形態のDNA配列(市販のAAVプラスミド由来の右ITR)は、以下のように、配列番号6として本明細書中に表される。
AGGAACCCCTAGTGATGGAGTTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGGGCGACCAAAGGTCGCCCGACGCCCGGGCTTTGCCCGGGCGGCCTCAGTGAGCGAGCGAGCGCGCAGCTGCCTGCAGG
[配列番号6]
好ましくは、組換えファージミド粒子のゲノムは、例えば、宿主細胞、好ましくは細菌においてアンピシリン耐性を付与するために、ベクターを内包する宿主細胞に依存する選択マーカーを含む。マーカーは、宿主細胞中のファージミド粒子の産生中に選択圧を提供する。
好ましくは、組換えファージミド粒子は、1つ以上のカプシド少数コートタンパク質を含む。組換えファージミド粒子は、この粒子の標的細胞への送達を可能にする細胞標的化リガンドをディスプレイするように構成されたpIIIカプシド少数コートタンパク質を含み得る。好ましくは、組換えファージミド粒子は、1つ以上のカプシド主要コートタンパク質を含む。組換えファージミド粒子は、上に外来ペプチドをディスプレイするように構成された少なくとも1つのpVIIIカプシド主要コートタンパク質を含み得る。
組換えファージミド粒子は、例えば治療、または化学的もしくは生化学的結合によるカプシド構造の改変を含み得る。適切な改変の例は、ファージミド粒子上へのペプチド残基の架橋を含み得る。別の実施形態では、組換えファージミド粒子は、そのカプシドに付着した1つまたは機能的ペプチドを含み得る。例えば、機能的ペプチドは、核移行シグナルを含み得る。したがって、ファージミド粒子は、多機能性であり、WO2014/184528に開示されている特徴を使用することができる。
別の実施形態では、WO2014/184529に記載されているように、組換えファージミド粒子をカチオン性ポリマーと組み合わせて正味の正電荷を有する複合体を形成することができる。カチオン性ポリマーは、キトサン、ポリ-D-リジン(PDL)、ジエチルアミノエチル(DEAE)、ジエチルアミノエチル-デキストラン(DEAE.DEX)、ポリエチレンイミン(PEI)、ポリブレン、硫酸プロタミン及びカチオン性脂質からなる群から選択され得る。好ましくは、カチオン性脂質は、fugene(登録商標)、lipofectamine(登録商標)及びDOTAP(N-[1-(2,3-ジオレオイルオキシ)プロピル]-N、N、N-トリメチルアンモニウムメチルスルフェート)からなる群から選択される。好ましくは、カチオン性ポリマーはDEAE、より好ましくはDEAE.DEXを含む。
好ましくは、ファージミド粒子は、その粒子が由来するファージゲノムを実質的に欠くゲノムを含む。好ましくは、組換えファージミド粒子のゲノムは、それが由来するバクテリオファージゲノムの少なくとも60%、より好ましくは少なくとも70%、さらにより好ましくは少なくとも80%を欠く。より好ましくは、組換えファージミド粒子のゲノムは、それが由来するバクテリオファージゲノムの少なくとも90%、より好ましくは少なくとも95%、さらにより好ましくは少なくとも99%を欠く。好ましくは、組換えファージミド粒子のゲノムは、それが由来するバクテリオファージゲノムのすべてを欠く。しかしながら、上記のように、ファージミドウイルス粒子のゲノムは、いくつかの実施形態では、一本鎖DNAへの粒子の複製を可能にするためのバクテリオファージの複製起点、すなわちF1バクテリオファージoriを含むことができる。
好ましくは、ファージミド粒子は、原核宿主からの粒子の形成、パッケージングまたは排出に必要とされるそのゲノム中にバクテリオファージ構造遺伝子を欠いている。このような構造遺伝子は、カプシドタンパク質などをコードする。好ましくは、ファージミド粒子は、その粒子が由来する少数または主要コートタンパク質をコードする遺伝子を欠くゲノムを含む。好ましくは、ファージミド粒子は、pIIIカプシド少数コートタンパク質を欠くか、またはpVIIIカプシド主要コートタンパク質を欠くゲノムを含む。最も好ましくは、ファージミド粒子は、pIIIカプシド少数コートタンパク質及びpVIIIカプシド主要コートタンパク質の両方を欠くゲノムを含む。
このように、組換えファージミド粒子は、それが由来するバクテリオファージの構造遺伝子を含まない粒子のゲノムにもかかわらず、好ましくは、限定されるものではないが、バクテリオファージに由来するタンパク質及び他のコンジュゲート化合物を含む構造成分から構築され、ディスプレイされる、複製欠損ウイルス様粒子またはビリオンを含む。
したがって、第1の態様の組換えファージミド粒子のゲノムは、構造遺伝子を含む誘導体ファージゲノムを欠いていることを考えると、本発明の粒子を産生するために、バクテリオファージカプシドに組換えファージミドゲノムをパッケージングするために必要とされる、必要な構造(すなわちカプシド)遺伝子を提供するための代替システムが必要である。したがって、本発明者らは、別個のいわゆる「ヘルパーウイルス」ベクターの使用を含む、第1の態様の粒子を産生するための新規な系を発明した。したがって、事実上、第1の態様の粒子は、ファージミド及び真核生物ウイルスの成分を含むハイブリッドファージミドベクターである。
このため、第2の態様では、原核宿主から組換えファージミド粒子を産生するための系であって、
(i)原核宿主内で存続するように構成された第1のベクターであって、少なくとも1つの導入遺伝子発現カセット、及びベクターの一本鎖DNAへの複製を可能にするためのパッケージングシグナルを含む、第1のベクターと、
(ii)一本鎖DNAをパッケージングし、原核宿主からの組換えファージミド粒子の形成及び排出をもたらすために必要とされる構造タンパク質をコードする核酸を含む第2のベクターと、を含む、系を提供する。
有利には、ファージミド粒子の複製要素を、導入遺伝子を保有する第1の「治療用」ベクターとウイルスパッケージング構造遺伝子を保有する第2の別個の「ヘルパー」ベクターとに分離することは、ゲノム/ベクターサイズを実質的に減少させて、それにより導入遺伝子の能力を有意に増加させる。ファージミド粒子が治療的に使用される実施形態では、これは、新しい系の遺伝子治療用途に特に有用な利点である。その結果、これは、生産収率、遺伝子導入効率及び他の用途のベクター系の柔軟性を向上させる。
第2の態様の系の新規性は、第1のベクターによって提供される真核生物ウイルス(AAVまたはレンチウイルスなど)のゲノムを、第1のベクターによって提供される原核生物ウイルスカプシド(すなわち、バクテリオファージ)にパッケージングする能力である。したがって、従来技術の系(すなわち、AAVP)は2つのゲノムのキメラであるが、第2の態様の系(すなわちPAAV)は、原核生物のウイルス表現型と真核生物ウイルス遺伝子型間のキメラである。
好ましくは、第2の態様の系は、第1の態様による組換えファージミド粒子を産生するために使用される。したがって、好ましくは、第1のベクターは、組換えファージミド粒子のゲノムを含む。第1のベクターのパッケージングシグナルは、好ましくは、起点または複製を含み得る。好ましくは、第1のベクターにおける複製起点は、F1 ori、より好ましくはF1バクテリオファージからなる。
好ましくは、第1のベクターは、原核宿主内での二本鎖ベクターの複製を可能にするための第2の複製起点を含む。好ましくは、この複製起点は、宿主内のベクターの高コピー数複製を可能にする。好ましくは、複製起点はpUC oriを含む。あるいは、第1のベクターは、宿主ゲノムへの標的化した組み込みを助長する1つ以上のDNA配列を含み得、したがって任意の複製起点の必要性を除去する。
導入遺伝子発現カセットは、ウイルス導入遺伝子発現カセット、より好ましくは哺乳動物ウイルス導入遺伝子発現カセットを含む。例えば、少なくとも1つの導入遺伝子発現カセットは、レンチウイルス導入遺伝子発現カセットまたはAAV導入遺伝子発現カセットを含み得る。AAV導入遺伝子発現カセットが好ましい。
第2のベクトルの1つの好ましい実施形態を図7に示し、好ましい構成要素を図8に示す。第2のベクターまたは「ヘルパーファージ」は、好ましくは、第1のベクター(すなわち、ファージミド粒子のゲノム)を保有するファージミド粒子を原核宿主からレスキューするために特別に設計されたバクテリオファージであり、その実施形態を図3に示す。したがって、第2のベクター(すなわち、ヘルパーファージ)は、そのタンパク質及びポリペプチドを、第1のベクター(すなわち、ファージミド粒子のゲノム)、または、機能的パッケージングシグナル及び/または一本鎖起点または複製を含む、他のDNA実体に与えるために提供される。第2のベクターは、最も好ましくは複製欠損である。好ましくは、第2のベクターは、それ自体をファージ粒子にパッケージングする能力を著しく低下させる、破壊されたパッケージングシグナルを含む。好ましくは、第2のベクターは、破壊された複製起点を含む。一実施形態では、破壊された複製起点は、p15aのような中程度のコピー数起点である。別の実施形態では、破壊された複製起点は、pMB1などの低程度のコピー数起点である。好ましくは、第1のベクター(すなわち、ファージミド粒子のゲノム)は、複製及びパッケージングの両方において、第2のベクター(すなわち、ヘルパーファージ)を打ち負かすように構成される。
第2のベクターのゲノムは、得られた組換えファージミド粒子ターゲッティング特性(またはWO2014/184528に記載されているような多機能性特性)を与えるように操作することができる。したがって、ファージミド粒子アセンブリのための構造カプシドタンパク質を提供する。好ましくは、第2のベクターは、1つ以上のカプシド少数コートタンパク質または1つ以上のカプシド主要コートタンパク質をコードする核酸を含む。すべてのカプシドタンパク質は、野生型または組換え型であり、単一または複数のコピーで存在し、キメラまたは合成ペプチドをディスプレイするように改変されていてもよい。これには、ペプチドワクチン送達のための他のウイルスの抗原のディスプレイ、またはDNAワクチン(第1の態様のファージミド粒子によって送達される)が所望される場合のアジュバントのディスプレイが含まれる。
したがって、一実施形態では、第2のベクターは、組換えファージミド粒子の標的細胞(例えば腫瘍)への送達を可能にするための細胞標的化リガンドをディスプレイするように構成されたpIIIカプシド少数コートタンパク質をコードする第1の核酸配列を含むことができる。したがって、組換えファージミド粒子のpIII少数コートタンパク質に9-アミノ酸変異を誘導して、腫瘍細胞及びαβ及びαβインテグリンを発現する血管新生腫瘍関連内皮細胞にその特異性を付与することが望ましくあってよい。したがって、第2のベクターのゲノムは、RGD4C標的化ペプチド(CDCRGDCFC-配列番号7)を含み得る。
別の実施形態では、第2のベクターは、その上に外来ペプチドをディスプレイするように構成された少なくとも1つのpVIIIカプシド主要コートタンパク質をコードする第2の核酸配列を含むことができる。したがって、例えば10未満のアミノ酸長の短いペプチドをディスプレイするために、組換えファージミド粒子の野生型pVIII主要コートタンパク質に突然変異を誘発することが望ましい。この短いペプチドは、標的化部分であってもよく、インビボまたはインビトロでの固有の生物学的/化学的機能性を有していてもよい。例えば、抗原ディスプレイによるインビボでの免疫刺激、または金結合ペプチドをディスプレイすることによるインビトロでのナノ粒子(例えば、金)への結合である。
第1のベクターは、レトロウイルス科またはオルソレトロウイルス亜科のメンバーであり得る。第1のベクターは、レンチウイルス属のメンバーであり得る。好ましくは、第1のベクターはパルボウイルス科または亜科のメンバーである。好ましくは、第1のベクターは、ディペンドパルボウイルス(Dependoparvovirus)またはアデノ随伴ウイルス種のメンバーである。
第1のベクター(すなわち、ファージミド粒子のゲノム)及び第2のベクター(すなわち、ヘルパーファージ)が構築されると、これらを一緒に使用して原核宿主において第1の態様の組換えファージミド粒子を産生する。それはファージミドゲノムの一本鎖DNAへの複製を可能にする第1のベクターのパッケージングシグナル(例えば、複製起点)が、第2のベクター(すなわち、ヘルパーファージ)構造タンパク質にシグナル伝達して、ファージミドゲノムをパッケージングし(すなわち、それらは宿主内で一緒にトランスで作用する)第1の態様の粒子を作成するよう機能すると、理解される。
1つの好ましい実施形態では、第1のベクター(ファージミド粒子ゲノム)は、実質的に配列番号9に示される核酸配列、またはそのフラグメントもしくは変異体を含み、ここで配列番号9は以下のように表される。
CCTGCAGGCAGCTGCGCGCTCGCTCGCTCACTGAGGCCGCCCGGGCGTCGGGCGACCTTTGGTCGCCCGGCCTCAGTGAGCGAGCGAGCGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCTGCGGCCGC---導入遺伝子---AGGAACCCCTAGTGATGGAGTTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGGGCGACCAAAGGTCGCCCGACGCCCGGGCTTTGCCCGGGCGGCCTCAGTGAGCGAGCGAGCGCGCAGCTGCCTGCAGGGGCGCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTTCACACCGCATACGTCAAAGCAACCATAGTACGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATTTGGGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGGCTATTCTTTTGATTTATAAGGGATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGCGAATTTTAACAAAATATTAACGTTTACAATTTTATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGCCCCGACACCCGCCAACACCCGCTGACGCGCCCTGACGGGCTTGTCTGCTCCCGGCATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACCGTCATCACCGAAACGCGCGAGACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCATGATAATAATGGTTTCTTAGACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGT
[配列番号9]
1つの好ましい実施形態では、第2のベクター(RGD配列を有するヘルパーファージ)は、実質的に配列番号10に示される核酸配列、またはそのフラグメントもしくは変異体を含み、ここで配列番号10は以下のように表される。
AACGCTACTACTATTAGTAGAATTGATGCCACCTTTTCAGCTCGCGCCCCAAATGAAAATATAGCTAAACAGGTTATTGACCATTTGCGAAATGTATCTAATGGTCAAACTAAATCTACTCGTTCGCAGAATTGGGAATCAACTGTTACATGGAATGAAACTTCCAGACACCGTACTTTAGTTGCATATTTAAAACATGTTGAGCTACAGCACCAGATTCAGCAATTAAGCTCTAAGCCATCCGCAAAAATGACCTCTTATCAAAAGGAGCAATTAAAGGTACTCTCTAATCCTGACCTGTTGGAGTTTGCTTCCGGTCTGGTTCGCTTTGAAGCTCGAATTAAAACGCGATATTTGAAGTCTTTCGGGCTTCCTCTTAATCTTTTTGATGCAATCCGCTTTGCTTCTGACTATAATAGTCAGGGTAAAGACCTGATTTTTGATTTATGGTCATTCTCGTTTTCTGAACTGTTTAAAGCATTTGAGGGGGATTCAATGAATATTTATGACGATTCCGCAGTATTGGACGCTATCCAGTCTAAACATTTTACTATTACCCCCTCTGGCAAAACTTCTTTTGCAAAAGCCTCTCGCTATTTTGGTTTTTATCGTCGTCTGGTAAACGAGGGTTATGATAGTGTTGCTCTTACTATGCCTCGTAATTCCTTTTGGCGTTATGTATCTGCATTAGTTGAATGTGGTATTCCTAAATCTCAACTGATGAATCTTTCTACCTGTAATAATGTTGTTCCGTTAGTTCGTTTTATTAACGTAGATTTTTCTTCCCAACGTCCTGACTGGTATAATGAGCCAGTTCTTAAAATCGCATAAGGTAATTCACAATGATTAAAGTTGAAATTAAACCATCTCAAGCCCAATTTACTACTCGTTCTGGTGTTTCTCGTCAGGGCAAGCCTTATTCACTGAATGAGCAGCTTTGTTACGTTGATTTGGGTAATGAATATCCGGTTCTTGTCAAGATTACTCTTGATGAAGGTCAGCCAGCCTATGCGCCTGGTCTGTACACCGTTCATCTGTCCTCTTTCAAAGTTGGTCAGTTCGGTTCCCTTATGATTGACCGTCTGCGCCTCGTTCCGGCTAAGTAACATGGAGCAGGTCGCGGATTTCGACACAATTTATCAGGCGATGATACAAATCTCCGTTGTACTTTGTTTCGCGCTTGGTATAATCGCTGGGGGTCAAAGATGAGTGTTTTAGTGTATTCTTTCGCCTCTTTCGTTTTAGGTTGGTGCCTTCGTAGTGGCATTACGTATTTTACCCGTTTAATGGAAACTTCCTCATGAAAAAGTCTTTAGTCCTCAAAGCCTCTGTAGCCGTTGCTACCCTCGTTCCGATGCTGTCTTTCGCTGCTGAGGGTGACGATCCCGCAAAAGCGGCCTTTAACTCCCTGCAAGCCTCAGCGACCGAATATATCGGTTATGCGTGGGCGATGGTTGTTGTCATTGTCGGCGCAACTATCGGTATCAAGCTGTTTAAGAAATTCACCTCGAAAGCAAGCTGATAAACCGATACAATTAAAGGCTCCTTTTGGAGCCTTTTTTTTTGGAGATTTTCAACGTGAAAAAATTATTATTCGCAATTCCTTTAGTTGTTCCTTTCTATTCTCACTCCGCTTGTGATTGTAGGGGGGATTGTTTTTGTGAAACTGTTGAAAGTTGTTTAGCAAAACCCCATACAGAAAATTCATTTACTAACGTCTGGAAAGACGACAAAACTTTAGATCGTTACGCTAACTATGAGGGTTGTCTGTGGAATGCTACAGGCGTTGTAGTTTGTACTGGTGACGAAACTCAGTGTTACGGTACATGGGTTCCTATTGGGCTTGCTATCCCTGAAAATGAGGGTGGTGGCTCTGAGGGTGGCGGTTCTGAGGGTGGCGGTTCTGAGGGTGGCGGTACTAAACCTCCTGAGTACGGTGATACACCTATTCCGGGCTATACTTATATCAACCCTCTCGACGGCACTTATCCGCCTGGTACTGAGCAAAACCCCGCTAATCCTAATCCTTCTCTTGAGGAGTCTCAGCCTCTTAATACTTTCATGTTTCAGAATAATAGGTTCCGAAATAGGCAGGGGGCATTAACTGTTTATACGGGCACTGTTACTCAAGGCACTGACCCCGTTAAAACTTATTACCAGTACACTCCTGTATCATCAAAAGCCATGTATGACGCTTACTGGAACGGTAAATTCAGAGACTGCGCTTTCCATTCTGGCTTTAATGAGGATCCATTCGTTTGTGAATATCAAGGCCAATCGTCTGACCTGCCTCAACCTCCTGTCAATGCTGGCGGCGGCTCTGGTGGTGGTTCTGGTGGCGGCTCTGAGGGTGGTGGCTCTGAGGGTGGCGGTTCTGAGGGTGGCGGCTCTGAGGGAGGCGGTTCCGGTGGTGGCTCTGGTTCCGGTGATTTTGATTATGAAAAGATGGCAAACGCTAATAAGGGGGCTATGACCGAAAATGCCGATGAAAACGCGCTACAGTCTGACGCTAAAGGCAAACTTGATTCTGTCGCTACTGATTACGGTGCTGCTATCGATGGTTTCATTGGTGACGTTTCCGGCCTTGCTAATGGTAATGGTGCTACTGGTGATTTTGCTGGCTCTAATTCCCAAATGGCTCAAGTCGGTGACGGTGATAATTCACCTTTAATGAATAATTTCCGTCAATATTTACCTTCCCTCCCTCAATCGGTTGAATGTCGCCCTTTTGTCTTTAGCGCTGGTAAACCATATGAATTTTCTATTGATTGTGACAAAATAAACTTATTCCGTGGTGTCTTTGCGTTTCTTTTATATGTTGCCACCTTTATGTATGTATTTTCTACGTTTGCTAACATACTGCGTAATAAGGAGTCTTAATCATGCCAGTTCTTTTGGGTATTCCGTTATTATTGCGTTTCCTCGGTTTCCTTCTGGTAACTTTGTTCGGCTATCTGCTTACTTTTCTTAAAAAGGGCTTCGGTAAGATAGCTATTGCTATTTCATTGTTTCTTGCTCTTATTATTGGGCTTAACTCAATTCTTGTGGGTTATCTCTCTGATATTAGCGCTCAATTACCCTCTGACTTTGTTCAGGGTGTTCAGTTAATTCTCCCGTCTAATGCGCTTCCCTGTTTTTATGTTATTCTCTCTGTAAAGGCTGCTATTTTCATTTTTGACGTTAAACAAAAAATCGTTTCTTATTTGGATTGGGATAAATAATATGGCTGTTTATTTTGTAACTGGCAAATTAGGCTCTGGAAAGACGCTCGTTAGCGTTGGTAAGATTCAGGATAAAATTGTAGCTGGGTGCAAAATAGCAACTAATCTTGATTTAAGGCTTCAAAACCTCCCGCAAGTCGGGAGGTTCGCTAAAACGCCTCGCGTTCTTAGAATACCGGATAAGCCTTCTATATCTGATTTGCTTGCTATTGGGCGCGGTAATGATTCCTACGATGAAAATAAAAACGGCTTGCTTGTTCTCGATGAGTGCGGTACTTGGTTTAATACCCGTTCTTGGAATGATAAGGAAAGACAGCCGATTATTGATTGGTTTCTACATGCTCGTAAATTAGGATGGGATATTATTTTTCTTGTTCAGGACTTATCTATTGTTGATAAACAGGCGCGTTCTGCATTAGCTGAACATGTTGTTTATTGTCGTCGTCTGGACAGAATTACTTTACCTTTTGTCGGTACTTTATATTCTCTTATTACTGGCTCGAAAATGCCTCTGCCTAAATTACATGTTGGCGTTGTTAAATATGGCGATTCTCAATTAAGCCCTACTGTTGAGCGTTGGCTTTATACTGGTAAGAATTTGTATAACGCATATGATACTAAACAGGCTTTTTCTAGTAATTATGATTCCGGTGTTTATTCTTATTTAACGCCTTATTTATCACACGGTCGGTATTTCAAACCATTAAATTTAGGTCAGAAGATGAAATTAACTAAAATATATTTGAAAAAGTTTTCTCGCGTTCTTTGTCTTGCGATTGGATTTGCATCAGCATTTACATATAGTTATATAACCCAACCTAAGCCGGAGGTTAAAAAGGTAGTCTCTCAGACCTATGATTTTGATAAATTCACTATTGACTCTTCTCAGCGTCTTAATCTAAGCTATCGCTATGTTTTCAAGGATTCTAAGGGAAAATTAATTAATAGCGACGATTTACAGAAGCAAGGTTATTCACTCACATATATTGATTTATGTACTGTTTCCATTAAAAAAGGTAATTCAAATGAAATTGTTAAATGTAATTAATTTTGTTTTCTTGATGTTTGTTTCATCATCTTCTTTTGCTCAGGTAATTGAAATGAATAATTCGCCTCTGCGCGATTTTGTAACTTGGTATTCAAAGCAATCAGGCGAATCCGTTATTGTTTCTCCCGATGTAAAAGGTACTGTTACTGTATATTCATCTGACGTTAAACCTGAAAATCTACGCAATTTCTTTATTTCTGTTTTACGTGCTAATAATTTTGATATGGTTGGTTCAATTCCTTCCATAATTCAGAAGTATAATCCAAACAATCAGGATTATATTGATGAATTGCCATCATCTGATAATCAGGAATATGATGATAATTCCGCTCCTTCTGGTGGTTTCTTTGTTCCGCAAAATGATAATGTTACTCAAACTTTTAAAATTAATAACGTTCGGGCAAAGGATTTAATACGAGTTGTCGAATTGTTTGTAAAGTCTAATACTTCTAAATCCTCAAATGTATTATCTATTGACGGCTCTAATCTATTAGTTGTTAGTGCACCTAAAGATATTTTAGATAACCTTCCTCAATTCCTTTCTACTGTTGATTTGCCAACTGACCAGATATTGATTGAGGGTTTGATATTTGAGGTTCAGCAAGGTGATGCTTTAGATTTTTCATTTGCTGCTGGCTCTCAGCGTGGCACTGTTGCAGGCGGTGTTAATACTGACCGCCTCACCTCTGTTTTATCTTCTGCTGGTGGTTCGTTCGGTATTTTTAATGGCGATGTTTTAGGGCTATCAGTTCGCGCATTAAAGACTAATAGCCATTCAAAAATATTGTCTGTGCCACGTATTCTTACGCTTTCAGGTCAGAAGGGTTCTATCTCTGTTGGCCAGAATGTCCC

TTTTATTACTGGTCGTGTGACTGGTGAATCTGCCAATGTAAATAATCCATTTCAGACGATTGAGCGTCAAAATGTAGGTATTTCCATGAGCGTTTTTCCTGTTGCAATGGCTGGCGGTAATATTGTTCTGGATATTACCAGCAAGGCCGATAGTTTGAGTTCTTCTACTCAGGCAAGTGATGTTATTACTAATCAAAGAAGTATTGCTACAACGGTTAATTTGCGTGATGGACAGACTCTTTTACTCGGTGGCCTCACTGATTATAAAAACACTTCTCAAGATTCTGGCGTACCGTTCCTGTCTAAAATCCCTTTAATCGGCCTCCTGTTTAGCTCCCGCTCTGATTCCAACGAGGAAAGCACGTTATACGTGCTCGTCAAAGCAACCATAGTACGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATTTGGGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGGACGGATCGCTTCATGTGGCAGGAGAAAAAAGGCTGCACCGGTGCGTCAGCAGAATATGTGATACAGGATATATTCCGCTTCCTCGCTCACTGACTCGCTACGCTCGGTCGTTCGACTGCGGCGAGCGGAAATGGCTTACGAACGGGGCGGAGATTTCCTGGAAGATGCCAGGAAGATACTTAACAGGGAAGTGAGAGGGCCGCGGCAAAGCCGTTTTTCCATAGGCTCCGCCCCCCTGACAAGCATCACGAAATCTGACGCTCAAATCAGTGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGCGGCTCCCTCGTGCGCTCTCCTGTTCCTGCCTTTCGGTTTACCGGTGTCATTCCGCTGTTATGGCCGCGTTTGTCTCATTCCACGCCTGACACTCAGTTCCGGGTAGGCAGTTCGCTCCAAGCTGGACTGTATGCACGAACCCCCCGTTCAGTCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGAAAGACATGCAAAAGCACCACTGGCAGCAGCCACTGGTAATTGATTTAGAGGAGTTAGTCTTGAAGTCATGCGCCGGTTAAGGCTAAACTGAAAGGACAAGTTTTGGTGACTGCGCTCCTCCAAGCCAGTTACCTCGGTTCAAAGAGTTGGTAGCTCAGAGAACCTTCGAAAAACCGCCCTGCAAGGCGGTTTTTTCGTTTTCAGAGCAAGAGATTACGCGCAGACCAAAACGATCTCAAGAAGATCATCTTATTAAGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGATTCGAGCTCGCCCCGGGGATCGACCAGTTGGTGATTTTGAACTTTTGCTTTGCCACGGAACGGTCTGCGTTGTCGGGAAGATGCGTGATCTGATCCTTCAACTCAGCAAAAGTTCGATTTATTCAACAAAGCCGCCGTCCCGTCAAGTCAGCGTAATGCTCTGCCAGTGTTACAACCAATTAACCAATTCTGATTAGAAAAACTCATCGAGCATCAAATGAAACTGCAATTTATTCATATCAGGATTATCAATACCATATTTTTGAAAAAGCCGTTTCTGTAATGAAGGAGAAAACTCACCGAGGCAGTTCCATAGGATGGCAAGATCCTGGTATCGGTCTGCGATTCCGACTCGTCCAACATCAATACAACCTATTAATTTCCCCTCGTCAAAAATAAGGTTATCAAGTGAGAAATCACCATGAGTGACGACTGAATCCGGTGAGAATGGCAAAAGCTTATGCATTTCTTTCCAGACTTGTTCAACAGGCCAGCCATTACGCTCGTCATCAAAATCACTCGCATCAACCAAACCGTTATTCATTCGTGATTGCGCCTGAGCGAGACGAAATACGCGATCGCTGTTAAAAGGACAATTACAAACAGGAATCGAATGCAACCGGCGCAGGAACACTGCCAGCGCATCAACAATATTTTCACCTGAATCAGGATATTCTTCTAATACCTGGAATGCTGTTTTCCCGGGGATCGCAGTGGTGAGTAACCATGCATCATCAGGAGTACGGATAAAATGCTTGATGGTCGGAAGAGGCATAAATTCCGTCAGCCAGTTTAGTCTGACCATCTCATCTGTAACATCATTGGCAACGCTACCTTTGCCATGTTTCAGAAACAACTCTGGCGCATCGGGCTTCCCATACAATCGATAGATTGTCGCACCTGATTGCCCGACATTATCGCGAGCCCATTTATACCCATATAAATCAGCATCCATGTTGGAATTTAATCGCGGCCTCGAGCAAGACGTTTCCCGTTGAATATGGCTCATAACACCCCTTGTATTACTGTTTATGTAAGCAGACAGTTTTATTGTTCATGATGATATATTTTTATCTTGTGCAATGTAACATCAGAGATTTTGAGACACAACGTGGCTTTCCCCCCCCCCCCCTGCAGGTCTCGGGCTATTCTTTTGATTTATAAGGGATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGCGAATTTTAACAAAATATTAACGTTTACAATTTAAATATTTGCTTATACAATCTTCCTGTTTTTGGGGCTTTTCTGATTATCAACCGGGGTACATATGATTGACATGCTAGTTTTACGATTACCGTTCATCGATTCTCTTGTTTGCTCCAGACTCTCAGGCAATGACCTGATAGCCTTTGTAGACCTCTCAAAAATAGCTACCCTCTCCGGCATGAATTTATCAGCTAGAACGGTTGAATATCATATTGATGGTGATTTGACTGTCTCCGGCCTTTCTCACCCTTTTGAATCTTTACCTACACATTACTCAGGCATTGCATTTAAAATATATGAGGGTTCTAAAAATTTTTATCCTTGCGTTGAAATAAAGGCTTCTCCCGCAAAAGTATTACAGGGTCATAATGTTTTTGGTACAACCGATTTAGCTTTATGCTCTGAGGCTTTATTGCTTAATTTTGCTAATTCTTTGCCTTGCCTGTATGATTTATTGGATGTT
[配列番号10]
1つの好ましい実施形態では、第2のベクター(RGD配列を有さないヘルパーファージ)は、実質的に配列番号11に示される核酸配列、またはそのフラグメントもしくは変異体を含み、ここで配列番号11は以下のように表される。
AACGCTACTACTATTAGTAGAATTGATGCCACCTTTTCAGCTCGCGCCCCAAATGAAAATATAGCTAAACAGGTTATTGACCATTTGCGAAATGTATCTAATGGTCAAACTAAATCTACTCGTTCGCAGAATTGGGAATCAACTGTTACATGGAATGAAACTTCCAGACACCGTACTTTAGTTGCATATTTAAAACATGTTGAGCTACAGCACCAGATTCAGCAATTAAGCTCTAAGCCATCCGCAAAAATGACCTCTTATCAAAAGGAGCAATTAAAGGTACTCTCTAATCCTGACCTGTTGGAGTTTGCTTCCGGTCTGGTTCGCTTTGAAGCTCGAATTAAAACGCGATATTTGAAGTCTTTCGGGCTTCCTCTTAATCTTTTTGATGCAATCCGCTTTGCTTCTGACTATAATAGTCAGGGTAAAGACCTGATTTTTGATTTATGGTCATTCTCGTTTTCTGAACTGTTTAAAGCATTTGAGGGGGATTCAATGAATATTTATGACGATTCCGCAGTATTGGACGCTATCCAGTCTAAACATTTTACTATTACCCCCTCTGGCAAAACTTCTTTTGCAAAAGCCTCTCGCTATTTTGGTTTTTATCGTCGTCTGGTAAACGAGGGTTATGATAGTGTTGCTCTTACTATGCCTCGTAATTCCTTTTGGCGTTATGTATCTGCATTAGTTGAATGTGGTATTCCTAAATCTCAACTGATGAATCTTTCTACCTGTAATAATGTTGTTCCGTTAGTTCGTTTTATTAACGTAGATTTTTCTTCCCAACGTCCTGACTGGTATAATGAGCCAGTTCTTAAAATCGCATAAGGTAATTCACAATGATTAAAGTTGAAATTAAACCATCTCAAGCCCAATTTACTACTCGTTCTGGTGTTTCTCGTCAGGGCAAGCCTTATTCACTGAATGAGCAGCTTTGTTACGTTGATTTGGGTAATGAATATCCGGTTCTTGTCAAGATTACTCTTGATGAAGGTCAGCCAGCCTATGCGCCTGGTCTGTACACCGTTCATCTGTCCTCTTTCAAAGTTGGTCAGTTCGGTTCCCTTATGATTGACCGTCTGCGCCTCGTTCCGGCTAAGTAACATGGAGCAGGTCGCGGATTTCGACACAATTTATCAGGCGATGATACAAATCTCCGTTGTACTTTGTTTCGCGCTTGGTATAATCGCTGGGGGTCAAAGATGAGTGTTTTAGTGTATTCTTTCGCCTCTTTCGTTTTAGGTTGGTGCCTTCGTAGTGGCATTACGTATTTTACCCGTTTAATGGAAACTTCCTCATGAAAAAGTCTTTAGTCCTCAAAGCCTCTGTAGCCGTTGCTACCCTCGTTCCGATGCTGTCTTTCGCTGCTGAGGGTGACGATCCCGCAAAAGCGGCCTTTAACTCCCTGCAAGCCTCAGCGACCGAATATATCGGTTATGCGTGGGCGATGGTTGTTGTCATTGTCGGCGCAACTATCGGTATCAAGCTGTTTAAGAAATTCACCTCGAAAGCAAGCTGATAAACCGATACAATTAAAGGCTCCTTTTGGAGCCTTTTTTTTTGGAGATTTTCAACGTGAAAAAATTATTATTCGCAATTCCTTTAGTTGTTCCTTTCTATTCTCACTCCGCTGAAACTGTTGAAAGTTGTTTAGCAAAACCCCATACAGAAAATTCATTTACTAACGTCTGGAAAGACGACAAAACTTTAGATCGTTACGCTAACTATGAGGGTTGTCTGTGGAATGCTACAGGCGTTGTAGTTTGTACTGGTGACGAAACTCAGTGTTACGGTACATGGGTTCCTATTGGGCTTGCTATCCCTGAAAATGAGGGTGGTGGCTCTGAGGGTGGCGGTTCTGAGGGTGGCGGTTCTGAGGGTGGCGGTACTAAACCTCCTGAGTACGGTGATACACCTATTCCGGGCTATACTTATATCAACCCTCTCGACGGCACTTATCCGCCTGGTACTGAGCAAAACCCCGCTAATCCTAATCCTTCTCTTGAGGAGTCTCAGCCTCTTAATACTTTCATGTTTCAGAATAATAGGTTCCGAAATAGGCAGGGGGCATTAACTGTTTATACGGGCACTGTTACTCAAGGCACTGACCCCGTTAAAACTTATTACCAGTACACTCCTGTATCATCAAAAGCCATGTATGACGCTTACTGGAACGGTAAATTCAGAGACTGCGCTTTCCATTCTGGCTTTAATGAGGATCCATTCGTTTGTGAATATCAAGGCCAATCGTCTGACCTGCCTCAACCTCCTGTCAATGCTGGCGGCGGCTCTGGTGGTGGTTCTGGTGGCGGCTCTGAGGGTGGTGGCTCTGAGGGTGGCGGTTCTGAGGGTGGCGGCTCTGAGGGAGGCGGTTCCGGTGGTGGCTCTGGTTCCGGTGATTTTGATTATGAAAAGATGGCAAACGCTAATAAGGGGGCTATGACCGAAAATGCCGATGAAAACGCGCTACAGTCTGACGCTAAAGGCAAACTTGATTCTGTCGCTACTGATTACGGTGCTGCTATCGATGGTTTCATTGGTGACGTTTCCGGCCTTGCTAATGGTAATGGTGCTACTGGTGATTTTGCTGGCTCTAATTCCCAAATGGCTCAAGTCGGTGACGGTGATAATTCACCTTTAATGAATAATTTCCGTCAATATTTACCTTCCCTCCCTCAATCGGTTGAATGTCGCCCTTTTGTCTTTAGCGCTGGTAAACCATATGAATTTTCTATTGATTGTGACAAAATAAACTTATTCCGTGGTGTCTTTGCGTTTCTTTTATATGTTGCCACCTTTATGTATGTATTTTCTACGTTTGCTAACATACTGCGTAATAAGGAGTCTTAATCATGCCAGTTCTTTTGGGTATTCCGTTATTATTGCGTTTCCTCGGTTTCCTTCTGGTAACTTTGTTCGGCTATCTGCTTACTTTTCTTAAAAAGGGCTTCGGTAAGATAGCTATTGCTATTTCATTGTTTCTTGCTCTTATTATTGGGCTTAACTCAATTCTTGTGGGTTATCTCTCTGATATTAGCGCTCAATTACCCTCTGACTTTGTTCAGGGTGTTCAGTTAATTCTCCCGTCTAATGCGCTTCCCTGTTTTTATGTTATTCTCTCTGTAAAGGCTGCTATTTTCATTTTTGACGTTAAACAAAAAATCGTTTCTTATTTGGATTGGGATAAATAATATGGCTGTTTATTTTGTAACTGGCAAATTAGGCTCTGGAAAGACGCTCGTTAGCGTTGGTAAGATTCAGGATAAAATTGTAGCTGGGTGCAAAATAGCAACTAATCTTGATTTAAGGCTTCAAAACCTCCCGCAAGTCGGGAGGTTCGCTAAAACGCCTCGCGTTCTTAGAATACCGGATAAGCCTTCTATATCTGATTTGCTTGCTATTGGGCGCGGTAATGATTCCTACGATGAAAATAAAAACGGCTTGCTTGTTCTCGATGAGTGCGGTACTTGGTTTAATACCCGTTCTTGGAATGATAAGGAAAGACAGCCGATTATTGATTGGTTTCTACATGCTCGTAAATTAGGATGGGATATTATTTTTCTTGTTCAGGACTTATCTATTGTTGATAAACAGGCGCGTTCTGCATTAGCTGAACATGTTGTTTATTGTCGTCGTCTGGACAGAATTACTTTACCTTTTGTCGGTACTTTATATTCTCTTATTACTGGCTCGAAAATGCCTCTGCCTAAATTACATGTTGGCGTTGTTAAATATGGCGATTCTCAATTAAGCCCTACTGTTGAGCGTTGGCTTTATACTGGTAAGAATTTGTATAACGCATATGATACTAAACAGGCTTTTTCTAGTAATTATGATTCCGGTGTTTATTCTTATTTAACGCCTTATTTATCACACGGTCGGTATTTCAAACCATTAAATTTAGGTCAGAAGATGAAATTAACTAAAATATATTTGAAAAAGTTTTCTCGCGTTCTTTGTCTTGCGATTGGATTTGCATCAGCATTTACATATAGTTATATAACCCAACCTAAGCCGGAGGTTAAAAAGGTAGTCTCTCAGACCTATGATTTTGATAAATTCACTATTGACTCTTCTCAGCGTCTTAATCTAAGCTATCGCTATGTTTTCAAGGATTCTAAGGGAAAATTAATTAATAGCGACGATTTACAGAAGCAAGGTTATTCACTCACATATATTGATTTATGTACTGTTTCCATTAAAAAAGGTAATTCAAATGAAATTGTTAAATGTAATTAATTTTGTTTTCTTGATGTTTGTTTCATCATCTTCTTTTGCTCAGGTAATTGAAATGAATAATTCGCCTCTGCGCGATTTTGTAACTTGGTATTCAAAGCAATCAGGCGAATCCGTTATTGTTTCTCCCGATGTAAAAGGTACTGTTACTGTATATTCATCTGACGTTAAACCTGAAAATCTACGCAATTTCTTTATTTCTGTTTTACGTGCTAATAATTTTGATATGGTTGGTTCAATTCCTTCCATAATTCAGAAGTATAATCCAAACAATCAGGATTATATTGATGAATTGCCATCATCTGATAATCAGGAATATGATGATAATTCCGCTCCTTCTGGTGGTTTCTTTGTTCCGCAAAATGATAATGTTACTCAAACTTTTAAAATTAATAACGTTCGGGCAAAGGATTTAATACGAGTTGTCGAATTGTTTGTAAAGTCTAATACTTCTAAATCCTCAAATGTATTATCTATTGACGGCTCTAATCTATTAGTTGTTAGTGCACCTAAAGATATTTTAGATAACCTTCCTCAATTCCTTTCTACTGTTGATTTGCCAACTGACCAGATATTGATTGAGGGTTTGATATTTGAGGTTCAGCAAGGTGATGCTTTAGATTTTTCATTTGCTGCTGGCTCTCAGCGTGGCACTGTTGCAGGCGGTGTTAATACTGACCGCCTCACCTCTGTTTTATCTTCTGCTGGTGGTTCGTTCGGTATTTTTAATGGCGATGTTTTAGGGCTATCAGTTCGCGCATTAAAGACTAATAGCCATTCAAAAATATTGTCTGTGCCACGTATTCTTACGCTTTCAGGTCAGAAGGGTTCTATCTCTGTTGGCCAGAATGTCCCTTTTATTACTGGTCGTGTGACTGGTGA

ATCTGCCAATGTAAATAATCCATTTCAGACGATTGAGCGTCAAAATGTAGGTATTTCCATGAGCGTTTTTCCTGTTGCAATGGCTGGCGGTAATATTGTTCTGGATATTACCAGCAAGGCCGATAGTTTGAGTTCTTCTACTCAGGCAAGTGATGTTATTACTAATCAAAGAAGTATTGCTACAACGGTTAATTTGCGTGATGGACAGACTCTTTTACTCGGTGGCCTCACTGATTATAAAAACACTTCTCAAGATTCTGGCGTACCGTTCCTGTCTAAAATCCCTTTAATCGGCCTCCTGTTTAGCTCCCGCTCTGATTCCAACGAGGAAAGCACGTTATACGTGCTCGTCAAAGCAACCATAGTACGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATTTGGGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGGACGGATCGCTTCATGTGGCAGGAGAAAAAAGGCTGCACCGGTGCGTCAGCAGAATATGTGATACAGGATATATTCCGCTTCCTCGCTCACTGACTCGCTACGCTCGGTCGTTCGACTGCGGCGAGCGGAAATGGCTTACGAACGGGGCGGAGATTTCCTGGAAGATGCCAGGAAGATACTTAACAGGGAAGTGAGAGGGCCGCGGCAAAGCCGTTTTTCCATAGGCTCCGCCCCCCTGACAAGCATCACGAAATCTGACGCTCAAATCAGTGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGCGGCTCCCTCGTGCGCTCTCCTGTTCCTGCCTTTCGGTTTACCGGTGTCATTCCGCTGTTATGGCCGCGTTTGTCTCATTCCACGCCTGACACTCAGTTCCGGGTAGGCAGTTCGCTCCAAGCTGGACTGTATGCACGAACCCCCCGTTCAGTCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGAAAGACATGCAAAAGCACCACTGGCAGCAGCCACTGGTAATTGATTTAGAGGAGTTAGTCTTGAAGTCATGCGCCGGTTAAGGCTAAACTGAAAGGACAAGTTTTGGTGACTGCGCTCCTCCAAGCCAGTTACCTCGGTTCAAAGAGTTGGTAGCTCAGAGAACCTTCGAAAAACCGCCCTGCAAGGCGGTTTTTTCGTTTTCAGAGCAAGAGATTACGCGCAGACCAAAACGATCTCAAGAAGATCATCTTATTAAGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGATTCGAGCTCGCCCCGGGGATCGACCAGTTGGTGATTTTGAACTTTTGCTTTGCCACGGAACGGTCTGCGTTGTCGGGAAGATGCGTGATCTGATCCTTCAACTCAGCAAAAGTTCGATTTATTCAACAAAGCCGCCGTCCCGTCAAGTCAGCGTAATGCTCTGCCAGTGTTACAACCAATTAACCAATTCTGATTAGAAAAACTCATCGAGCATCAAATGAAACTGCAATTTATTCATATCAGGATTATCAATACCATATTTTTGAAAAAGCCGTTTCTGTAATGAAGGAGAAAACTCACCGAGGCAGTTCCATAGGATGGCAAGATCCTGGTATCGGTCTGCGATTCCGACTCGTCCAACATCAATACAACCTATTAATTTCCCCTCGTCAAAAATAAGGTTATCAAGTGAGAAATCACCATGAGTGACGACTGAATCCGGTGAGAATGGCAAAAGCTTATGCATTTCTTTCCAGACTTGTTCAACAGGCCAGCCATTACGCTCGTCATCAAAATCACTCGCATCAACCAAACCGTTATTCATTCGTGATTGCGCCTGAGCGAGACGAAATACGCGATCGCTGTTAAAAGGACAATTACAAACAGGAATCGAATGCAACCGGCGCAGGAACACTGCCAGCGCATCAACAATATTTTCACCTGAATCAGGATATTCTTCTAATACCTGGAATGCTGTTTTCCCGGGGATCGCAGTGGTGAGTAACCATGCATCATCAGGAGTACGGATAAAATGCTTGATGGTCGGAAGAGGCATAAATTCCGTCAGCCAGTTTAGTCTGACCATCTCATCTGTAACATCATTGGCAACGCTACCTTTGCCATGTTTCAGAAACAACTCTGGCGCATCGGGCTTCCCATACAATCGATAGATTGTCGCACCTGATTGCCCGACATTATCGCGAGCCCATTTATACCCATATAAATCAGCATCCATGTTGGAATTTAATCGCGGCCTCGAGCAAGACGTTTCCCGTTGAATATGGCTCATAACACCCCTTGTATTACTGTTTATGTAAGCAGACAGTTTTATTGTTCATGATGATATATTTTTATCTTGTGCAATGTAACATCAGAGATTTTGAGACACAACGTGGCTTTCCCCCCCCCCCCCTGCAGGTCTCGGGCTATTCTTTTGATTTATAAGGGATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGCGAATTTTAACAAAATATTAACGTTTACAATTTAAATATTTGCTTATACAATCTTCCTGTTTTTGGGGCTTTTCTGATTATCAACCGGGGTACATATGATTGACATGCTAGTTTTACGATTACCGTTCATCGATTCTCTTGTTTGCTCCAGACTCTCAGGCAATGACCTGATAGCCTTTGTAGACCTCTCAAAAATAGCTACCCTCTCCGGCATGAATTTATCAGCTAGAACGGTTGAATATCATATTGATGGTGATTTGACTGTCTCCGGCCTTTCTCACCCTTTTGAATCTTTACCTACACATTACTCAGGCATTGCATTTAAAATATATGAGGGTTCTAAAAATTTTTATCCTTGCGTTGAAATAAAGGCTTCTCCCGCAAAAGTATTACAGGGTCATAATGTTTTTGGTACAACCGATTTAGCTTTATGCTCTGAGGCTTTATTGCTTAATTTTGCTAATTCTTTGCCTTGCCTGTATGATTTATTGGATGTT
[配列番号11]
実施例1に記載されるように、本発明者らは、原核宿主において本発明の組換えファージミド粒子を産生するための2つの代替アプローチ(図9及び10参照)を発明した。
したがって、第3の態様において、原核宿主から組換えファージミド粒子を産生するための方法であって、方法は、
(i)原核宿主内で存続するように構成された第1ベクターであって、少なくとも1つの導入遺伝子発現カセット、及びベクターの一本鎖DNAへの複製を可能にするためのパッケージングシグナルを含む、第1ベクターを原核宿主細胞に導入する工程と、
(ii)バクテリオファージ構造タンパク質をコードする核酸を含むヘルパーファージを宿主に導入する工程と、
(iii)構造タンパク質によってパッケージングされている一本鎖DNAが原核宿主から組換えファージミド粒子を形成し、排出することになる条件下で、宿主を培養する工程と、を含む、方法を提供する。
好都合なことに、この実施形態(図9に示す)は、非常に高い収率の粒子をもたらす。第1のベクター(すなわち、ファージミド粒子のゲノム)は、例えば感染によって宿主細胞に導入され得る。次いで、宿主細胞をヘルパーファージで形質転換することができ、それにより組換えファージミド粒子が産生される。好ましくは、この方法は、培養工程に続く精製工程を含む。精製は、遠心分離及び/またはろ過を含み得る。
第4の態様では、原核宿主から組換えファージミド粒子を産生する方法であって、方法は、
(i)原核宿主細胞に、(a)原核宿主内に存続するように構成された第1のベクターであって、少なくとも1つの導入遺伝子発現カセット、及びベクターの一本鎖DNAへの複製を可能にするためのパッケージングシグナルを含む第1のベクターと、(b)一本鎖DNAをパッケージングするために必要とされる構造タンパク質をコードする核酸を含む第2のベクターとを導入する工程と、
(ii)構造タンパク質によってパッケージングされている一本鎖DNAが原核宿主から組換えファージミド粒子を形成し、排出することになる条件下で、宿主を培養する工程と、を含む、方法を提供する。
好都合なことに、この実施形態は(図10に示すように)、改善された安全性をもたらす。第2のベクター(すなわちヘルパーファージ)は、例えば感染によって宿主細胞に導入され得る。次いで、宿主細胞を、第1のベクター(すなわち、ファージミド粒子のゲノム)で形質転換することができ、それにより組換えファージミド粒子の産生をもたらす。好ましくは、この方法は、培養工程に続く精製工程を含む。精製は、遠心分離及び/またはろ過を含み得る。
第5の態様では、原核宿主から第1の態様による組換えファージミド粒子を産生するためのウイルスベクター構造タンパク質をコードする核酸を含むヘルパーファージの使用を提供する。
第6の態様では、第2の態様で定義されるような第1及び/または第2のベクターを含む宿主細胞を提供する。
宿主細胞は、好ましくは原核生物であり、より好ましくは細菌細胞である。適切な宿主細胞の例には、(i)TG1(遺伝子型:K-12 supEthi-1Δ(lac-proAB)Δ(mcrB-hsdSM)5、(r-m )、プラスミド:F’[traD36 proABlacI lacZΔM15])、(ii)DH5αF’IQ(商標)(遺伝子型:F-φ80lacZΔM15Δ(lacZYA-argF)U169 recA1 endA1 hsdR17(rk-、mk+)phoA supE44λ-thi-1 gyrA96 relA1、プラスミド:F’proAB+lacIqZΔM15zzf Tn5[KmR]、及び(iii)XL1-Blue MRF’(遺伝子型:Δ(mcrA)183Δ(mcrCB-hsdSMR-mrr)173 endA1 supE44 thi-1 recA1 gyrA96 relA1 lac、プラスミド:F’proAB lacIqZΔM15 Tn10(Tetr)が挙げられる。
別の態様では、実験研究ツールとして使用するための、第1の態様による組換えファージミド粒子または第2の態様による系が提供される。
例えば、粒子または系は、エクスビボまたはインビトロで使用することができる。
しかしながら、好ましくは、粒子は、治療的にまたは診断方法において、好ましくはインビボで使用される。
したがって、第7の態様において、治療または診断における使用のための、第1の態様による組換えファージミド粒子または第2の態様による系が提供される。
本発明は、本発明の組換えファージミド粒子の標的特異的性質及び改良された形質導入効率に起因する多種多様な疾患の治療に使用することができる。その結果、遺伝子治療に使用される組換えバクテリオファージの治療機会は、1つ以上の導入遺伝子発現カセットを保有するその能力のために本発明によって有意に増加され得る。本発明は、疾患を予防するため予防的に、または疾患の発症後、疾患を改善及び/または治療するために、使用することができる。
したがって、第8の態様では、遺伝子治療技術における使用のための、第1の態様による組換えファージミド粒子または第2の態様による系が提供される。
第9の態様では、遺伝子療法技術を用いて対象の疾患を治療、予防または改善する方法が提供され、この方法は、そのような治療を必要とする対象に、治療有効量の第1の態様による組換えファージミド粒子または第2の態様による系を投与することを含む。
本発明を使用して、粒子の性質及びディスプレイされた外来タンパク質に応じて様々な疾患の治療及び/または診断に使用することができる様々な異なる組換えファージミド粒子を作成することができることは理解されよう。例えば、組換えファージミド粒子が腫瘍標的化リガンドを含む及び/または抗腫瘍遺伝子(例えば、HSVtk遺伝子)を発現する導入遺伝子を含む実施形態において、それは癌を治療するために使用され得る。遺伝子治療技術における標的細胞は、好ましくは真核生物、好ましくは哺乳動物である。
したがって、遺伝子治療技術は、好ましくは、癌を治療、予防、または改善するために使用される。腫瘍は脳内のもの、例えば髄芽腫またはびまん性内在性橋グリオーマ(DIPG)であってもよい。組換えファージミド粒子は、従来の治療法例えば、化学療法薬(すなわち、ドキソルビシン、テモゾロミド、ロムスチン)、放射線療法、または、ヒストンデアセチラーゼの阻害剤(HDAC阻害剤)、プロテアソーム阻害薬、天然及び食事源(すなわちゲニステイン)由来の抗癌剤を含むがこれらに限定されない、他の薬物/生体異物化合物などと組み合わせて使用することができる。
本発明者らは、本発明の組換えファージミド粒子が、ペプチド及び/またはDNA及び/またはアジュバントワクチンの送達において有意な商業的価値を有するだろうと考えている。
したがって、第10の態様では、第1の態様による組換えファージミドウイルス粒子または第2の態様による系を含むワクチンを提供する。
第11の態様では、対象へのワクチン送達に使用するための、第1の態様による組換えファージミドウイルス粒子または第2の態様による系を提供する。
好ましくは、ワクチンはペプチドワクチンである。ワクチンは、好ましくはDNAワクチンである。ワクチンは、好ましくは適切なアジュバントを含む。一実施形態では、組換えファージミド粒子は、身体の免疫系を刺激するための抗原をコードする導入遺伝子またはDNAカセットを運ぶために使用され得る。組換えファージミド粒子はまた、関係する抗原を主要なpVIIIコートタンパク質上に直接ディスプレイ及び発現させるために使用され、したがって、単一のファージ粒子による、ワクチンDNAワクチンまたはタンパク質としての多数の抗原の、またはファージ表面上に容易に発現されるアジュバントの、同時送達のための効率的なプラットフォームを提供する。対象は哺乳動物であってもよく、好ましくはヒトである。
したがって、第12の態様では、ワクチン接種された対象の腫瘍に外来抗原を送達し、標的化するのに使用するための、第1の態様による組換えファージミド粒子または第2の態様による系が提供される。動物は、最初に外来抗原に対してワクチン接種されるか、または使用された抗原に対して既にワクチン接種され、次いで、これらの腫瘍に対する免疫攻撃を誘発するために腫瘍標的化ファージミドをワクチン接種動物に投与し、外来抗原を腫瘍に送達する。
本発明者らはまた、本発明の組換えファージミド粒子が、種々の異なる遺伝子分子画像化技術、例えば陽電子放射断層撮影(PET)、超音波(US)、SPECT画像化、機能的磁気共鳴画像化、または生物発光画像化、においても使用できると考えている。
したがって、第13の態様では、遺伝子分子画像化技術における、第1の態様による組換えファージミド粒子または第2の態様による系の使用を提供する。
ファージミド粒子によって内包された導入遺伝子は、HSVtk及び/またはナトリウム/ヨウ化物シンポータ(NIS)をコードすることができ、この粒子は、好ましくは放射性標識基質と組み合わせて使用される。例えば、ヒトのナトリウム/ヨウ化物シンポータ(NIS)画像化遺伝子は、臨床的に適用可能な陽電子放出断層撮影法(PET)画像化のためのI124と、または臨床的に適用可能なSPECT画像化のためのI12599mTc-過テクネチウム酸塩と組み合わせて使用することが好ましい。
あるいは、HSVtk遺伝子は、好ましくは、20-[18F]-フルオロ-20-デオキシ-1-b-D-アラビノ-フラノシル-5-エチルウラシル([18F]FEAU)などの放射性標識ヌクレオシド類似体と組み合わせて使用される。
本発明の組換えファージミド粒子及び系(すなわち、以下では「作用因子」と呼ぶ)は、単剤療法において、または癌のような疾患の治療、改善または予防のための既知の治療法の補助剤として、またはそれと組み合わせて使用され得る薬剤において使用できることが理解されよう。例えば、テモゾラミド、ドキソルビシンまたはゲニステインのような既存の化学療法剤との本発明のファージミド粒子及び系を用いる併用治療アプローチが好ましい。
別の好ましい実施形態では、治療法は、本発明の組換えファージミド粒子及び系と、酵素またはロサルタンのような細胞外マトリックス分解剤との組み合わせを含み得る。本発明者らは、細胞外マトリックス分解剤が、治療されている対象、特に固形腫瘍内で、ファージミドの拡散を増強するはずであると考えている。
本発明による作用因子(すなわち、第1の態様による組換えファージミド粒子または第2の態様による系)は、特に、組成物が使用される様式に応じて、多くの異なる形態を有する組成物に組み合わせることができる。したがって、例えば、組成物は、散剤、錠剤、カプセル、液体などの形態、または治療を必要とするヒトまたは動物に投与され得る任意の他の適切な形態であり得る。本発明による医薬のビヒクルは、それが与えられる対象によって十分に許容されるものでなければならないことは理解されよう。
本発明による作用因子を含む医薬は、多くの方法で使用することができる。例えば、経口投与が要求されることがあり、この場合、作用因子は、例えば、錠剤、カプセルまたは液体の形態で経口的に摂取され得る組成物内に含有できる。本発明の作用因子を含む組成物は、吸入(例えば、鼻腔内)によって投与することができる。組成物はまた、局所的使用のために製剤化され得る。例えば、クリームまたは軟膏を皮膚に適用することができる。
本発明による作用因子はまた、徐放性または遅延放出性のデバイス内に組み込むこともできる。このようなデバイスは、例えば、皮膚の上または下に挿入することができ、医薬は、数週間または数ヶ月にわたって放出され得る。デバイスは、少なくとも治療部位に隣接して配置されてもよい。このようなデバイスは、本発明に従って使用される作用因子による長期治療が必要であり、通常は頻繁な投与(例えば、少なくとも毎日の注射)が必要とされる場合に特に有利であり得る。
好ましい実施形態では、本発明による作用因子及び組成物は、血流への注射によって、または治療を必要とする部位へ直接的に、対象に投与され得る。注射は、静脈内(ボーラスまたは点滴)、皮下(ボーラスまたは点滴)、皮内(ボーラスまたは点滴)であってもよく、または従来方法(疾患部位における局所注入に関連する-対流増強送達(convection enhanced delivery))により強化でき得る。
必要とされる作用因子の量は、順次、投与様式、作用因子(すなわち、組換えファージミドウイルス粒子または系)の物理化学的特性、及び単独療法として、または併用療法において使用されるかどうかに依存するその生物学的活性及び生物学的利用能によって決定されることが理解されよう。投与頻度はまた、治療される対象内の作用因子の半減期によっても影響される。投与される最適な投薬量は、当業者によって決定されることができ、使用される特定の作用因子、薬学的組成物の強度、投与様式、及び疾患の進行によって変化する。対象の年齢、体重、性別、食事及び投与時間を含む、治療される特定の対象に依存するさらなる因子により、投与量を調整する必要性が生じる。
一般に、1日用量0.01μg/kg体重~500mg/kg体重の本発明の作用因子を用いることができる。より好ましくは、1日用量は、0.01mg/kg体重~400mg/kg体重、より好ましくは0.1mg/kg~200mg/kg体重である。
実施例で論じるように、作用因子は、疾患の発症前、発症中または発症後に投与することができる。例えば、対象が疾患を発症した直後に作用因子を投与してもよい。1日用量は、単一投与(例えば、1日1回の注射)として全身的に与えられてもよい。あるいは、作用因子は1日に2回以上投与する必要があってもよい。一例として、作用因子は、25mg~7000mgの間の1日用量(すなわち、体重70kgを想定)2回(または治療される疾患の重篤度に応じてそれ以上の回数)として投与することができる。治療を受けている患者は、起床時には第1の用量を、その後は夕方(2回投与計画の場合)またはその後3または4時間間隔で第2の用量を摂取することができる。あるいは、徐放デバイスを使用して、反復投与を投与する必要なく、本発明による作用因子の最適用量を患者に提供することができる。
製薬業界で従来使用されている手順などの既知の手順(例えば、インビボ実験、臨床試験など)を使用して、本発明による粒子または系を含む特定の製剤及び正確な治療計画(例えば作用因子の1日用量及び投与頻度)を形成することができる。
したがって、本発明の第14の態様では、第1の態様による組換えファージミドウイルス粒子または第2の態様による系と、薬学的に許容されるビヒクルとを含む薬学的組成物を提供する。
この組成物は、癌などの遺伝子治療で治療可能な対象における任意の疾患の治療上の改善、予防または治療に使用することができる。
本発明はまた、第15の態様において、第12の態様による薬学的組成物の製造方法であって、この方法は、治療有効量の第1の態様による組換えファージミド粒子または第2の態様による系と薬学的に許容されるビヒクルを接触させることを含む方法を提供する。
「対象」は、脊椎動物、哺乳動物、または家畜であり得る。したがって、本発明による作用因子、組成物及び医薬は、任意の哺乳動物、例えば家畜(例えば、馬)、ペットを治療するために使用されてもよく、または他の獣医学の用途に使用されてもよい。しかし、最も好ましくは、対象はヒトである。
作用因子(すなわち、組換えファージミドウイルス粒子)の「治療有効量」は、対象に投与されたときに、標的疾患を治療するために、または所望の効果を生じるのに、例えば腫瘍死をもたらすなど標的細胞または組織への導入遺伝子の効果的な送達をもたらすのに、必要な薬剤の量である、任意の量である。
例えば、使用される作用因子の治療有効量は、約0.01mg~約800mg、好ましくは約0.01mg~約500mgであってもよい。
本明細書で言及する「薬学的に許容されるビヒクル」は、薬学的組成物を製剤化するのに有用であることが当業者に知られている任意の既知の化合物または既知の化合物の組み合わせである。
一実施形態では、薬学的に許容されるビヒクルは固体であってもよく、組成物は散剤または錠剤の形態であってもよい。固体の薬学的に許容されるビヒクルは、香味剤、滑沢剤、可溶化剤、懸濁剤、染料、充填剤、流動促進剤、圧縮助剤、不活性バインダー、甘味料、保存剤、染料、コーティング剤または錠剤崩壊剤としても作用し得る1つ以上の物質を含むことができる。ビヒクルはまた、カプセル化材料であってもよい。散剤において、ビヒクルは、本発明による微細に分割された活性作用因子と混合された微細に分割された固体である。錠剤では、活性作用因子(例えば、本発明の粒子または系)を、必要な圧縮特性を有するビヒクルと適切な割合で混合し、所望の形状及びサイズに圧縮することができる。散剤及び錠剤は、好ましくは99%までの活性作用因子を含有する。適切な固体ビヒクルには、例えば、リン酸カルシウム、ステアリン酸マグネシウム、タルク、糖、ラクトース、デキストリン、デンプン、ゼラチン、セルロース、ポリビニルピロリジン、低融点ワックス及びイオン交換樹脂が含まれる。別の実施形態では、医薬ビヒクルはゲルであってもよく、組成物はクリームなどの形態であってもよい。
しかし、医薬ビヒクルは液体であってもよく、薬学的組成物は溶液の形態である。液体ビヒクルは、溶液、懸濁液、エマルジョン、シロップ、エリキシル及び加圧組成物の調製に使用される。本発明による粒子または系は、水、有機溶媒、両者の混合物または薬学的に許容される油または脂肪のような、薬学的に許容される液体ビヒクルに溶解または懸濁されてもよい。液体ビヒクルは、可溶化剤、乳化剤、緩衝剤、防腐剤、甘味剤、香味剤、懸濁剤、増粘剤、着色剤、粘度調整剤、安定剤または浸透圧調節剤などの他の適切な薬学的添加物を含むことができる。経口及び非経口投与用の液体ビヒクルの好適な例には、水(部分的に上記のような添加剤、例えばセルロース誘導体、好ましくはカルボキシメチルセルロースナトリウム溶液を含む)、アルコール(一価アルコール及び多価アルコール、例えばグリコールを含む)及びその誘導体、及び油(例えば、分留ヤシ油及び落花生油)が含まれる。非経口投与のために、ビヒクルはまた、オレイン酸エチル及びミリスチン酸イソプロピルなどの油性エステルであってもよい。滅菌液体ビヒクルは、非経口投与のための滅菌液体形態の組成物において有用である。加圧組成物用の液体ビヒクルは、ハロゲン化炭化水素または他の薬学的に許容される噴射剤(propellant)であってもよい。
滅菌溶液または懸濁液である液体薬学的組成物は、例えば、筋肉内、髄腔内、硬膜外、腹腔内、静脈内及び特に皮下注射によって利用することができる。粒子または系(すなわち、ハイブリッドベクター)は、滅菌水、生理食塩水、または他の適切な滅菌注射用媒体を用いて投与時に溶解または懸濁され得る滅菌固体組成物として調製され得る。
本発明の組換えファージミド粒子、系及び薬学的組成物は、他の溶質または懸濁剤(例えば、溶液を等張にするのに十分な生理食塩水またはグルコース)、胆汁酸塩、アカシア、ゼラチン、モノオレイン酸ソルビタン、ポリソルベート80(ソルビトールのオレイン酸エステル及びそのエチレンオキシドと共重合したその無水物)などを含む滅菌溶液または懸濁液の形態で経口投与することができる。本発明による粒子及び系は、液体または固体組成物のいずれかの形態で経口投与することもできる。経口投与に適した組成物には、錠剤、カプセル剤、顆粒剤、錠剤及び散剤などの固体形態、及び液剤、シロップ剤、エリキシル剤及び懸濁剤などの液体形態が含まれる。非経口投与に有用な形態には、滅菌溶液、エマルジョン及び懸濁液が含まれる。
アデノ随伴ウイルス(AAV)はしばしば遺伝子治療のために選択されるベクターであることが理解されるであろう。遺伝子送達ベクターとして、レンチウイルスベクターはまた、他の系よりもいくつかの重要な利点を有する。第1に、それらは、少なくとも8KbのDNAの大きなパッケージング能力を有し、これは、組織特異的プロモーター及び導入遺伝子のかなりの発現カセットをパッケージングする際の重要な特徴である。第2に、ゲノム組織だけでなく、非分裂細胞を形質導入することができるという点で、より単純なレトロウイルスとは異なり、筋肉、ニューロン及び造血幹細胞などの非増殖組織に対する遺伝子治療ベクターとしての適用を検討する際に非常に有用な品質である。さらに、レンチベクターは、アデノウイルスベクターと比較して免疫原性を低下させ、全身送達経路を検討することを可能にする。しかしながら、AAVまたはレンチウイルスを実験室及び臨床研究に使用することの障壁には、非常に高い生産コスト及び低い収率を含む。
本発明者らは、遺伝子治療、画像化及びワクチン送達における有用な適用を示すことに加えて、本発明の組換えファージミド粒子はまた、AAVまたはレンチウイルスなどの組換えウイルスベクターを(インサイチュを含む)インビトロまたはインビボで産生するのに使用できる。ファージ誘導AAV産生は、大量の一本鎖ssDNAをパッケージングするファージミド粒子の能力を利用する。典型的なAAV産生系は、一緒に機能してrAAV粒子を産生するrAAV、rep-cap及びアデノヘルパー遺伝子の3つの主要な要素からなる。
したがって、第16の態様では、ファージミド粒子のゲノム内のウイルスゲノムを含むか、またはそれに由来する組換えウイルスベクターを産生するための、第1の態様によるファージミド粒子または第2の態様による系の使用が提供される。
第17の態様では、組換えウイルスベクターの製造方法を提供し、この方法は、第1の態様の組換えファージミド粒子または第2の態様の系を真核宿主細胞に導入し、宿主細胞に組換えウイルスベクターを産生させることを含む。
好ましくは、組換えウイルス産物は、組換え哺乳動物ウイルス、例えばAAVまたはレンチウイルスである。好ましくは、ウイルスベクター産物はrAAVである。好ましくは、第1の態様によるファージミドウイルス粒子、または第2の態様による系は、真核生物の宿主細胞内で、ファージミド粒子のゲノムによって決定される、哺乳動物ウイルスの産生に必要とされる他の遺伝要素の送達及び/または存在と共に、シス及び/またはトランスで使用される。ファージミド粒子のゲノムによって、真核宿主細胞の内部に存在する。ファージミド粒子による宿主細胞への遺伝子導入を助けるまたは増強するために使用される方法は、WO2014/184528(すなわち多機能性)及びWO2014/184529(すなわち正味の正電荷を有する複合体を形成するためのカチオン性ポリマーとの組み合わせ)に記載された方法を含む。
真核生物の宿主細胞は哺乳動物であってもよい。宿主細胞は、ヒト胎児腎臓細胞(HEK293)、スポドプテラ・フルギペルダ蛹卵巣組織(Sf9)、またはチャイニーズハムスター卵巣(CHO)を含むか、またはそれに由来し得る。昆虫細胞もまた想定される。
一実施形態では、宿主細胞は、rAAV、レンチウイルス、カプシド、複製、ヘルパータンパク質コード遺伝子、及び哺乳動物ウイルスの発現及びパッケージングに必要な任意の他の遺伝子からなる群から選択される遺伝子を保有する1つ以上のファージミド粒子ゲノムで形質転換され得る。
例えば、ハイブリッドファージミド粒子誘導rAAV産生において、図3に示されるように、rAAV遺伝子は、第1の態様による組換えファージミドウイルス粒子によって保有されてもよく、アデノヘルパー及びrep-cap遺伝子は、別々のベクター上に保有されてもよく、または真核宿主ゲノムに組込まれてもよい。例えば、図12は1つのベクター上のアデノヘルパー遺伝子を示し、図13は別個のベクター上のrep-capを示す。rAAV、rep-cap及びアデノヘルパー遺伝子の任意の組み合わせは、1つ以上のベクター、すなわちシスまたはトランス配置で保有されてもよい。rep-capまたはアデノヘルパータンパク質は、rAAV産生の状況下で、安定に発現されたアクセサリーDNA(例えば、プラスミド)として真核宿主に組込まれるかまたは導入され得、それにより、ハイブリッドファージミド粒子は、ファージミド粒子のゲノム内の導入遺伝子カセットによって決定される、組換えウイルスへのパッケージングのための組換えウイルスゲノムを供給する。
1つの好ましい実施形態において、rAAV、rep-cap及びアデノヘルパー遺伝子は、図14及び15に示されるように、単一のベクター上に保有される。本発明者らは、3つの遺伝子セットすべてが同じベクター上に内包するのはこれが、初めてであると考えている。
したがって、第18の態様では、rAAV、rep-cap及びアデノヘルパー遺伝子を含む組換えベクターを提供する。
第19の態様では、第18の態様のベクターを含む組換えファージミド粒子を提供する。
第20の態様では、ファージミド粒子のウイルスゲノムを含むか、またはそれに由来する組換えAAVウイルスベクターを産生するための、第18の態様によるベクターまたは第19の態様の粒子の使用を提供する。
第21の態様では、組換えAAVウイルスベクターを産生する方法であって、該方法は、真核生物の宿主細胞に、第18の態様のベクターまたは第19の態様の粒子を導入し、宿主細胞に組換えウイルスベクターを産生させる、方法を提供する。
同じ真核生物宿主細胞に導入された場合(図11及び14参照)、ベクター上のrep-cap及びアデノヘルプ遺伝子は、rAAV産生の状況において、トランス作用もしくはシス作用としてまたは、AAVウイルスカプシドにおけるrAAVゲノムのパッケージングを促進する両方の要素の組み合わせとして挙動する。この製造プロセスは、複数のプラスミドの一時的な同時トランスフェクションに匹敵し、通常は3つのプラスミドを含む。しかしながら、この実施形態では、プラスミドは、同一の要素も保有する真核細胞(好ましくは哺乳動物細胞)を標的とする本発明の組換えファージミド粒子で置き換えられる。
方法は、インビボ、インビトロ、エキソビボ、またはインサイチュで行うことができる。インサイチュ生産のために、組換えファージミド粒子は、好ましくは、指定された真核生物宿主である標的真核細胞のための標的化部分を含む。好ましくは、インサイチュ、エキソビボ、インビボウイルス産生の状況において、指定された真核宿主細胞型は疾患細胞である。好ましくは、疾患細胞は、悪性腫瘍または良性腫瘍である。インビトロウイルス産生の状況において、好ましくは、真核生物宿主は、上記の真核宿主のいずれかの誘導体である。(ハイブリッドファージミド粒子中の導入遺伝子カセットによって決定される)組換えウイルスの産生に必要な組換えファージミド粒子及び遺伝子要素の適用は、真核生物の宿主細胞の内部で、シス作用またはトランス作用の組み合わせのいずれかにおいて先に示したような任意の様式であり得る。
本発明は、本明細書で言及される配列のいずれかのアミノ酸または核酸配列を実質的に含む任意の核酸またはペプチドまたは、その変異体、誘導体または類似体に及び、その機能的変異体または機能的フラグメントを含むことが理解される。「実質的にアミノ酸/ポリヌクレオチド/ポリペプチド配列」、「機能的変異体」及び「機能的フラグメント」という用語は、本明細書で言及される配列のいずれか1つのアミノ酸/ポリヌクレオチド/ポリペプチド配列と少なくとも40%の配列同一性を有する配列であり得、例えば本明細書において同定された核酸と40%同一性を有する配列であり得る。
言及された配列のいずれかと65%を超える、より好ましくは70%を超える、さらにより好ましくは75%を超える、さらにより好ましくは80%を超える、配列同一性を有するアミノ酸/ポリヌクレオチド/ポリペプチド配列もまた想定される。
好ましくは、アミノ酸/ポリヌクレオチド/ポリペプチド配列は、本明細書で言及される配列のいずれかと少なくとも85%の同一性、より好ましくは本明細書で言及される配列のいずれかと少なくとも90%の同一性、さらにより好ましくは少なくとも92%の同一性、さらにより好ましくは少なくとも95%の同一性、さらにより好ましくは少なくとも97%の同一性、さらにより好ましくは少なくとも98%の同一性、最も好ましくは少なくとも99%の同一性を有する。
当業者は、2つのアミノ酸/ポリヌクレオチド/ポリペプチド配列間の同一性の割合をどのように計算するかを理解するであろう。2つのアミノ酸/ポリヌクレオチド/ポリペプチド配列間の同一性のパーセンテージを計算するために、2つの配列のアラインメントを最初に調製し、次に配列同一性値を計算しなければならない。2つの配列の同一性のパーセンテージは、(i)例えばClustalW、BLAST、FASTA、Smith-Waterman(異なるプログラムで実装されている)、または3D比較からの構造的アラインメントなどの、配列を整列させるために使用される方法、及び(ii)アライメント方法によって使用されるパラメータ、例えばローカル対グローバルアラインメント、使用されるペアスコアマトリックス(例えば、BLOSUM62、PAM250、Gonnetなど)、及びギャップペナルティ、例えば、機能的な形態と定数、に応じて異なる値をとることができる。
アラインメントを行った後、2つの配列間の同一性のパーセンテージを計算する多くの異なる方法がある。例えば、同一性の数を、(i)最短シーケンスの長さ、(ii)アラインメントの長さ;(iii)配列の平均長さ、(iv)ギャップのない位置の数、または(iv)オーバーハングを除く等価ポジションの数で除算することができる。さらに、同一性のパーセンテージもまたかなり長さに依存することが理解されるであろう。したがって、対の配列が短いほど、偶然に起こることが予想され得る配列同一性が高くなる。
したがって、タンパク質またはDNA配列の正確なアラインメントは複雑なプロセスであることが理解されるであろう。一般的なマルチプルアラインメントプログラムClustalW(Thompson et al.,1994,Nucleic Acids Research,22,4673-4680、Thompson et al.,1997,Nucleic Acids Research,24,4876-4882)は、本発明に従ってタンパク質またはDNAの複数のアライメントを生成するための好ましい方法である。ClustalWに適したパラメータは以下の通りである。DNAアライメントの場合:Gap Open Penalty=15.0、Gap Extension Penalty=6.66、及びMatrix=Identity。タンパク質アライメントの場合:Gap Open Penalty=10.0、Gap Extension Penalty=0.2、及びMatrix=Gonnet。DNA及びタンパク質アラインメントについては、ENDGAP=-1及びGAPDIST=4である。当業者は、最適な配列アラインメントのためにこれら及び他のパラメータを変更する必要があり得ることを認識するであろう。
次いで、好ましくは、2つのアミノ酸/ポリヌクレオチド/ポリペプチド配列間の同一性パーセンテージの計算は、(N/T)×100(Nは配列が同一の残基を共有する位置の数であり、Tはギャップを含むがオーバーハングを除く比較された位置の総数である。)のようなアラインメントから計算される、したがって、2つの配列間の相対的な同一性パーセンテージを計算するための最も好ましい方法は、(i)例えば上記のような適切なパラメータのセットを使用してClustalWプログラムを使用して配列アライメントを調製することと、(ii)N及びTの値を以下の式:配列同一性=(N/T)×100に挿入することと、を含む。
類似の配列を同定するための別の方法は、当業者に公知であろう。例えば、実質的に類似のヌクレオチド配列は、本明細書に記載の核酸配列またはその相補体にストリンジェントな条件下でハイブリダイズする配列によってコードされる。ストリンジェントな条件により、ヌクレオチドは、約45℃で3倍塩化ナトリウム/クエン酸ナトリウム(SSC)中のフィルター結合DNAまたはRNAにハイブリダイズし、続いて、約20~65℃で0.2倍SSC/0.1%SDS中で少なくとも1回洗浄することを意味する。あるいは、実質的に類似のポリペプチドでは、本明細書中に示される配列と少なくとも1個、5、10、20、50または100個未満でアミノ酸が異なっていてもよい。
遺伝暗号の縮重のために、それによってコードされるタンパク質の配列に実質的に影響を及ぼすことなく、任意の核酸配列を変化させることができ、その機能的変異体を提供することができることは明らかである。適切なヌクレオチド変異体は、配列内の同じアミノ酸をコードする異なるコドンの置換によって変化した配列を有するものであり、したがってサイレントな変化を生じる。他の適切な変異体は、相同なヌクレオチド配列を有するが、それが置換するアミノ酸と同様の生物物理学的特性の側鎖を有するアミノ酸をコードする異なるコドンの置換によって改変され、保存的変化を生じる、配列の全部または一部を含むものである。例えば、小さな非極性疎水性アミノ酸には、グリシン、アラニン、ロイシン、イソロイシン、バリン、プロリン、及びメチオニンが含まれる。大きな非極性の疎水性アミノ酸には、フェニルアラニン、トリプトファン及びチロシンが含まれる。極性中性アミノ酸には、セリン、スレオニン、システイン、アスパラギン及びグルタミンが含まれる。正に荷電した(塩基性の)アミノ酸には、リジン、アルギニン及びヒスチジンが含まれる。負に帯電した(酸性)アミノ酸には、アスパラギン酸及びグルタミン酸が含まれる。したがって、どのアミノ酸が類似の生物物理学的特性を有するアミノ酸で置き換えられてもよいか、当業者はこれらのアミノ酸をコードするヌクレオチド配列を知ることができるであろう。
本明細書(添付の請求項、要約書及び図面を含む)に記載されたすべての特徴、及び/またはそのように開示された方法またはプロセスのすべてのステップは、そのような特徴及び/またはステップの少なくともいくつかが互いに排他的である組み合わせを除いて、任意の組み合わせで上記態様のいずれかと組み合わせることができる。
本発明をより良く理解し、本発明の実施形態がどのように実施され得るかを示すために、ここで、例として、添付の図を参照する。
従来技術のAAVPウイルス粒子と比較した、本発明によるファージミド-AAV(PAAV)ウイルス粒子の特徴を示す表である。 本発明によるヘルパーファージ及びファージミドゲノム(PAAV)、及びヘルパー及びファージミドによって作成されるファージミド-AAV(PAAV)粒子の実施形態の概略図を示す。構造遺伝子は、ウイルス粒子へのDNAのパッケージングに不可欠であり、複製欠損ヘルパーファージによって供給される。ファージミドゲノムは、ヘルパーファージに対して極めて寄生的である。最終的に、PAAV粒子は、先行技術の系をはるかに上回る収率で産生される。 ファージミドゲノム(PAAV)の一実施形態の概略表示である。 図3に示すファージミドゲノム上のf1 ori及びpUC oriのそれぞれの位置を示す。 図3に示すファージミドゲノム上の組換えアデノ随伴ウイルス(rAAV)導入遺伝子カセット上の選択マーカー遺伝子(AmpR)の位置を示す。 発現がCMVプロモーター及び/またはエンハンサー配列によって駆動され、ポリAシグナルでテールされた目的遺伝子(例えば、GFP)を含む、図3に示すファージミドゲノム上のrAAV導入遺伝子カセットを示す。導入遺伝子カセット全体は、AAVからの末端逆位反復配列(ITR)が隣接している。 図3に示すようなファージミドゲノムを保有する原核宿主からファージミド粒子をレスキューするために操作されたバクテリオファージであるヘルパーファージの一実施形態を示す。 pIII少数コートタンパク質中のRGD4C標的化ペプチドを含む、図5に示すヘルパーファージのゲノムの一部を示す。 ファージミド-AAV(PAAV)粒子を産生する方法の第1の実施形態を示す。 ファージミド-AAV(PAAV)粒子を産生する方法の第2の実施形態を示す。 (i)ファージミド-AAV(PAAV)、(ii)Rep-Capファージミド、及び(iii)アデノヘルパーファージミドの3つのベクターを示すインビトロAAV産生のためのファージに基づくアプローチの一実施形態を示す。 図11に示すアデノヘルパーファージミドベクターの一実施形態のゲノムマップを示す。 図11に示されるRep-Capファージミドベクターの一実施形態のゲノムマップを示す。 統合されたアデノヘルパー-Rep-capファージミド-AAV(PAAV)ベクターの一実施形態を示す。 図11に示される統合されたアデノヘルパー-Rep-Capファージミドベクターの一実施形態のゲノムマップを示す。 図11~13に示される3つのファージミドベクター、または図14及び15に示される統合されたアデノヘルパー-Rep-Cap-AAVファージミドベクターのいずれかを使用するインサイチュAAV産生の実施形態を示す。 既知のAAVPベクター及び本発明によるPAAVベクターの透過型電子顕微鏡観察(TEM)を示す。(A)RGD.AAVP.GFPフィラメント(ピンク)は、典型的には1455.02nmの長さである。(B)RGD.PAAV.GFPフィラメント(青色)は、典型的には729.96nmの長さであり、ウイルスサンプル(緑色)に存在するヘルパーファージは、典型的には1186.03nmの長さである。 (A)293AAV及び(B)U87細胞における、2時間及び4時間後の既知のAAVPベクター及び本発明によるPAAVベクターの内在化を示す。全細胞集団の20000事象で設定されたゲート閾値を用いた、フローサイトメトリー分析を使用した。(n=3)*=p<0.05、**=p<0.01。 (A)293AAV、(B)DEAE.DEXTRANの添加を伴う293AAV、(C)U87及び(D)DEAE.DEXTRANの添加を伴うU87における形質導入9日後のGFP陽性細胞の定量を示す。全細胞集団の20000事象で設定されたゲート閾値を用いた、フローサイトメトリー分析を使用した。(n=3)*=p<0.05、**=p<0.01。 ファージミド誘導遺伝子導入(A)またはrAAV発現要素のトランスフェクション(B)後の細胞溶解物由来のrAAV-GFPのゲノムコピー数の定量を示す。(実験A:n=1、実験B:n=3)。 RGD4C-ファージミドに対するα、β及びβインテグリンサブユニット、受容体の発現を実証するUW228及びDAOYヒト髄芽腫細胞の免疫蛍光染色を示す。腫瘍細胞を、一次ウサギ抗α、βまたはβ抗体(PBS-1%BSAで1:50に希釈)、次いでヤギ抗ウサギAlexaFluor-488二次抗体(緑色で示す)で染色し、0.05μg/ml DAPI(青色)で対比染色した。画像は共焦点顕微鏡を用いて撮影された。 RGD4Cファージミドによる小児髄芽細胞腫細胞への標的遺伝子送達を示す。髄芽腫細胞(UW228)を96ウェルプレート上で増殖させ、次にルシフェラーゼ遺伝子(RGD)を保有するRGD4C-ファージミドベクターで形質導入した。未処理細胞または非標的ベクター(M13)で処理した細胞を陰性対照として使用した。ルシフェラーゼ発現は、形質導入後2日目から4日目までの経時変化をモニターした。 mTOR/shRNA(RGD4C-mTOR/shRNA)を保有するRGD4C-ファージミドによる処理後の小児UW228及びDAOY髄芽細胞腫細胞におけるmTOR発現のダウンレギュレーションを示すウェスタンブロット分析を示す。ベクター処理後4日目に細胞溶解物を回収し、全タンパク質をBCAアッセイによって測定した。ウェスタンブロットを、ヒトmTOR(細胞シグナル伝達)に対するモノクローナル抗体でプローブした。非処理細胞(対照)及びmTOR/shRNAを欠くRGD4C-ファージミド(RGD4C)で処理した細胞を陰性対照として使用した。 髄芽細胞腫におけるテモゾロミド(TMZ)及びmTORに対するshRNAを保有するRGD4C-ファージミドの併用処理を示す。髄芽細胞腫細胞(UW228及びDAOY)に、RGD4C-ファージミド(RGD4C)またはmTOR/shRNAを保有するRGD4C-ファージミド(RGD4C-mTOR/shRNA)を形質導入した。未処理の細胞もまた対照として使用した。ベクター処理後7日目に、少数のウェルにテモゾルミド(TMZ、100μM)を加えて、ベクターと化学療法の併用効果を評価した。ベクター処理後8日目に画像を撮影した。 TNFαベクターによる髄芽細胞腫細胞の処理を示す。UW228細胞をRGD4C-ファージミド-TNFa(RGD4C/TNFa)及び非標的化(ctr:対照)で処理した。A)ヒトTNFαELISA Maxを用いて測定した、ベクター処理細胞の培地におけるTNFαの発現。B)TNFαの発現後、MTTアッセイを用いた細胞生存率。エラーバー:平均±平均値の標準誤差。 RGD4C-ファージミドに対する受容体であるα、β及びβインテグリンサブユニットの発現を実証するためのDIPG細胞の免疫蛍光染色を示す。一次ウサギ抗体を用い、次にヤギ抗ウサギAlexaFluor-488二次抗体を用いて細胞を染色した。対照細胞は二次抗体のみを受けた。画像は共焦点顕微鏡を用いて撮影された。 RGD4C-ファージミド/AAVによるDIPG細胞への遺伝子発現の選択的かつ用量依存的送達を示す。レポーターLuc(ルシフェラーゼ)遺伝子を保有するRGD4C-ファージミド-Luc(RGD4C)のベクター用量1×10または2×10 TU/細胞の増加を用いて、DIPG細胞を処理した。Luc発現は毎日測定された。RGD4Cを欠く非標的ベクター(対照)を、標的化の陰性対照として用いた。エラーバー:平均±平均値の標準誤差。 RGD4C-ファージミド-TNFaによる処理を示す。DIPG細胞に、2x10 TU/細胞RGD4C-ファージミド-TNFa(RGD4C)及び陰性対照(対照)としての非標的ベクターを形質導入した。アポトーシス活性は、カスパーゼ-Gloアッセイ(カスパーゼ3/7、カスパーゼ8及びカスパーゼ9)を用いてベクター処理後9日目に測定した。エラーバー:平均±平均値の標準誤差。*P≦0.05、**P≦0.01、***P≦0.001。 様々な濃度の形質導入単位でのRGD.PAAVによる形質導入後のルシフェラーゼ発現を示す。 様々な濃度の形質導入単位でのNT.PAAVによる形質導入後のルシフェラーゼ発現を示す。 293個のAAV細胞の細胞表面に結合したPAAVベクターのパーセンテージを示す。それぞれの対照に対して、RGD.PAAVベクターは58.2%の結合効率を有したが、M13.PAAVベクターは7.1%の結合効率を有した。
背景
遺伝子送達技術の開発は、基礎研究の社会への成功を収める転換に有益である。過去10年間に、多数のウイルス及び非ウイルスベクターが、産業及び治療用途の潜在的な送達ベクターとして出現した。ベクターの重要な特性は、遺伝子を送達するのに有効であることに加えて、容易に産生され、商業的に実行可能でなければならないということである。2006年に、Hajitouらは、アデノ随伴ウイルス/ファージ(AAVP)と呼ばれる組換えアデノ随伴ウイルス(rAAV)と糸状バクテリオファージ(ファージ)との間のハイブリッドを作成することによってそのようなベクターの必要性を満たすことを試みた(Nature protocols 2,523-531(2007);Cell 125、385-398(2006))。得られるAAVPベクターは、哺乳動物及び原核生物ウイルスの好ましい特性を有するが、それらの個々のベクターが通常保有する欠点を受けない。しかしながら、有意な改善の余地をまだ残しているAAVPベクターの特定の局面が存在する。とりわけ、これには、その生産及び治療特性に影響を及ぼすベクターの遺伝子設計が含まれる。最終的に、これは、哺乳動物ウイルスと比較した場合、AAVPの比較的低い遺伝子導入効率をもたらす。
本明細書に記載される研究は、ファージミド/アデノ随伴ビリオンファージミド(すなわちPAAV)と呼ばれる新しいファージミドベクターを用いるいわゆるファージミド系を使用することによる、ファージ遺伝子送達ベクターの最も進歩したバージョンの設計、及び既知で既存のファージベクター、AAVPに対するそれらの優位性に関する。繊維状ファージゲノムに挿入するrAAVカセットからなるAAVPゲノムとは異なり、PAAVゲノムは、任意の構造のファージ遺伝子を含んでいない-原核ヘルパーウイルスはベクターアセンブリを容易にするために必要である(Mol Ther 3,476-484;Pharmaceutical research 27,400-420(2010))。ウイルスの生殖及び治療要素を、導入遺伝子を保有する治療用ベクターと構造遺伝子を保有する別個のヘルパーウイルスとに分離することにより、ゲノム/ベクターサイズが実質的に減少し、それにより導入遺伝子の能力が著しく増加し、新しい系の遺伝子治療への応用にとって有用な利点である。その結果、このことが原核生物ウイルスのカプシドへの真核生物ウイルスゲノムのカプシド形成をもたらし、高められた生産収率、遺伝子導入効率、他の用途のためのベクター系の柔軟性を有する真核生物ゲノムと原核生物カプシドとの間のハイブリッドとしてのベクターをもたらす。
以下の実施例に記載されているように、本発明者らは、
1.ハイブリッドファージミド-AAVベクター(PAAV)粒子発現系を設計し構築し、
2.ファージミド/AAVベクター(PAAV)が、以下を含むがこれに限定されない様々な段階で、既知のAAVP系よりも遺伝子導入においてより効率的であるかどうかを特徴付け、決定し、
a.細胞表面への結合、
b.細胞表面からのベクターの内在化、
c.ベクターゲノムの宿主核への転位、及び
d.組換え導入遺伝子発現、
3.ハイブリッドファージミドPAAVベクター系が、哺乳動物プロデューサー細胞株からrAAVを産生することができるかどうかを決定した。
最初に図1を参照すると、本発明によるファージミド-AAV(PAAV)粒子(すなわちビリオン)の特徴を従来技術のAAVPウイルス粒子と比較した表を示す。図から分かるように、本発明のPAAV粒子(6kb)は、既知のAAVP粒子(14kb)よりもはるかに小さく、すなわちDNAが42%少なく、ウイルス粒子が50%短く、PAAV粒子は、先行技術の系、AAVPの収率(100倍)をはるかに上回る収率で生成される。その結果、本発明のPAAV粒子は、より大きなペイロードを保有することができ、これは、遺伝子治療アプローチにおいて複数の導入遺伝子を送達するために非常に有用である。したがって、本発明者らは、改変バクテリオファージ発現系(PAAV)が、遺伝子治療またはウイルスベクターの大規模生産のための高度にウイルス性のベクターとして使用され得ることを実証した。
実施例1-ファージミド-AAVベクター(PAAV)構築
図2を参照すると、本発明のヘルパーファージゲノム及びファージミドゲノム(PAAV DNA)の実施形態が示されており、これらは図1にも示されているように、原核生物における発現に際して共に一緒にしてファージミド-AAV(PAAV)粒子を産生する。構造遺伝子は、ウイルス粒子へのDNAのパッケージングに不可欠であり、以下に詳述する複製欠損ヘルパーファージによって供給される。ファージミドゲノムは、ヘルパーファージに対して極めて寄生的であり、複製及びパッケージングの両方において、それが複製欠損ヘルパーファージを打ち負かすことを意味する。
A)ファージミド/AAVベクター
ここで図3を参照すると、2つの複製起点及び2つの他の遺伝子要素を含むプラスミドであるファージミドゲノムの1つの実施形態が示されている。ファージミドゲノムは、原核生物(例えば、細菌)宿主内でのその複製及びヘルパーウイルスによってレスキューされたときのファージミド粒子へのパッケージングの両方を促進するために、2つの複製起点を必要とする。
図4を参照すると、第1の複製起点(ori)は、大量の原核宿主内の二本鎖ファージミド(dsDNA)の複製を可能にする高コピー数複製起点(pUC ori)である。第2の複製起点は、プラスミドの一本鎖DNAへの複製を可能にするファージ複製起点(f1 ori)であり、その後、ファージミドベクター粒子(PAAV)にパッケージングすることができる。
図5を参照すると、ファージミドゲノムは選択マーカー遺伝子を含む。ファージミドゲノムが原核宿主内で効率的に複製するために、選択マーカー(例えばアンピシリン耐性)を、発現を確実にするために使用し、抗生物質耐性遺伝子(それ自身のプロモーターを有する)の形態でのファージミドゲノムの喪失を防止する選択的圧力を与える。これは、選択マーカーが耐性を付与する抗生物質の存在下で原核宿主を培養する場合、ファージミドゲノムの発現(及び複製)を確実にする。
図6を参照すると、ファージミドゲノムは、目的の導入遺伝子を含む組換え(アデノ随伴ウイルス、AAV)導入遺伝子カセットをさらに含む。これには、ポリペプチド/タンパク質、短ヘアピン/小干渉/短誘導RNA、またはその両方の組み合わせが含まれ得るが、これらに限定されない。ほんの一例として、図6に示す導入遺伝子は、GFP及びヒトβ-グロビンをコードする。導入遺伝子の発現は、ウイルスプロモーター(例えば、CMV)及び/またはエンハンサー配列によって駆動され、分解を防ぐためにポリAシグナルでテールされる。プロモーターはまた、癌遺伝子治療適用(すなわち、グルコース調節タンパク質[grp78]のプロモーター)における哺乳動物及び腫瘍特異的プロモーターであり得る。導入遺伝子カセット全体が、AAV由来の末端逆位反復配列(ITR)で隣接され、それはファージミド粒子によって形質導入された哺乳類細胞核内のコンカテマー性エピソーム(染色体外)DNAとして導入遺伝子カセットを安定に維持することを可能にする保護ヘアピン構造を形成する。ITRは、AAV導入遺伝子カセットを長期間にわたって安定して発現させることを可能にする。
ファージミドは、小さなゲノムを有するにもかかわらず、それが構造的ファージ遺伝子を欠くので、それ自体を粒子にパッケージ化することができない。その結果、原核宿主からの粒子の形成及び排出に必要な構造的(すなわちカプシド)タンパク質を提供する、図7に示すような、ヘルパーウイルスによる「レスキューすること」が必要となる。従来の考え方では、ベクター中の遺伝子要素は一般的であり、遺伝子工学において広く使用されている。
B)ヘルパーファージ
図7を参照すると、ヘルパーファージ(本明細書においてM13KO7と呼ぶ)は、図3に示すファージミドゲノムを保有及び/または含有する原核宿主からファージミド粒子(すなわちPAAV)をレスキューするために特別に設計されたバクテリオファージである。へルパーファージは、破壊された複製起点(p15a、中程度のコピー数)及び、ファージ粒子にそれ自身のパッケージングする能力を著しく低下させるパッケージングシグナルを含む。その結果、ファージミドゲノムは、複製及びパッケージングの両方において、ヘルパーファージを打ち負かすであろう。
ファージミド標的化特性(またはWO2014/184528中のパンフレットに記載されているような多機能性特性)を付与するために、ヘルパーファージのゲノムは、ファージミド粒子アセンブリのための構造カプシドタンパク質を提供するので、ヘルパーファージのゲノムはそれを行うように操作されなければならない。例えば、ヘルパーゲノムは、得られたPAAVP粒子の所望の標的細胞(例えば、腫瘍)への送達を可能にする細胞標的化リガンドをディスプレイするように構成されたpIIIカプシド少数コートタンパク質をコードし得る。それは、また得られたPAAV粒子上に外来ペプチドをディスプレイするように構成された少なくとも1つのpVIIIカプシド主要コートタンパク質をコードすることもできる。したがって、一実施形態では、αβ及びαβインテグリンを発現する血管新生腫瘍細胞及び腫瘍内皮細胞に特異性を付与するために、pIII少数コートタンパク質に9つのアミノ酸変異を誘導することが望ましい。したがって、図8を参照すると、ヘルパーファージのゲノムは、RGD4C標的化ペプチド(CDCRGDCFC-配列番号7)を含む。
PAAVPファージミドゲノム及びヘルパーファージが構築されると、以下に議論するように、それらを一緒に使用して、原核宿主において、ファージミド-AAVベクター(PAAV)粒子を産生する。
実施例2-ファージミド-AAVベクター(PAAV)産生
本発明者らは、ファージミド-AAVベクター(PAAV)粒子を製造するための2つの異なる方法(方法1及び2)を発明し、これらを図9及び10に示す。
ノート:
-TG1:繁殖因子(F’線毛)を保有するE.coli株。
-2xYT:TG1 E.coliを培養するために使用される液体ブロス。
-カナマイシン:ヘルパーファージ上に存在する抗生物質耐性選択マーカー。
-アンピシリン:ファージミドベクター上に存在する抗生物質耐性選択マーカー。
-TYEトップアガー:TG1 E.coliを培養するために使用される固体培地で、1.25%細菌用寒天の添加により2xTYから適合させた。
ファージミド/AAVベクター(PAAV)製造方法1:感染性レスキュー
図9を参照すると、
1.1%グルコースを補充した2xYT(100μg/mLアンピシリン)60mlに4~5mlの前培養(一晩)のPAAVゲノムを保有するTG1 E.coliを加える。
2.シェーカー(250 RPM)中37°で培養物をインキュベートする。
3.OD600が0.5~0.8(対数期)の範囲になってすぐに、少なくとも1×1010のヘルパーファージ(M13KO7)の形質導入単位を培養物に添加する。
4.混合のため反転させる。37°で30分間インキュベートする。
5.ステップ3からの感染したスターター培養物を、1%グルコースを補充した2xYT(100μg/mLアンピシリン+25μg/mLカナマイシン)を含む2Lフラスコに最終容量400~450mLまで注ぐ。
6.オービタルシェーカーで37°、250rpmで16~20時間一晩インキュベートする。
7.培養上清からのファージミド(PAAV)粒子を精製する。
方法1の利点はその非常に高い収率である。
ファージミド/AAVベクター(PAAV)製造方法2:安定したプロデューサー細胞株
図10を参照すると、
パート1:コンピテントプロデューサー細胞株の産生
1.ヘルパーヘッジM13KO7由来のssDNAゲノムでTG1コンピテントE.coli(Zymo Research、USA)を形質転換し、TYEトップアガー(50μg/mLカナマイシン)に蒔き、
1.個々のコロニーを選択し、1%グルコースを補充した5mL 2xYT培地(50μg/mLカナマイシン)に接種する。
2.オービタルシェーカーで37°、250rpmで16~20時間一晩インキュベートする。
3.市販の抽出キット(QIAGEN、オランダ)を使用して5mLの一晩培養物からDNAを抽出し、DNAラダーに対して1%アガロースゲル(100ボルト、2.5mA)で泳動させることにより、真の陽性形質転換体を確認する。
4.公表されたプロトコル(Krantz et al.,UC Berkeleyにより出版されたものに適合)を用いて、工程4で同定された正確な形質転換体から化学的にコンピテントな細胞を調製する。
パート2:PAAVファージミド粒子産生
1.パート1で作成したコンピテント細胞株をファージミド/AAVゲノムで形質転換し、TYEトップアガー(100μg/mLアンピシリン+50μg/mLカナマイシン)に蒔く。
2.コロニーを選択し、1%グルコースを補充した5mL 2xYT(100μg/mLアンピシリン+50μg/mLカナマイシン)に接種する。
3.オービタルシェーカーで37°、250rpmで4時間インキュベートする。
4.ステップ3の感染したスターター培養物を、1%グルコースを補充した2xYT(100μg/mLアンピシリン+25μg/mLカナマイシン)を含む2Lフラスコに、400~450mLの最終容量まで注ぐ
5.オービタルシェーカーで37°、250rpmで一晩16~20時間インキュベートする。
6.培養上清からのファージミド粒子を精製する。
PAAVファージミド粒子精製
1温かい一夜培養物を遠心分離ボトルに移し、3300G、4°で30分間遠心分離することによって細菌をペレット化する。
2.ペレットを捨て、上清を清潔な遠心分離ボトルに移す。
3.各ボトルに上清の30%容量を氷冷20%PEG-8000/2.5M NaClと共に加え、混合のため渦状撹拌する。
4.氷上で4~24時間インキュベートする。
5.10000G、4°で30分間の遠心分離によりファージミド粒子を沈殿させる。上清を捨てる。
6.ファージミド粒子ペレットを10000G、4°で1分間遠心分離して乾燥させる。
7.PEG/NaClで残りの上清を除去する。
8.ファージミド粒子ペレットを0.5-2mLのPBSに再懸濁する。
9.再懸濁したファージミド粒子調製物を0.45ミクロンのフィルターを用いてろ過する。
10.調製物を4°に保つ。この調製物は4°で2年まで安定である。25%グリセロールストックは無期限に-80°で保存することができる。
実施例3-遺伝子治療技術のためのファージミド-AAVベクター(PAAV)の使用
実施例1及び2は、ファージミド-AAVベクター(PAAV)粒子及び2つの産生方法を産生するために必要とされる本発明の構成要素(すなわち、図3に示すファージミドゲノム及び図7に示すヘルパーファージ)を記載する。一旦製造され、精製されると、PAAV粒子は、遺伝子治療などの使用範囲を有することができる。
一例として、本明細書に記載のPAAVP粒子は、標的細胞への送達が成功していることを既知のアッセイで容易に検出できるので、GFP導入遺伝子を保有する。治療では、任意の導入遺伝子を選択して、図3に示すファージミドゲノムに操作し、得られたPAAV粒子中に保有することができる。例えば、導入遺伝子は、治療的または工業的有用性を有し得るタンパク質をコードする任意の遺伝子であり得る。例えば、導入遺伝子は、ジストロフィン、血液凝固因子、インスリンまたはサイトカイン受容体サブユニットをコードし得る。導入遺伝子はまた、RNAi療法において使用する短ヘアピン/小干渉/短誘導RNA分子をコードし得る。導入遺伝子は、内部リボソーム侵入部位(IRES)またはウイルス融合ペプチド(インフレーム融合のためのT2Aペプチド)を用いて一緒に融合された複数のポリペプチド、核酸、またはその両方の組み合わせをコードし得る。
実施例4-インビトロAAV産生のためのファージミド-AAVベクター(PAAVP)の使用
遺伝子治療に加えて、本明細書に記載のPAAVP粒子は、アデノ随伴ウイルス(AAV)を産生するための新規な方法に使用することができる。ファージ誘導AAV産生は、大量のdsDNAをパッケージングするファージミド粒子の能力を利用する。典型的なAAV産生系は、組換えAAV粒子の産生に一緒に機能するrAAV、rep-cap及びアデノヘルパー遺伝子の3つの主要な要素からなる。本発明者らは、2つの異なる戦略を考案した。
図11を参照すると、使用される第1の戦略は、rAAV産生要素を保有する3つの異なるファージミドベクターを産生することである。これらは、ファージミド-AAVベクター(PAAV)(図3参照)、アデノヘルパーファージミド粒子(図12参照)及びrep-capファージミド粒子(図13参照)である。これらの粒子の基本構造は、ファージミド/AAV構築セクションに記載されているように、2つの複製起点及び選択マーカーを含むので、同様である。しかし、重要な違いは導入遺伝子カセットである。図3に示すように、Phagemid-AAV(PAAV)ゲノムはAAV導入遺伝子カセットを含むが、アデノヘルパー及びrep-cap粒子は、それぞれ図12及び13に示すように、アデノヘルパー導入遺伝子またはrep-cap導入遺伝子を含む。
別の実施形態では、本発明者らは、図14及び15に示すように、単一ベクターゲノム内の必要な要素のすべてを含む、いわゆる「統合された構築物」を遺伝子操作した。
別々のベクター上または同じ統合されたベクター上のいずれかの同じ哺乳動物プロデューサー細胞(図11及び14参照)に導入された場合、rep-cap及びアデノヘルパー遺伝子は、rAAVゲノムのファージミド/AAVベクターへのパッケージングを促進するトランス作用性要素として挙動する。この産生プロセスは、3つのプラスミドの一時的な同時トランスフェクションに匹敵する。しかし、この場合、プラスミドは、全く同じ要素を保有するファージミドベクターで置き換えられる。
以下は、アデノ随伴ウイルス(AAV)のPAAVファージミド誘導産生のためのプロトコルについて記載する。
ノート:
DMEM:ダルベッコ改変イーグル培地。
FBS:胎児ウシ血清、成長補助剤。
完全培地:DMEM+10%FBS。
EDTA:エチル-ジアミン四酢酸、タイトジャンクション形成に必要なカルシウムイオンを隔離することによって細胞を解離するために使用されるイオンキレーター。
GlutaMax:成長補助剤、L-グルタミンの類似体。
ファージミド誘導AAV産生のためのプロトコル:
1.15cm組織培養プレート中の完全培地(10%FBS、20mM GlutaMax、ペニシリン/ストレプトマイシン及び非必須アミノ酸を補充したDMEM)に、HEK293細胞を播種し、80%コンフルエンスに達するまで、最低48時間、増殖させる。
2.ファージミド/AAV、rep-capファージミド及びアデノヘルパーファージミドを混合して全体積5mL未満で1:1:1の形質導入単位比を達成するか、または、1細胞あたり百万個の形質導入単位を達成するために統合されたベクター(単一粒子中に3つの要素をすべて含む単一ベクター)を分取する。
3.ステップ3で作製した形質導入混合物に、等容量の無血清DMEM(20mM GlutaMaxで補充)を添加する。
4.混合のため反転させる。室温で15分間インキュベートする。
5.ステップ1で蒔いたHEK293細胞をPBSで洗浄し、3回繰り返す。
6.形質導入混合物を加え、穏やかに渦状撹拌して混合物を均一に分散させる。
7.細胞培養インキュベーター中、37°、5%COで72時間インキュベートする。
a.形質導入混合物との6時間のインキュベーションの後、等体積の完全培地(10%FBS、20mM GlutaMax、ペニシリン/ストレプトマイシン及び非必須アミノ酸を補充したDMEM)を補充する。
b.24時間後、培地を完全培地(10%FBS、20mM GlutaMax、ペニシリン/ストレプトマイシン及び非必須アミノ酸が補充されたDMEM)と交換する。
rAAV精製:
1.0.5M EDTA溶液を組織培養プレート中の培地に0.010Mの最終濃度まで添加し、室温で5分間インキュベートする。
2.細胞と培地を吸引し、粉砕し、50mL遠心分離管に移す。
3.1500RPM、5分間、室温で遠心分離することにより細胞をペレット化する。
a.オプション:さらなるAAV精製のために上清を回収する。
4.2~5mLの無血清DMEMに細胞ペレットを再懸濁する。
5.エタノール-ドライアイスバス及び37°に設定された水浴中で4回の凍結-解凍サイクルを行うことによって、懸濁液中の細胞を溶解する。
6.室温で10分間、10000Gで細胞ライセートを遠心分離する。
a.定量/さらなる精製/濃縮のための上清を分取する。
b.ペレット(破片)を捨てる。
実施例5-インサイチュAAV産生のためのファージミド-AAVベクター(PAAV)の使用
図16を参照すると、本発明者らは、PAAVを用いたAAV粒子のインサイチュ生産のための方法を発明した。
第1に、3つのファージミドベクターまたは統合されたベクターの最適用量(または複数回用量)を、静脈内/皮下/腹腔内または筋肉内/皮下(または前述の投与経路のいずれか)を介してインビボで導入する。病変組織は、関連するインテグリンをディスプレイする腫瘍であり、したがって、ファージミドPAAV粒子上の標的化部分は、RGD4C配列である。腫瘍は、野生型AAVではなく、ハイブリッドファージミド粒子にコードされたウイルス導入遺伝子を含むrAAVを産生し始めるはずである。これらのAAV粒子は、自然に哺乳類組織に高い親和性を有するため、近くの部位を自家感染させ、所定の時間にわたって腫瘍を根絶するはずである。
実施例6-大規模標的遺伝子導入及び組換えアデノ随伴ウイルス産生のための工学的疑ウイルスの作製
透過型電子顕微鏡法
粒子を特徴付ける際に、本発明者らはファージミドベースのベクター系を使用する場合、ベクターサイズが実質的に減少することを示すためにPAAV粒子を画像化した。透過型電子顕微鏡法を用いて、本発明者らは、ウラニルアセテートでネガティブ染色した後、メッシュ銅TEMグリッド上の本発明のPAAV及び既知のAAVP粒子の長さを画像化し、測定した(図17参照)。平均AAVP粒子は長さが1455.02nmであり(図17A)、本発明による典型的なPAAV粒子は長さがわずか729.96nmであり(図17B)、これは粒子サイズの約50%の減少に相当することが分かった。PAAV粒子(典型的には1186.03nm、図17B)を産生するために使用されるヘルパーファージと比較して、相対ベクターサイズはヘルパーウイルスよりも約38%短い。
ベクターサイズの差異は、PAAVがAAVPよりも遺伝子送達ベクターとしてより効率的であるという理論の基礎を成している。これは、生産収率だけでなく、哺乳動物細胞に遺伝子を導入し発現させる際のその後の感染プロセスにおいても同様である。したがって、本発明者らは、293AAV(ヒト胎児腎臓293の誘導体)及びU87神経膠芽腫細胞株における結合、内在化、及び遺伝子発現を含む、感染の様々な段階でベクター効率を調べた。
ベクター内在化
結合後、ベクターは標的細胞による受容体介在性エンドサイトーシスを受ける。ベクター内在化の潜在的な差異を調べるために、本発明者らは、フローサイトメトリー(図18参照)を用いて、2つの時点(2時間、2H;4時間、4H)における標的細胞の内在化ベクターの数をアッセイした。両方の細胞株でAAVPと比較した場合、PAAVベクターは2時間でより効果的に内在化され(中央値蛍光強度(MFI)=1031.7、AAVPよりも335高い、p<0.05)、そして4時間で全体的な程度がより大きく内在化することが見出された。PAAVの2時間でのMFIは、AAVPより293AAVで335及びU87細胞で207(p<0.05)有意に高かった。形質導入の4時間後、この差は293AAV(829MFI、p<0.05)では有意に大きかったが、U87(157MFI、有意ではない)ではそれほど少なかった。全体として、MFIはPAAV1処理細胞について2092(293AAV、p<0.05、図18A)及び1137(U87、図18B)でピークに達し、AAVPよりも有意に高く、それぞれ1063(293AAV)及び980(U87)でピークに達した。このデータは、PAAVが両方の細胞株における両方の時点について内在化の速度及び程度においてAAVPより一貫して良好に実施されたことを実証する。
AAVP及びPAAV媒介遺伝子導入後の緑色蛍光タンパク質発現
ベクター内在化の差異が遺伝子発現の増加につながるかどうかを調べるために、本発明者らは、RGD及びNT PAAV.GFP及びAAVP.GFPベクターを用いてGFP発現アッセイを行った(図19参照)。この実験において、それらをまた、WO2014/184529に記載されているように、カチオン性ポリマーDEAE.DEXTRAN(Dex)の添加がPAAVベクターのバイオアベイラビリティー及びエンドソームエスケープを増加させることにより遺伝子導入を増強できるかどうかを試験した。形質導入の9日後、細胞をトリプシン処理し、計数し、フローサイトメーターを用いて分析した。ベクター形質導入を補助するためにDexを使用したかどうかに関わらず、導入遺伝子の発現は一般にU87よりも293AAV細胞で高かった。ベクターのみを使用する場合、標的RGD.PAAV.GFPベクターは、AAVPと比較して、より高い有効性(それぞれ293AAV及びU87細胞におけるGFP+ve細胞で7.7%、p<0.01及び1.4%、p<0.05)で標的細胞に形質導入し、これは293AAV及びU87細胞でそれぞれ2.44倍及び1.56倍の増加となる(図19A、C)。
しかし、Dexを添加すると、RGD.AAVP及びRGD.PAAVベクターの遺伝子発現が劇的に増加する。293AAV細胞では、RGD.AAVP.GFP処理細胞におけるGFP発現はRGDで25%に増加した。PAAV.GFP処理細胞は50%まで実質的に増加し(すべてp<0.01)、Dexの添加は、RGD.AAVPについては7.9倍、RGD.PAAVPについては6.5倍の遺伝子発現の増加をもたらした(図19B、D)。形質導入に対して高い活発性を有すると考えられているU87細胞では、Dexは、4.8%GFP+ve細胞に対してRGD.PAAV.GFPの遺伝子発現を3.6倍以上増加させることができた(p<0.01)-Dexが1.3%のGFP+ve細胞に対してわずか1.5倍だけ遺伝子発現を増加させた(p<0.05)ため、これは、RGD.PAAV.GFPの場合ではなかった。興味深いことに、Dexは293AAV細胞におけるNT.PAAV(非標的)ベクターによる形質導入を可能にした(7.34%)が、U87ではそうでなかった。
ファージミド誘導性組換えアデノ随伴ウイルス生産
本発明者らは、PAAV及びファージミド由来のベクターが市販のプロデューサー細胞株においてrAAVを産生するために使用できるかどうかを評価するために、通常、遺伝子導入のためのトランスフェクションを必要とする3つの標的化ベクターで293AAV細胞を形質導入した。彼らは、細胞溶解物からrAAV粒子を採取し、ファージミド誘導形質導入後の3つの時点(図20A)にわたってmL当たりrAAV遺伝子コピー数(GC)を定量化することができた。FuGene6(トランスフェクション試薬、3.99e11 GC/mL、図20B)による従来のトランスフェクションと比較すると、ファージミド誘導rAAV産生は、rAAV収量において168時間(7.69e11 GC/mL、図21A)で1.9倍以上の増加をもたらす。ファージミド誘導遺伝子導入は、(トランスフェクションとは異なり)広範囲の細胞内プロセシングを必要とするため、ウイルス遺伝子を発現させて機能性粒子にパッケージングするのにより長い時間を必要とする。しかしながら、同じ72時間の時点で収率を比較すると、トランスフェクションはファージ誘導rAAV産生より1.76e11 GC/mL高い値を示した。すべての時点でのトランスフェクションまたはファージミド誘導産生皿からの1mLの培養上清あたりのrAAV収率は、観察可能な傾向はなくおよそ8~9e10 GC/mLであった(データは示さず)。
実施例7-RGD4C-ファージミドの構築及び使用
トリペプチドRGDは、フィブロネクチンを含む細胞外マトリックスのタンパク質に見出される。インテグリンは、αβインテグリンへの細胞接着部位においてフィブロネクチンに位置するRGDモチーフに結合することによりフィブロネクチンの受容体として働き、組換えファージミド粒子のpIII少数コートタンパク質に9アミノ酸変異を順に誘導したその特異性をαβ及びαβインテグリンを発現する腫瘍細胞及び血管新生腫瘍関連内皮細胞に付与する。したがって、第2のベクターのゲノムは、RGD4C標的ペプチド(CDCRGDCFC-配列番号7)を含む。
図21を参照すると、α、β及びβインテグリンサブユニット、RGD4C-ファージミドの受容体の発現を実証する、UW228及びDAOYヒト髄芽腫細胞の免疫蛍光染色が示されている。これらのデータは、RGD4C標的ペプチドを含有するファージミドベクターが、小児脳腫瘍、髄芽腫における標的遺伝子送達及び遺伝子治療に使用できることを示している。
図22を参照すると、RGD4Cファージミドによる小児髄芽細胞腫細胞への標的遺伝子送達が、4日間の時間経過にわたって示されている。このデータは、RGD4C-ファージミドが、髄芽腫においてオーバータイムに増加した効率的かつ選択的な遺伝子送達を媒介することを示している。
図23は、mTOR/shRNA(RGD4C-mTOR/shRNA)を保有するRGD4Cファージミドによる処理後の小児UW228及びDAOY髄芽細胞腫細胞における、哺乳動物標的のラパマイシン(mTOR)発現のダウンレギュレーションを示すウェスタンブロット分析を示す。これらのデータは、選択的かつ効率的な方法で治療標的mTORの発現をノックダウンするために腫瘍細胞中でshRNAを送達するのにRGD4C-ファージミドがうまく使用できることを実証している。
図24は、テモゾロミド耐性であることが知られている、髄芽細胞腫細胞におけるmTORに対するテモゾロミド(TMZ)とshRNAを保有するRGD4C-ファージミドとの併用処理を示す。このデータは、標的化されたRGD4C-mTOR/shRNAが髄芽腫細胞をTMZに再感作し、完全な腫瘍細胞の根絶を達成できることを示している。したがって、RGD4C-ファージミドによるmTOR発現の標的化されたノックダウンは、髄芽腫のような化学療法抵抗性腫瘍細胞に対してテメゾロマイドと組み合わせて使用する効率的な戦略である。
図25は、TNFαベクターによる髄芽細胞腫細胞の処理を示す。このため、RGD4C/TNFαは、髄芽腫のような標的腫瘍の死滅に使用する治療可能性を有する。図26は、RGD4Cファージミドの受容体であるα、β及びβインテグリンサブユニットの発現を示すDIPG細胞の免疫蛍光染色を示す。これらのデータは、RGD4C標的ペプチドを含有するファージミドベクターが、小児脳腫瘍DIPGにおける標的遺伝子送達及び遺伝子治療に使用できることを示している。
図27は、RGD4C-ファージミド/AAVによるDIPG細胞への遺伝子発現の選択的かつ用量依存的送達を示す。これらのデータは、RGD4CファージミドがDIPGに遺伝子発現を用量依存的かつ選択的にうまく送達できることを証明している。図28は、RGD4C-ファージミド-TNFαによる処理を示す。これらのデータは、RGD4C-ファージミドが選択的にDIPGにTNFαを送達し、アポトーシス誘導をもたらすことを実証する。したがって、RGD4C-ファージミド-TNFαは、DIPGに対する標的療法に使用する治療可能性を有する。
実施例8-RGD4C-ファージミドのルシフェラーゼ発現
プロトコル:
HEK細胞を、完全培地(DMEM、10%FCS、1%グルタミン、1%ペニシリン/ストレプトマイシン)中48ウェルプレートに蒔き、70~80%コンフルエンスに達するまで少なくとも48時間インキュベートした。次いで、細胞をPBSで洗浄し、無血清培地(DMEM)に懸濁したハイブリッドファージ/ファージミドベクターで12時間形質導入した後、培地に完全培地を補充した。ルシフェラーゼ発現は、調製したQuanti-luc(InvivoGen、USA)試薬50μLに10μLの培地を加えることによって測定した。ルミノメーター(promega、USA)を備えたプレートリーダーを用いて光の放出を測定した。
図29は、種々の濃度の形質導入単位でのRGD.PAAVによる形質導入後のルシフェラーゼ発現を示し、図30は、種々の濃度の形質導入単位でのNT.PAAVによる形質導入後のルシフェラーゼ発現を示す。グラフは、様々な濃度のハイブリッドファージ/ファージミドベクターとのインキュベーション後のルシフェラーゼの時間と発現との間の用量依存性指数関数的関係を示す。数字は、定量化可能な遺伝子発現が、分泌型ルシフェラーゼのアッセイを介してファージミドベクターによって達成され得ることを示している。
実施例9-293個のAAV細胞へのRGD.PAAVベクターの結合
プロトコル:
293AAV細胞を、完全培地(DMEM+10%FCS、1%グルタミン、1%ペニシリン/ストレプトマイシン)中24ウェルプレートに蒔き、最低48時間、70~90%コンフルエンスに到達させた。細胞を500μLのPBSで2回洗浄し、氷上に置き、200μLの無血清DMEMに懸濁した200000TU/細胞(形質導入単位/細胞)のPAAVベクターで形質導入した。氷上で1時間インキュベートした後、培地をウェルから回収し、ファージミド粒子の量をTG1 E.coliで滴定し、コロニー計数によって定量化した。
図31を参照すると、293個のAAV細胞の細胞表面に結合したPAAVベクターのパーセンテージが示されている。RGD.PAAVベクターは58.2%の結合効率を有し、M13は結合効率を有していた。PAAVベクターは、それぞれの対照に対して7.1%の結合効率を有していた。
討論
標的PAAVベクターは、商業的及び疾患細胞株の両方における遺伝子導入において、AAVPベクターよりも効率的であることを示唆する強力な証拠がある。内在化と遺伝子発現の両方のデータは、PAAVがAAVPよりも効率的であることを一致して示している。遺伝子導入において、それについてのAAVPを上回るDexとPAAVベクターとの間に強い相乗効果があることを示唆する証拠も提供される。これらのデータは、PAAVがAAVPよりも優れていることを示唆しているが、PAAVベクター試料がヘルパーファージ汚染を含むとも考えなければならない。ベクター産生中の実験条件を最適化する努力にもかかわらず、ヘルパーファージの混入は(この場合、約1/10)避けられず、その小さなコートタンパク質上にRGDターゲティング配列をもディスプレイするので、形質導入を競合的に阻害する。これを考慮すると、内在化と遺伝子発現データは、RGD.PAAVの「真の」効能を非常に過小評価している可能性がある。さらに、内在化アッセイはシグナル検出のための細胞内ファージカプシドの染色を利用するため、PAAVの全体的なサイズ(及び粒子当たりの利用可能なカプシドタンパク質)が小さいことは、内在化粒子の比例数が、TEMを用いてPAAV粒子と比較して2倍の長さであることを示しているAAVPの比例数と直接比較できないことを意味する。したがって、本発明の方法は、ヘルパーファージを除去するための精製工程(例えばFPLC)を含む。
機械論的な洞察を提供することに加えて、将来の研究は、純粋なPAAVサンプルを使用するすべての実験の複製を包含しなければならないことが不可欠である。特に、ファージミド誘導rAAV産生は、従来のトランスフェクションプロトコルと比較して、ヘルパーファージ汚染による競合阻害の減少及び複数倍高いrAAV粒子の収率から大きく利益を得ることができる。
概要
組換えアデノ随伴ウイルス(rAAV)の大規模生産は、遺伝子治療の研究、開発及び商業化にとって大きな障害となっている。十分に研究されているにもかかわらず、rAAVの生産は、スケーラビリティの限界のために実験室規模に限定されていた。これまでに、「プロデューサー」細胞の一過性トランスフェクションは、非常に高価であるにもかかわらず、感染性汚染物質のない高純度のrAAVベクターを得る最も一般的な技術であった。したがって、rAAV生産系における遺伝子導入のための替わりの方法は大いに正当である。
哺乳動物細胞への遺伝子導入において非常に効率的なハイブリッドファージミドベクターが記載されている。rAAV導入遺伝子カセットをファージカプシドと組み合わせることにより、商業規模で容易に産生されるベクター系を作成することが可能である。これらのファージミド/AAV(PAAV)ベクターは非常に大きなクローニング能力を有し、哺乳動物細胞を標的としており、トランスフェクション試薬は必要でないことを意味する。本発明者らは、単数または複数のファージミドベクターにAAV産生のためのすべての遺伝子要素をクローン化することが可能であるので、大規模なrAAV産生のためのこのプラットフォーム技術を開発した。接着細胞及び細胞懸濁液の両方において、PAAV及びバクテリオファージベクターを用いる新規な大規模rAAV産生系が開発されている。このプラットフォーム技術は、GMP標準での臨床翻訳のための商業的なウイルス生産を可能にし、他の生合成系の商業生産の道を開くであろう。

Claims (15)

  1. 原核宿主から組換えアデノ随伴ウイルス(AAV)/ファージミド粒子を産生するための組成物であって、前記組成物は、
    (i)原核宿主内で存続するように構成され、かつ下記a)~c):
    a) 末端逆位反復配列(ITR)に隣接する少なくとも1つのAAV導入遺伝子発現カセット、
    b) 粒子の一本鎖DNAへの複製を可能にするためのバクテリオファージ複製起点を含むバクテリオファージパッケージングシグナル、及び
    c) 原核宿主内で二本鎖ベクターの複製を可能にするための細菌の複製起点
    を含む第1のベクターであって、前記バクテリオファージカプシドタンパク質をコードする構造遺伝子を欠く前記第1のベクターと、
    (ii)前記一本鎖DNAをパッケージングし、前記原核宿主からの組換えAAV/ファージミド粒子の形成及び排出をもたらすために必要とされる、カプシドタンパク質であるバクテリオファージ構造タンパク質をコードする核酸を含む、第2のベクターと、
    を含む、組成物
  2. 組換えアデノ随伴ウイルス(AAV)ベクターを産生する方法であって、前記方法は、組換えAAV/ファージミド粒子を真核宿主細胞に導入し、前記真核宿主細胞に組換えAAVベクターを産生させることを含み、
    前記組換えAAV/ファージミド粒子は、バクテリオファージカプシドタンパク質及びAAV/ファージミド粒子ゲノムを含み、前記AAV/ファージミド粒子ゲノムは、
    i) 末端逆位反復配列(ITR)に隣接する、標的細胞への送達用の、前記標的細胞に生物学的効果を及ぼす作用因子をコードする少なくとも1つのAAV導入遺伝子発現カセット、
    ii) 粒子の一本鎖DNAへの複製を可能にするためのバクテリオファージ複製起点を含むバクテリオファージパッケージングシグナル、及び
    iii) 原核宿主内で二本鎖ベクターの複製を可能にするための細菌の複製起点
    を含み、前記組換えAAV/ファージミド粒子は、原核宿主からの前記組換えAAV/ファージミド粒子の形成、パッケージングまたは排出に必要とされるバクテリオファージ構造遺伝子を欠くゲノムを含み、前記組換えAAV/ファージミド粒子は前記バクテリオファージカプシドタンパク質をコードする構造遺伝子を欠く、方法。
  3. 前記真核宿主細胞は哺乳動物であり、随意に、前記真核宿主細胞は、ヒト胎児腎細胞(HEK293)、スポドプテラ・フルギペルダ蛹卵巣組織(Sf9)、昆虫細胞、またはチャイニーズハムスター卵巣(CHO)を含む、請求項2に記載の方法。
  4. 前記真核宿主細胞が、rep-cap及びアデノヘルパー遺伝子を含むように形質転換される、請求項2又は3に記載の方法。
  5. 以下のi)~iii)、
    i) アデノ随伴ウイルス(AAV)末端逆位反復配列(ITR)に隣接する導入遺伝子発現カセット、
    ii) AAVrep-cap遺伝子、及び
    iii) アデノヘルパー遺伝子
    を含む組換えベクター。
  6. 以下のi)~iii)
    i) 末端逆位反復配列(ITR)に隣接する少なくとも1つのAAV導入遺伝子発現カセット、
    ii) 粒子の一本鎖DNAへの複製を可能にするためのバクテリオファージ複製起点を含むバクテリオファージパッケージングシグナル、及び
    iii) 原核宿主内で二本鎖ベクターの複製を可能にするための細菌の複製起点
    を含むAAV/ファージミド粒子ゲノムと、バクテリオファージカプシドタンパク質を含む、組換えアデノ随伴ウイルス(AAV)/ファージミド粒子であって、
    前記組換えAAV/ファージミド粒子は、原核宿主からの前記組換えAAV/ファージミド粒子の形成、パッケージングまたは排出に必要とされるバクテリオファージ構造遺伝子を欠くゲノムを含み、前記組換えAAV/ファージミド粒子は、前記バクテリオファージカプシドタンパク質をコードする構造遺伝子を欠く、組換えアデノ随伴ウイルス(AAV)/ファージミド粒子。
  7. インビトロ、エクスビボ、またはインサイチュで、組換えAAVウイルスベクターを産生するための、随意に、前記組換えAAV/ファージミド粒子は、標的真核細胞のための標的部分を含み、随意に、前記真核宿主細胞が疾患細胞であり、随意に、前記疾患細胞が悪性または良性の腫瘍である、請求項5に記載の組換えベクターまたは請求項6に記載の組換えアデノ随伴ウイルス(AAV)/ファージミド粒子の使用。
  8. インビトロ、またはエクスビボで、組換えAAVウイルスベクターを産生する方法であって、前記方法は、真核宿主細胞に請求項5に記載の組換えベクターまたは請求項6に記載の組換えアデノ随伴ウイルス(AAV)/ファージミド粒子を導入し、前記宿主細胞に組換えウイルスベクターを産生させることを含み、随意に、前記組換えAAV/ファージミド粒子は、前記真核宿主細胞を標的にするための標的部分を含み、随意に、前記真核宿主細胞型が疾患細胞であり、随意に、前記疾患細胞が悪性または良性の腫瘍である、方法。
  9. 以下のi)~iii)
    i)AAV血清型の左及び右末端逆位反復配列(ITR)を含み、標的細胞への送達用の、前記標的細胞に生物学的効果を及ぼす作用因子をコードする、1つ以上の導入遺伝子発現カセット、
    ii) 粒子の一本鎖DNAへの複製を可能にするためのバクテリオファージ複製起点、及びiii) 原核宿主内で二本鎖ベクターの複製を可能にするための細菌の複製起点
    を含むゲノムを含む組換えAAV/ファージミド粒子であって、
    前記組換えAAV/ファージミド粒子は、原核宿主からの粒子の形成、パッケージングまたは排出に必要とされるバクテリオファージ構造遺伝子を欠くゲノムを含み、前記AAV/ファージミド粒子ゲノムはバクテリオファージカプシドタンパク質をコードする構造遺伝子を欠き、前記組換えAAV/ファージミド粒子はバクテリオファージ構造カプシドタンパク質を含み、前記組換えAAV/ファージミド粒子は、前記組換えAAV/ファージミド粒子の前記標的細胞への送達を可能にする細胞標的化リガンドをディスプレイするように構成されたカプシド少数コートタンパク質を含み、前記細胞標的化リガンドは、配列番号7のRGD4C標的化ペプチドである組換えAAV/ファージミド粒子。
  10. 前記組換えAAV/ファージミド粒子は、カチオン性ポリマーと組み合わされて正味の正電荷を有する複合体を形成し、随意に前記カチオン性ポリマーは、キトサン、ポリ-D-リジン(PDL)、ジエチルアミノエチル(DEAE)、ジエチルアミノエチル-デキストラン(DEAE.DEX)、ポリエチレンイミン(PEI)、ポリブレン、硫酸プロタミン、及びカチオン性脂質からなる群から選択される、請求項9に記載の組換えAAV/ファージミド粒子。
  11. 治療または診断のために用いるための、請求項5に記載の組換えベクター、または請求項6、9または10のいずれか1項に記載の組換えAAV/ファージミド粒子。
  12. 遺伝子治療技術のために用いるための、請求項5に記載の組換えベクター、または請求項6、9または10のいずれか1項に記載の組換えAAV/ファージミド粒子。
  13. 癌の治療、予防、または寛解のために用いるための、請求項5に記載の組換えベクター、または請求項6、9または10のいずれか1項に記載の組換えAAV/ファージミド粒子。
  14. 対象へのワクチン送達のために用いるための、請求項5に記載の組換えベクター、または請求項6、9または10のいずれか1項に記載の組換えAAV/ファージミド粒子。
  15. 前記ワクチンがペプチドワクチン又はDNAワクチンである、請求項14に記載の組換えベクター又は組換えAAV/ファージミド粒子。
JP2018521571A 2015-11-02 2016-10-31 ファージミドベクター Active JP7068166B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022075036A JP2022115934A (ja) 2015-11-02 2022-04-28 ファージミドベクター
JP2024076613A JP2024102282A (ja) 2015-11-02 2024-05-09 ファージミドベクター

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB1519303.0 2015-11-02
GBGB1519303.0A GB201519303D0 (en) 2015-11-02 2015-11-02 Phagemid vector
PCT/GB2016/053366 WO2017077275A1 (en) 2015-11-02 2016-10-31 Phagemid vector

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022075036A Division JP2022115934A (ja) 2015-11-02 2022-04-28 ファージミドベクター

Publications (3)

Publication Number Publication Date
JP2018533949A JP2018533949A (ja) 2018-11-22
JP2018533949A5 JP2018533949A5 (ja) 2019-10-24
JP7068166B2 true JP7068166B2 (ja) 2022-05-16

Family

ID=55130522

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2018521571A Active JP7068166B2 (ja) 2015-11-02 2016-10-31 ファージミドベクター
JP2022075036A Pending JP2022115934A (ja) 2015-11-02 2022-04-28 ファージミドベクター
JP2024076613A Pending JP2024102282A (ja) 2015-11-02 2024-05-09 ファージミドベクター

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2022075036A Pending JP2022115934A (ja) 2015-11-02 2022-04-28 ファージミドベクター
JP2024076613A Pending JP2024102282A (ja) 2015-11-02 2024-05-09 ファージミドベクター

Country Status (7)

Country Link
US (2) US11603540B2 (ja)
EP (2) EP3371315B1 (ja)
JP (3) JP7068166B2 (ja)
CA (1) CA3040230A1 (ja)
DK (1) DK3371315T3 (ja)
GB (1) GB201519303D0 (ja)
WO (1) WO2017077275A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201519303D0 (en) 2015-11-02 2015-12-16 Imp Innovations Ltd Phagemid vector
CN110785495A (zh) 2017-04-18 2020-02-11 葛兰素史克知识产权开发有限公司 腺相关病毒载体的生产方法
GB201706090D0 (en) * 2017-04-18 2017-05-31 Glaxosmithkline Ip Dev Ltd Methods for adeno-associated viral vector production
GB201706451D0 (en) * 2017-04-24 2017-06-07 Imp Innovations Ltd Cancer treatment
CA3098871A1 (en) * 2018-05-08 2019-11-14 Rutgers, The State University Of New Jersey Aav-compatible laminin-linker polymerization proteins
EP3823668A1 (en) * 2018-07-16 2021-05-26 DCPrime B.V. A combination product for use in tumor vaccination
EP3844289A4 (en) 2018-08-29 2022-07-20 Shanghaitech University COMPOSITION AND USE OF CAS PROTEIN INHIBITORS
GB201816919D0 (en) * 2018-10-17 2018-11-28 Glaxosmithkline Ip Dev Ltd Adeno-associated viral vector producer cell lines
WO2020220258A1 (zh) * 2019-04-30 2020-11-05 北京小米移动软件有限公司 小区重配方法及装置
JP2023536570A (ja) * 2020-07-06 2023-08-28 ラトガース ザ ステイト ユニバーシティー オブ ニュージャージー 抗原のターゲティング発現による免疫応答の増強法
WO2022072324A1 (en) * 2020-09-29 2022-04-07 NeuExcell Therapeutics Inc. Isl1 and lhx3 vector
WO2024149989A1 (en) * 2023-01-10 2024-07-18 Imperial College Innovations Limited Phage vector

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009534314A (ja) 2006-04-07 2009-09-24 ザ ボード オブ リージェンツ オブ ザ ユニバーシティー オブ テキサス システム アデノ随伴ウイルスファージ粒子に関する方法および組成物
JP2013143940A (ja) 1997-09-05 2013-07-25 Ampliphi Biosciences Inc 組換えaavベクターの高力価ヘルパーなし調製物を生成するための方法
WO2014184529A1 (en) 2013-05-15 2014-11-20 Imperial Innovations Plc Bacteriophage

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992009690A2 (en) * 1990-12-03 1992-06-11 Genentech, Inc. Enrichment method for variant proteins with altered binding properties
JP2007504149A (ja) 2003-08-26 2007-03-01 ボード オブ リージェンツ,ザ ユニバーシティ オブ テキサス システム 抗癌ワクチン
EP1960526A4 (en) 2005-12-07 2009-07-15 Los Alamos Nat Security Llc PLASMIDES AND PACKAGING CELL LINES FOR USE IN A PHAG DISPLAY
GB201308742D0 (en) 2013-05-15 2013-06-26 Imp Innovations Bacteriophage
GB201519303D0 (en) 2015-11-02 2015-12-16 Imp Innovations Ltd Phagemid vector
GB201706451D0 (en) 2017-04-24 2017-06-07 Imp Innovations Ltd Cancer treatment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013143940A (ja) 1997-09-05 2013-07-25 Ampliphi Biosciences Inc 組換えaavベクターの高力価ヘルパーなし調製物を生成するための方法
JP2009534314A (ja) 2006-04-07 2009-09-24 ザ ボード オブ リージェンツ オブ ザ ユニバーシティー オブ テキサス システム アデノ随伴ウイルスファージ粒子に関する方法および組成物
WO2014184529A1 (en) 2013-05-15 2014-11-20 Imperial Innovations Plc Bacteriophage

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZONGHAI LI,CELL-TARGETED PHAGEMID PARTICLES PREPARATION USING ESCHERICHIA COLI BEARING LIGAND-PIII ENCODING HELPER PHAGE GENOME,BIOTECHNIQUES RAPID DISPATCHES,米国,2006年12月,VOL:41, NR:6,PAGE(S):706 - 707,http://dx.doi.org/10.2144/000112294

Also Published As

Publication number Publication date
DK3371315T3 (da) 2022-12-05
EP3371315A1 (en) 2018-09-12
JP2022115934A (ja) 2022-08-09
WO2017077275A1 (en) 2017-05-11
US20180320200A1 (en) 2018-11-08
JP2018533949A (ja) 2018-11-22
JP2024102282A (ja) 2024-07-30
CA3040230A1 (en) 2017-05-11
US20230265452A1 (en) 2023-08-24
EP3371315B1 (en) 2022-08-31
US11603540B2 (en) 2023-03-14
GB201519303D0 (en) 2015-12-16
EP4163382A1 (en) 2023-04-12

Similar Documents

Publication Publication Date Title
JP7068166B2 (ja) ファージミドベクター
JP6007463B2 (ja) 薬剤送達粒子及びその製造方法
US11820792B2 (en) Cancer treatment
US10471138B2 (en) Bacteriophage-polymer hybrid
EP2997148B1 (en) Bacteriophage
TW202217003A (zh) 經改造之肌肉靶向組合物
WO2016030501A1 (en) Synthetic alu-retrotransposon vectors for gene therapy
CN114276419B (zh) 肌肉高亲和性的新型腺相关病毒衣壳蛋白及其应用
WO2024149989A1 (en) Phage vector
US20240318173A1 (en) Sense,suppressor transfer rna compositions and related uses and functions
Akki et al. A Review Article on Gene Therapy
Meng et al. Melittin analog p5RHH enhances recombinant adeno-associated virus transduction efficiency
US20160237141A1 (en) Methods of treating alzheimer's disease with apo a-1 milano
Papanikolaou et al. Gene Therapy for the Heart

Legal Events

Date Code Title Description
A529 Written submission of copy of amendment under article 34 pct

Free format text: JAPANESE INTERMEDIATE CODE: A529

Effective date: 20180529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190909

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190909

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20191128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20191128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200908

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20211102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220428

R150 Certificate of patent or registration of utility model

Ref document number: 7068166

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150