TW202217003A - 經改造之肌肉靶向組合物 - Google Patents

經改造之肌肉靶向組合物 Download PDF

Info

Publication number
TW202217003A
TW202217003A TW110126971A TW110126971A TW202217003A TW 202217003 A TW202217003 A TW 202217003A TW 110126971 A TW110126971 A TW 110126971A TW 110126971 A TW110126971 A TW 110126971A TW 202217003 A TW202217003 A TW 202217003A
Authority
TW
Taiwan
Prior art keywords
aav
polypeptide
capsid
disease
engineered
Prior art date
Application number
TW110126971A
Other languages
English (en)
Inventor
帕迪斯 薩貝蒂
穆罕默德沙里夫 塔伯德巴爾
西蒙 葉
Original Assignee
美商博得學院股份有限公司
哈佛大學校董委員會
麻省理工學院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商博得學院股份有限公司, 哈佛大學校董委員會, 麻省理工學院 filed Critical 美商博得學院股份有限公司
Publication of TW202217003A publication Critical patent/TW202217003A/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/549Sugars, nucleosides, nucleotides or nucleic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/0008Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/0008Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition
    • A61K48/0016Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition wherein the nucleic acid is delivered as a 'naked' nucleic acid, i.e. not combined with an entity such as a cationic lipid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/0008Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition
    • A61K48/0025Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition wherein the non-active part clearly interacts with the delivered nucleic acid
    • A61K48/0041Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition wherein the non-active part clearly interacts with the delivered nucleic acid the non-active part being polymeric
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1058Directional evolution of libraries, e.g. evolution of libraries is achieved by mutagenesis and screening or selection of mixed population of organisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/02Libraries contained in or displayed by microorganisms, e.g. bacteria or animal cells; Libraries contained in or displayed by vectors, e.g. plasmids; Libraries containing only microorganisms or vectors
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/04Libraries containing only organic compounds
    • C40B40/06Libraries containing nucleotides or polynucleotides, or derivatives thereof
    • C40B40/08Libraries containing RNA or DNA which encodes proteins, e.g. gene libraries
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14122New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14141Use of virus, viral particle or viral elements as a vector
    • C12N2750/14143Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/40Systems of functionally co-operating vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2830/00Vector systems having a special element relevant for transcription
    • C12N2830/008Vector systems having a special element relevant for transcription cell type or tissue specific enhancer/promoter combination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2830/00Vector systems having a special element relevant for transcription
    • C12N2830/42Vector systems having a special element relevant for transcription being an intron or intervening sequence for splicing and/or stability of RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2830/00Vector systems having a special element relevant for transcription
    • C12N2830/50Vector systems having a special element relevant for transcription regulating RNA stability, not being an intron, e.g. poly A signal

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biophysics (AREA)
  • Epidemiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • Virology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Neurology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Ecology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本文闡述肌肉特異性靶向部分及包括肌肉特異性靶向基元之組合物。本文亦闡述該等肌肉特異性靶向基元及包括該等肌肉特異性靶向部分之組合物之用途。在一些實施例中,該等肌肉特異性靶向部分及包括該等肌肉特異性靶向部分之組合物可用於將負荷之遞送引導至肌肉細胞。

Description

經改造之肌肉靶向組合物 相關申請案之交叉參考
本申請案主張於2020年7月22日提出申請之標題為「EngineeredMuscle Targeting Compositions」之美國臨時專利申請案第63/055,265號、於2020年10月29日提出申請之標題為「Engineered Muscle Targeting Compositions」之美國臨時專利申請案第63/107,394號及於2021年5月2日提出申請之標題為「Engineered Muscle Targeting Compositions」之美國臨時專利申請案第63/183,038號的優先權益,該等美國臨時專利申請案之內容之全文皆以引用方式併入本文中。
序列表
本申請案含有作為ASCII.txt文檔以電子格式存檔之序列表,其命名為BROD-5215WP_ST25.txt,創建於2021年7月13日且大小為186,097個位元組(在磁碟上為188KB)。序列表之內容之全文併入本文中。
本文所揭示之標的物概言之係關於肌肉靶向組合物,包括重組腺相關病毒(AAV)載體及其系統、組合物及其用途。
重組AAV(rAAV)係最常用於基因療法及基因編輯之遞送媒劑。然而,含有天然衣殼變異體之rAAV具有有限的細胞向性。實際上,目前使用之rAAV在全身性遞送後主要感染肝臟。另外,在其他細胞類型、組織及器官中,具有天然衣殼變異體之該等習用rAAV對習用rAAV之轉導效率係有限的。因此,侵襲除肝臟以外之細胞、組織及器官(例如神經系統、骨骼肌及心肌)之疾病之AAV介導之多核苷酸遞送通常需要注射大劑量之病毒(通常為約1×1014vg/kg),此通常引起肝臟毒性。另外,由於在使用習用rAAV時需要大劑量,故製造向成年患者給藥所需之足量治療性rAAV極具挑戰。另外,由於基因表現及生理學之差異,小鼠及靈長類動物模型對病毒衣殼之反應不同。不同病毒粒子之轉導效率在不同物種之間有所變化,且因此,小鼠中之臨床前研究通常不會準確地反映靈長類動物(包括人類)中之結果。因此,業內需要改良之rAAV用於治療多種遺傳病。
在某些實例實施例中,本文闡述組合物,其包含:可有效地靶向肌肉細胞之靶向部分,其中靶向部分包含一或多個n聚體基元,其中該一或多個n聚體基元之至少一個n聚體基元包含XmRGDXn或由其組成,其中Xm及Xn各自獨立地選自任一胺基酸,其中n係1、2、3、4、5、6、7、8或9,且其中m係1-4;及視情況地負荷,其中負荷偶聯至或以其他方式與靶向部分締合。
在某些實例實施例中,該至少一個n聚體基元係如表2表3圖14中之任一者或其任一組合。
在某些實例實施例中,靶向部分包含多肽、多核苷酸、脂質、聚合物、糖或其組合。
在某些實例實施例中,靶向部分包含病毒蛋白。
在某些實例實施例中,病毒蛋白係衣殼蛋白。
在某些實例實施例中,病毒蛋白係腺相關病毒(AAV)蛋白。
在某些實例實施例中,n聚體基元位於病毒蛋白之兩個胺基酸之間,使得n聚體基元在病毒衣殼外部。
在某些實例實施例中,n聚體基元插入AAV9衣殼多肽中之胺基酸262-269、327-332、382-386、452-460、488-505、527-539、545-558、581-593、704-714或其任一組合之間的任兩個連續胺基酸之間,或AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAV rh.74或AAV rh.10衣殼多肽中之類似位置。
在某些實例實施例中,n聚體基元插入AAV9衣殼多肽中之胺基酸588與589之間或AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAV rh.74或AAV rh.10衣殼多肽中之類似位置。
在某些實例實施例中,組合物係經改造之病毒粒子。
在某些實例實施例中,經改造之病毒粒子係經改造之AAV病毒粒子。
在某些實例實施例中,AAV病毒粒子係經改造之AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAV9、AAV rh.74或AAV rh.10病毒粒子。
在某些實例實施例中,n聚體基元係3-15個胺基酸。
在某些實例實施例中,視情況存在之負荷能夠治療或預防肌肉疾病或病症。
在某些實例實施例中,肌肉疾病或病症係
(a)自體免疫疾病;
(b)癌症;
(c)肌營養不良;
(d)神經肌肉疾病;
(e)糖或肝糖儲積病;
(f)擴展重複疾病;
(g)顯性負性疾病;
(h)心肌病;
(i)病毒性疾病;
(j)類早衰症;或
(k)其任一組合。
在某些實例實施例中,負荷係N-嗎啉基、肽連接之N-嗎啉基、反義寡核苷酸、PMO、治療性轉基因、編碼治療性多肽或肽之多核苷酸、PPMO、一或多種肽、編碼CRISPR-Cas蛋白之一或多種多核苷酸、引導RNA或二者、核糖核蛋白,其中核糖核蛋白包含CRISPR-Cas系統分子、治療性轉基因RNA、或其他基因修飾或治療性RNA及/或蛋白質、或其任一組合。
在某些實例實施例中,負荷能夠誘導基因中之外顯子跳躍。
在某些實例實施例中,負荷能夠誘導肌營養不良蛋白基因中之外顯子跳躍。
在某些實例實施例中,負荷係微小或微肌營養不良蛋白基因。
在某些實例實施例中,微小或微肌營養不良蛋白基因包含血影蛋白樣重複1、2、3及24以及視情況地nNOS結構域。
在某些實例實施例中,擴展重複疾病係亨丁頓氏症(Huntington’s disease)、肌強直性營養不良或面肩胛臂型肌營養不良(FSHD)。
在某些實例實施例中,肌營養不良係杜興氏肌營養不良(Duchene muscular dystrophy)、貝克氏肌營養不良(Becker Muscular dystrophy)、肢帶型肌營 養不良、埃德二氏肌營養不良(Emery Dreifuss muscular dystrophy)、肌強直性營養不良或FSHD。
在某些實例實施例中,肌強直性營養不良為1型或2型。
在某些實例實施例中,心肌病係擴張性心肌病、肥厚性心肌病、DMD相關之心肌病或達農病(Dannon disease)。
在某些實例實施例中,糖或肝糖儲積病係III型MPS疾病或龐貝氏病(Pompe disease)。
在某些實例實施例中,III型MPS疾病係IIIA型、IIIB型、IIIC型或IIID型MPS。
在某些實例實施例中,神經肌肉疾病係夏馬杜三氏病(Charcot-Marie-Tooth disease)或弗氏共濟失調(Friedreich’s Ataxia)。
在某些實例實施例中,組合物具有增加之肌肉細胞功效、肌肉細胞特異性、降低之免疫原性或其任一組合。
在某些實例實施例中,本文闡述載體系統,其包含:載體,其包含:一或多種多核苷酸,其各自編碼可有效地靶向肌肉細胞之一或多個靶向部分之全部或一部分,其中每一靶向部分包含一或多個n聚體基元,其中該一或多個n聚體基元之至少一個n聚體基元包含XmRGDXn或由其組成,其中Xm及Xn各自獨立地選自任一胺基酸,其中n係1、2、3、4、5、6、7、8或9,且其中m係1-4,且其中一或多種多核苷酸中之至少一者至少編碼至少一個n聚體基元;及視情況地,調控元件,其可操作偶聯至一或多種多核苷酸。
在某些實例實施例中,至少一個n聚體基元係如表2表3圖14F或其任一組合中之任一者。
在某些實例實施例中,載體系統進一步包含負荷。
在某些實例實施例中,負荷係負荷多核苷酸且視情況地偶聯至編碼靶向部分之一或多個多核苷酸中之一或多者。
在某些實例實施例中,負荷多核苷酸存在於與編碼靶向部分之一或多個多核苷酸相同之載體或不同之載體上。
在某些實例實施例中,載體系統能夠產生當存在時含有負荷之病毒粒子。
在某些實例實施例中,載體系統能夠產生包含一或多個靶向部分之衣殼多肽。
在某些實例實施例中,載體系統能夠產生AAV病毒粒子。
在某些實例實施例中,AAV病毒粒子係經改造之AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAV9、AAV rh.74或AAV rh.10病毒粒子。
在某些實例實施例中,衣殼多肽係經改造之AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAV9、AAV rh.74、AAV rh.10衣殼多肽。
在載體系統之某些實例實施例中,編碼一個n聚體基元之一或多種多核苷酸插入對應於病毒蛋白之兩個胺基酸之兩個密碼子之間,使得n聚體基元在病毒衣殼外部。
在某些實例實施例中,編碼一或多個n聚體基元之一或多種多核苷酸插入兩個密碼子之間,該兩個密碼子對應於AAV9衣殼多肽中之胺基酸262-269、327-332、382-386、452-460、488-505、527-539、545-558、581-593、704-714或其任一組合之間的任兩個連續胺基酸,或插入AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAV rh.74、AAV rh.10衣殼多肽中之類似位置。
在某些實例實施例中,編碼一或多個n聚體基元之一或多種多核苷酸插入對應於AAV9衣殼多核苷酸中之胺基酸588及589之密碼子之間,或AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAV rh.74、AAV rh.10衣殼多肽中之類似位置。
在某些實例實施例中,包含各自編碼一或多個靶向部分之全部或一部分之一或多種多核苷酸的載體不包含剪接調控元件。
在某些實例實施例中,載體系統進一步包含編碼病毒rep蛋白之多核苷酸。
在某些實例實施例中,編碼病毒rep蛋白之多核苷酸係編碼AAV rep蛋白之多核苷酸。
在某些實例實施例中,編碼病毒rep蛋白之多核苷酸處於與各自編碼一或多個靶向部分之全部或一部分之一或多種多核苷酸相同之載體或不同之載體上。
在某些實例實施例中,病毒rep蛋白可操作偶聯至調控元件。
在某些實例實施例中,本文闡述多核苷酸,其係由如前述任一段落或如本文別處所述之載體系統編碼及/或產生。
在某些實例實施例中,多肽係病毒多肽。
在某些實例實施例中,病毒多肽係AAV多肽。
在某些實例實施例中,本文闡述粒子,其係由載體系統產生及/或包括如前述任一段落中所述或如本文別處所述之多肽。
在某些實例實施例中,粒子係病毒粒子。
在某些實例實施例中,病毒粒子係腺相關病毒(AAV)粒子、慢病毒粒子或反轉錄病毒粒子。
在某些實例實施例中,病毒粒子具有肌肉特異性向性。
在某些實例實施例中,負荷能夠治療或預防肌肉疾病或病症。
在某些實例實施例中,肌肉疾病或病症係
a.自體免疫疾病;
b.癌症;
c.肌營養不良;
d.神經肌肉疾病;
e.糖或肝糖儲積病;
f.擴展重複疾病;
g.顯性負性疾病;
h.心肌病;
i.病毒性疾病;
j.類早衰症;或
k.其任一組合。
在某些實例實施例中,負荷係N-嗎啉基、肽連接之N-嗎啉基、反義寡核苷酸、PMO、治療性轉基因、編碼治療性多肽或肽之多核苷酸、PPMO、一或多種肽、編碼CRISPR-Cas蛋白之一或多種多核苷酸、引導RNA或二者、核糖核蛋白,其中核糖核蛋白包含CRISPR-Cas系統分子、治療性轉基因RNA、或其他基因修飾或治療性RNA及/或蛋白質、或其任一組合。
在某些實例實施例中,負荷能夠誘導基因中之外顯子跳躍。
在某些實例實施例中,負荷能夠誘導肌營養不良蛋白基因中之外顯子跳躍。
在某些實例實施例中,負荷係微小或微肌營養不良蛋白基因。
在某些實例實施例中,微小或微肌營養不良蛋白基因包含血影蛋白樣重複1、2、3及24以及視情況地nNOS結構域。
在某些實例實施例中,擴展重複疾病係亨丁頓氏症、肌強直性營養不良或面肩胛臂型肌營養不良(FSHD)。
在某些實例實施例中,肌營養不良係杜興氏肌營養不良、貝克氏肌營養不良、肢帶型肌營養不良、埃德二氏肌營養不良、肌強直性營養不良或FSHD。
在某些實例實施例中,肌強直性營養不良為1型或2型。
在某些實例實施例中,心肌病係擴張性心肌病、肥厚性心肌病、DMD相關之心肌病或達農病。
在某些實例實施例中,糖或肝糖儲積病係III型MPS疾病或龐貝氏病。
在某些實例實施例中,III型MPS疾病係IIIA型、IIIB型、IIIC型或IIID型MPS。
在某些實例實施例中,神經肌肉疾病係夏馬杜三氏病或弗氏共濟失調。
在某些實例實施例中,多肽、粒子或二者具有增加之肌肉細胞功效、肌肉細胞特異性、降低之免疫原性或其任一組合。
在某些實例實施例中,本文闡述細胞,其包含:
a.如前述任一段落或本文別處所述之組合物;
b.如前述任一段落或本文別處所述之載體系統;
c.如前述任一段落或本文別處所述之多肽;
d.如前述任一段落或本文別處所述之粒子;或
e.其組合。
在某些實例實施例中,細胞為原核細胞。
在某些實例實施例中,細胞為真核細胞。
在某些實例實施例中,本文闡述醫藥調配物,其包含:
a.如前述任一段落或本文別處所述之組合物;
b.如前述任一段落或本文別處所述之載體系統;
c.如前述任一段落或本文別處所述之多肽;
d.如前述任一段落或本文別處所述之粒子;
e.如前述任一段落或本文別處所述之細胞;或
f.其組合;及
醫藥學上可接受之載劑。
在某些實例實施例中,本文闡述方法,其包括:
向有需要之個體投與
a.如前述任一段落或本文別處所述之組合物;
b.如前述任一段落或本文別處所述之載體系統;
c.如前述任一段落或本文別處所述之多肽;
d.如前述任一段落或本文別處所述之粒子;
e.如前述任一段落或本文別處所述之細胞;
f.如前述任一段落或本文別處所述之醫藥調配物;或
g.其組合。
在某些實例實施例中,個體患有肌肉疾病或病症。
在某些實例實施例中,肌肉疾病或病症係
a.自體免疫疾病;
b.癌症;
c.肌營養不良;
d.神經肌肉疾病;
e.糖或肝糖儲積病;
f.擴展重複疾病;
g.顯性負性疾病;
h.心肌病;
i.病毒性疾病;
j.類早衰症;或
k.其任一組合。
在某些實例實施例中,擴展重複疾病係亨丁頓氏症、肌強直性營養不良或面肩胛臂型肌營養不良(FSHD)。
在某些實例實施例中,肌營養不良係杜興氏肌營養不良、貝克氏肌營養不良、肢帶型肌營養不良、埃德二氏肌營養不良、肌強直性營養不良或FSHD。
在某些實例實施例中,肌強直性營養不良為1型或2型。
在某些實例實施例中,心肌病係擴張性心肌病、肥厚性心肌病、DMD相關之心肌病或達農病。
在某些實例實施例中,糖或肝糖儲積病係III型MPS疾病或龐貝氏病。
在某些實例實施例中,III型MPS疾病係IIIA型、IIIB型、IIIC型或IIID型MPS。
在某些實例實施例中,神經肌肉疾病係夏馬杜三氏病或弗氏共濟失調。
在某些實例實施例中,組合物對非肌肉細胞具有減少或消除的靶向或特異性。在某些實例實施例中,非肌肉細胞係肝細胞。
熟習此項技術者在考慮所說明實例實施例之以下詳細描述後將明瞭實例實施例之該等及其他實施例、目標、特徵及優點。
藉由參考闡釋說明性實施例之以下詳細描述及圖式將獲得本發明特徵及優點之理解,在以下詳細描述中可利用本發明之原理,在圖式中:
圖1-腺相關病毒(AAV)轉導機制,其可自轉基因產生mRNA。
圖2-AAV變異體之基於mRNA之選擇可比基於DNA之選擇更嚴格。病毒文庫係在CMV啟動子控制下表現。
圖3A及圖3B-在肝臟中病毒文庫與載體基因體DNA(圖3A)及mRNA(圖3B)之間的關聯。
圖4A至圖4F-在不同組織中鑑別之在DNA層級上存在且mRNA層級上表現之衣殼變異體。對於此實驗,病毒文庫係在CMV啟動子控制下表現。
圖5A至圖5C-在細胞類型特異性啟動子(如x軸上所注明)控制下不同組織中之衣殼mRNA表現。納入CMV作為例示性組成型啟動子。CK8係肌肉特異性啟動子。MHCK7係肌肉特異性啟動子。hSyn係神經元特異性啟動子。細胞類型特異性啟動子之表現水準已基於每一組織中組成型CMV啟動子之表現水準正規化。
圖6-展示產生及選擇用於組織特異性基因跨物種遞送之衣殼變異體之方法的實施例之示意圖。
圖7-展示產生AAV衣殼變異體文庫、具體而言將隨機n聚體(n=3-15個胺基酸)插入野生型AAV(例如AAV9)中之實施例的示意圖。
圖8-展示產生AAV衣殼變異體文庫、具體而言產生變異體AAV粒子之實施例之示意圖。每一衣殼變異體囊封其自身編碼序列作為載體基因體。
圖9-可用於AAV載體系統中產生AAV衣殼變異體文庫之代表性AAV衣殼質體文庫載體(參見例如圖8)之例示性載體圖。
圖10-由含有不同組成型及細胞類型特異性哺乳動物啟動子之構築物產生之病毒效價(計算為AAV9載體基因體/15cm培養皿)。
圖11-經進一步最佳化之myoAAV衣殼變異體(在本文中亦稱為增強的MyoAAV衣殼變異體)之選擇的示意圖。
圖12-與第一代MyoAAV相比,增強的MyoAAV(eMyoAAV)衣殼變異體在全身性遞送後可更有效地轉導小鼠肌肉。
圖13-第一代及第二代myoAAV衣殼變異體依賴於aVb6整合素異二聚體來轉導人類原代肌管(SEQ ID NO:2-12)。
圖14A至圖14F-DELIVER鑑別出含有RGD基元之一類肌肉向性AAV衣殼變異體。圖14A)使用DELIVER(SEQ ID NO:13)之病毒文庫產生及衣殼變異體選擇之示意圖。圖14B)使用含ITR之構築物產生之rAAV效價之比較,該等含ITR之構築物在CMV、CK8或MHCK7啟動子控制下表現AAV9衣殼編碼序列。數據呈現為平均值±SD(n=4)。P值係藉由使用圖基多重比較測試(Tukey’s multiple comparisons test,MCT)之單因子方差分析(ANOVA)來計算。圖14C及圖14D)在小鼠骨骼肌(圖14C)及心臟(圖14D)中在全身性注射後在CMV、CK8或MHCK7啟動子控制下表現之AAV9衣殼文庫mRNA之活體內表現。數據呈現為平均值±SD(n=3)。藉由使用圖基MCT之單因子ANOVA來計算P值。*:P<0.05,**:P<0.01。圖14E)顯示在不同小鼠骨骼肌中在DNA及mRNA層級上在MHCK7啟動子控制下表現之衣殼變異體相對於病毒文庫之富集的圖。圖14F)在第二輪基於轉錄物之選擇後在小鼠肌肉中最高表現之衣殼變異體中之7聚體插入序列。每組中具有相同色彩之變異體係由同義DNA密碼子(SEQ ID NO:8-12、14-18)編碼。亦參見圖21A至圖21I。
圖15A至圖15D-MyoAAV在全身性注射後以高效率轉導小鼠骨骼肌。圖15A及圖15B)全身性注射有1E+12vg之AAV9-CMV-EGFP或MyoAAV 1A-CMV-EGFP之C57BL/6J小鼠之骨骼肌、心臟及肝臟的整體螢光影像(圖15A)及橫截面影像(圖15B)。綠色:EGFP,紅色:肌肉之層黏蛋白、肝臟之凝集素,藍色:Hoechst。橫截面之比例尺:100μm。圖15C)經注射雄性及雌性C57BL/6J小鼠之多個組織中EGFP mRNA表現之倍數差異之量化。紅色虛線指示AAV9-CMV-EGFP之相對表現。數據呈現為平均值±SD(n=3-4);*:P<0.05,**:P<0.01(每組之AAV9注射之小鼠與MyoAAV 1A注射之小鼠之間的司徒頓t測試(Student t test))。圖15D)經媒劑、AAV9-CK8-Nluc或MyoAAV 1A-CK8-Nluc轉導之小鼠(左)及人類(右)原代肌管中之活體外轉導的量化。數據呈現為平均值±SD(n=5);**:P<0.01(司徒頓t測試)。供體1:29歲男性,供體2:19歲女性,供體3:20歲男性,供體4:34歲女性。亦參見圖22A至圖22K及圖29A至圖29O。
圖16A至圖16D-全身性注射MyoAAV在全身肌肉中產生快速且持續高水準之報導轉基因表現。圖16A)在120天內獲取之全身性注射有4E+11vg之AAV8-CMV-Fluc、AAV9-CMV-Fluc或MyoAAV 1A-CMV-Fluc之BALB/cJ小鼠之全身活體內生物發光影像。圖16B)在120天內評價之注射有AAV8-CMV-Fluc、AAV9-CMV-Fluc或MyoAAV 1A-CMV-Fluc之動物之前肢及後肢的總發光之量化。藉由使用圖基MCT之二因子ANOVA來計算AAV8組、AAV9組及MyoAAV 1A組之間之P值;數據呈現為平均值±SD(n=5)。**:對於MyoAAV 1A對AAV8及MyoAAV 1A對AAV9二者,P<0.01。在任一時間點,AAV8組與AAV9組之間之差異在統計學上並不顯著。圖16C)在注射後4個月收穫之注射有4E+11vg之AAV8-CMV-Fluc、AAV9-CMV-Fluc或MyoAAV-CMV-Fluc之小鼠之TA、三頭肌、腓腸肌、四頭肌及腹肌的全器官發光影像。色標:1E+7- 1E+8。圖16D)在注射後120天收穫之注射有AAV8-CMV-Fluc、AAV9-CMV-Fluc或MyoAAV-CMV-Fluc之動物之不同肌肉的總發光之量化。數據呈現為平均值±SEM(n=5)。*:P<0.01(MyoAAV組與AAV9組之間之曼恩-惠尼測試(Mann-Whitney test))。亦參見圖22A至圖22K、圖23A及圖23B及圖29A至圖29O。
圖17A至圖17O-全身性投與MyoAAV-Dmd CRISPR及MyoAAV-人類MTM1分別在小鼠DMD及XLMTM模型中產生治療益處。圖17A)注射有AAV9-或MyoAAV 1A-Dmd CRISPR之mdx肌肉中之肌營養不良蛋白(紅色)之代表性免疫螢光影像。比例尺:400μm。圖17B)偵測注射有AAV9-或MyoAAV 1A-Dmd CRISPR之小鼠肌肉中之肌營養不良蛋白及GAPDH之西方墨點法,其中相對信號強度係藉由底部之密度測定來確定。A.U.:正規化至GAPDH之任意單位。圖17C)注射有AAV9-或MyoAAV 1A-Dmd CRISPR之成年mdx小鼠之不同肌肉中外顯子23缺失之mRNA的基於Taqman之量化。數據呈現為平均值±SD(n=9-10);**:P<0.01(司徒頓t測試)。圖17D及圖17E)注射有媒劑之野生型C57BL/6J小鼠(n=11)及注射有媒劑(n=15)、AAV9-Dmd CRISPR(n=15)或MyoAAV 1A-Dmd CRISPR(n=17)之mdx小鼠的脛骨前肌比力(圖17D)及在6次離心收縮後力之減小(圖17E)。**:P<0.01(使用圖基MCT之ANOVA)。F)研究全身性遞送至4週齡Mtm1基因剔除(KO)小鼠之2E+12vg/kg之AAV9-或MyoAAV 1A-MHCK7-人類MTM1(h MTM1)之效力之實驗的示意圖。圖17G)注射有媒劑或2E+12vg/kg之AAV9-或MyoAAV 1A-MHCK7-h MTM1Mtm1KO小鼠及注射有媒劑之野生型同胞仔對照的總體重。數據呈現為平均值±SD(對於KO AAV9 n=6,對於KO MyoAAV 1A n=6,對於野生型媒劑n=3,對於KO媒劑n=3)。計算MyoAAV 1A組與AAV9組之間之P值;**:P<0.01(使用霍爾姆-西達克(Holm-Sidak)MCT之多重t測試)。圖17H)在注射病毒後16週, 注射有2E+12vg/kg之MyoAAV 1A-h MTM1或AAV9-hMTM1Mtm1 KO小鼠之圖片。圖17K)注射有媒劑、AAV9-h MTM1或MyoAAV-hMTM1Mtm1KO動物以及注射有媒劑之野生型同胞仔的存活率曲線。注射有媒劑之Mtm1 KO小鼠之數據點來自先前實驗。圖17I)藉由注射有媒劑之野生型小鼠或注射有媒劑、AAV9-h MTM1或MyoAAV 1A-hMTM1(皆為2E+12vg/kg)之Mtm1 KO小鼠的籠中轉輪旋轉評價之平均每小時被動活動。數據呈現為在三週時間段內平均化之每週量測的平均值±SD(對於KO AAV9 n=6,對於KO MyoAAV 1A n=6,對於野生型媒劑n=3,對於KO媒劑n=3)。計算MyoAAV 1A組與AAV9組之間之P值;**:P<0.01(使用霍爾姆-西達克MCT之多重t測試)。圖17J)在活動監測器中注射有媒劑之野生型小鼠或注射有AAV9-h MTM1或MyoAAV-hMTM1(皆為2E+12vg/kg)之Mtm1 KO小鼠在5分鐘內的站立事件數。數據呈現為在三週時間段內平均化之每週量測之平均值±SEM(對於KO AAV9 n=5,對於KO MyoAAV n=6,對於野生型媒劑n=3)。計算MyoAAV組與AAV9組之間之P值;*:P<0.05,**:P<0.01(兩階段本雅明、柯瑞格及耶庫蒂測試(two-stage Benjamini,Krieger,& Yekutieli test))。圖17K)注射有媒劑、AAV9-h MTM1或MyoAAV 1A-hMTM1Mtm1KO動物以及注射有媒劑之野生型同胞仔的存活率曲線。(對於KO AAV9 n=6,對於KO MyoAAV 1A n=6,對於野生型媒劑n=3,對於KO媒劑n=4)。注射有媒劑之Mtm1 KO小鼠之數據點來自先前實驗。計算MyoAAV 1A組與AAV9組之間之P值;**:P<0.01(曼特爾-考克斯測試(Mantel-Cox test))。圖17L)在注射後4週分析之注射有AAV9-或MyoAAV 1A-h MTM1Mtm1 KO小鼠之腓腸肌、四頭肌、心臟及肝臟中hMTM1 mRNA表現之倍數差異的量化。紅色虛線指示AAV9-hMTM1之相對表現。數據呈現為平均值±SD(n=4);*:P<0.05,**:P<0.01(每一組織之AAV9注射組與MyoAAV 1A注射組之間的司徒頓t測試)。圖17M)在注射後4週分析之注射有AAV9-或MyoAAV 1A-h MTM1Mtm1 KO小鼠之各個組織中載體基因體/二倍體基因體之量化。數據呈現為平均值±SD(n=4)。*:P<0.05,**:P<0.01(司徒頓t測試)。圖17N)偵測注射有媒劑、AAV9-或MyoAAV 1A-h MTM1Mtm1KO小鼠肌肉中之hMTM1及GAPDH之西方墨點法,其中相對信號強度係藉由底部之密度測定來確定。A.U.:正規化至GAPDH之任意單位。圖17O)注射有媒劑之野生型C57BL/6J小鼠(n=4)及注射有媒劑(n=2)、AAV9-h MTM1(n=4)或MyoAAV 1A-hMTM1(n=4)之Mtm1 KO小鼠的伸趾長肌(EDL)肌肉比力。**:P<0.01(使用圖基MCT之ANOVA)。亦參見圖24A至圖24G。
圖18A至圖18L-MyoAAV轉導依賴於整合素異二聚體及AAVR二者。圖18A-圖18B)用編碼結合RGD之整合素異二聚體之質體或用pUC19轉染且用AAV9-CMV-Nluc或MyoAAV-CMV-Nluc轉導之HEK293細胞中之活體外轉導(圖18A)及結合至細胞表面之病毒(圖18B)的量化。數據呈現為平均值±SEM(n=3)。計算每組中與pUC19轉染之細胞相比之P值。*:P<0.05,**:P<0.01(使用鄧妮特多重比較測試(Dunnett’s multiple comparisons test)之ANOVA)。圖18C用不同濃度之GLPG-0187泛整合素αV拮抗劑處理且用AAV9-CK8-Nluc或MyoAAV-CK8-Nluc轉導之小鼠原代肌管中之活體外轉導效率。數據呈現為平均值±SEM(n=5)。計算每組中與0nM小分子條件相比之P值。**:P<0.01(使用鄧妮特多重比較測試之ANOVA)。圖18D)用不同濃度之GLPG-0187泛整合素αV拮抗劑處理且用AAV9-CK8-Nluc或MyoAAV 1A-CK8-Nluc轉導之人類原代肌管中之活體外轉導效率。數據呈現為平均值±SD(n=5)。計算每組中與0nM小分子條件相比之P值。*:P<0.01(使用鄧妮特MCT之ANOVA)。圖18E及圖18F)用與不同濃度之αVb1、αVb3、αVb6、αVb8或MBP重組蛋白一起培育之MyoAAV 1A-CK8-Nluc(圖18E)或AAV9-CK8-Nluc(圖18F)轉導之人類原代肌管中之活體外轉導效率。數據呈現為平均值±SD(n=5)。*:P<0.01, **:P<0.001(使用鄧妮特MCT之ANOVA,且將0nM重組蛋白設定為每組之對照)。圖18G)用不同濃度之抗αVb6抗體處理且用AAV9-CK8-Nluc或MyoAAV-CK8-Nluc轉導之人類原代肌管中之活體外轉導效率。數據呈現為平均值±SEM(n=5)。計算每組中與0ng/ul抗體條件相比之P值。**:P<0.001(使用鄧妮特多重比較測試之ANOVA)。圖18G及圖18H)用不同濃度之抗αVb6(圖18G)或同型對照(圖18H)抗體處理且用AAV9-CK8-Nluc或MyoAAV 1A-CK8-Nluc轉導之人類原代肌管中之活體外轉導效率。數據呈現為平均值±SD(n=5)。計算每組中與0ng/ul抗體條件相比之P值;*:P<0.01,**:P<0.001(使用鄧妮特MCT之ANOVA)。圖18I及圖18J)用質體編碼結合RGD之整合素異二聚體或用pUC19轉染且用MyoAAV 1A-CMV-Nluc轉導之HEK293細胞中之活體外轉導(圖18I)及結合至細胞表面之病毒(圖18J)的量化。數據呈現為平均值±SD(n=3);*:P<0.01(使用鄧妮特MCT之單因子ANOVA,且將pUC19轉染之細胞設定為對照)。圖18K顯示用不同濃度之CWHM-12泛整合素αV拮抗劑處理且用AAV9-CK8-Nluc或MyoAAV 1A-CK8-Nluc轉導之人類原代肌管中之活體外轉導效率。數據呈現為平均值±SD(n=5)。計算每組中與0nM小分子條件相比之P值。*:P<0.01(使用鄧妮特MCT之ANOVA)。圖18L顯示用不同濃度之同型對照抗體處理且用AAV9-CK8-Nluc或MyoAAV 1A-CK8-Nluc轉導之人類原代肌管中之活體外轉導效率。數據呈現為平均值±SD(n=5)。計算每組中與0ng/ul抗體條件相比之P值;*:P<0.01,**:P<0.001(使用鄧妮特MCT之ANOVA)。亦參見圖25A至圖25K及圖26A至圖26O。
圖19A至圖19M-使用DELIVER之MyoAAV之進一步進化產生更強的肌肉向性衣殼變異體。圖19A)AAV9 VR-VIII表面環之結構及具有胺基酸注解之MyoAAV 1A VR-VIII表面環之所預測結構。圖19B)在以不同劑量注射第二輪病毒文庫(SEQ ID NO:2-7、19-21)後,自小鼠肌肉鑑別之頂部命中之 病毒文庫設計及序列的示意圖。圖19C)藉由藍光照射之全身性注射有2E+11vg之MyoAAV 1A-CMV-EGFP(左)或MyoAAV 2A-CMV-EGFP(右)之C57BL/6J小鼠之不同組織。圖19D)全身性注射有2E+11vg之AAV9-CMV-EGFP、MyoAAV 1A-CMV-EGFP或MyoAAV 2A-CMV-EGFP之小鼠之腓腸肌、三頭肌、TA及四頭肌之整體螢光影像。圖19E)與注射有相同劑量之AAV9-CMV-EGFP之小鼠相比,全身性注射有2E+11vg之MyoAAV 1A-CMV-EGFP或MyoAAV 2A-CMV-EGFP之C57BL/6J小鼠之各個組織中EGFP mRNA表現之倍數差異的量化。紅色虛線指示AAV9-CMV-EGFP之相對表現。數據呈現為平均值±SD(對於MyoAAV 1A及MyoAAV 2A n=11,對於AAV9 n=8)。計算與AAV9組相比之P值。*:P<0.05,**:P<0.01(使用鄧妮特MCT之ANOVA)。圖19F)用AAV9-CK8-Nluc、MyoAAV 1A-CK8-Nluc或MyoAAV 2A-CK8-Nluc轉導之人類原代肌管中之活體外轉導的量化。數據呈現為平均值±SD(n=5)。*:P<0.01(使用圖基MCT之ANOVA)。圖19G)用不同濃度之GLPG-0187整合素αV拮抗劑處理且用AAV9-CK8-Nluc或MyoAAV 2A-CK8-Nluc轉導之人類原代肌管中之活體外轉導效率。數據呈現為平均值±SD(n=5)。計算每組中與0nM小分子條件相比之P值。*:P<0.05,**:P<0.01(使用鄧妮特MCT之ANOVA)。圖19H及圖19I)用與不同濃度之αVb1、αVb3、αVb6、αVb8或MBP重組蛋白一起培育之MyoAAV 2A-CK8-Nluc(圖19H)或AAV9-CK8-Nluc(圖19I)轉導之人類原代肌管中之活體外轉導效率。數據呈現為平均值±SD(n=5)。**:P<0.01,***:P<0.001(使用鄧妮特MCT之單因子ANOVA,每組使用0nM重組蛋白條件作為對照)。圖19J)在21天內獲取之全身性注射有2E+11vg之AAVrh74-CMV-Fluc、AAV9-CMV-Fluc或MyoAAV 2A-CMV-Fluc之BALB/cJ小鼠之全身活體內生物發光影像。色標:6E+6-1E+9。圖19K)在21天內評價之注射有AAVrh74-CMV-Fluc、AAV9-CMV-Fluc或MyoAAV 2A-CMV-Fluc之動物之後肢的總發光之量化。藉 由使用圖基MCT之二因子ANOVA計算AAVrh74組、AAV9組及MyoAAV 2A組之間之P值;**:對於MyoAAV 2A對AAVrh74及MyoAAV 2A對AAV9二者,P<0.01。在任一時間點,AAVrh74組與AAV9組之間之差異在統計學上並不顯著。圖19L)注射有2E+11vg之AAV9-CMV-EGFP、MyoAAV 1A-CMV-EGFP或MyoAAV 2A-CMV-EGFP之C57BL/6J小鼠之各個組織中載體基因體/二倍體基因體之量化。數據呈現為平均值±SD(對於MyoAAV 1A及MyoAAV 2A n=11,對於AAV9 n=8)。計算MyoAAV 2A組與AAV9組之間之P值;*:P<0.05,**:P<0.01(司徒頓t測試)。圖19M)用不同濃度之抗αVb6抗體(左)或10ng/ul同型對照抗體(右)處理且用在CK8啟動子控制下編碼Nluc之AAV9-或含RGD之第一代或第二代衣殼變異體轉導之人類原代肌管中之活體外轉導效率。數據呈現為平均值±SD(n=5)。計算第一代組與第二代組之間的抗αVb6抗體數據之P值。*:P<0.05,**:P<0.01(使用圖基MCT之二因子ANOVA)。計算每組之同型對照與10ng/ul抗αVb6抗體條件之間的同型對照數據之P值;**:P<0.01(司徒頓t測試)。亦參見圖27A及圖27B。
圖20A至圖20F-全身性注射2E+13vg/kg之低劑量之EMyoAAV-CK8-微肌營養不良蛋白在成年DBA/2J-mdx小鼠中產生廣泛的微肌營養不良蛋白表現及有效的肌肉功能恢復。圖20A)注射有2E+13vg/kg AAV9-CK8-微肌營養不良蛋白或MyoAAV 2A-CK8-微肌營養不良蛋白之DBA/2J-mdx小鼠肌肉中微肌營養不良蛋白-FLAG(紅色)之代表性免疫螢光影像。比例尺:400μm。圖20B)偵測注射有2E+13vg/kg AAV9-CK8-微肌營養不良蛋白或MyoAAV 2A-CK8-微肌營養不良蛋白之小鼠肌肉中之微肌營養不良蛋白-FLAG及GAPDH之西方墨點法,其中相對信號強度係藉由底部之密度測定來確定。A.U.:正規化至GAPDH之任意單位。圖20C)與注射有相同劑量之AAV9-CK8-微肌營養不良蛋白之小鼠相比,全身性注射有2E+13vg/kg之MyoAAV 2A-CK8-微肌營養不 良蛋白之DBA/2J-mdx小鼠之各種肌肉及肝臟中微肌營養不良蛋白mRNA表現之倍數差異的量化。紅色虛線指示AAV9-CK8-微肌營養不良蛋白之相對表現。數據呈現為平均值±SD(n=9-10);*:P<0.05,**:P<0.01(司徒頓t測試)。圖20D)注射有2E+13vg/kg之AAV9-CK8-微肌營養不良蛋白或MyoAAV 2A-CK8-微肌營養不良蛋白之DBA/2J-mdx小鼠之各種肌肉及肝臟中載體基因體/二倍體基因體之量化。數據呈現為平均值±SD(n=9-10)。**:P<0.01(司徒頓t測試)。圖20E及圖20F)注射有媒劑之DBA2/J小鼠(n=10)及注射有媒劑(n=10)、AAV9-CK8-微肌營養不良蛋白(n=10)或MyoAAV 2A-CK8-微肌營養不良蛋白(n=10)之DBA/2J-mdx小鼠的肌肉比力(圖20E)及離心收縮後之力減小(圖20F)。*:P<0.05,**:P<0.01,***:P<0.001(使用圖基MCT之ANOVA)。
圖21A至圖21I-DELIVER允許選擇能夠在各個組織中進行功能性轉導之衣殼變異體。圖21A)AAV轉導之不同步驟之示意圖。圖21B至圖21G)顯示在經注射小鼠之腦(圖21B)、腎(圖21C)、肺(圖21D)、骨骼肌(圖21E)、心臟(圖21F)及肝臟(圖21G)中在DNA及mRNA層級上在遍在CMV啟動子下表現之衣殼變異體相對於病毒文庫之富集的圖。與基於DNA之選擇相比,如DELIVER中所用之基於轉錄物之選擇使得能夠更嚴格地鑑別功能性衣殼變異體。藉由用在組織中鑑別出之每一變異體之每百萬讀段(RPM)除以病毒文庫中相同變異體之RPM來計算相對於病毒文庫之富集。圖21H及圖21I)病毒文庫中每一衣殼變異體之豐度與來自在注射有病毒文庫之小鼠肝臟中鑑別出之該變異體之載體基因體DNA(圖21H)或所表現mRNA(在CMV啟動子控制下,圖21I)的豐度之間之關聯。儘管每一變異體之載體基因體DNA之相對量與病毒文庫中該變異體之豐度相關聯,但基於兩種樣品類型之間之線性回歸,每一變異體之衣殼mRNA表現之水準與病毒文庫中該變異體之數量幾乎無關聯。RPM:每百萬讀段。
圖22A至圖22K-與AAV9相比,MyoAAV產生具有相似效價之重組AAV,且在全身性遞送至成年mdx-Ai9小鼠後,比AAV8及AAV9更有效地轉導肌肉幹細胞。圖22A及圖22B)全身性注射有1E+12vg之AAV9-CMV-EGFP或MyoAAV 1A-CMV-EGFP之C57BL/6J小鼠之三頭肌、腓腸肌及腹肌的整體螢光(圖22A)及橫截面(圖22B)影像。綠色:EGFP,紅色:層黏蛋白,藍色:Hoechst。橫截面之比例尺:100μm。圖22C)全身性注射有1E+12vg之AAV9-CMV-EGFP或MyoAAV 1A-CMV-EGFP之C57BL/6J小鼠之肺、腎、脾及腦的整體螢光影像。圖22D)注射有1E+12vg之AAV9-CMV-EGFP或MyoAAV 1A-CMV-EGFP之C57BL/6J小鼠之各個組織中載體基因體/二倍體基因體的量化。數據呈現為平均值±SD(n=4);*:P<0.05,**:P<0.01(司徒頓t測試)。圖22E)頂部含RGD之衣殼變異體產生之重組AAV效價與野生型AAV9之比較。數據呈現為平均值±SD(n=3)。藉由使用鄧妮特MCT之ANOVA、使用AAV9作為對照來計算P值。圖22F)衛星細胞轉導分析實驗之示意圖。將Cre重組酶遞送至含有Ai9基因座之細胞可自基因體移除STOP盒且表現tdTomato。圖22G)在全身性注射4E+11vg之AAV8-CMV-Cre、AAV9-CMV-Cre或MyoAAV 1A-CMV-Cre後2週,自6月齡mdx-Ai9小鼠分離之tdTomato+轉導之肌肉幹細胞%。數據呈現為平均值±SD(n=4);**:P<0.01(使用圖基MCT之單因子ANOVA)。圖22H)自經注射mdx-Ai9小鼠分離之肌肉幹細胞之代表性FACS繪圖。圖22I)自全身性注射有AAV8-CMV-Cre、AAV9-CMV-Cre或MyoAAV 1A-CMV-Cre之mdx-Ai9小鼠分離之FACS分選之肌肉幹細胞分化之肌管的代表性免疫螢光影像。綠色,肌凝蛋白重鏈(MHC);紅色,tdTomato;藍色,Hoechst。比例尺:400μm。圖22J)偵測注射有媒劑或1E+12vg之AAV9-CMV-EGFP或MyoAAV 1A-CMV-EGFP之小鼠肌肉中之EGFP及黏著斑蛋白的西方墨點法。圖22K)自肌肉中之單核細胞分離骨骼肌前體之設門策略。
圖23A及圖23B-全身性投與MyoAAV在BALB/cJ小鼠肌肉中產生長期高水準之轉基因表現。圖23A)在120天內注射有4E+11vg之AAV8-CMV-Fluc、AAV9-CMV-Fluc或MyoAAV-CMV-Fluc之BALB/cJ小鼠之全身活體內生物發光影像。此影像顯示來自圖16A中所顯示相同小鼠之發光信號,其具有不同之色標(5E+6-5E+7)以使得能夠偵測注射有AAV8-CMV-Fluc及AAV9-CMV-Fluc之小鼠肌肉中之信號。圖23B)在注射後4個月收穫之注射有4E+11vg之AAV8-CMV-Fluc、AAV9-CMV-Fluc或MyoAAV-CMV-Fluc之小鼠之TA、三頭肌、腓腸肌、四頭肌及腹肌的全器官發光影像。此影像顯示來自圖16C中所顯示相同小鼠之發光信號,其具有不同之色標(5E+5-5E+7)以使得能夠偵測注射有AAV8-CMV-Fluc及AAV9-CMV-Fluc之小鼠肌肉中之信號。
圖24A至圖24G-MyoAAV-Dmd CRISPR全身性投與在全身多種肌肉中產生高於AAV9-Dmd CRISPR之SaCas9及gRNA表現水準。圖24A)用於產生AAV9-及MyoAAV 1A-Dmd CRISPR病毒之AAV構築物之示意圖。圖24B)向mdx小鼠投與AAV-Dmd CRISPR後肌營養不良蛋白恢復之示意圖。向小鼠注射4.5E+12vg之SaCas9及9E+12vg之gRNA AAV。圖24C及圖24D全身性注射有4.5E+12vg之AAV9-CMV-SaCas9或MyoAAV 1A-CMV-SaCas9及9E+12vg之AAV9-gRNA或MyoAAV 1A-gRNA之8週齡mdx小鼠之不同肌肉中SaCas9 mRNA(圖24C)或gRNA(圖24D)表現之倍數差異的量化。紅色虛線指示AAV9-CMV-SaCas9(圖24F)及AAV9-gRNA(圖24F)之相對表現。數據呈現為平均值±SD(n=5-6);*:P<0.05,**:P<0.01,***:P<0.001,****:P<0.0001(司徒頓t測試)。圖24E)用於產生AAV9-MHCK7及MyoAAV 1A-MHCK7人類MTM1病毒之AAV構築物之示意圖。圖24F)用於產生AAV9-MHCK7及MyoAAV 1A-MHCK7人類MTM1病毒之AAV構築物之示意圖。圖24G)注射有媒劑之野生型小鼠或注射有媒劑、AAV9-h MTM1或MyoAAV 1A-hMTM1(皆為 2E+12vg/kg)之Mtm1 KO小鼠在5分鐘內之站立事件數。數據呈現為在三週時間段內平均化之每週量測之平均值±SD(對於KO AAV9 n=6,對於KO MyoAAV 1A n=6,對於野生型媒劑n=3,對於KO媒劑n=4)。注射有媒劑之Mtm1 KO小鼠之數據點來自先前實驗。計算MyoAAV 1A組與AAV9組之間之P值;**:P<0.01(使用霍爾姆-西達克MCT之多重t測試)。
圖25A至圖25K-流式細胞術及西方墨點法確認在HEK293細胞中之質體轉染後整合素α及β蛋白之過表現。圖25A至圖25G)用pUC19或在EF1α啟動子控制下表現整合素αV(圖25A)、β1(圖25B)、α5(圖25C)、β8(圖25D)、β5(圖25E)、β3(圖25F)或β6(圖25G)之質體轉染且用針對過表現蛋白質之抗體染色的HEK293細胞之流式細胞術分析之代表性直方圖。圖25H及圖25I)顯示與用pUC19轉染之細胞(泳道3及4)相比,用相應整合素質體轉染之HEK293細胞(泳道1及2)中整合素α8(圖25H)、αIIb(圖25I)、β3(圖25J)及β8(圖25K)之過表現的西方墨點法。
圖26A至圖26O-整合素αV拮抗劑抑制原代小鼠肌管以及來自不同供體之原代人類肌管中之MyoAAV而非AAV9轉導。圖26A及圖26B)用不同濃度之CWHM-12(圖26A)或GLPG-0187(圖26B及圖26J)整合素αV拮抗劑處理且用AAV9-CK8-Nluc或MyoAAV-CK8-Nluc(MyoAAV 1A-CK8-Nluc)轉導之小鼠原代肌管中之活體外轉導效率。數據呈現為平均值±SEM(n=5)。*:P<0.05,**:P<0.01(使用鄧妮特MCT之ANOVA,每組使用0nM條件作為對照)。。圖26C至圖26H)用不同濃度之CWHM-12(圖26C、圖26E及圖26G)或GLPG-0187(圖26D、圖26F及圖26H)整合素αV拮抗劑處理且用AAV9-CK8-Nluc或MyoAAV 1A-CK8-Nluc轉導之三種不同供體之人類原代肌管中之活體外轉導效率。數據呈現為平均值±SD(n=5)。*:P<0.05,**:P<0.01(使用鄧妮特MCT之ANOVA,每組使用0nM條件作為對照)。圖26I)用編碼結合RGD之整 合素異二聚體之質體或用pUC19轉染、且用AAV9-CMV-Nluc或MyoAAV 1A-CMV-Nluc轉導之HEK293FT細胞、HEK293FT AAVR KO細胞及過表現AAVR之HEK293FT AAVR KO細胞中之活體外轉導的量化。數據呈現為平均值±SD(n=3)。**:P<0.0001(使用對數轉換數據之司徒頓t測試)。圖26J及圖26K)未經處理之HEK293細胞或用NA預處理且用AAV2-CMV-Nluc、AAV9-CMV-Nluc或MyoAAV 1A-CMV-Nluc轉導之細胞之活體外轉導(圖26J)及結合(圖26K)的量化。數據呈現為平均值±SD(n=5);*:P<0.01,**:P<0.0001(使用對數轉換數據之司徒頓t測試)。圖26L)用NA及ECL或單獨NA及AAV2-CMV-Nluc、AAV9-CMV-Nluc或MyoAAV 1A-CMV-Nluc預處理之HEK293細胞之活體外轉導(K)及結合(L)的量化。數據呈現為平均值±SD(n=5);*:P<0.01,**:P<0.0001(使用對數轉換數據之司徒頓t測試)。圖26M)用AAV2-CMV-Nluc、AAV4-CMV-Nluc、AAV9-CMV-Nluc或MyoAAV 1A-CMV-Nluc轉導之HEK293FT與HEK293FT AAVR KO細胞之間之活體外轉導的比較。數據呈現為平均值±SD(n=3)。**:P<0.0001(使用對數轉換數據之司徒頓t測試)。圖26N)用NA及ECL或單獨NA及AAV2-CMV-Nluc、AAV9-CMV-Nluc或MyoAAV 1A-CMV-Nluc預處理之HEK293細胞之活體外結合的量化。數據呈現為平均值±SD(n=5);*:P<0.01,**:P<0.0001(使用對數轉換數據之司徒頓t測試)。圖26O)用AAV2-CMV-Nluc、AAV4-CMV-Nluc、AAV9-CMV-Nluc或MyoAAV 1A-CMV-Nluc轉導之HEK293FT與HEK293FT AAVR KO細胞之間之活體外轉導的比較。數據呈現為平均值±SD(n=3)。**:P<0.0001(使用對數轉換數據之司徒頓t測試)。
圖27A及圖27B-與第一代變異體相比,第二代含RGD之衣殼變異體不太依賴於αVβ6來轉導人類原代肌管。圖27A)注射有2E+11vg之AAV9-CMV-EGFP、MyoAAV-CMV-EGFP或EMyoAAV-CMV-EGFP之C57BL/6J小鼠之各個組織中載體基因體/二倍體基因體的量化。數據呈現為平均值±SEM(對於 MyoAAV及EMyoAAV n=11,對於AAV9 n=8)。*:P<0.05(曼恩-惠尼測試)。圖27B)用不同濃度之抗αVβ6抗體處理且用在CK8啟動子控制下編碼Nluc之AAV9-或第一代或第二代含RGD之衣殼變異體轉導之人類原代肌管中之活體外轉導效率。數據呈現為平均值±SEM(n=5)。左圖展示每一個別變異體之轉導效率。在右圖中,第一代變異體(RGDLTTP(SEQ ID NO:12)、RGDLSTP(SEQ ID NO:8)、RGDLNQY(SEQ ID NO:9)、RGDATEL(SEQ ID NO:10)及RGDTMSK(SEQ ID NO:11))及第二代變異體(GPGRGDQTTL(SEQ ID NO:2)、AEGRGDQYTR(SEQ ID NO:3)、ATGRGDLGQA(SEQ ID NO:4)、AVARGDQGLI(SEQ ID NO:5)、NISRGDQGYQ(SEQ ID NO:6)、APARGDQGSQ(SEQ ID NO:7))之結果繪圖為兩組。*:P<0.01(第一代組與第二代組之間的兩階段本雅明、柯瑞格及耶庫蒂測試)(SEQ ID NO:2-12)。
圖28A至圖28K-在NHP中進化之MyoAAV類衣殼變異體以高效率轉導食蟹獼猴(Cynomolgus Macaque)之不同肌肉。圖28A及圖28B)頂部命中之病毒文庫設計及序列的示意圖,該等頂部命中係在獼猴中自含有隨機7聚體插入之衣殼變異體(圖28A)(SEQ ID NO:13、22-27)進行兩輪活體內選擇後自NHP肌肉鑑別,或自在獼猴中使用自小鼠中之第一輪RGD固定選擇鑑別出之前120,000種變異體(圖28B)(SEQ ID NO:19、28-32)之一輪活體內選擇鑑別。圖28C)在四種不同供體之人類原代肌管中在小鼠中選擇之11種肌肉向性衣殼變異體之間之活體外轉導的比較。數據呈現為具有平均值之個別數據點;**:P<0.01(使用鄧妮特MCT之單因子ANOVA,使用MyoAAV 1A作為對照)。圖28D)條碼化人類Frataxin轉基因及用於表徵NHP中之頂部肌肉向性變異體(SEQ ID NO:28、30、32-33)之衣殼變異體匯集物的示意圖。圖28E)3隻食蟹獼猴之不同骨骼肌、心臟及肝臟中相對於AAVrh74之mRNA表現倍數變化。mRNA表現係藉由與每一衣殼變異體相關之條碼之深度測序來量化。數據呈現為平均值±SD (n=3)。*:P<0.05,**:P<0.01,***:P<0.001,****:P<0.0001(使用鄧妮特MCT之單因子ANOVA,使用AAVrh74作為對照)。圖28F)AAVrh74、MyoAAV 3A、MyoAAV 4A、MyoAAV 4C及MyoAAV 4E以及AAV9效價與6種不同轉基因之比較。數據呈現為平均值±SD(n=6)。*:P<0.05;****:P<0.0001(使用鄧妮特MCT之單因子ANOVA,使用AAVrh74作為對照)。圖28G)用不同濃度之GLPG-0187整合素αV拮抗劑處理且用AAV9-CK8-Nluc、MyoAAV 3A-CK8-Nluc、MyoAAV 4A-CK8-Nluc、MyoAAV 4C-CK8-Nluc或MyoAAV 4E-CK8-Nluc轉導之人類原代肌管中之活體外轉導效率。數據呈現為平均值±SD(n=5)。利用使用鄧妮特MCT之單因子ANOVA來計算P值,且將每組之0nM條件設定為對照。:對於MyoAAV 3A、MyoAAV 4A、MyoAAV 4C及MyoAAV 4E,P<0.0001;:對於MyoAAV 4A及MyoAAV 4E,P<0.0001。圖28H及圖28I)用與不同濃度之αVb1、αVb3、αVb6、αVb8或MBP重組蛋白一起培育之AAV9-CK8-Nluc(圖28H)或MyoAAV 3A-CK8-Nluc、MyoAAV 4A-CK8-Nluc、MyoAAV 4C-CK8-Nluc或MyoAAV 4E-CK8-Nluc(圖28I)轉導之人類原代肌管中之活體外轉導效率。數據呈現為平均值±SD(n=5)。**:P<0.01,***:P<0.001,****:P<0.0001(使用鄧妮特MCT之單因子ANOVA,每組使用0nM重組蛋白條件作為對照)。圖28J)用不同濃度之抗αVb6抗體或小鼠同型對照處理且用AAV9-CK8-Nluc、MyoAAV 3A-CK8-Nluc、MyoAAV 4A-CK8-Nluc、MyoAAV 4C-CK8-Nluc、或MyoAAV 4E-CK8-Nluc轉導之人類原代肌管中之活體外轉導效率。數據呈現為平均值±SD(n=5)。:對於MyoAAV 3A、MyoAAV 4A、MyoAAV 4C及MyoAAV 4E,P<0.0001;:對於MyoAAV 3A、MyoAAV 4A及MyoAAV 4E,P<0.0001(使用鄧妮特MCT之單因子ANOVA,每組使用0nM條件作為對照)。圖28K)用AAV2-CMV-Nluc、AAV4-CMV-Nluc、AAV9-CMV-Nluc、MyoAAV 3A-CMV-Nluc、MyoAAV 4A-CMV-Nluc、MyoAAV 4C-CMV-Nluc或MyoAAV 4E-CMV-Nluc轉 導之HEK293FT與HEK293FT AAVR KO細胞之間之活體外轉導的比較。數據呈現為平均值±SD(n=4)。:P<0.0001(對數轉換數據之司徒頓t測試)。
圖29A至圖29O-MyoAAV 1A在來自DBA/2J及BALB/cJ背景之小鼠中全身性投與後可有效地轉導不同之骨骼肌,且在肌內遞送後之肌肉轉導中高度強效。圖29A至圖29D)藉由藍光照射之全身性注射有1E+12vg之AAV9-CMV-EGFP(底部)或MyoAAV 1A-CMV-EGFP(底部)之雌性DBA/2J(圖29A)、雄性DBA/2J(圖29B)、雌性BALB/cJ(圖29C)及雄性BALB/cJ(圖29D)小鼠之不同組織。圖29E)全身性注射有1E+12vg之AAV9-CMV-EGFP或MyoAAV 1A-CMV-EGFP之雄性及雌性DBA/2J及BALB/cJ小鼠之三頭肌、腓腸肌、心臟及肝臟中EGFP mRNA表現之倍數差異的量化。灰色虛線指示AAV9-CMV-EGFP之相對表現。數據呈現為平均值±SD(n=4-5);**:P<0.01,***:P<0.001(每組之AAV9注射之小鼠與MyoAAV 1A注射之小鼠之間的司徒頓t測試)。圖29F)肌內注射有2E+10vg之AAV9-CMV-EGFP或MyoAAV 1A-CMV-EGFP之C57BL/6J小鼠之TA中EGFP mRNA表現之倍數差異的量化。灰色虛線指示AAV9-CMV-EGFP之相對表現。數據呈現為平均值±SD(n=5);****:P<0.0001(司徒頓t測試)。圖29G)偵測肌內注射有媒劑或2E+10vg之AAV9-CMV-EGFP或MyoAAV 1A-CMV-EGFP之C57BL/6J小鼠之TA肌肉中之EGFP及微管蛋白的西方墨點法。圖29H)肌內注射有媒劑或2E+10vg之AAV9-CMV-EGFP或MyoAAV 1A-CMV-EGFP之C57BL/6J小鼠之TA之免疫螢光影像。灰度:EGFP,紅色:層黏蛋白,藍色:Hoechst。橫截面之比例尺:400μm。圖29I及圖29J)在注射之前以及在全身性注射媒劑或1E+12vg AAV9-CMV-EGFP或MyoAAV 1A-CMV-EGFP後14天及28天,C57BL/6J小鼠血清中ALT(圖29I)及AST(圖29J)酶水準之量化。數據呈現為平均值±SD(n=5)。藉由使用圖基MCT之二因子ANOVA來計算P值。顯著性臨限值:P<0.05。在每一時間點處任兩組 之間之差異並不顯著。圖29K及圖29L)注射有AAV9-CMV-EGFP(圖29K)或MyoAAV 1A-CMV EGFP(圖29L)之小鼠血清對HEK293細胞中之AAV9-CMV-Nluc或MyoAAV 1A-CMV-Nluc轉導之抑制;數據呈現為平均值±SD(n=5);****:P<0.0001(使用希達克MCT(Sidak’s MCT)之二因子ANOVA)。圖29M)在注射後4個月收穫之注射有4E+11vg之AAV8-CMV-Fluc、AAV9-CMV-Fluc或MyoAAV 1A-CMV-Fluc之小鼠之TA、三頭肌、腓腸肌、四頭肌及腹肌的全器官發光影像。灰度:1E+7-1E+8。圖29N)在注射後120天收穫之注射有AAV8-CMV-Fluc、AAV9-CMV-Fluc或MyoAAV 1A-CMV-Fluc之動物之不同肌肉的總發光之量化。數據呈現為平均值±SD(n=5);**:P<0.01,***:P<0.001(使用圖基MCT之單因子ANOVA)。圖29O)在注射後4個月收穫之注射有4E+11vg之AAV8-CMV-Fluc、AAV9-CMV-Fluc或MyoAAV 1A-CMV-Fluc之小鼠之TA、三頭肌、腓腸肌、四頭肌及腹肌的全器官發光影像。此影像顯示來自圖17C中所顯示相同小鼠之發光信號,其具有灰度(5E+5-5E+7),以使得能夠偵測注射有AAV8-CMV-Fluc及AAV9-CMV-Fluc之小鼠肌肉中之信號。
圖30A至圖30C-食蟹獼猴中進化之肌肉向性衣殼變異體之表徵。圖30A及圖30B)在C57BL/6J小鼠(圖30A)或食蟹獼猴(圖30B)之不同組織中相對於AAVrh74之mRNA表現倍數變化。mRNA表現係藉由與每一衣殼變異體相關之條碼之深度測序來量化。數據呈現為平均值±SD(對於小鼠n=5且對於獼猴n=3)。*:P<0.05,**:P<0.01,***:P<0.001,****:P<0.0001(使用鄧妮特MCT之單因子ANOVA,使用AAVrh74作為對照)。圖30C)C57BL/6J小鼠三頭肌、食蟹獼猴三頭肌及人類前斜角肌中(ITGB6)整合素β-6(灰度)及同型對照(灰度)之代表性免疫螢光影像。比例尺:400μm。
本文中之各圖僅用於說明目的且不必按比例繪製。
一般定義
除非另有定義,否則本文所用之技術及科學術語皆具有與熟習本揭示案所屬領域者通常理解之含義相同之含義。分子生物學中之常用術語及技術之定義可參見Molecular Cloning:A Laboratory Manual,第2版(1989)(Sambrook、Fritsch及Maniatis);Molecular Cloning:A Laboratory Manual,第4版(2012)(Green及Sambrook);Current Protocols in Molecular Biology(1987)(F.M.Ausubel等人編輯);theseries Methods in Enzymology(Academic Press,Inc.):PCR 2:A Practical Approach(1995)(M.J.MacPherson、B.D.Hames及G.R.Taylor編輯):Antibodies,A Laboratory Manual(1988)(Harlow及Lane編輯):Antibodies A Laboratory Manual,第2版,2013(E.A.Greenfield編輯);Animal Cell Culture(1987)(R.I.Freshney編輯);Benjamin Lewin,Genes IX,由Jones and Bartlet出版,2008(ISBN 0763752223);Kendrew等人(編輯),The Encyclopedia of Molecular Biology,由Blackwell Science Ltd.出版,1994(ISBN 0632021829);Robert A.Meyers(編輯),Molecular Biology and Biotechnology:a Comprehensive Desk Reference,由VCH Publishers,Inc.出版,1995(ISBN 9780471185710);Singleton等人,Dictionary of Microbiology and Molecular Biology第2版,J.Wiley & Sons(New York,N.Y.1994),March,Advanced Organic Chemistry Reactions,Mechanisms and Structure第4版,John Wiley & Sons(New York,N.Y.1992);及Marten H.Hofker及Jan van Deursen,Transgenic Mouse Methods and Protocols,第2版(2011)。
除非上下文另有明確說明,否則如本文所用之單數形式「一(a)」、「一(an)」及「該(the)」包括單數及複數個指示物。
術語「視情況存在之」或「視情況地」意指隨後闡述之事件、情況或取代基可發生或可不發生,且該描述包括事件或情況發生之情形及該事件或情況不發生之情形。
藉由終點列舉之數值範圍包括包容在各別範圍內之所有數字及分數以及所列舉終點。應進一步理解,每一範圍之終點相對於另一終點及獨立於另一終點係有意義的。亦應理解,本文揭示多個值,且除值自身外,每一值在本文中亦揭示為「約」該具體值。舉例而言,若揭示值「10」,則亦揭示「約10」。範圍可在本文中可表示為「約」一個具體值及/或至「約」另一具體值。類似地,當值藉由使用先行詞「約」表示為近似值時,應理解具體值形成另一實施例。舉例而言,若揭示值「約10」,則亦揭示「10」。
應理解,此一範圍格式係出於方便及簡潔而使用,且因此應以靈活方式解釋以不僅包括明確列舉為範圍限值之數值,且亦包括涵蓋在該範圍內之所有個別數值或子範圍,如同明確列舉每一數值及子範圍一般。為說明,「約0.1%至5%」之數值範圍應解釋為不僅包括約0.1%至約5%之明確列舉之值,且亦包括所指示範圍內之個別值(例如約1%、約2%、約3%及約4%)及子範圍(例如約0.5%至約1.1%;約5%至約2.4%;約0.5%至約3.2%及約0.5%至約4.4%及其他可能子範圍)。在表示範圍時,另一實施例包括一個具體值及/或至另一具體值。
當提供值範圍時,應理解,除非上下文另有明確說明,否則在該範圍之上限及下限與該所述範圍中之任何其他所述值或中間值之間的每個中間值,至下限單位之十分之一,皆涵蓋於本揭示案內。該等較小範圍之上限及下限可獨立地包括在較小範圍內,且亦涵蓋於本揭示案內,服從所述範圍中之任何明確排除之限值。當所述範圍包括一或兩個限值時,排除彼等所包括限值中之任一者或兩者之範圍亦包括在本揭示案中。舉例而言,當所述範圍包括一或兩個限值 時,不包括彼等所包括限值中之任一者或兩者之範圍亦包括在本揭示案中,例如片語「x至y」包括『x』至『y』之範圍以及大於『x』且小於『y』之範圍。範圍亦可表示為上限(例如『約x、y、z或更小』)且應解釋為包括『約x』、『約y』及『約z』之具體範圍以及『小於x』、『小於y』及『小於z』之範圍。同樣,片語『約x、y、z或更大』應解釋為包括『約x』、『約y』及『約z』之具體範圍以及『大於x』、『大於y』及『大於z』之範圍。另外,當『x』及『y』係數值時,片語「約『x』至『y』」包括「約『x』至約『y』」。
如本文所用之術語「約」或「大約」在提及可量測值(例如參數、量、持續時間及諸如此類)時意欲涵蓋指定值之變化形式及自指定值之變化形式,例如指定值之+/-10%或更小、+/-5%或更小、+/-1%或更小及+/-0.1%或更小的變化形式及自指定值+/-10%或更小、+/-5%或更小、+/-1%或更小及+/-0.1%或更小的變化形式,只要此類變化形式適於在所揭示發明中實施即可。應理解,修飾語「約」或「大約」所指之值本身亦係特定且較佳揭示的。如本文所用之術語「約」、「大約」、「等於或約」及「實質上」可意指,所討論量或值可為精確值或提供如申請專利範圍中所列舉或本文所教示之等效結果或效應的值。亦即,應理解,量、大小、調配物、參數及其他數量及特徵不為且無需為精確的,但可視需要為近似及/或更大或更小,反映耐受性、轉化因數、捨入、量測誤差及諸如此類及熟習此項技術者已知之其他因素,使得獲得等效結果或效應。在一些情況下,無法合理地確定提供等效結果或效應之值。一般而言,量、大小、調配物、參數或其他量或特徵為「約」、「大約」或「等於或約」,無論是否明確說明為此情況。應理解,除非另有明確說明,否則當在定量值之前使用「約」、「大約」或「等於或約」時,參數亦包括特定定量值本身。
如本文所用之「生物樣品」可含有完整細胞及/或活細胞及/或細胞碎片。生物樣品可含有(或衍生自)「體液」。本發明涵蓋實施例,其中體液選 自羊水、房水、玻璃狀液、膽汁、血清、母乳、腦脊液、耳垢(耵聹)、乳糜、食糜、內淋巴、外淋巴、滲出物、糞便、雌性射精、胃酸、胃液、淋巴、黏液(包括鼻涕及痰(phlegm))、心包液、腹膜液、肋膜液、膿、稀黏液、唾液、皮脂(皮油)、精液、痰(sputum)、滑液、汗液、淚液、尿液、陰道分泌物、嘔吐物及其一或多者之混合物。生物樣品包括細胞培養物、體液、來自體液之細胞培養物。體液可自哺乳動物生物體、例如藉由穿刺或其他收集或取樣程序獲得。
術語「個體(subject)」、「個體(individual)」及「患者」在本文中可互換使用且係指脊椎動物,較佳哺乳動物,更佳人類。哺乳動物包括(但不限於)鼠類、猿猴、人類、農場動物、運動場動物及寵物。亦涵蓋活體內獲得或活體外培養之生物實體之組織、細胞及其子代。
下文闡述多個實施例。應注意,特定實施例不欲作為詳盡描述或作為本文所論述更廣泛實施例之限制。結合具體實施例闡述之一個實施例不必限於該實施例且可與任何其他實施例一起實踐。本說明書通篇中對「一個實施例」、「實施例」、「實例實施例」之提及意指,結合實施例闡述之具體特徵、結構或特性包括在本發明之至少一個實施例中。因此,在本說明書通篇多處出現片語「在一個實施例中」、「在實施例中」或「實例實施例」不必皆提及同一實施例,但可提及同一實施例。另外,在一或多個實施例中,具體特徵、結構或特性可以任一適宜方式組合,如熟習此項技術者根據本揭示案將明瞭。另外,儘管本文所述之一些實施例包括包括在其他實施例中之一些而非其他特徵,但不同實施例之特徵之組合意欲在本發明之範圍內。舉例而言,在所附申請專利範圍中,任一所主張實施例可以任一組合使用。
本文所引用之所有公開案、公開專利文件及專利申請案皆以引用方式併入本文中,其併入程度如同明確地及個別地指出將每一個別公開案、公開專利文件或專利申請案以引用方式併入一般。
概述
本文所揭示之實施例提供可偶聯至或以其他方式與負荷締合之肌肉特異性靶向部分。本文所揭示之實施例提供可納入一或多個肌肉特異性靶向部分之多肽及粒子。多肽及/或粒子可偶聯至、連接至、囊封或以其他方式納入負荷,由此締合負荷與靶向部分。
本文所揭示之實施例提供可含有如本文進一步闡述之一或多個n聚體基元之肌肉特異性靶向部分。在一些實施例中,n聚體基元係增強的myoAAV基元。在一些實施例中,n聚體基元可賦予靶向部分肌肉特異性。
在一些實施例中,n聚體基元不含R-G-D作為基元之前三個胺基酸。在一些實施例中,n聚體基元係第二代RGD基元。在一些實施例中,含有第二代RGD基元之n聚體基元具有大於不含第二代RGD基元之n聚體基元之肌肉特異性、靶向及/或效力。
本文所揭示之實施例提供經改造之腺相關病毒(AAV)衣殼,其可經改造以賦予經改造之AAV粒子細胞特異性及/或物種特異性向性。
本文所揭示之實施例亦提供產生具有經改造衣殼之rAAV之方法,其可涉及系統地引導經修飾表面結構之變異體(例如變異體衣殼蛋白)之多樣性文庫的產生。產生具有經改造衣殼之rAAV之方法之實施例亦可包括嚴格選擇能夠靶向特定細胞、組織及/或器官類型之衣殼變異體。產生具有經改造衣殼之rAAV之方法之實施例可包括嚴格選擇能夠在至少兩個或更多個物種中有效及/或均質轉導之衣殼變異體。
本文所揭示之實施例提供能夠產生本文所述之經改造AAV之載體及其系統。
本文所揭示之實施例提供可能夠產生本文所述之經改造AAV粒子之細胞。在一些實施例中,細胞包括本文所述之一或多個載體或其系統。
本文所揭示之實施例提供可包括本文所述之經改造衣殼之經改造之AAV。在一些實施例中,經改造之AAV可包括欲遞送至細胞之負荷多核苷酸。在一些實施例中,負荷多核苷酸係基因修飾多核苷酸。
本文所揭示之實施例提供調配物,其可含有經改造之AAV載體或其系統、經改造之AAV衣殼、包括本文所述之經改造AAV衣殼之經改造之AAV粒子、及/或含有經改造之AAV衣殼及/或經改造之AAV載體或其系統的本文所述之經改造細胞。在一些實施例中,調配物亦可包括醫藥學上可接受之載劑。本文所述之調配物可遞送至有需要之個體或細胞。
本文所揭示之實施例亦提供套組,其含有本文所述之多肽、多核苷酸、載體、經改造之AAV衣殼、經改造之AAV粒子、細胞或其他組分及其組合中之一或多者及本文所述之醫藥調配物中之一或多者。在實施例中,本文所述之多肽、多核苷酸、載體、經改造之AAV衣殼、經改造之AAV粒子細胞及其組合中之一或多者可呈現為組合套組。
本文所揭示之實施例提供使用本文所述具有細胞特異性向性之經改造AAV將例如治療性多核苷酸遞送至細胞之方法。以此方式,本文所述之經改造AAV可用於治療及/或預防有需要之個體之疾病。本文所揭示之實施例亦提供將經改造之AAV衣殼、經改造之AAV病毒粒子、經改造之AAV載體或其系統及/或其調配物遞送至細胞之方法。本文亦提供藉由將經改造之AAV粒子、經改造之AAV衣殼、經改造之AAV衣殼載體或其系統、經改造之細胞及/或其調配物遞送至個體來治療有需要之個體之方法。
經改造之AAV以及製造及使用經改造之AAV之方法的實施例之其他特徵及優點進一步闡述於本文中。
肌肉特異性靶向部分及其組合物
本文闡述可能夠特異性靶向、結合、締合或以其他方式與肌肉細胞特異性相互作用之靶向部分。在一些實施例中,靶向部分可為或包括n聚體基元。
在一些實施例中,n聚體基元含有第二代RGD基元。術語「第二代RGD基元」係指n聚體基元,其包括胺基酸基元R-G-D之存在,且具有由XmRGDXn組成之通式,其中Xm及Xn各自獨立地選自任一胺基酸,其中n係1、2、3、4、5、6、7、8或9,且其中m係1-4。例示性n聚體基元以及產生及鑑別能夠靶向肌肉之適宜n聚體基元之方法更詳細闡述於本文別處中。
在一些實施例中,靶向部分可包括一個以上之n聚體基元。在一些實施例中,靶向部分可包括1個、2個、3個、4個、5個、6個、7個、8個、9個、10個或更多個n聚體基元。在一些實施例中,包括在靶向部分中之所有n-基元可為相同的。在一些實施例中,當包括一個以上之n聚體基元時,至少兩個n聚體基元係彼此不同的。在一些實施例中,當包括一個以上之n聚體基元時,所有n聚體基元係彼此不同的。在一些實施例中,包括在靶向部分中之每一n聚體基元可為表2及表3、圖14F中之任一者中所示n聚體基元中之任一者,或本文別處所示之[圖式]及[工作實例]中所提供n聚體基元中之任一者。在一些實施例中,含有第二代RGD基元之n聚體基元賦予大於不含第二代RGD基元之n聚體基元之肌肉特異性/靶向及/或效力。在一些實施例中,含有第二代RGD基元之n聚體基元賦予大於具有R-G-D作為基元之前三個胺基酸之n聚體基元的肌肉特異性/靶向及/或效力。
在一些實施例中,n聚體基元之前1個、2個、3個或4個胺基酸可替代其所插入之多肽之1個、2個、3個或4個胺基酸且在插入位點之前。在一些實施例中,替代n聚體基元所插入之多肽之1或多個胺基酸之n聚體基元胺基酸係插入n聚體基元中之「RGD」之前或緊接之前。舉例而言,在例如表 2及表3中所顯示之一或多個10聚體插入中,所顯示前三個胺基酸可替代其可插入之多肽之1-3個胺基酸。使用AAV作為另一非限制性實例,一或多個n聚體基元可插入例如胺基酸588與589之間之AAV9衣殼脯胺醯肽中,且插入可替代胺基酸586、587及588,使得緊接在n聚體基元之前之胺基酸在插入後係殘基585。應瞭解,此原理可適用於任何其他插入背景下且不必限於插入AAV9衣殼之殘基588與589之間或另一AAV衣殼中之等效位置。應進一步瞭解,在一些實施例中,n聚體基元所插入之多肽中之胺基酸皆不經n聚體基元替代。
肌肉特異性靶向部分可偶聯至或以其他方式與負荷締合。在一些實施例中,本文所述之一或多個肌肉特異性靶向部分直接連接至負荷。在一些實施例中,本文所述之一或多個肌肉特異性靶向部分間接偶聯至負荷,例如經由連接體分子。在一些實施例中,本文所述之一或多個肌肉特異性靶向部分偶聯至多肽或其他粒子或與其締合,該多肽或其他粒子偶聯至、連接至、囊封及/或含有負荷。
例示性粒子包括(但不限於)病毒粒子(例如病毒衣殼,其包括噬細菌體衣殼)、多核糖體、脂質體、奈米粒子、微粒、胞外體、膠束及諸如此類。如本文所用之術語「奈米粒子」包括均質或異質材料之奈米級沈積物。奈米粒子之形狀可為規則或不規則的且可由形成複合奈米級粒子之複數個共沈積粒子形成。奈米粒子之形狀可為大致球形或具有由複數個共沈積之大致球形粒子形成之複合形狀。奈米粒子之例示性形狀包括(但不限於)球形、棒狀、橢圓形、圓柱形、盤狀及諸如此類。在一些實施例中,奈米粒子具有實質上球形之形狀。
如本文所用之術語「特異性」在用於闡述兩個部分之間之相互作用時係指第一部分及第二部分之非共價物理締合,其中第一部分與第二部分之間之締合比結合發生之環境中存在之任一部分與大多數或所有其他部分的締合增強至至少2倍、增強至至少5倍、增強至至少10倍、增強至至少50倍、增強 至至少100倍或更強。若在所用條件下、例如在生理條件(例如細胞內部或與細胞存活一致之條件下),平衡解離常數Kd為10-3M或更小、10-4M或更小、10-5M或更小、10-6M或更小、10-7M或更小、10-8M或更小、10-9M或更小、10-10M或更小、10-11M或更小、或10-12M或更小,則兩個或更多個實體之結合可視為特異性。在一些實施例中,特異性結合可藉由複數種較弱相互作用(例如複數種個別相互作用,其中每一個別相互作用之特徵在於Kd大於10-3M)來實現。在一些實施例中,可稱為「分子識別」之特異性結合係兩個實體之間之飽和結合相互作用,其依賴於每一實體上官能基之互補取向。特異性相互作用之實例包括引子-多核苷酸相互作用、適配體-適配體靶相互作用、抗體-抗原相互作用、抗生物素蛋白-生物素相互作用、配位體-受體相互作用、金屬-螯合劑相互作用、互補核酸之間之雜交等。
在一些實施例中,除n聚體基元外,靶向部分可包括多肽、多核苷酸、脂質、聚合物、糖或其組合。
在一些實施例中,將靶向部分納入病毒蛋白,例如衣殼蛋白,包括(但不限於)慢病毒、腺病毒、AAV、噬細菌體、反轉錄病毒蛋白。在一些實施例中,n聚體基元位於病毒蛋白之兩個胺基酸之間,使得n聚體基元在病毒衣殼之外部(即呈遞在病毒衣殼之表面上)。
在一些實施例中,含有本文所述之一或多個肌肉特異性靶向部分之組合物具有增加之肌肉細胞功效、肌肉細胞特異性、降低之免疫原性或其任一組合。如本文所用之術語「肌肉特異性」、「肌肉細胞特異性」、「肌肉細胞功效」及諸如此類係指相對於非肌肉細胞,肌肉特異性靶向部分及納入本發明之該等肌肉特異性靶向部分之組合物對肌肉細胞之特異性、選擇性或功效增加。在一些實施例中,肌肉特異性靶向部分或納入本文所述肌肉特異性靶向部分之組合物之細胞特異性或選擇性或功效或其組合相對於非肌肉細胞,對肌肉細胞/在 肌肉細胞中之特異性、選擇性及/或功效增大至至少2倍至至少500倍。在一些實施例中,本文所述肌肉特異性靶向部分之/中之特異性或選擇性或功效相對於非肌肉細胞,對肌肉細胞之特異性或選擇性增大至至少2倍至/或3倍、4倍、5倍、6倍、7倍、8倍、9倍、10倍、11倍、12倍、13倍、14倍、15倍、16倍、17倍、18倍、19倍、20倍、21倍、22倍、23倍、24倍、25倍、26倍、27倍、28倍、29倍、30倍、31倍、32倍、33倍、34倍、35倍、36倍、37倍、38倍、39倍、40倍、41倍、42倍、43倍、44倍、45倍、46倍、47倍、48倍、49倍、50倍、51倍、52倍、53倍、54倍、55倍、56倍、57倍、58倍、59倍、60倍、61倍、62倍、63倍、64倍、65倍、66倍、67倍、68倍、69倍、70倍、71倍、72倍、73倍、74倍、75倍、76倍、77倍、78倍、79倍、80倍、81倍、82倍、83倍、84倍、85倍、86倍、87倍、88倍、89倍、90倍、91倍、92倍、93倍、94倍、95倍、96倍、97倍、98倍、99倍、100倍、101倍、102倍、103倍、104倍、105倍、106倍、107倍、108倍、109倍、110倍、111倍、112倍、113倍、114倍、115倍、116倍、117倍、118倍、119倍、120倍、121倍、122倍、123倍、124倍、125倍、126倍、127倍、128倍、129倍、130倍、131倍、132倍、133倍、134倍、135倍、136倍、137倍、138倍、139倍、140倍、141倍、142倍、143倍、144倍、145倍、146倍、147倍、148倍、149倍、150倍、151倍、152倍、153倍、154倍、155倍、156倍、157倍、158倍、159倍、160倍、161倍、162倍、163倍、164倍、165倍、166倍、167倍、168倍、169倍、170倍、171倍、172倍、173倍、174倍、175倍、176倍、177倍、178倍、179倍、180倍、181倍、182倍、183倍、184倍、185倍、186倍、187倍、188倍、189倍、190倍、191倍、192倍、193倍、194倍、195倍、196倍、197倍、198倍、199倍、200倍、201倍、202倍、203倍、204倍、205倍、206倍、207倍、208倍、209倍、210倍、211倍、212倍、213倍、214倍、215倍、216倍、217倍、218 倍、219倍、220倍、221倍、222倍、223倍、224倍、225倍、226倍、227倍、228倍、229倍、230倍、231倍、232倍、233倍、234倍、235倍、236倍、237倍、238倍、239倍、240倍、241倍、242倍、243倍、244倍、245倍、246倍、247倍、248倍、249倍、250倍、251倍、252倍、253倍、254倍、255倍、256倍、257倍、258倍、259倍、260倍、261倍、262倍、263倍、264倍、265倍、266倍、267倍、268倍、269倍、270倍、271倍、272倍、273倍、274倍、275倍、276倍、277倍、278倍、279倍、280倍、281倍、282倍、283倍、284倍、285倍、286倍、287倍、288倍、289倍、290倍、291倍、292倍、293倍、294倍、295倍、296倍、297倍、298倍、299倍、300倍、301倍、302倍、303倍、304倍、305倍、306倍、307倍、308倍、309倍、310倍、311倍、312倍、313倍、314倍、315倍、316倍、317倍、318倍、319、320倍、321倍、322倍、323倍、324倍、325倍、326倍、327倍、328倍、329倍、330倍、331倍、332倍、333倍、334倍、335倍、336倍、337倍、338倍、339倍、340倍、341倍、342倍、343倍、344倍、345倍、346倍、347倍、348倍、349倍、350倍、351倍、352倍、353倍、354倍、355倍、356倍、357倍、358倍、359倍、360倍、361倍、362倍、363倍、364倍、365倍、366倍、367倍、368倍、369倍、370倍、371倍、372倍、373倍、374倍、375倍、376倍、377倍、378倍、379倍、380倍、381倍、382倍、383倍、384倍、385倍、386倍、387倍、388倍、389倍、390倍、391倍、392倍、393倍、394倍、395倍、396倍、397倍、398倍、399倍、400倍、401倍、402倍、403倍、404倍、405倍、406倍、407倍、408倍、409倍、410倍、411倍、412倍、413倍、414倍、415倍、416倍、417倍、418倍、419倍、420倍、421倍、422倍、423倍、424倍、425倍、426倍、427倍、428倍、429倍、430倍、431倍、432倍、433倍、434倍、435倍、436倍、437倍、438倍、439倍、440倍、441倍、442倍、443倍、444倍、445倍、446 倍、447倍、448倍、449倍、450倍、451倍、452倍、453倍、454倍、455倍、456倍、457倍、458倍、459倍、460倍、461倍、462倍、463倍、464倍、465倍、466倍、467倍、468倍、469倍、470倍、471倍、472倍、473倍、474倍、475倍、476倍、477倍、478倍、479倍、480倍、481倍、482倍、483倍、484倍、485倍、486倍、487倍、488倍、489倍、490倍、491倍、492倍、493倍、494倍、495倍、496倍、497倍、498倍、499倍、500倍。
換言之,在一些實施例中,肌肉特異性靶向部分及/或含有本文所述之一或多個肌肉特異性靶向部分之組合物具有減小的非肌肉細胞功效、非肌肉細胞特異性、降低之免疫原性或其任一組合。在一些實施例中,相對於肌肉細胞,肌肉特異性靶向部分及/或含有本文所述之一或多個肌肉特異性靶向部分之組合物對非肌肉細胞/在非肌肉細胞中之特異性、選擇性及/或功效小至少2倍至至少500倍。在一些實施例中,本文所述肌肉特異性靶向部分之/中之特異性或選擇性或功效相對於肌肉細胞,對非肌肉細胞之特異性或選擇性小至少2倍至/或3倍、4倍、5倍、6倍、7倍、8倍、9倍、10倍、11倍、12倍、13倍、14倍、15倍、16倍、17倍、18倍、19倍、20倍、21倍、22倍、23倍、24倍、25倍、26倍、27倍、28倍、29倍、30倍、31倍、32倍、33倍、34倍、35倍、36倍、37倍、38倍、39倍、40倍、41倍、42倍、43倍、44倍、45倍、46倍、47倍、48倍、49倍、50倍、51倍、52倍、53倍、54倍、55倍、56倍、57倍、58倍、59倍、60倍、61倍、62倍、63倍、64倍、65倍、66倍、67倍、68倍、69倍、70倍、71倍、72倍、73倍、74倍、75倍、76倍、77倍、78倍、79倍、80倍、81倍、82倍、83倍、84倍、85倍、86倍、87倍、88倍、89倍、90倍、91倍、92倍、93倍、94倍、95倍、96倍、97倍、98倍、99倍、100倍、101倍、102倍、103倍、104倍、105倍、106倍、107倍、108倍、109倍、110倍、111倍、112倍、113倍、114倍、115倍、116倍、117倍、118倍、119倍、120 倍、121倍、122倍、123倍、124倍、125倍、126倍、127倍、128倍、129倍、130倍、131倍、132倍、133倍、134倍、135倍、136倍、137倍、138倍、139倍、140倍、141倍、142倍、143倍、144倍、145倍、146倍、147倍、148倍、149倍、150倍、151倍、152倍、153倍、154倍、155倍、156倍、157倍、158倍、159倍、160倍、161倍、162倍、163倍、164倍、165倍、166倍、167倍、168倍、169倍、170倍、171倍、172倍、173倍、174倍、175倍、176倍、177倍、178倍、179倍、180倍、181倍、182倍、183倍、184倍、185倍、186倍、187倍、188倍、189倍、190倍、191倍、192倍、193倍、194倍、195倍、196倍、197倍、198倍、199倍、200倍、201倍、202倍、203倍、204倍、205倍、206倍、207倍、208倍、209倍、210倍、211倍、212倍、213倍、214倍、215倍、216倍、217倍、218倍、219倍、220倍、221倍、222倍、223倍、224倍、225倍、226倍、227倍、228倍、229倍、230倍、231倍、232倍、233倍、234倍、235倍、236倍、237倍、238倍、239倍、240倍、241倍、242倍、243倍、244倍、245倍、246倍、247倍、248倍、249倍、250倍、251倍、252倍、253倍、254倍、255倍、256倍、257倍、258倍、259倍、260倍、261倍、262倍、263倍、264倍、265倍、266倍、267倍、268倍、269倍、270倍、271倍、272倍、273倍、274倍、275倍、276倍、277倍、278倍、279倍、280倍、281倍、282倍、283倍、284倍、285倍、286倍、287倍、288倍、289倍、290倍、291倍、292倍、293倍、294倍、295倍、296倍、297倍、298倍、299倍、300倍、301倍、302倍、303倍、304倍、305倍、306倍、307倍、308倍、309倍、310倍、311倍、312倍、313倍、314倍、315倍、316倍、317倍、318倍、319、320倍、321倍、322倍、323倍、324倍、325倍、326倍、327倍、328倍、329倍、330倍、331倍、332倍、333倍、334倍、335倍、336倍、337倍、338倍、339倍、340倍、341倍、342倍、343倍、344倍、345倍、346倍、347倍、348 倍、349倍、350倍、351倍、352倍、353倍、354倍、355倍、356倍、357倍、358倍、359倍、360倍、361倍、362倍、363倍、364倍、365倍、366倍、367倍、368倍、369倍、370倍、371倍、372倍、373倍、374倍、375倍、376倍、377倍、378倍、379倍、380倍、381倍、382倍、383倍、384倍、385倍、386倍、387倍、388倍、389倍、390倍、391倍、392倍、393倍、394倍、395倍、396倍、397倍、398倍、399倍、400倍、401倍、402倍、403倍、404倍、405倍、406倍、407倍、408倍、409倍、410倍、411倍、412倍、413倍、414倍、415倍、416倍、417倍、418倍、419倍、420倍、421倍、422倍、423倍、424倍、425倍、426倍、427倍、428倍、429倍、430倍、431倍、432倍、433倍、434倍、435倍、436倍、437倍、438倍、439倍、440倍、441倍、442倍、443倍、444倍、445倍、446倍、447倍、448倍、449倍、450倍、451倍、452倍、453倍、454倍、455倍、456倍、457倍、458倍、459倍、460倍、461倍、462倍、463倍、464倍、465倍、466倍、467倍、468倍、469倍、470倍、471倍、472倍、473倍、474倍、475倍、476倍、477倍、478倍、479倍、480倍、481倍、482倍、483倍、484倍、485倍、486倍、487倍、488倍、489倍、490倍、491倍、492倍、493倍、494倍、495倍、496倍、497倍、498倍、499倍、500倍。
納入肌肉特異性靶向部分之組合物之免疫原性可降低例如1-100倍或更多倍。在一些實施例中,免疫原性降低1倍至/或2倍、3倍、4倍、5倍、6倍、7倍、8倍、9倍、10倍、11倍、12倍、13倍、14倍、15倍、16倍、17倍、18倍、19倍、20倍、21倍、22倍、23倍、24倍、25倍、26倍、27倍、28倍、29倍、30倍、31倍、32倍、33倍、34倍、35倍、36倍、37倍、38倍、39倍、40倍、41倍、42倍、43倍、44倍、45倍、46倍、47倍、48倍、49倍、50倍、51倍、52倍、53倍、54倍、55倍、56倍、57倍、58倍、59倍、60倍、61 倍、62倍、63倍、64倍、65倍、66倍、67倍、68倍、69倍、70倍、71倍、72倍、73倍、74倍、75倍、76倍、77倍、78倍、79倍、80倍、81倍、82倍、83倍、84倍、85倍、86倍、87倍、88倍、89倍、90倍、91倍、92倍、93倍、94倍、95倍、96倍、97倍、98倍、99倍、100倍或更多倍。
負荷可包括能夠偶聯至或與本文所述之肌肉特異性靶向部分締合之任一分子。負荷可包括(但不限於)核苷酸、寡核苷酸、多核苷酸、胺基酸、肽、多肽、核糖蛋白、脂質、糖、醫藥活性劑(例如藥物、成像劑及其他診斷劑及諸如此類)、化學化合物及其組合。在一些實施例中,負荷係DNA、RNA、胺基酸、肽、多肽、抗體、適配體、核酶、抑制必需腫瘤蛋白及基因之轉譯或轉錄之核酶的引導序列、激素、免疫調節劑、退熱劑、抗焦慮藥、抗精神病藥、止痛藥、鎮痙藥、抗發炎藥、抗組胺、抗感染劑、輻射敏化劑、化學治療劑、放射性化合物、成像劑及其組合。
在一些實施例中,負荷能夠治療或預防肌肉疾病或病症。在一些實施例中,肌肉疾病或病症係(a)自體免疫疾病;(b)癌症;(c)肌營養不良;(d)神經肌肉疾病;(e)糖或肝糖儲積病;(f)擴展重複疾病;(g)顯性負性疾病;(h)心肌病;(i)病毒性疾病;(j)類早衰症;或(k)其任一組合。在一些實施例中,擴展重複疾病係亨丁頓氏症、肌強直性營養不良或面肩胛臂型肌營養不良(FSHD)。在一些實施例中,肌營養不良係杜興氏肌營養不良、貝克氏肌營養不良、肢帶型肌營養不良、埃德二氏肌營養不良、肌強直性營養不良或FSHD。在一些實施例中,肌強直性營養不良為1型或2型。在一些實施例中,糖或肝糖儲積病係III型MPS疾病或龐貝氏病。在一些實施例中,III型MPS疾病係IIIA型、IIIB型、IIIC型或IIID型MPS。在一些實施例中,神經肌肉疾病係夏馬杜三氏病或弗氏共濟失調。
在一些實施例中,負荷係N-嗎啉基、肽連接之N-嗎啉基、反義寡核苷酸、PMO、治療性轉基因、編碼治療性多肽或肽之多核苷酸、PPMO、一或多種肽、編碼CRISPR-Cas蛋白之一或多種多核苷酸、引導RNA或二者、核糖核蛋白,其中核糖核蛋白包含CRISPR-Cas系統分子、治療性轉基因RNA、或其他基因修飾或治療性RNA及/或蛋白質、或其任一組合。
在一些實施例中,負荷能夠誘導基因中之外顯子跳躍。
在一些實施例中,負荷能夠誘導肌營養不良蛋白基因中之外顯子跳躍。
在一些實施例中,負荷係微小或微肌營養不良蛋白基因。在一些實施例中,微小或微肌營養不良蛋白基因包含血影蛋白樣重複1、2、3及24或其組合以及視情況地nNOS結構域。
經改造之病毒衣殼及編碼多核苷酸
本文闡述經改造之病毒衣殼(例如腺相關病毒(AAV)衣殼)之多個實施例,其可經改造以賦予經改造之病毒粒子細胞特異性向性(例如肌肉特異性向性)。經改造之病毒衣殼可為慢病毒、反轉錄病毒、腺病毒或AAV衣殼。經改造之衣殼可包括在經改造之病毒粒子(例如經改造之慢病毒、反轉錄病毒、腺病毒或AAV病毒粒子)中,且可賦予經改造之病毒粒子細胞特異性向性、降低之免疫原性或二者。本文所述經改造之病毒衣殼可包括本文所述之一或多種經改造病毒衣殼蛋白。本文所述經改造之病毒衣殼可包括本文所述之一或多種經改造病毒衣殼蛋白,該一或多種經改造之病毒衣殼蛋白可含有含本文別處所述之n聚體基元或由其構成之肌肉特異性靶向部分。
經改造之病毒衣殼及/或衣殼蛋白可由一或多種經改造之病毒衣殼多核苷酸編碼。在一些實施例中,經改造之病毒衣殼多核苷酸係經改造之AAV衣殼多核苷酸、經改造之慢病毒衣殼多核苷酸、經改造之反轉錄病毒衣殼多核苷 酸或經改造之腺病毒衣殼多核苷酸。在一些實施例中,經改造之病毒衣殼多核苷酸(例如經改造之AAV衣殼多核苷酸、經改造之慢病毒衣殼多核苷酸、經改造之反轉錄病毒衣殼多核苷酸或經改造之腺病毒衣殼多核苷酸)可包括3’多腺苷酸化信號。多腺苷酸化信號可為SV40多腺苷酸化信號。
經改造之病毒衣殼可為野生型病毒衣殼之變異體。舉例而言,在一些實施例中,經改造之AAV衣殼可為野生型AAV衣殼之變異體。在一些實施例中,野生型AAV衣殼可由VP1、VP2、VP3衣殼蛋白或其組合構成。換言之,經改造之AAV衣殼可包括野生型VP1、野生型VP2及/或野生型VP3衣殼蛋白之一或多種變異體。在一些實施例中,參考野生型AAV衣殼之血清型可為AAV-1、AAV-2、AAV-3、AAV-4、AAV-5、AAV-6、AAV-8、AAV-9或其任一組合。在一些實施例中,野生型AAV衣殼之血清型可為AAV-9。經改造之AAV衣殼可具有不同於參考野生型AAV衣殼之向性。
經改造之病毒衣殼可含有1-60種經改造之衣殼蛋白。在一些實施例中,經改造之病毒衣殼可含有1種、2種、3種、4種、5種、6種、7種、8種、9種、10種、11種、12種、13種、14種、15種、16種、17種、18種、19種、20種、21種、22種、23種、24種、25種、26種、27種、28種、29種、30種、31種、32種、33種、34種、35種、36種、37種、38種、39種、40種、41種、42種、43種、44種、45種、46種、47種、48種、49種、50種、51種、52種、53種、54種、55種、56種、57種、58種、59種或60種經改造之衣殼蛋白。在一些實施例中,經改造之病毒衣殼可含有0-59種野生型病毒衣殼蛋白。在一些實施例中,經改造之病毒衣殼可含有0種、1種、2種、3種、4種、5種、6種、7種、8種、9種、10種、11種、12種、13種、14種、15種、16種、17種、18種、19種、20種、21種、22種、23種、24種、25種、26種、27種、28種、29種、30種、31種、32種、33種、34種、35種、36種、37種、38種、39 種、40種、41種、42種、43種、44種、45種、46種、47種、48種、49種、50種、51種、52種、53種、54種、55種、56種、57種、58種或59種野生型病毒衣殼蛋白。
在一些實施例中,經改造之AAV衣殼可含有1-60種經改造之衣殼蛋白。在一些實施例中,經改造之AAV衣殼可含有1種、2種、3種、4種、5種、6種、7種、8種、9種、10種、11種、12種、13種、14種、15種、16種、17種、18種、19種、20種、21種、22種、23種、24種、25種、26種、27種、28種、29種、30種、31種、32種、33種、34種、35種、36種、37種、38種、39種、40種、41種、42種、43種、44種、45種、46種、47種、48種、49種、50種、51種、52種、53種、54種、55種、56種、57種、58種、59種或60種經改造之衣殼蛋白。在一些實施例中,經改造之AAV衣殼可含有0-59種野生型AAV衣殼蛋白。在一些實施例中,經改造之AAV衣殼可含有0種、1種、2種、3種、4種、5種、6種、7種、8種、9種、10種、11種、12種、13種、14種、15種、16種、17種、18種、19種、20種、21種、22種、23種、24種、25種、26種、27種、28種、29種、30種、31種、32種、33種、34種、35種、36種、37種、38種、39種、40種、41種、42種、43種、44種、45種、46種、47種、48種、49種、50種、51種、52種、53種、54種、55種、56種、57種、58種或59種野生型AAV衣殼蛋白。
在一些實施例中,經改造之病毒衣殼蛋白可具有n聚體胺基酸基元,其中n可為至少3個胺基酸。在一些實施例中,n可為3個、4個、5個、6個、7個、8個、9個、10個、11個、12個、13個、14個或15個胺基酸。在一些實施例中,經改造之AAV衣殼可具有6聚體或7聚體胺基酸基元。在一些實施例中,n聚體胺基酸基元可插入野生型病毒蛋白(VP)(或衣殼蛋白)中之兩個胺 基酸之間。在一些實施例中,n聚體基元可插入病毒衣殼蛋白中之胺基酸可變區中之兩個胺基酸之間。
在一些實施例中,n聚體基元可插入AAV衣殼蛋白中之胺基酸可變區中之兩個胺基酸之間。每一野生型AAV病毒蛋白之核心含有在自主小病毒衣殼中保守之八股β-桶基元(βB至βI)及α-螺旋(αA)(參見例如DiMattia等人,2012.J.Virol.86(12):6947-6958)。結構可變區(VR)出現在連接β-股之表面環中,該等β-股聚集在一起在衣殼表面中產生局部變化形式。AAV具有12個可變區(亦稱為超變區)(參見例如Weitzman及Linden.2011.「Adeno-Associated Virus Biology.」Snyder,R.O.、Moullier,P.(編輯)Totowa,NJ:Humana Press)。在一些實施例中,一或多個n聚體基元可插入野生型AVV衣殼蛋白中之12個可變區中之一或多者中之兩個胺基酸之間。在一些實施例中,一或多個n聚體基元可各自插入VR-I、VR-II、VR-III、VR-IV、VR-V、VR-VI、VR-VII、VR-III、VR-IX、VR-X、VR-XI、VR-XII或其組合中之兩個胺基酸之間。在一些實施例中,n聚體可插入衣殼蛋白之VR-III中之兩個胺基酸之間。在一些實施例中,經改造之衣殼可具有n聚體,其插入AAV9病毒蛋白之胺基酸262與269之間的任兩個連續胺基酸之間、胺基酸327與332之間的任兩個連續胺基酸之間、胺基酸382與386之間的任兩個連續胺基酸之間、胺基酸452與460之間的任兩個連續胺基酸之間、胺基酸488與505之間的任兩個連續胺基酸之間、胺基酸545與558之間的任兩個連續胺基酸之間、胺基酸581與593之間的任兩個連續胺基酸之間、胺基酸704與714之間的任兩個連續胺基酸之間。在一些實施例中,經改造之衣殼可具有插入AAV9病毒蛋白之胺基酸588與589之間之n聚體。在一些實施例中,經改造之衣殼可具有插入AAV9病毒蛋白之胺基酸588與589之間之7聚體基元。SEQ ID NO:1係至少參考上文所論述之插入位點之參考AAV9衣殼序列。應瞭解,n聚體可插入其他血清型之AAV病毒蛋白中之類似位置。 在一些實施例中,如先前所論述,n聚體可插入AAV病毒蛋白內之任兩個連續胺基酸之間,且在一些實施例中,插入係在可變區中進行。
在一些實施例中,n聚體基元之前1個、2個、3個或4個胺基酸可替代其所插入之多肽之1個、2個、3個或4個胺基酸且在插入位點之前。在一些實施例中,替代n聚體基元所插入之多肽之1或多個胺基酸之n聚體基元胺基酸係插入n聚體基元中之「RGD」之前或緊接之前。舉例而言,在例如表2-表3中所顯示之一或多個10聚體插入中,所顯示前三個胺基酸可替代其可插入之多肽之1-3個胺基酸。使用AAV作為另一非限制性實例,一或多個n聚體基元可插入例如胺基酸588與589之間之AAV9衣殼脯胺醯肽中,且插入可替代胺基酸586、587及588,使得緊接在n聚體基元之前之胺基酸在插入後係殘基585。應瞭解,此原理可適用於任何其他插入背景中且不必限於插入AAV9衣殼之殘基588與589之間或另一AAV衣殼中之等效位置。應進一步瞭解,在一些實施例中,n聚體基元所插入之多肽中之胺基酸皆不經n聚體基元替代。
SEQ ID NO:1 AAV9衣殼參考序列
Figure 110126971-A0202-12-0049-261
Figure 110126971-A0202-12-0050-262
在一些實施例中,n聚體可為胺基酸,可為如表2及表3、圖14F及/或本文工作實例中所顯示或由其中所顯示之核酸編碼之任一胺基酸基元。在一些實施例中,在AAV或其他病毒衣殼中插入n聚體可產生包括本發明之n聚體基元或衣殼蛋白之細胞、組織、器官、經改造之特異性AAV或其他病毒衣殼或其他組合物。在一些實施例中,含有n聚體基元之經改造之衣殼或其他組合物對骨組織及/或細胞、肺組織及/或細胞、肝臟組織及/或細胞、膀胱組織及/或細胞、腎臟組織及/或細胞、心臟組織及/或細胞、骨骼肌組織及/或細胞、平滑肌及/或細胞、神經元組織及/或細胞、腸組織及/或細胞、胰臟組織及/或細胞、腎上腺組織及/或細胞、腦組織及/或細胞、肌腱組織或細胞、皮膚組織及/或細胞、脾組織及/或細胞、眼組織及/或細胞、血細胞、滑液細胞、免疫細胞(包括對特定類型之免疫細胞之特異性)及其組合具有特異性。在一些實施例中,含有n聚體基元之經改造之衣殼或其他組合物對肌肉細胞(包括但不限於骨骼肌組織及/或細胞及平滑肌組織及/或細胞)具有特異性。
在一些實施例中,AAV衣殼或其他病毒衣殼或組合物可具有肌肉特異性。在一些實施例中,經改造之AAV或其他病毒衣殼或其他組合物之肌肉特異性係由納入本文所述經改造之AAV或其他病毒衣殼或其他組合物中之肌肉特異性n聚體基元賦予。儘管不欲受限於理論,認為n聚體基元賦予經改造之AAV衣殼或其他病毒衣殼或其他組合物之結構域或區域3D結構或在其內賦予3D結構,使得含有本文所述之經改造AAV衣殼或其他病毒衣殼或其他組合物 之病毒粒子或其他組合物之相互作用具有與肌肉細胞表面上之細胞表面受體及/或其他分子增加或改良之相互作用(例如增加之親和力)。在一些實施例中,細胞表面受體係AAV受體(AAVR)。在一些實施例中,細胞表面受體係肌肉細胞特異性AAV受體。在一些實施例中,細胞表面受體或其他分子係在肌肉細胞表面上選擇性表現之細胞表面受體或其他分子。在一些實施例中,細胞表面受體或分子係整合素或其二聚體。在一些實施例中,細胞表面受體或分子係Vb6整合素異二聚體。
在一些實施例中,與不含本發明之肌肉特異性n聚體基元之其他細胞類型及/或其他病毒粒子(包括但不限於AAV)及其他組合物相比,含有本文所述之肌肉特異性衣殼、n聚體基元或肌肉特異性靶向部分之本文所述經改造之肌肉特異性病毒粒子或其他組合物在肌肉細胞中可具有增加之攝取、遞送速率、轉導速率、效率、量或其組合。
本文亦闡述多核苷酸,其編碼本文所述經改造之肌肉特異性靶向部分及其他組合物(包括但不限於本文所述之經改造AAV衣殼)。
在一些實施例中,在多核苷酸中可包括經改造之多核苷酸,其在病毒載體系統中經構形為病毒基因體供體,該病毒載體系統可用於產生本文別處所述之經改造病毒粒子。
在一些實施例中,在多核苷酸中可包括編碼經改造AAV衣殼之多核苷酸,其在AAV載體系統中經構形為AAV基因體供體,該AAV載體系統可用於產生本文別處所述之經改造之AAV粒子。在一些實施例中,編碼經改造之AAV衣殼之多核苷酸可操作偶聯至多腺苷酸化尾。在一些實施例中,多腺苷酸化尾可為SV40多腺苷酸化尾。在一些實施例中,編碼AAV衣殼之多核苷酸可操作偶聯至啟動子。在一些實施例中,啟動子可為組織特異性啟動子。在一些實施例中,組織特異性啟動子特異性針對肌肉(例如心肌、骨骼肌及/或平滑肌)、 神經元及支持細胞(例如星形細胞、神經膠質細胞、神經鞘細胞等)、脂肪、脾、肝臟、腎、免疫細胞、脊液細胞、滑液細胞、皮膚細胞、軟骨、肌腱、結締組織、骨、胰臟、腎上腺、血細胞、骨髓細胞、胎盤、內皮細胞及其組合。在一些實施例中,啟動子可為組成型啟動子。適宜組織特異性啟動子及組成型啟動子論述於本文別處且通常為此項技術中已知並可在市面上有售。
適宜肌肉特異性啟動子包括(但不限於)CK8、MHCK7、肌紅蛋白啟動子(Mb)、結蛋白啟動子、肌肉肌酸激酶啟動子(MCK)及其變異體以及SPc5-12合成啟動子。
適宜免疫細胞特異性啟動子包括(但不限於)B29啟動子(B細胞)、CD14啟動子(單核細胞)、CD43啟動子(白血球及血小板)、CD68(巨噬細胞)及SV40/CD43啟動子(白血球及血小板)。
適宜血細胞特異性啟動子包括(但不限於)CD43啟動子(白血球及血小板)、CD45啟動子(造血細胞)、INF-β(造血細胞)、WASP啟動子(造血細胞)、SV40/CD43啟動子(白血球及血小板)及SV40/CD45啟動子(造血細胞)。
適宜胰臟特異性啟動子包括(但不限於)彈性蛋白酶-1啟動子。
適宜內皮細胞特異性啟動子包括(但不限於)Fit-1啟動子及ICAM-2啟動子。
適宜神經元組織/細胞特異性啟動子包括(但不限於)GFAP啟動子(星形細胞)、SYN1啟動子(神經元)及NSE/RU5’(成熟神經元)。
適宜腎特異性啟動子包括(但不限於)NphsI啟動子(足細胞)。
適宜骨特異性啟動子包括(但不限於)OG-2啟動子(成骨細胞、生齒細胞)。
適宜肺特異性啟動子包括(但不限於)SP-B啟動子(肺)。
適宜肝臟特異性啟動子包括(但不限於)SV40/Alb啟動子。
適宜心臟特異性啟動子包括(但不限於)α-MHC。
適宜組成型啟動子包括(但不限於)CMV、RSV、SV40、EF1α、CAG及β-肌動蛋白。
具有降低之非肌肉細胞特異性之AAV
在一些實施例中,本文所述之n聚體基元插入對一或多種非肌肉細胞類型具有降低之特異性(或無可偵測、可量測或臨床上相關之相互作用)之AAV蛋白(例如AAV衣殼蛋白)中。例示性非肌肉細胞類型包括(但不限於)肝臟、腎、肺、心臟、脾、中樞或外周神經系統細胞、骨、免疫、胃、腸、眼、皮膚細胞及諸如此類。在一些實施例中,非肌肉細胞係肝細胞。
在某些實例實施例中,AAV衣殼蛋白係與相應野生型AAV衣殼多肽相比在非肌肉細胞中具有減少或消除的攝取之經改造之AAV衣殼蛋白。
在某些實例實施例中,非肌肉細胞係肝細胞。
在某些實例實施例中,野生型衣殼多肽係AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAV9、AAV rh.74或AAV rh.10衣殼多肽。
在某些實例實施例中,經改造之AAV衣殼蛋白包含使得減少或消除非肌肉細胞中之攝取之一或多個突變。
在某些實例實施例中,一或多個突變處於AAV9衣殼蛋白(SEQ ID NO:1)中之
a.位置267中,
b.位置269中,
c.位置504中,
d.位置505中,
e.位置590中,
f.或其任一組合
或非AAV9衣殼多肽中對應於其之一或多個位置。
在某些實例實施例中,非AAV9衣殼蛋白係AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAV rh.74或AAV rh.10衣殼多肽。
在某些實例實施例中,AAV9衣殼蛋白(SEQ ID NO:1)中之位置267或非AAV9衣殼多肽中對應於其之位置的突變係G或X至A突變,其中X係任一胺基酸。
在某些實例實施例中,AAV9衣殼蛋白(SEQ ID NO:1)中之位置269或非AAV9衣殼多肽中對應於其之位置的突變係S或X至T突變,其中X係任一胺基酸。
在某些實例實施例中,AAV9衣殼蛋白(SEQ ID NO:1)中之位置504或非AAV9衣殼多肽中對應於其之位置的突變係G或X至A突變,其中X係任一胺基酸。
在某些實例實施例中,AAV9衣殼蛋白(SEQ ID NO:1)中之位置505或非AAV9衣殼多肽中對應於其之位置的突變係P或X至A突變,其中X係任一胺基酸。
在某些實例實施例中,AAV9衣殼蛋白(SEQ ID NO:1)中之位置590或非AAV9衣殼多肽中對應於其之位置的突變係Q或X至A突變,其中X係任一胺基酸。
在某些實例實施例中,經改造之AAV衣殼蛋白係包含野生型AAV9衣殼蛋白(SEQ ID NO:1)之位置267、位置269或二者處之突變的經改造之AAV9衣殼多肽,其中位置267處之突變係G至A突變且其中位置269處之突變係S至T突變。
在某些實例實施例中,經改造之AAV衣殼蛋白係包含野生型AAV9衣殼蛋白(SEQ ID NO:1)之位置590處之突變的經改造之AAV9衣殼多肽,其中位置509處之突變係Q至A突變。
在某些實例實施例中,經改造之AAV衣殼蛋白係包含野生型AAV9衣殼蛋白(SEQ ID NO:1)之位置504、位置505或二者處之突變的經改造之AAV9衣殼多肽,其中位置504處之突變係G至A突變且其中位置505處之突變係P至A突變。
在一些實施例中,其中可插入n聚體基元之AAV衣殼蛋白可與國際專利申請公開案WO 2019/217911之SEQ ID NO:4或SEQ ID NO:5為80%-100%(例如80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%至/或100%)一致,該國際專利申請公開案以引用方式併入本文中如同表現其全文一般。該等序列亦分別以SEQ ID NO:330及331併入本文中。應瞭解,當考慮具有降低之肝臟特異性之該等AAV9衣殼蛋白之變異體時,該殘基267及/或269必須含有相關突變或等效物。
SEQ ID 330:
Figure 110126971-A0202-12-0055-263
Figure 110126971-A0202-12-0056-264
Figure 110126971-A0202-12-0057-265
SEQ ID NO:331
Figure 110126971-A0202-12-0057-266
Figure 110126971-A0202-12-0058-267
Figure 110126971-A0202-12-0059-268
在一些實施例中,其中可插入n聚體基元之AAV衣殼蛋白可與Adachi等人(Nat.Comm.2014.5:3075,DOI:10.1038/ncomms4075)中所述之對非CNS細胞、尤其肝細胞具有降低之特異性之任一衣殼蛋白為80%-100%(例如80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%至/或100%)一致。Adachi等人(Nat.Comm.2014.5:3075,DOI:10.1038/ncomms4075)以引用方式併入本文中如同表現其全文一般。
在一些實施例中,與野生型AAV或對照相比,經修飾AAV對非肌肉之特異性可降低約1%、2%、3%、4%、5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、15%、16%、17%、18%、19%、20%、21%、22%、23%、24%、25%、26%、27%、28%、29%、30%、31%、32%、33%、34%、35%、36%、 37%、38%、39%、40%、41%、42%、43%、44%、45%、46%、47%、48%、49%、50%、51%、52%、53%、54%、55%、56%、57%、58%、59%、60%、61%、62%、63%、64%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%、100%,或降低約1倍、2倍、3倍、4倍、5倍、6倍、7倍、8倍、9倍、10倍、11倍、12倍、13倍、14倍、15倍、16倍、17倍、18倍、19倍、20倍、21倍、22倍、23倍、24倍、25倍、26倍、27倍、28倍、29倍、30倍、31倍、32倍、33倍、34倍、35倍、36倍、37倍、38倍、39倍、40倍、41倍、42倍、43倍、44倍、45倍、46倍、47倍、48倍、49倍、50倍、51倍、52倍、53倍、54倍、55倍、56倍、57倍、58倍、59倍、60倍、61倍、62倍、63倍、64倍、65倍、66倍、67倍、68倍、69倍、70倍、71倍、72倍、73倍、74倍、75倍、76倍、77倍、78倍、79倍、80倍、81倍、82倍、83倍、84倍、85倍、86倍、87倍、88倍、89倍、90倍、91倍、92倍、93倍、94倍、95倍、96倍、97倍、98倍、99倍、100倍。在一些實施例中,經修飾AAV在一或多種非肌肉細胞中可不具可量測或可偵測之攝取及/或表現。
產生經改造之AAV衣殼之方法
本文亦提供產生經改造之AAV衣殼之方法。經改造之AAV衣殼變異體可為野生型AAV衣殼之變異體。圖6至圖8可圖解說明能夠產生具有本文所述之變異體基元之經改造AAV衣殼之方法的多個實施例。通常,AAV衣殼文庫可藉由在適當AAV生產細胞株中表現各自含有先前所述之經改造之AAV衣殼多核苷酸之經改造衣殼載體來產生。參見例如圖8。應瞭解,儘管圖8顯示輔助依賴性AAV粒子產生方法,但應瞭解此亦可經由無輔助方法來進行。此可產生可含有另一經改造之期望細胞特異性AAV衣殼變異體之AAV衣殼文 庫。如圖6中所顯示,AAV衣殼文庫可投與多種非人類動物用於第一輪基於mRNA之選擇。如圖1中所顯示,藉由AAV及相關載體之轉導過程可產生反映轉導細胞之病毒之基因體的mRNA分子。如至少本文[實例]中所展示,基於mRNA之選擇對於確定能夠功能性轉導細胞之病毒粒子可能更具特異性且更有效,此乃因其係基於所產生之功能產物,而非僅藉由量測病毒DNA之存在來偵測細胞中病毒粒子之存在。
在第一輪投與後,具有期望衣殼變異體之一或多個經改造之AAV病毒粒子隨後可用於形成經過濾之AAV衣殼文庫。可藉由量測衣殼變異體之mRNA表現並確定與非期望細胞類型相比在期望細胞類型中高度表現之變異體來鑑別期望AAV病毒粒子。在期望細胞、組織及/或器官類型中高度表現之變異體粒子係期望AAV衣殼變異體粒子。在一些實施例中,編碼AAV衣殼變異體之多核苷酸處於在期望細胞、組織或器官中具有選擇活性之組織特異性啟動子之控制下。
隨後可將自第一輪鑑別之經改造之AAV衣殼變異體粒子投與多種非人類動物。在一些實施例中,用於第二輪選擇及鑑別中之動物與用於第一輪選擇及鑑別之彼等動物並不相同。與第1輪相似,在投與後,期望細胞、組織及/或器官類型中之頂部表現變異體可藉由量測細胞中之病毒mRNA表現來鑑別。然後可將在第2輪後鑑別之頂部變異體視情況地條碼化且視情況地匯集。在一些實施例中,然後可將來自第二輪之頂部變異體投與非人類靈長類動物以鑑別頂部細胞特異性變異體,尤其在頂部變異體之最終用途處於人類中時。每一輪之投與可為全身性。
在一些實施例中,產生AAV衣殼變異體之方法可包括以下步驟:(a)在細胞中表現含有經改造之AAV衣殼多核苷酸之本文所述之載體系統,以產生經改造之AAV病毒粒子衣殼變異體;(b)收穫步驟(a)中所產生之經改造之 AAV病毒粒子衣殼變異體;(c)將經改造之AAV病毒粒子衣殼變異體投與一或多個第一個體,其中經改造之AAV病毒粒子衣殼變異體係藉由在細胞中表現經改造之AAV衣殼變異體載體或其系統並收穫細胞所產生之經改造之AAV病毒粒子衣殼變異體來產生;及(d)鑑別在一或多個第一個體中由一或多種特定細胞或特定細胞類型以顯著高水準產生之一或多種經改造之AAV衣殼變異體。在此背景中,「顯著高」可指可介於約2×1011至約6×1012個載體基因體/15cm培養皿之間之效價。
該方法可進一步包括以下步驟:(e)將在步驟(d)中鑑別之一些或所有經改造之AAV病毒粒子衣殼變異體投與一或多個第二個體;及(f)鑑別在一或多個第二個體中之一或多個特定細胞或特定細胞類型中以顯著高水準產生之一或多種經改造之AAV病毒粒子衣殼變異體。步驟(a)中之細胞可為原核細胞或真核細胞。在一些實施例中,步驟(c)、步驟(e)或二者中之投與為全身性。在一些實施例中,一或多個第一個體、一或多個第二個體或二者係非人類哺乳動物。在一些實施例中,一或多個第一個體、一或多個第二個體或二者各自獨立地選自由以下組成之群:野生型非人類哺乳動物、人類化非人類哺乳動物、疾病特異性非人類哺乳動物模型及非人類靈長類動物。
在一些實施例中,可實施變異體基元之進一步最佳化。在一些實施例中,第一代及/或第二代基元(包括含有基元之衣殼RGD)可進一步用於最佳化如例如圖11中所顯示且如本文[工作實例]中進一步論述之衣殼變異體。
本文所述之多核苷酸及載體系統亦可用於產生可經產生以含有可遞送至細胞之負荷分子之病毒粒子及其他組合物。
經改造之載體及載體系統
本文亦提供可含有本文所述之一或多個經改造多核苷酸之載體及載體系統,該一或多個經改造之多核苷酸可編碼本發明之一或多個n聚體基 元,包括(但不限於)經改造之病毒多核苷酸(例如經改造之AAV多核苷酸)。在一些實施例中,可編碼本發明之n聚體基元之多核苷酸可為如表2及表3、圖14中所述及/或如本文別處所述之任一者。在一些實施例中,多核苷酸可編碼如表2及表3、圖14中之任一者中所示及/或如本文別處所述之任一n聚體基元。如此背景中所用之經改造之病毒衣殼多核苷酸係指能夠編碼如本文別處所述之經改造病毒衣殼之本文所述多核苷酸及/或能夠編碼本文別處所述之一或多種經改造病毒衣殼蛋白之多核苷酸中的任一或多者。另外,當載體包括本文所述之經改造病毒衣殼多核苷酸時,載體亦可指且視為經改造之載體或其系統,儘管並未明確注明。在實施例中,載體可含有編碼本文所述之經改造病毒衣殼之一或多個元件之一或多種多核苷酸。載體及其系統可用於產生可表現本文所述之經改造病毒衣殼、粒子或其他組合物之一或多種組分之細菌、真菌、酵母菌、植物細胞、動物細胞及基因轉殖動物。含有一或多條本文所述多核苷酸序列之載體在本揭示案之範圍內。為本文所述之經改造病毒衣殼及其系統之一部分之一或多種多核苷酸可包括在載體或載體系統中。
在一些實施例中,載體可包括具有3’多腺苷酸化信號之經改造之病毒(例如AAV)衣殼多核苷酸。在一些實施例中,3’多腺苷酸化係SV40多腺苷酸化信號。在一些實施例中,載體不具剪接調控元件。在一些實施例中,載體包括一或多個最小剪接調控元件。在一些實施例中,載體可進一步包括經修飾之剪接調控元件,其中修飾使剪接調控元件不活化。在一些實施例中,經修飾之剪接調控元件係足以在rep蛋白多核苷酸與經改造之病毒(例如AAV)衣殼蛋白變異體多核苷酸之間誘導剪接之多核苷酸序列。在一些實施例中,可足以誘導剪接之多核苷酸序列係剪接受體或剪接供體。在一些實施例中,病毒(例如AAV)衣殼多核苷酸係如本文別處所述之經改造之病毒(例如AAV)衣殼多核苷酸。在一 些實施例中,載體不包括一或多種最小剪接調控元件、經修飾之剪接調控劑、剪接受體及/或剪接供體。
載體及/或載體系統可用於例如在細胞(例如生產細胞)中表現經改造之病毒(例如AAV)衣殼及/或其他多核苷酸中之一或多者,以產生經改造之病毒(例如AAV)粒子及/或其他組合物(例如多肽、粒子等),其含有含本文別處所述之本發明n聚體基元之經改造之病毒(例如AAV)衣殼或其他組合物。本文所述載體及載體系統之其他用途亦在本揭示案之範圍內。一般而言且在本說明書通篇中,術語係允許或促進實體自一個環境轉移至另一環境之工具。在熟習此項技術者應瞭解之一些背景中,「載體」可為專門術語且係指能夠運輸與其連接之另一核酸之核酸分子。載體可為其中可插入另一DNA區段以使插入區段複製之複製子,例如質體、噬菌體或黏粒。通常,載體能夠在與適當控制元件締合時複製。
載體包括(但不限於)為單股、雙股或部分雙股之核酸分子;包含一或多個游離末端、無游離末端(例如環形)之核酸分子;包含DNA、RNA或二者之核酸分子;及此項技術中已知之多核苷酸之其他變化。一種類型之載體係「質體」,其係指其中可例如藉由標準分子選殖技術插入其他DNA區段之環形雙股DNA環。另一類型之載體係病毒載體,其中病毒源性DNA或RNA序列存在於載體中用於包裝成病毒(例如反轉錄病毒、複製缺陷型反轉錄病毒、腺病毒、複製缺陷型腺病毒及腺相關病毒(AAV))。病毒載體亦包括由轉染至宿主細胞中之病毒攜帶之多核苷酸。某些載體能夠在其所引入之宿主細胞中自主複製(例如具有細菌複製起點之細菌載體及游離型哺乳動物載體)。其他載體(例如非游離型哺乳動物載體)在引入宿主細胞中後整合至宿主細胞之基因體中,且由此與宿主基因體一起複製。另外,某些載體能夠引導其可操作連接之基因之表現。此類載 體在本文中稱為「表現載體」。常用於重組DNA技術中之表現載體通常呈質體形式。
重組表現載體可由適於在宿主細胞中表現核酸之形式之本發明核酸(例如多核苷酸)構成,此意指重組表現載體包括可操作連接至欲表現核酸序列之一或多個調控元件,其可基於欲用於表現之宿主細胞來選擇。在重組表現載體內,「可操作連接(operably linked)」及「可操作連接(operatively-linked)」在本文中可互換使用且進一步定義於本文別處。在載體之背景中,術語「可操作連接」欲指,所關注核苷酸序列以允許表現核苷酸序列(例如在活體外轉錄/轉譯系統中或在宿主細胞中(當將載體引入宿主細胞中時))之方式連接至調控元件。有利載體包括腺相關病毒,且此類載體之類型亦可經選擇以靶向特定類型之細胞,例如含有具有期望細胞特異性向性之經改造之病毒(例如AAV)衣殼多核苷酸之彼等經改造之病毒(例如AAV)載體。載體及載體系統之該等及其他實施例闡述於本文別處。
在一些實施例中,載體可為雙順反子載體。在一些實施例中,雙順反子載體可用於本文所述之經改造病毒(例如AAV)衣殼系統之一或多種元件。在一些實施例中,本文所述之經改造病毒(例如AAV)衣殼系統之元件之表現可由適宜組成型啟動子或組織特異性啟動子驅動。當經改造之病毒(例如AAV)衣殼系統之元件係RNA時,其表現可由Pol III啟動子(例如U6啟動子)驅動。在一些實施例中,將兩者組合。
基於細胞之載體擴增及表現
載體可經設計以在適宜宿主細胞中表現含有本文所述之本發明n聚體基元之經改造病毒(例如AAV)衣殼系統或其他組合物之一或多種元件(例如核酸轉錄物、蛋白質、酶及其組合)。在一些實施例中,適宜宿主細胞係原核細胞。適宜宿主細胞包括(但不限於)細菌細胞、酵母菌細胞、昆蟲細胞及哺乳動 物細胞。載體可為基於病毒之載體或基於非病毒之載體。在一些實施例中,適宜宿主細胞係真核細胞。在一些實施例中,適宜宿主細胞係適宜細菌細胞。適宜細菌細胞包括(但不限於)來自大腸桿菌(Escherichia coli)之細菌之細菌細胞。此項技術中已知大腸桿菌之許多適於表現載體之菌株。該等菌株包括(但不限於)Pir1、Stbl2、Stbl3、Stbl4、TOP10、XL1 Blue及XL10 Gold。在一些實施例中,宿主細胞係適宜昆蟲細胞。適宜昆蟲細胞包括來自草地貪夜蛾(Spodoptera frugiperda)之彼等細胞。草地貪夜蛾細胞之適宜品系包括(但不限於)Sf9及Sf21。在一些實施例中,宿主細胞係適宜酵母菌細胞。在一些實施例中,酵母菌細胞可來自釀酒酵母菌(Saccharomyces cerevisiae)。在一些實施例中,宿主細胞係適宜哺乳動物細胞。已開發許多類型之哺乳動物細胞來表現載體。適宜哺乳動物細胞包括(但不限於)HEK293、中國倉鼠卵巢細胞(CHO)、小鼠骨髓瘤細胞、HeLa、U2OS、A549、HT1080、CAD、P19、NIH 3T3、L929、N2a、MCF-7、Y79、SO-Rb50、HepG G2、DIKX-X11、J558L、幼倉鼠腎細胞(BHK)及雞胚胎纖維母細胞(CEF)。適宜宿主細胞進一步論述於Goeddel,GENE EXPRESSION TECHNOLOGY:METHODS IN ENZYMOLOGY 185,Academic Press,San Diego,Calif.(1990)中。
在一些實施例中,載體可為酵母菌表現載體。用於在釀酒酵母菌中表現之載體之實例包括pYepSec1(Baldari等人,1987.EMBO J.6:229-234)、pMFa(Kuijan及Herskowitz,1982.Cell30:933-943)、pJRY88(Schultz等人,1987.Gene 54:113-123)、pYES2(Invitrogen Corporation,San Diego,Calif.)及picZ(InVitrogen Corp,San Diego,Calif.)。如本文所用之「酵母菌表現載體」係指含有編碼RNA及/或多肽之一或多條序列且可進一步含有控制核酸表現之任何期望元件以及使得表現載體能夠在酵母菌細胞內複製及維持的任何元件之核酸。許多適宜酵母菌表現載體及其特徵為此項技術中已知;例如,多種載體及技術說明於Yeast Protocols,第2版,Xiao,W.編輯(Humana Press,New York,2007)以及 Buckholz,R.G.及Gleeson,M.A.(1991)Biotechnology(NY)9(11):1067-72中。酵母菌載體可含有(但不限於)著絲粒(CEN)序列、自主複製序列(ARS)、可操作連接至所關注序列或基因之啟動子(例如RNA聚合酶III啟動子)、終止子(例如RNA聚合酶III終止子)、複製起點及標記物基因(例如營養缺陷型標記物、抗生素標記物或其他可選擇標記物)。用於酵母菌中之表現載體之實例可包括質體、酵母菌人工染色體、2μ質體、酵母菌整合質體、酵母菌複製質體、穿梭載體及游離型質體。
在一些實施例中,載體係桿狀病毒載體或表現載體且可適於在昆蟲細胞中表現多核苷酸及/或蛋白質。可用於在所培養昆蟲細胞(例如SF9細胞)中表現蛋白質之桿狀病毒載體包括pAc系列(Smith等人,1983.Mol.Cell.Biol.3:2156-2165)及pVL系列(Lucklow及Summers,1989.Virology 170:31-39)。rAAV(重組腺相關病毒)載體較佳係在昆蟲細胞(例如草地貪夜蛾Sf9昆蟲細胞)中產生,生長於無血清懸浮培養物中。無血清昆蟲細胞可購自商業供應商,例如Sigma Aldrich(EX-CELL 405)。
在一些實施例中,載體係哺乳動物表現載體。在一些實施例中,哺乳動物表現載體能夠在哺乳動物細胞中表現一或多種多核苷酸及/或多肽。哺乳動物表現載體之實例包括(但不限於)pCDM8(Seed,1987.Nature 329:840)及pMT2PC(Kaufman等人,1987.EMBO J.6:187-195)。哺乳動物表現載體可包括能夠控制一或多種多核苷酸及/或蛋白質在哺乳動物細胞中之表現之一或多種適宜調控元件。舉例而言,常用啟動子衍生自多瘤病毒、腺病毒2、巨細胞病毒、猿猴病毒40以及本文所揭示及此項技術中已知之其他病毒。關於適宜調控元件之更多細節闡述於本文別處。
關於用於原核及真核細胞二者之其他適宜表現載體及載體系統參見例如Sambrook等人,MOLECULAR CLONING:A LABORATORY MANUAL.第2版,Cold Spring Harbor Laboratory,Cold Spring Harbor Laboratory Press,Cold Spring Harbor,N.Y.,1989之第16章及第17章。
在一些實施例中,重組哺乳動物表現載體能夠引導核酸優先在特定細胞類型(例如使用組織特異性調控元件來表現核酸)中表現。組織特異性調控元件為此項技術中已知。適宜組織特異性啟動子之非限制性實例包括白蛋白啟動子(肝臟特異性;Pinkert等人,1987.Genes Dev.1:268-277)、淋巴特異性啟動子(Calame及Eaton,1988.Adv.Immunol.43:235-275),具體而言T細胞受體啟動子(Winoto及Baltimore,1989.EMBO J.8:729-733)及免疫球蛋白啟動子(Baneiji等人,1983.Cell 33:729-740;Queen及Baltimore,1983.Cell 33:741-748)、神經元特異性啟動子(例如神經絲啟動子;Byrne及Ruddle,1989.Proc.Natl.Acad.Sci.USA 86:5473-5477)、胰臟特異性啟動子(Edlund等人,1985.Science 230:912-916)及乳腺特異性啟動子(例如乳清啟動子;美國專利第4,873,316號及歐洲申請公開案第264,166號)。亦涵蓋受發育調控之啟動子,例如鼠類hox啟動子(Kessel及Gruss,1990.Science 249:374-379)及α-甲胎蛋白啟動子(Campes及Tilghman,1989.Genes Dev.3:537-546)。關於該等原核及真核載體,參見美國專利6,750,059,其內容之全文皆以引用方式併入本文中。其他實施例可利用病毒載體,關於其參見美國專利申請案13/092,085,其內容之全文皆以引用方式併入本文中。組織特異性調控元件為此項技術中已知且就此而言參見美國專利7,776,321,其內容之全文皆以引用方式併入本文中。在一些實施例中,調控元件可操作連接至經改造之AAV衣殼系統之一或多種元件以驅動本文所述之經改造AAV衣殼系統之一或多種元件之表現。
載體可引入原核生物或原核細胞中且在其中增殖。在一些實施例中,原核生物用於擴增欲引入真核細胞中之載體拷貝或用作產生欲引入真核細胞中之載體之中間載體(例如擴增作為病毒載體包裝系統之一部分之質體)。在一 些實施例中,原核生物用於擴增載體拷貝及表現一或多種核酸,例如提供用於遞送至宿主細胞或宿主生物體之一或多種蛋白質之來源。
在一些實施例中,載體可為融合載體或融合表現載體。在一些實施例中,融合載體將多個胺基酸添加至其中所編碼之蛋白質,例如添加至重組蛋白之胺基末端、羧基末端或二者。此類融合載體可用於一或多個目的,例如:(i)增加重組蛋白之表現;(ii)增加重組蛋白之溶解度;及(iii)藉由在親和純化中用作配位體來輔助重組蛋白之純化。在一些實施例中,原核生物中多核苷酸(例如非編碼多核苷酸)及蛋白質之表現可在大腸桿菌中實施,該大腸桿菌具有含有引導融合或非融合多核苷酸及/或蛋白質之表現之組成型或誘導型啟動子之載體。在一些實施例中,融合表現載體可包括蛋白水解裂解位點,其可引入融合載體骨架或其他融合部分與重組多核苷酸或蛋白質之接合處以使得能夠在純化融合多核苷酸或蛋白質後自融合載體骨架或其他融合部分分離重組多核苷酸或蛋白質。此類酶及其同源識別序列包括Xa因子、凝血酶及腸激酶。實例融合表現載體包括將麩胱甘肽S-轉移酶(GST)、麥芽糖E結合蛋白或蛋白A分別融合至靶重組蛋白之pGEX(Pharmacia Biotech Inc;Smith及Johnson,1988.Gene 67:31-40)、pMAL(New England Biolabs,Beverly,Mass.)及pRIT5(Pharmacia,Piscataway,N.J.)。適宜誘導型非融合大腸桿菌表現載體之實例包括pTrc(Amrann等人(1988)Gene 69:301-315)及pET 11d(Studier等人,GENE EXPRESSION TECHNOLOGY:METHODS IN ENZYMOLOGY 185,Academic Press,San Diego,Calif.(1990)60-89)。
在一些實施例中,將驅動含有本文所述n聚體基元之經改造病毒(例如AAV)衣殼系統或其他組合物之一或多種元件之表現的一或多個載體引入宿主細胞中,使得本文所述之經改造遞送系統之元件之表現引導含有本文所述n聚體基元之經改造病毒(例如AAV)衣殼系統或其他組合物(包括但不限於經改造 之基因轉移劑粒子,其更詳細闡述於本文別處)的形成。舉例而言,含有本文所述n聚體基元之經改造病毒(例如AAV)衣殼系統或其他組合物之不同元件各自可操作連接至單獨載體上之單獨調控元件。本文所述之經改造遞送系統之不同元件之RNA可遞送至動物或哺乳動物或其細胞以產生動物或哺乳動物或其細胞,該動物或哺乳動物或其細胞組成型或誘導型或條件型表現含有本文所述n聚體基元之經改造病毒(例如AAV)衣殼系統或其他組合物之不同元件且納入含有本文所述n聚體基元之經改造病毒(例如AAV)衣殼系統或其他組合物之一或多種元件,或含有納入及/或表現含有本文所述n聚體基元之經改造病毒(例如AAV)衣殼系統或其他組合物之一或多種元件的一或多種細胞。
在一些實施例中,自相同或不同調控元件表現之元件中之兩者或更多者可組合於單一載體中,其中一或多個其他載體提供不包括在第一載體中之系統之任何組分。組合於單一載體中之本發明之經改造多核苷酸可以任一適宜取向排列,例如一種元件位於第二元件之5’(「上游」)或3’(「下游」)。一種元件之編碼序列可位於第二元件之編碼序列之相同或相反股上,且定向於相同或相反方向上。在一些實施例中,單一啟動子驅動編碼含有本文所述n聚體基元之一或多種經改造之病毒(例如AAV)衣殼蛋白或其他組合物之轉錄物的表現,本文所述之n聚體基元包埋於一或多條內含子序列內(例如各自在不同內含子中、兩個或更多個在至少一個內含子中或皆在單一內含子中)。在一些實施例中,本發明之經改造多核苷酸(包括但不限於經改造之病毒多核苷酸)可操作連接至同一啟動子且自其表現。
載體特徵
載體可包括可賦予載體、欲遞送之多核苷酸、自其產生之病毒粒子或其表現之多肽一或多種功能之其他特徵。此類特徵包括(但不限於)調控元件、可選擇標記物、分子標識符(例如分子條碼)、穩定元件及諸如此類。熟習此 項技術者應瞭解,表現載體及所包括其他特徵之設計可端視諸如欲轉型宿主細胞之選擇、期望表現水準等因素而定。
調控元件
在實施例中,本文所述之多核苷酸及/或其載體(包括但不限於本發明之經改造AAV衣殼多核苷酸)可包括可操作連接至多核苷酸之一或多個調控元件。術語「調控元件」意欲包括啟動子、增強子、內部核糖體進入位點(IRES)及其他表現控制元件(例如轉錄終止信號,例如多腺苷酸化信號及聚U序列)。此類調控元件闡述於例如Goeddel,GENE EXPRESSION TECHNOLOGY:METHODS IN ENZYMOLOGY 185,Academic Press,San Diego,Calif.(1990)中。調控元件包括引導核苷酸序列在許多類型之宿主細胞中之組成型表現之元件及引導核苷酸序列僅在某些宿主細胞中之表現之元件(例如組織特異性調控序列)。組織特異性啟動子可引導主要在所關注期望組織(例如肌肉、神經元、骨、皮膚、血液)、特定器官(例如肝臟、胰臟)或具體細胞類型(例如淋巴球)中之表現。調控元件亦可以時間依賴性方式、例如以細胞週期依賴性或發育階段依賴性方式引導表現,此亦可具或亦可不具組織或細胞類型特異性。在一些實施例中,載體包含一或多個pol III啟動子(例如1個、2個、3個、4個、5個或更多個pol III啟動子)、一或多個pol II啟動子(例如1個、2個、3個、4個、5個或更多個pol II啟動子)、一或多個pol I啟動子(例如1個、2個、3個、4個、5個或更多個pol I啟動子)或其組合。pol III啟動子之實例包括(但不限於)U6及H1啟動子。pol II啟動子之實例包括(但不限於)反轉錄病毒勞斯肉瘤病毒(Rous sarcoma virus,RSV)LTR啟動子(視情況地具有RSV增強子)、巨細胞病毒(CMV)啟動子(視情況地具有CMV增強子)(參見例如Boshart等人,Cell,41:521-530(1985))、SV40啟動子、二氫葉酸還原酶啟動子、β-肌動蛋白啟動子、磷酸甘油激酶(PGK)啟動子及EF1α啟動子。術語「調控元件」亦涵蓋增強子元件,例如WPRE;CMV 增強子;HTLV-I之LTR中之R-U5’區段(Mol.Cell.Biol.,第8(1)卷,第466-472頁,1988);SV40增強子;及兔β-球蛋白之外顯子2與3之間的內含子序列(Proc.Natl.Acad.Sci.USA.,第78(3)卷,第1527-31頁,1981)。
在一些實施例中,調控序列可為美國專利第7,776,321號、美國專利公開案第2011/0027239號及PCT公開案WO 2011/028929中所述之調控序列,該等專利之內容之全文皆以引用方式併入本文中。在一些實施例中,載體可含有最小啟動子。在一些實施例中,最小啟動子係Mecp2啟動子、tRNA啟動子或U6。在另一實施例中,最小啟動子具有組織特異性。在一些實施例中,載體多核苷酸、最小啟動子及多核苷酸序列之長度小於4.4Kb。
為表現多核苷酸,載體可包括一或多條轉錄及/或轉譯起始調控序列,例如啟動子,其引導細胞中基因之轉錄及/或經編碼蛋白質之轉譯。在一些實施例中,可採用組成型啟動子。適用於哺乳動物細胞之組成型啟動子通常為此項技術中已知且包括(但不限於)SV40、CAG、CMV、EF-1α、β-肌動蛋白、RSV及PGK。適用於細菌細胞、酵母菌細胞及真菌細胞之組成型啟動子通常為此項技術中已知,例如用於細菌表現之T-7啟動子及用於在酵母菌中表現之醇去氫酶啟動子。
在一些實施例中,調控元件可為經調控啟動子。「經調控啟動子」係指非組成型、但以時間及/或空間調控方式引導基因表現之啟動子,且包括組織特異性、組織較佳及誘導型啟動子。在一些實施例中,經調控啟動子係如先前本文別處所論述之組織特異性啟動子。經調控啟動子包括條件型啟動子及誘導型啟動子。在一些實施例中,條件型啟動子可用於引導在某些環境條件下及/或在特定發育狀態期間特定細胞類型中多核苷酸之表現。適宜組織特異性啟動子可包括(但不限於)肝臟特異性啟動子(例如APOA2、SERPIN A1(hAAT)、CYP3A4及MIR122)、胰臟細胞啟動子(例如INS、IRS2、Pdx1、Alx3、Ppy)、心臟特異性 啟動子(例如Myh6(α MHC)、MYL2(MLC-2v)、TNI3(cTnl)、NPPA(ANF)、Slc8a1(Ncx1))、中樞神經系統細胞啟動子(SYN1、GFAP、INA、NES、MOBP、MBP、TH、FOXA2(HNF3 β))、皮膚細胞特異性啟動子(例如FLG、K14、TGM3)、免疫細胞特異性啟動子(例如ITGAM、CD43啟動子、CD14啟動子、CD45啟動子、CD68啟動子)、泌尿生殖細胞特異性啟動子(例如Pbsn、Upk2、Sbp、Fer114)、內皮細胞特異性啟動子(例如ENG)、多潛能及胚胎胚層細胞特異性啟動子(例如Oct4、NANOG、合成Oct4、T鼠短尾突變體表型、NES、SOX17、FOXA2、MIR122)及肌肉細胞特異性啟動子(例如結蛋白)。其他組織及/或細胞特異性啟動子論述於本文別處且可通常為此項技術中已知並在本揭示案之範圍內。
誘導型/條件型啟動子可為正誘導型/條件型啟動子(例如在與活化活化劑或誘導劑(化合物、環境條件或其他刺激物)適當相互作用後活化多核苷酸轉錄之啟動子)或負/條件誘導型啟動子(例如被抑制(例如由抑制物結合)直至移除啟動子之抑制物條件(例如誘導劑結合與啟動子結合之抑制物,從而刺激抑制物釋放啟動子或自啟動子環境移除化學抑制物)之啟動子)。誘導劑可為化合物、環境條件或其他刺激物。因此,誘導型/條件型啟動子可對任何適宜刺激物有反應,例如化學、生物或其他分子劑、溫度、光及/或pH。適宜誘導型/條件型啟動子包括(但不限於)Tet-On、Tet-Off、Lac啟動子、pBad、AlcA、LexA、Hsp70啟動子、Hsp90啟動子、pDawn、XVE/OlexA、GVG及pOp/LhGR。
當期望在植物細胞中表現時,本文所述之經改造AAV衣殼系統之組分通常置於植物啟動子、即可在植物細胞中操作之啟動子的控制下。設想使用不同類型之啟動子。在一些實施例中,在植物中納入經改造之病毒(例如AAV)衣殼系統載體可用於產生病毒載體之目的。
組成型植物啟動子係能夠表現開放閱讀框(ORF)之啟動子,其在植物之所有或幾乎所有的發育階段期間在所有或幾乎所有的植物組織中進行控 制(稱為「組成型表現」)。組成型啟動子之一個非限制性實例係花椰菜花葉病毒35S啟動子。不同啟動子可引導不同組織或細胞類型中或不同發育階段或對不同環境條件有反應之基因表現。在具體實施例中,一或多種經改造之AAV衣殼系統組分係在組成型啟動子(例如花椰菜花葉病毒35S啟動子)控制下表現,可使用組織較佳啟動子來靶向特定植物組織內某些細胞類型(例如特定種子細胞中之葉或根中之維管細胞)之增強的表現。用於本發明之經改造AAV衣殼系統及其他組合物中之特定啟動子之實例參見Kawamata等人(1997)Plant Cell Physiol 38:792-803;Yamamoto等人(1997)Plant J 12:255-65;Hire等人(1992)Plant Mol Biol 20:207-18;Kuster等人(1995)Plant Mol Biol 29:759-72;及Capana等人(1994)Plant Mol Biol 25:681-91。
可允許時空控制基因編輯或基因表現之誘導型啟動子之實例可使用一種形式之能量。能量之形式可包括(但不限於)音能、電磁輻射、化學能及/或熱能。誘導型系統之實例包括四環素誘導型啟動子(Tet-On或Tet-Off)、小分子雙雜交轉錄活化系統(FKBP、ABA等)或光誘導型系統(光敏色素、LOV結構域或隱花素),例如以序列特異性方式引導轉錄活性變化之光誘導型轉錄效應物(LITE)。光誘導型系統之組分可包括本文所述本發明之經改造AAV衣殼系統或其他組合物之一或多種元件、光反應性細胞色素異二聚體(例如來自擬南芥(Arabidopsis thaliana))及轉錄活化/抑制結構域。在一些實施例中,載體可包括PCT公開案WO 2014/018423及US公開案2015/0291966、2017/0166903、2019/0203212中所提供之一或多種誘導型DNA結合蛋白,該等公開案闡述例如誘導型DNA結合蛋白及使用方法之實施例且可適用於本發明。
在一些實施例中,瞬時或誘導型表現可藉由納入例如化學調控之啟動子來達成,即藉此施加外源化學品來誘導基因表現。基因表現之調節亦可藉由納入化學抑制型啟動子來獲得,其中施加化學品來抑制基因表現。化學誘導型 啟動子包括(但不限於)由苯磺醯胺除草劑安全劑活化之玉蜀黍ln2-2啟動子(De Veylder等人(1997)Plant Cell Physiol 38:568-77)、由用作應急除草劑之疏水性親電子化合物活化之玉蜀黍GST啟動子(GST-11-27,WO93/01294)及由柳酸活化之菸草PR-1 a啟動子(Ono等人(2004)Biosci Biotechnol Biochem 68:803-7)。由抗生素調控之啟動子(例如四環素誘導型啟動子及四環素抑制型啟動子(Gatz等人(1991)Mol Gen Genet 227:229-37;美國專利第5,814,618號及美國專利第5,789,156號))亦可用於本文中。
在一些實施例中,載體或其系統可包括能夠使本發明之經改造多核苷酸(例如經改造之病毒(例如AAV)衣殼多核苷酸)易位及/或表現至特定細胞組分或細胞器/中的一或多種元件。此類細胞器可包括(但不限於)核、核糖體、內質網、高基氏體(Golgi apparatus)、葉綠體、粒線體、液泡、溶酶體、細胞骨架、質膜、細胞壁、過氧化物酶體、中心粒等。
可選擇標記物及標籤
一或多種本發明之經改造多核苷酸(例如經改造之病毒(例如AAV)衣殼多核苷酸)可操作連接、融合至或以其他方式經修飾以包括編碼或為可選擇標記物或標籤之多核苷酸,該可選擇標記物或標籤可為多核苷酸或多肽。在一些實施例中,編碼多肽可選擇標記物之多肽可納入本發明之經改造多核苷酸(例如經改造之病毒(例如AAV)衣殼多核苷酸)中,使得可選擇標記物多肽在轉譯時插入經改造之多肽(例如經改造之AAV衣殼多肽)之N末端與C末端之間的兩個胺基酸之間或經改造之多肽(例如經改造之AAV衣殼多肽)之N末端及/或C末端。在一些實施例中,可選擇標記物或標籤係多核苷酸條碼或獨特的分子標識符(UMI)。
應瞭解,編碼此類可選擇標記物或標籤之多核苷酸可以允許表現可選擇標記物或標籤之適當方式納入編碼本文所述之經改造AAV衣殼系統之一 或多種組分之多核苷酸中。此類技術及方法闡述於本文別處且熟習此項技術者根據本揭示案將立即瞭解此類技術及方法。許多此類可選擇標記物及標籤通常為此項技術中已知且意欲在本揭示案之範圍內。
適宜可選擇標記物及標籤包括(但不限於)親和標籤,例如幾丁質結合蛋白(CBP)、麥芽糖結合蛋白(MBP)、麩胱甘肽-S-轉移酶(GST)、聚(His)標籤;增溶標籤,例如硫氧還蛋白(TRX)及聚(NANP)、MBP及GST;層析標籤,例如由聚陰離子胺基酸組成之標籤,例如FLAG標籤;抗原決定基標籤,例如V5標籤、Myc標籤、HA標籤及NE標籤;可允許特異性酶修飾(例如由生物素聯接酶生物素化)或化學修飾(例如與FlAsH-EDT2反應用於螢光成像)之蛋白質標籤、含有限制酶或其他酶裂解位點之DNA及/或RNA區段;編碼提供針對其他毒性化合物之抗性的產物(包括抗生素,例如大觀黴素(spectinomycin)、胺苄青黴素(ampicillin)、康黴素(kanamycin)、四環素、Basta、新黴素磷酸轉移酶II(NEO)、潮黴素(hygromycin)磷酸轉移酶(HPT))及諸如此類)之DNA區段;編碼原本缺少接受細胞之產物(例如tRNA基因、營養缺陷型標記物)之DNA及/或RNA區段;編碼可容易鑑別之產物(例如表型標記物,例如β-半乳糖苷酶、GUS;螢光蛋白,例如綠色螢光蛋白(GFP)、青色(CFP)、黃色(YFP)、紅色(RFP)、螢光素酶及細胞表面蛋白)之DNA及/或RNA區段;可產生用於PCR之一或多個新引子位點(例如先前並不鄰接之兩條DNA序列之鄰接位置)之多核苷酸、不起作用或藉由限制性內切酶或其他DNA修飾酶、化學品等起作用之DNA序列;抗原決定基標籤(例如GFP、FLAG標籤及His標籤)及製造分子條碼或獨特的分子標識符(UMI)之DNA序列、允許其鑑別之特定修飾(例如甲基化)所需之DNA序列。熟習此項技術者應瞭解其他適宜標記物。
可選擇標記物及標籤可經由適宜連接體可操作連接至本文所述之經改造AAV衣殼系統或其他組合物及/或系統之一或多種組分,該適宜連接 體係例如短至GS或GG至(GGGGG)3(SEQ ID NO:34)或(GGGGS)3(SEQ ID NO:35)之甘胺酸或甘胺酸絲胺酸連接體。其他適宜連接體闡述於本文別處。
載體或載體系統可包括編碼一或多個靶向部分之一或多個多核苷酸。在一些實施例中,編碼靶向部分之多核苷酸可包括在載體或載體系統(例如病毒載體系統)中,使得其在所產生病毒粒子內及/或上表現,使得病毒粒子可靶向特定細胞、組織、器官等。在一些實施例中,編碼靶向部分之多核苷酸可包括在載體或載體系統中,使得本發明之經改造多核苷酸(例如經改造之病毒(例如AAV)衣殼多核苷酸)及/或自其表現之產物包括靶向部分且可靶向特定細胞、組織、器官等。在一些實施例(例如非病毒載劑)中,靶向部分可連接至載劑(例如聚合物、脂質、無機分子等)且可能夠使載劑及任何連接或締合之本文所述本發明之經改造多核苷酸、本發明之經改造多肽或其他組合物靶向特定細胞、組織、器官等。在一些實施例中,特定細胞係肌肉細胞。
無細胞載體及多核苷酸表現
在一些實施例中,編碼本發明之n聚體基元之多核苷酸可在無細胞活體外系統中自載體或適宜多核苷酸表現。在一些實施例中,編碼經改造AAV衣殼系統之一或多個特徵之多核苷酸可在無細胞活體外系統中自載體或適宜多核苷酸表現。換言之,多核苷酸可活體外轉錄且視情況地轉譯。活體外轉錄/轉譯系統適當載體通常為此項技術中已知且在市面上有售。通常,活體外轉錄及活體外轉譯系統分別在細胞環境外複製RNA及蛋白質合成過程。用於活體外轉錄之載體及適宜多核苷酸可包括T7、SP6、T3、啟動子調控序列,其可由適當聚合酶識別及起作用以轉錄多核苷酸或載體。
活體外轉譯可為獨立的(例如經純化之多核糖核苷酸之轉譯)或連接/偶聯至轉錄。在一些實施例中,無細胞(或活體外)轉譯系統可包括來自兔網狀紅血球、小麥胚芽及/或大腸桿菌之提取物。提取物可包括外源RNA轉譯所需 之多種大分子組分(例如70S或80S核糖體、tRNA、胺基醯基-tRNA、合成酶、起始、延伸因子、終止因子等)。可在轉譯反應期間包括或添加其他組分,包括(但不限於)胺基酸、能源(ATP、GTP)、能量再生系統(肌酸磷酸鹽及肌酸磷酸激酶(真核系統))(磷酸烯醇丙酮酸鹽及丙酮酸激酶,用於細菌系統)及其他輔因子(Mg2+、K+等)。如先前所提及,活體外轉譯可基於RNA或DNA起始材料。一些轉譯系統可利用RNA模板作為起始材料(例如網狀紅血球溶解物及小麥胚芽提取物)。一些轉譯系統可利用DNA模板作為起始材料(例如基於大腸桿菌之系統)。在該等系統中,轉錄及轉譯係偶聯的且DNA首先轉錄成RNA,隨後進行轉譯。適宜標準及偶聯的無細胞轉譯系統通常為此項技術中已知且在市面上有售。
載體多核苷酸之密碼子最佳化
如本文別處所述,編碼本發明之n聚體基元之多核苷酸及/或本文所述之其他多核苷酸可經密碼子最佳化。在一些實施例中,本文所述之經改造AAV衣殼系統之多核苷酸可經密碼子最佳化。在一些實施例中,除視情況地經密碼子最佳化之編碼n聚體基元之多核苷酸外,含於本文所述載體中之一或多種多核苷酸(「載體多核苷酸」)可經密碼子最佳化,包括(但不限於)本文所述之經改造AAV衣殼系統之實施例。一般而言,密碼子最佳化係指藉由用更頻繁或最頻繁用於宿主細胞基因中之密碼子替代天然序列之至少一個密碼子(例如約或大於約1個、2個、3個、4個、5個、10個、15個、20個、25個、50個或更多個密碼子)、同時維持天然胺基酸序列來修飾核酸序列以增強所關注宿主細胞中之表現的過程。多個物種展現對特定胺基酸之某些密碼子之特定偏好。密碼子偏好(生物體之間之密碼子使用之差異)通常與信使RNA(mRNA)之轉譯效率相關聯,進而認為信使RNA之轉譯效率尤其取決於所轉譯密碼子之性質及特定轉移RNA(tRNA)分子之利用度。所選tRNA在細胞中之優勢通常反映最頻繁用於肽 合成之密碼子。因此,基因可基於密碼子最佳化進行調整用於給定生物體中之最佳基因表現。密碼子使用表可容易地在例如可在www.kazusa.orjp/codon/上獲得之「密碼子使用資料庫」上獲得且該等表可適用於多個方面。參見Nakamura,Y.等人,「Codon usage tabulated from the international DNA sequence databases:status for the year 2000」Nucl.Acids Res.28:292(2000)。亦可獲得使特定序列密碼子最佳化以在特定宿主細胞中表現之電腦算法,例如Gene Forge(Aptagen;Jacobus,PA)。在一些實施例中,編碼DNA/RNA靶向Cas蛋白之序列中之一或多個密碼子(例如1個、2個、3個、4個、5個、10個、15個、20個、25個、50個或更多個或所有密碼子)對應於最頻繁用於特定胺基酸之密碼子。關於酵母菌中之密碼子使用,參考可在http://www.yeastgenome.org/community/codon_usage.shtml上獲得之線上酵母菌基因體資料庫或Codon selection in yeast,Bennetzen及Hall,J Biol Chem.1982年3月25日;257(6):3026-31。關於植物(包括藻類)中之密碼子使用,參考Codon usage in higher plants,green algae,and cyanobacteria,Campbell及Gowri,Plant Physiol.1990年1月;92(1):1-11.;以及Codon usage in plant genes,Murray等人,Nucleic Acids Res.1989年1月25日;17(2):477-98;或Selection on the codon bias of chloroplast and cyanelle genes in different plant and algal lineages,Morton BR,J Mol Evol.1998年4月;46(4):449-59。
載體多核苷酸可經密碼子最佳化以在特定細胞類型、組織類型、器官類型及/或個體類型中表現。在一些實施例中,密碼子最佳化序列係經最佳化以在真核生物(例如人類)中表現(即經最佳化以在人類或人類細胞中表現)或用於如本文別處所述之另一真核生物(例如另一動物(例如哺乳動物或禽))的序列。根據本文描述,此類密碼子最佳化序列在熟習此項技術者之範圍內。在一些實施例中,多核苷酸經密碼子最佳化用於特定細胞類型。此類細胞類型可包括(但不 限於)上皮細胞(包括皮膚細胞、襯於胃腸道之細胞、襯於其他中空器官之細胞)、神經細胞(神經、腦細胞、脊柱細胞、神經支持細胞(例如星形細胞、神經膠質細胞、神經鞘細胞等)、肌肉細胞(例如心肌、平滑肌細胞及骨骼肌細胞)、結締組織細胞(脂肪及其他軟組織填充細胞、骨細胞、肌腱細胞、軟骨細胞)、血細胞、幹細胞及其他祖細胞、免疫系統細胞、生殖細胞及其組合。根據本文描述,此類密碼子最佳化序列在熟習此項技術者之範圍內。在一些實施例中,多核苷酸經密碼子最佳化用於特定組織類型。此類組織類型可包括(但不限於)肌肉組織、結締組織、結締組織、神經組織及上皮組織。根據本文描述,此類密碼子最佳化序列在熟習此項技術者之範圍內。在一些實施例中,多核苷酸經密碼子最佳化用於特定器官。此類器官包括(但不限於)肌肉、皮膚、腸、肝臟、脾、腦、肺、胃、心臟、腎、膽囊、胰臟、膀胱、甲狀腺、骨、血管、血液及其組合。根據本文描述,此類密碼子最佳化序列在熟習此項技術者之範圍內。
在一些實施例中,載體多核苷酸經密碼子最佳化以在特定細胞(例如原核或真核細胞)中表現。真核細胞可為或衍生自特定生物體之細胞,例如植物或哺乳動物,包括(但不限於)如本文所論述之人類或非人類真核生物或動物或哺乳動物,例如小鼠、大鼠、兔、狗、家畜或非人類哺乳動物或靈長類動物。
非病毒載體及載劑
在一些實施例中,載體係非病毒載體或載劑。在一些實施例中,非病毒載體可具有與病毒載體相比毒性及/或免疫原性降低及/或生物安全性增加之優點。如本文在此背景中所用之專門術語「非病毒載體及載劑」係指並非基於病毒或病毒基因體之一或多種組分之分子及/或組合物(不包括由非病毒載體欲遞送及/或表現之任何核苷酸),其可能夠連接至、納入、偶聯及/或以其他方式與本文所述本發明之經改造衣殼多核苷酸(例如經改造之AAV衣殼多核苷酸)或其他組合物相互作用且可能夠將多核苷酸渡運至細胞及/或表現多核苷酸。應瞭 解,此並不排除納入欲遞送之基於病毒之多核苷酸。舉例而言,若欲遞送之gRNA係針對病毒組分且其插入或以其他方式偶聯至其他非病毒載體或載劑,則此將不稱該載體為「病毒載體」。非病毒載體及載劑包括裸多核苷酸、基於化學品之載劑、基於多核苷酸(非病毒)之載體及基於粒子之載劑。應瞭解,如非病毒載體及載劑背景中使用之術語「載體」係指多核苷酸載體且如此背景中所用之「載劑」係指連接至或以其他方式與欲遞送之多核苷酸(例如本發明之經改造AAV衣殼多核苷酸)相互作用之非核酸或多核苷酸分子或組合物。
裸多核苷酸
在一些實施例中,本文別處所述之本發明之一或多種經改造之AAV衣殼多核苷酸或其他多核苷酸可包括在裸多核苷酸中。如本文所用之專門術語「裸多核苷酸」係指不與另一分子(例如蛋白質、脂質及/或其他分子)締合之多核苷酸,該另一分子通常可有助於保護該多核苷酸免受環境因素及/或降解。如本文所用之與......締合包括(但不限於)連接至、黏著至、吸附至、裝入......中、裝入......中或內、與......混合及諸如此類。包括本文所述本發明之一或多種經改造之AAV衣殼多核苷酸或其他多核苷酸的裸多核苷酸可直接遞送至宿主細胞且視情況地在其中表現。裸多核苷酸可具有任何適宜的二維及三維構形。藉助非限制性實例,裸多核苷酸可為單股分子、雙股分子、環形分子(例如質體及人工染色體)、含有單股部分及雙股部分之分子(例如核酶)及諸如此類。在一些實施例中,裸多核苷酸僅含本發明之經改造AAV衣殼多核苷酸或其他多核苷酸。在一些實施例中,除本文別處所述之本發明之經改造AAV衣殼多核苷酸或其他多核苷酸外,裸多核苷酸可含有其他核酸及/或多核苷酸。裸多核苷酸可包括轉座子系統之一或多種元件。轉座子及其系統更詳細闡述於本文別處。
非病毒多核苷酸載體
在一些實施例中,本發明之一或多種經改造之AAV衣殼多核苷酸或其他多核苷酸可包括在非病毒多核苷酸載體中。適宜非病毒多核苷酸載體包括(但不限於)轉座子載體及載體系統、質體、細菌人工染色體、酵母菌人工染色體、無AR(抗生素抗性)之質體及微質體、環形共價閉合載體(例如微環、微載體、微結)、線性共價閉合載體(「啞鈴形」)、MIDGE(最低限度免疫定義之基因表現)載體、MiLV(微線性載體)載體、微小串、微小內含子質體、PSK系統(分離後殺傷系統)、ORT(操縱子抑制物滴定)質體及諸如此類。參見例如Hardee等人,2017.Genes.8(2):65。
在一些實施例中,非病毒多核苷酸載體可具有條件複製起點。在一些實施例中,非病毒多核苷酸載體可為ORT質體。在一些實施例中,非病毒多核苷酸載體可具有最低限度免疫定義之基因表現。在一些實施例中,非病毒多核苷酸載體可具有一或多種分離後殺傷系統基因。在一些實施例中,非病毒多核苷酸載體係無AR的。在一些實施例中,非病毒多核苷酸載體係微載體。在一些實施例中,非病毒多核苷酸載體包括核定位信號。在一些實施例中,非病毒多核苷酸載體可包括一或多個CpG基元。在一些實施例中,非病毒多核苷酸載體可包括一或多個支架/基質連接區域(S/MAR)。參見例如Mirkovitch等人,1984.Cell.39:223-232;Wong等人,2015.Adv.Genet.89:113-152,其技術及載體可適用於本發明中。S/MAR係富含AT之序列,其在染色體經由DNA環基底連接至核基質之空間組織中起作用。通常發現S/MAR靠近調控元件,例如啟動子、增強子及DNA複製起點。納入一或多個S/MAR可促進每個細胞週期複製一次以維持非病毒多核苷酸載體作為子細胞中之游離基因體。在實施例中,S/MAR序列位於包括在非病毒多核苷酸載體中之主動轉錄之多核苷酸(例如本發明之一或多種經改造之AAV衣殼多核苷酸或其他多核苷酸或分子)之下游。在一些實施例中,S/MAR可為來自β-干擾素基因簇之S/MAR。參見例如Verghese等人,2014. Nucleic Acid Res.42:e53;Xu等人,2016.Sci.China Life Sci.59:1024-1033;Jin等人,2016.8:702-711;Koirala等人,2014.Adv.Exp.Med.Biol.801:703-709;及Nehlsen等人,2006.Gene Ther.Mol.Biol.10:233-244,其技術及載體可適用於本發明中。
在一些實施例中,非病毒載體係轉座子載體或其系統。如本文所用之「轉座子」(亦稱為可轉座元件)係指能夠自基因體之位置移動至另一位置之多核苷酸序列。存在幾類轉座子。轉座子包括反轉錄轉座子及DNA轉座子。反轉錄轉座子需要轉錄移動(或轉座)之多核苷酸以將多核苷酸轉座至新基因體或多核苷酸。DNA轉座子係不需反轉錄移動(或轉座)之多核苷酸來將多核苷酸轉座至新基因體或多核苷酸之轉座子。在一些實施例中,非病毒多核苷酸載體可為反轉錄轉座子載體。在一些實施例中,反轉錄轉座子載體包括長末端重複。在一些實施例中,反轉錄轉座子載體不包括長末端重複。在一些實施例中,非病毒多核苷酸載體可為DNA轉座子載體。DNA轉座子載體可包括編碼轉座酶之多核苷酸序列。在一些實施例中,轉座子載體構形為非自主轉座子載體,此意指轉座並非其自身自發發生的。在該等實施例中之一些實施例中,轉座子載體缺少編碼轉座所需之蛋白質之一或多條多核苷酸序列。在一些實施例中,非自主轉座子載體缺少一或多種Ac元件。
在一些實施例中,非病毒多核苷酸轉座子載體系統可包括第一多核苷酸載體,其含有藉由轉座子末端反向重複(TIR)側接於5’及3’末端上的本文所述本發明之經改造AAV衣殼多核苷酸或其他多核苷酸或分子;及第二多核苷酸載體,其包括能夠編碼轉座酶之多核苷酸,該多核苷酸偶聯至啟動子以驅動轉座酶之表現。當二者在相同細胞中表現時,轉座酶可自第二載體表現且可轉座第一載體(例如本發明之經改造AAV衣殼多核苷酸或其他多核苷酸或分子)上之TIR之間的材料並將其整合至宿主細胞基因體中之一或多個位置中。在一些實施 例中,轉座子載體或其系統可構形為基因陷阱。在一些實施例中,TIR可經構形以側接強剪接受體位點,其後為報導基因及/或其他基因(例如本發明之一或多種經改造之AAV衣殼多核苷酸或其他多核苷酸或分子)及強多A尾。當在使用此載體或其系統的同時進行轉座時,轉座子可插入基因之內含子中且所插入報導基因或其他基因可擴大錯誤剪接過程並因此其使所誘捕基因不活化。
可使用任何適宜轉座子系統。適宜轉座子及其系統可包括睡美人(Sleeping Beauty)轉座子系統(Tc1/mariner超家族)(參見例如Ivics等人,1997.Cell.91(4):501-510)、piggyBac(piggyBac超家族)(參見例如Li等人,2013 110(25):E2279-E2287及Yusa等人,2011.PNAS.108(4):1531-1536)、Tol2(超家族hAT)、青蛙王子(Frog Prince)(Tc1/mariner超家族)(參見例如Miskey等人,2003 Nucleic Acid Res.31(23):6873-6881)及其變異體。
化學載劑
在一些實施例中,本文所述本發明之經改造AAV衣殼多核苷酸或其他多核苷酸或其他分子可偶聯至化學載劑。可適於遞送多核苷酸之化學載劑可廣泛地分成以下類別:(i)無機粒子、(ii)基於脂質、(iii)基於聚合物及(iv)基於肽。其可分類為(1)可與多核苷酸(例如本發明之經改造AAV衣殼多核苷酸)形成縮合複合物之化學載劑,(2)能夠靶向特定細胞之化學載劑,(3)能夠增加本發明之多核苷酸或其他分子(例如經改造之AAV衣殼多核苷酸)遞送至宿主細胞之核或胞質液之化學載劑,(4)能夠自宿主細胞之胞質液中之DNA/RNA崩解之化學載劑,及(5)能夠持續或控制釋放之化學載劑。應瞭解,給定化學載劑中之任一者可包括多個類別之特徵。如本文所用之術語「粒子」係指用於遞送本文所述本發明之組合物(包括本文所述之粒子、多肽、多核苷酸及其他組合物)之任何適宜大小之粒子。適宜大小包括大粒子、微粒子及奈米級粒子。
在一些實施例中,非病毒載劑可為無機粒子。在一些實施例中,無機粒子可為奈米粒子。無機粒子可藉由改變大小、形狀及/或孔隙度來構形及最佳化。在一些實施例中,無機粒子經最佳化以避開網狀內皮系統。在一些實施例中,無機粒子可經最佳化以保護所囊封分子免於降解。可用作此背景中之非病毒載劑之適宜無機粒子可包括(但不限於)磷酸鈣、二氧化矽、金屬(例如金、鉑、銀、鈀、銠、鋨、銥、釕、汞、銅、錸、鈦、鈮、鉭及其組合)、磁性化合物、粒子及材料(例如超磁性氧化鐵及磁鐵礦)、量子點、富勒烯(例如碳奈米粒子、奈米管、奈米串及諸如此類)及其組合。其他適宜無機非病毒載劑論述於本文別處。
在一些實施例中,非病毒載劑可為基於脂質之載劑。基於脂質之適宜載劑亦更詳細闡述於本文中。在一些實施例中,基於脂質之載劑包括能夠結合或以其他方式與欲遞送之多核苷酸(例如例如本發明之經改造AAV衣殼多核苷酸)上之負電荷相互作用的陽離子脂質或兩親性脂質。在一些實施例中,化學非病毒載劑系統可包括多核苷酸(例如本發明之經改造AAV衣殼多核苷酸或其他組合物或分子)及脂質(例如陽離子脂質)。該等系統在此項技術中亦稱為脂質體複合物(lipoplex)。脂質體複合物之其他實施例闡述於本文別處。在一些實施例中,基於脂質之非病毒載劑可為脂質奈米乳液。脂質奈米乳液可藉由將不可混溶液體分散於另一穩定乳化劑中來形成且可具有由脂質、水及表面活性劑構成之約200nm之粒子,其可含有欲遞送之多核苷酸(例如本發明之經改造AAV衣殼多核苷酸)。在一些實施例中,基於脂質之非病毒載劑可為固體脂質粒子或奈米粒子。
在一些實施例中,非病毒載劑可為基於肽之載劑。在一些實施例中,基於肽之非病毒載劑可包括一或多種陽離子胺基酸。在一些實施例中,35%至40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、99%或100%之胺基酸為陽離子胺基酸。在一些實施例中,肽載劑可用於與其他 類型之載劑(例如基於聚合物之載劑及基於脂質之載劑以使該等載劑功能化)中。在一些實施例中,功能化係靶向宿主細胞。可包括在基於聚合物之非病毒載劑中之適宜聚合物可包括(但不限於)聚乙烯亞胺(PEI)、幾丁聚糖、聚(DL-交酯)(PLA)、聚(DL-交酯-共-糖苷)(PLGA)、樹枝狀聚合物(參見例如美國專利公開案2017/0079916,其技術及組合物可適用於本發明之經改造AAV衣殼多核苷酸)、聚甲基丙烯酸酯及其組合。
在一些實施例中,非病毒載劑可經構形以釋放與對外部刺激物(例如pH、溫度、滲透度、特定分子或組合物(例如鈣、NaCl及諸如此類)之濃度、壓力及諸如此類)有反應之非病毒載劑締合或連接之經改造之遞送系統多核苷酸。在一些實施例中,非病毒載劑可為經構形之粒子,包括本文所述本發明之一或多種經改造之AAV衣殼多核苷酸或其他組合物及環境觸發劑反應元件及視情況地觸發劑。在一些實施例中,粒子可包括可選自聚甲基丙烯酸酯及聚丙烯酸酯之群之聚合物。在一些實施例中,非病毒粒子可包括美國專利公開案20150232883及20050123596中所述之組合物微粒之一或多個實施例,該等美國專利公開案之技術及組合物可適用於本發明中。
在一些實施例中,非病毒載劑可為基於聚合物之載劑。在一些實施例中,聚合物係陽離子聚合物或主要係陽離子聚合物,使得其可以電荷依賴性方式與欲遞送之帶負電之多核苷酸(例如本發明之經改造AAV衣殼多核苷酸)相互作用。基於聚合物之系統更詳細闡述於本文別處。
病毒載體
在一些實施例中,載體係病毒載體。如本文在此背景中所用之專門術語「病毒載體」係指基於多核苷酸之載體,其含有來自或基於病毒之一或多種元件之一或多種元件,該病毒之一或多種元件可能夠表現多核苷酸(例如本發明之經改造AAV衣殼多核苷酸、負荷或其他組合物或分子)且將其包裝成病毒 粒子,並在單獨使用或與一或多個其他病毒載體一起使用(例如在病毒載體系統中)時產生該病毒粒子。病毒載體及其系統可用於產生用於遞送及/或表現及/或產生本文所述本發明之一或多種組合物(包括但不限於任何病毒粒子及相關負荷)之病毒粒子。病毒載體可為涉及多個載體之病毒載體系統之一部分。在一些實施例中,納入多個病毒載體之系統可增加該等系統之安全性。適宜病毒載體可包括基於腺病毒之載體、腺相關載體、輔助依賴性腺病毒(HdAd)載體、雜合腺病毒載體及諸如此類。自其產生之病毒載體及病毒粒子之其他實施例闡述於本文別處。在一些實施例中,病毒載體經構形以產生複製難勝任病毒粒子用於改良該等系統之安全性。
腺病毒載體、輔助依賴性腺病毒載體及雜合腺病毒載體
在一些實施例中,載體可為腺病毒載體。在一些實施例中,腺病毒載體可包括元件,使得使用載體或其系統產生之病毒粒子可為血清型2、5或9。在一些實施例中,欲經由腺病毒粒子遞送之多核苷酸可高達約8kb。因此,在一些實施例中,腺病毒載體可包括大小可介於約0.001kb至約8kb範圍內之欲遞送之DNA多核苷酸。腺病毒載體已成功地用於若干背景下(參見例如Teramato等人,2000.Lancet.355:1911-1912;Lai等人,2002.DNA Cell.Biol.21:895-913;Flotte等人,1996.Hum.Gene.Ther.7:1145-1159;及Kay等人,2000.Nat.Genet.24:257-261。經改造之AAV衣殼可包括在腺病毒載體中以產生含有該等經改造AAV衣殼之腺病毒粒子。
在一些實施例中,載體可為輔助依賴性腺病毒載體或其系統。該等載體或其系統在本領域中亦稱為「空殼(gutless或gutted)」載體且係一代改進之腺病毒載體(參見例如Thrasher等人,2006.Nature.443:E5-7)。在輔助依賴性腺病毒載體系統之實施例中,一個載體(輔助)可含有複製所需之所有病毒基因,但在包裝結構域中含有條件基因缺陷。系統之第二載體可僅含病毒基因體之末 端、一或多個經改造之AAV衣殼多核苷酸及天然包裝識別信號,此可允許自細胞選擇性包裝釋放(參見例如Cideciyan等人,2009.N Engl J Med.361:725-727)。輔助依賴性腺病毒載體系統已成功地用於若干背景下之基因遞送(參見例如Simonelli等人,2010.J Am Soc Gene Ther.18:643-650;Cideciyan等人,2009.N Engl J Med.361:725-727;Crane等人,2012.Gene Ther.19(4):443-452;Alba等人,2005.Gene Ther.12:18-S27;Croyle等人,2005.Gene Ther.12:579-587;Amalfitano等人,1998.J.Virol.72:926-933;及Morral等人,1999.PNAS.96:12816-12821)。該等公開案中所述之技術及載體可適於納入且遞送本文所述之經改造AAV衣殼多核苷酸。在一些實施例中,欲經由自輔助依賴性腺病毒載體或其系統產生之病毒粒子遞送之多核苷酸可高達約38kb。因此,在一些實施例中,腺病毒載體可包括大小可介於約0.001kb至約37kb範圍內之欲遞送之DNA多核苷酸(參見例如Rosewell等人,2011.J.Genet.Syndr.Gene Ther.增刊5:001)。
在一些實施例中,載體係雜合腺病毒載體或其系統。雜合腺病毒載體係由基因缺失腺病毒載體之高轉導效率及腺相關、反轉錄病毒、慢病毒及基於轉座子之基因轉移之長期基因體整合潛能構成。在一些實施例中,此類雜合載體系統可產生穩定的轉導及有限的整合位點。參見例如Balague等人,2000.Blood.95:820-828;Morral等人,1998.Hum.Gene Ther.9:2709-2716;Kubo及Mitani.2003.J.Virol.77(5):2964-2971;Zhang等人,2013.PloS One.8(10)e76771;及Cooney等人,2015.Mol.Ther.23(4):667-674),其中所述之技術及載體可經修改且適用於本發明之經改造AAV衣殼系統中。在一些實施例中,雜合-腺病毒載體可包括反轉錄病毒及/或腺相關病毒之一或多個特徵。在一些實施例中,雜合腺病毒載體可包括泡沫(spuma)反轉錄病毒或泡沫(foamy)病毒(FV)之一或多個特徵。參見例如Ehrhardt等人,2007.Mol.Ther.15:146-156及Liu等人,2007.Mol.Ther.15:1834-1841,其中所述之技術及載體可經修改且適用於本發明之經 改造AAV衣殼系統中。在雜合腺病毒載體或其系統中使用FV之一或多個特徵之優點可包括自其產生之病毒粒子感染寬範圍細胞之能力、與其他反轉錄病毒相比之大包裝容量及在靜止(非分裂)細胞中持續存在之能力。亦參見例如Ehrhardt等人,2007.Mol.Ther.156:146-156及Shuji等人,2011.Mol.Ther.19:76-82,其中所述之技術及載體可經修改且適用於本發明之經改造AAV衣殼系統中。
腺相關載體
在實施例中,經改造之載體或其系統可為腺相關載體(AAV)。參見例如West等人,Virology 160:38-47(1987);美國專利第4,797,368號;WO 93/24641;Kotin,Human Gene Therapy 5:793-801(1994);及Muzyczka,J.Clin.Invest.94:1351(1994)。儘管其一些特徵與腺病毒載體相似,但AAV在複製及/或致病性方面具有一定缺陷,且因此可能比腺病毒載體更安全。在一些實施例中,AAV可整合至人類細胞之染色體19上之特定位點中且無可觀察到之副作用。在一些實施例中,AAV載體、其系統及/或AAV粒子之容量可高達約4.7kb。AAV載體或其系統可包括本文所述之一或多個經改造衣殼多核苷酸。
AAV載體或其系統可包括一或多種調控分子。在一些實施例中,調控分子可為啟動子、增強子、抑制物及諸如此類,其更詳細闡述於本文別處。在一些實施例中,AAV載體或其系統可包括可編碼一或多種調控蛋白之一或多種多核苷酸。在一些實施例中,一或多種調控蛋白可選自Rep78、Rep68、Rep52、Rep40、其變異體及其組合。在一些實施例中,啟動子可為如先前所論述之組織特異性啟動子。在一些實施例中,組織特異性啟動子可驅動本文所述之經改造衣殼AAV衣殼多核苷酸之表現。
AAV載體或其系統可包括可編碼一或多種衣殼蛋白(例如本文別處所述之經改造AAV衣殼蛋白)之一或多種多核苷酸。經改造之衣殼蛋白可 能夠組裝成AAV病毒粒子之蛋白質外殼(經改造之衣殼)。經改造之衣殼可具有細胞特異性向性、組織特異性向性及/或器官特異性向性。
在一些實施例中,AAV載體或其系統可包括一或多種腺病毒輔助因子或可編碼一或多種腺病毒輔助因子之多核苷酸。此類腺病毒輔助因子可包括(但不限於)E1A、E1B、E2A、E4ORF6及VA RNA。在一些實施例中,產生宿主細胞株會表現一或多種腺病毒輔助因子。
AAV載體或其系統可經構形以產生具有特定血清型之AAV粒子。在一些實施例中,血清型可為AAV-1、AAV-2、AAV-3、AAV-4、AAV-5、AAV-6、AAV-8、AAV-9或其任一組合。在一些實施例中,AAV可為AAV1、AAV-2、AAV-5、AAV-9或其任一組合。一者可針對欲靶向細胞選擇AAV之AAV;例如,一者可選擇AAV血清型1、2、5、9或雜合衣殼AAV-1、AAV-2、AAV-5、AAV-9或其任一組合用於靶向腦及/或神經元細胞;且一者可選擇AAV-4用於靶向心臟組織;且一者可選擇AAV-8用於遞送至肝臟。因此,在一些實施例中,能夠產生能夠靶向腦及/或神經元細胞之AAV粒子之AAV載體或其系統可經構形以產生具有血清型1、2、5或雜合衣殼AAV-1、AAV-2、AAV-5或其任一組合之AAV粒子。在一些實施例中,能夠產生能夠靶向心臟組織之AAV粒子之AAV載體或其系統可經構形以產生具有AAV-4血清型之AAV粒子。在一些實施例中,能夠產生能夠靶向肝臟之AAV粒子之AAV載體或其系統可經構形以產生具有AAV-8血清型之AAV。亦參見Srivastava.2017.Curr.Opin.Virol.21:75-80。
應瞭解,儘管不同的血清型可提供一定水準之細胞、組織及/或器官特異性,但每一血清型仍具有多向性,且因此若使用該血清型靶向該血清型之轉導效率較低之組織,則可產生組織毒性。因此,除經由選擇特定血清型之AAV達成一定組織靶向容量外,應瞭解,可藉由本文所述之經改造AAV衣殼 來修改AAV血清型之向性。如本文別處所述,任一血清型之野生型AAV之變異體可經由本文所述之方法產生且經測定具有特定細胞特異性向性,其可與參考野生型AAV血清型之細胞特異性向性相同或不同。在一些實施例中,野生型血清型之細胞、組織及/或特異性可增強(例如使血清型已偏好之特定細胞類型更具選擇性或特異性)。舉例而言,野生型AAV-9偏好人類中之肌肉及腦(參見例如Srivastava.2017.Curr.Opin.Virol.21:75-80)。藉由納入如本文所述野生型AAV-9之經改造之AAV衣殼及/或衣殼蛋白變異體,可減少或消除對例如腦之偏好及/或增加肌肉特異性,使得相比之下腦特異性似乎減小,因此與野生型AAV-9相比增強對肌肉之特異性。如先前所提及,納入野生型AAV血清型之經改造之衣殼及/或衣殼蛋白變異體可具有不同於野生型參考AAV血清型之向性。舉例而言,AAV-9之經改造之AAV衣殼及/或衣殼蛋白變異體可對除人類中之肌肉或腦外之組織具有特異性。
在一些實施例中,AAV載體係雜合AAV載體或其系統。雜合AAV係包括具有來自一種血清型之元件之基因體的AAV,該等元件包裝至衍生自至少一種不同血清型之衣殼中。舉例而言,若其係欲產生之rAAV2/5,且若產生方法係基於上文所論述之無輔助之瞬時轉染方法,則第1個質體及第3個質體(腺輔助質體)將與針對rAAV2產生所論述相同。然而,第2個質體pRepCap將不同。在稱為pRep2/Cap5之此質體中,Rep基因仍衍生自AAV2,而Cap基因衍生自AAV5。產生方案與上文針對AAV2產生所提及之方法相同。所得rAAV稱為rAAV2/5,其中基因體係基於重組AAV2,而衣殼係基於AAV5。假設由此AAV2/5雜合病毒展示之細胞或組織向性應與AAV5之細胞或組織向性相同。應瞭解,野生型雜合AAV粒子具有與使用先前所論述之非雜合野生型血清型相同之特異性問題。
由基於野生型之雜合AAV系統達成之優點可與可使用經改造之AAV衣殼達成的增加及可定制之細胞特異性組合,可藉由產生可包括本文別處所述之經改造AAV衣殼之雜合AAV來組合。應瞭解,雜合AAV可含有經改造之AAV衣殼,其含有具有來自不同於參考野生型血清型之血清型之元件的基因體,經改造之AAV衣殼係該參考野生型血清型之變異體。舉例而言,可產生包括經改造之AAV衣殼之雜合AAV,該經改造之AAV衣殼係AAV-9血清型之變異體,該AAV-9血清型用於包裝含有來自AAV-2血清型之組分(例如rep元件)之基因體。關於先前所論述之基於野生型之雜合AAV,所得AAV粒子之向性將為經改造AAV衣殼之向性。
關於該等細胞之某些野生型AAV血清型之列表可參見Grimm,D.等人,J.Virol.82:5887-5911(2008),下文再現為表1。其他向性細節可參見如先前所論述之Srivastava.2017.Curr.Opin.Virol.21:75-80。
Figure 110126971-A0202-12-0092-269
在一些實施例中,AAV載體或其系統係AAV rh.74或AAV rh.10。
在一些實施例中,AAV載體或其系統構形為「空殼」載體,與結合反轉錄病毒載體所闡述相似。在一些實施例中,「空殼」AAV載體或其系統可具有與所關注異源序列(例如經改造之AAV衣殼多核苷酸)連接之參與基因體擴增及包裝之順式作用病毒DNA元件。
載體構築
本文所述之載體可使用任一適宜製程或技術來構築。在一些實施例中,一或多種適宜重組及/或選殖方法或技術可用於本文所述之載體。適宜重組及/或選殖技術及/或方法可包括(但不限於)美國申請公開案第US 2004-0171156 A1號中所述之技術及/或方法。其他適宜方法及技術闡述於本文別處。
重組AAV載體之構築闡述於多個公開案中,包括美國專利第5,173,414號;Tratschin等人,Mol.Cell.Biol.5:3251-3260(1985);Tratschin等人,Mol.Cell.Biol.4:2072-2081(1984);Hermonat及Muzyczka,PNAS 81:6466-6470(1984);及Samulski等人,J.Virol.63:03822-3828(1989)。技術及/或方法中之任一者可用於及/或適於構築本文所述之AAV或其他載體。AAV載體論述於本文別處。
在一些實施例中,載體可具有一或多個插入位點,例如限制性內切酶識別序列(亦稱為「選殖位點」)。在一些實施例中,一或多個插入位點(例如約或大於約1個、2個、3個、4個、5個、6個、7個、8個、9個、10個或更多個插入位點)位於一或多個載體之一或多個序列元件之上游及/或下游。
用於表現本文所述之經改造AAV衣殼系統之一或多種元件之遞送媒劑、載體、粒子、奈米粒子、調配物及其組分係如前述文件(例如國際專利申請公開案WO 2014/093622(PCT/US2013/074667))中所用且更詳細論述於本文中。
自病毒載體產生病毒粒子
AAV粒子產生
自AAV載體及其系統(例如本文所述之AAV載體及其系統)產生AAV粒子存在兩種主要策略,其端視提供腺病毒輔助因子之方式(輔助對無輔助)而定。在一些實施例中,自AAV載體及其系統產生AAV粒子之方法可包括將腺病毒感染至細胞株中,該等細胞株穩定地帶有AAV複製及衣殼編碼多核苷酸以及含有欲由所得AAV粒子包裝及遞送之多核苷酸(例如經改造之AAV衣殼多核苷酸)之AAV載體。在一些實施例中,自AAV載體及其系統產生AAV粒子之方法可為「無輔助」方法,其包括用三個載體(例如質體載體)共轉染適當生產細胞株:(1)在2個ITR之間含有所關注多核苷酸(例如經改造之AAV衣殼多核苷酸)之AAV載體;(2)攜帶AAV Rep-Cap編碼多核苷酸之載體;及輔助多核苷酸。熟習此項技術者應瞭解多種輔助及無輔助方法及其變化形式以及每一系統之不同優點。
本文所述之經改造AAV載體及其系統可藉由該等方法中之任一者來產生。
載體及病毒粒子遞送
本文所述之載體(包括非病毒載劑)可引入宿主細胞中,由此產生轉錄物、蛋白質或肽,包括由如本文所述之核酸編碼之融合蛋白或肽(例如經改造之AAV衣殼系統轉錄物、蛋白質、酶、其突變體形式、其融合蛋白等)及病毒粒子(例如來自病毒載體及其系統)。
一或多種經改造之AAV衣殼多核苷酸可使用腺相關病毒(AAV)、腺病毒或如先前所述之其他質體或病毒載體類型、具體而言使用來自例如美國專利第8,454,972號(用於腺病毒之調配物、劑量)、美國專利第8,404,658號(用於AAV之調配物、劑量)及美國專利第5,846,946號(用於DNA質體之調配物、劑量)以及來自臨床試驗及關於涉及慢病毒、AAV及腺病毒之臨床試驗之公 開案的調配物及劑量來遞送。舉例而言,對於AAV,投與途徑、調配物及劑量可如美國專利第8,454,972號及如涉及AAV之臨床試驗中所述。對於腺病毒,投與途徑、調配物及劑量可如美國專利第8,404,658號及如涉及腺病毒之臨床試驗中所述。
對於質體遞送,投與途徑、調配物及劑量可如美國專利第5,846,946號及如涉及質體之臨床研究中所述。在一些實施例中,劑量可基於或外推至平均70kg之個體(例如成年男性),且可經調整用於不同體重及物種之患者、個體、哺乳動物。投與頻率在醫療或獸醫從業人員(例如醫師、獸醫)之範圍內,此端視普通因素(包括年齡、性別、一般健康狀況、患者或個體之其他疾患及正解決之具體疾患或症狀)而定。病毒載體可注射至或以其他方式遞送至所關注組織或細胞。
就活體內遞送而言,AAV比其他病毒載體有利之原因有兩個,例如低毒性(此可歸因於純化方法無需超離心可活化免疫反應之細胞粒子)及引起插入誘變之低可能性,此乃因其並不整合至宿主基因體中。
本文所述之載體及病毒粒子可活體外、活體內及或離體遞送至宿主細胞中。遞送可藉由任一適宜方法來進行,包括(但不限於)物理方法、化學方法及生物方法。物理遞送方法係採用物理力來對抗細胞之膜障壁以促進載體之細胞內遞送之彼等方法。適宜物理方法包括(但不限於)針(例如注射)、彈道多核苷酸(例如粒子轟擊、微射彈基因轉移及基因槍)、電穿孔、聲致穿孔、光穿孔、磁性轉染、水穿孔及機械按摩。化學方法係採用化學品來引發細胞膜通透性或其他特徵之變化以促進載體進入細胞中之彼等方法。舉例而言,可改變環境pH,此可引發細胞膜通透性之變化。生物方法係依賴且利用宿主細胞之生物過程或生物特徵來促進載體(含或不含載劑)運輸至細胞中之彼等方法。舉例而言,載體及/或其載劑可刺激細胞中之胞吞作用或類似過程以促進載體攝取至細胞中。
經改造之AAV衣殼系統組分(例如編碼經改造之AAV衣殼及/或衣殼蛋白之多核苷酸)經由粒子遞送至細胞。如本文所用之術語「粒子」係指用於遞送本文所述之經改造AAV衣殼系統組分之任何適宜大小之粒子。適宜大小包括大粒子、微粒子及奈米級粒子。在一些實施例中,經改造之AAV衣殼系統組分(例如本文所述之多肽、多核苷酸、載體及其組合)中之任一者可與如本文所述之一或多個粒子或其組分連接、偶聯、整合、以其他方式締合。隨後可藉由適當途徑及/或技術將本文所述之粒子投與細胞或生物體。在一些實施例中,粒子遞送可經選擇且有利於遞送多核苷酸或載體組分。應瞭解,在實施例中,粒子遞送亦可有利於本文別處所述之其他經改造之衣殼系統分子及調配物。
包括經改造之病毒(例如AAV)衣殼之經改造病毒粒子
本文亦闡述經改造之病毒粒子(engineered virus particle)(在此處及本文別處亦稱為「經改造之病毒粒子(engineered viral particle)」,其可含有如本文別處詳細闡述之經改造病毒衣殼(例如AAV衣殼,稱為「經改造之AAV粒子」)。應瞭解,經改造之AAV粒子可為含有至少一種如先前所述之經改造AAV衣殼蛋白之基於腺病毒之粒子、基於輔助腺病毒之粒子、基於AAV之粒子或基於腺病毒之雜合粒子。經改造之AAV衣殼係含有一或多種如本文別處所述之經改造之AAV衣殼蛋白之AAV衣殼。在一些實施例中,經改造之AAV粒子可包括1-60種本文所述之經改造AAV衣殼蛋白。在一些實施例中,經改造之AAV粒子可含有1種、2種、3種、4種、5種、6種、7種、8種、9種、10種、11種、12種、13種、14種、15種、16種、17種、18種、19種、20種、21種、22種、23種、24種、25種、26種、27種、28種、29種、30種、31種、32種、33種、34種、35種、36種、37種、38種、39種、40種、41種、42種、43種、44種、45種、46種、47種、48種、49種、50種、51種、52種、53種、54種、55種、56種、57種、58種、59種或60種經改造之衣殼蛋白。在一些實施例中,經改 造之AAV粒子可含有0-59種野生型AAV衣殼蛋白。在一些實施例中,經改造之AAV粒子可含有0種、1種、2種、3種、4種、5種、6種、7種、8種、9種、10種、11種、12種、13種、14種、15種、16種、17種、18種、19種、20種、21種、22種、23種、24種、25種、26種、27種、28種、29種、30種、31種、32種、33種、34種、35種、36種、37種、38種、39種、40種、41種、42種、43種、44種、45種、46種、47種、48種、49種、50種、51種、52種、53種、54種、55種、56種、57種、58種或59種野生型AAV衣殼蛋白。因此,經改造之AAV粒子可包括一或多個如先前所述之n聚體基元。
經改造之AAV粒子可包括一或多種負荷多核苷酸。負荷多核苷酸更詳細論述於本文別處。自病毒及非病毒載體製造經改造之AAV粒子之方法闡述於本文別處。含有經改造病毒粒子之調配物闡述於本文別處。
負荷多核苷酸
負荷亦闡述於本文別處。在一些實施例中,負荷係可包裝至經改造之病毒粒子中且隨後遞送至細胞之負荷多核苷酸。在一些實施例中,遞送具有肌肉特異性。經改造之病毒(例如AAV)衣殼多核苷酸、其他病毒(例如AAV)多核苷酸及/或載體多核苷酸可含有一或多種負荷多核苷酸。在一些實施例中,一或多種負荷多核苷酸可操作連接至經改造之病毒(例如AAV)衣殼多核苷酸且可為本發明病毒(例如AAV)系統之經改造病毒(例如AAV)基因體之一部分。負荷多核苷酸可包裝至經改造之病毒(例如AAV)粒子中,該經改造之病毒粒子可遞送至例如細胞。在一些實施例中,負荷多核苷酸可能夠修飾其遞送至之細胞之多核苷酸(例如基因或轉錄物)。如本文所用之「基因」可指遺傳單位,其對應於佔據染色體上之特定位置且含有生物體中特徵或性狀之遺傳指令之DNA序列。術語基因可指基因體之轉譯/或非轉譯區域。「基因」可指轉錄成RNA轉錄物之特定DNA序列,該RNA轉錄物可轉譯成多肽或為催化RNA分子,包括(但不限 於)tRNA、siRNA、piRNA、miRNA、長非編碼RNA及shRNA。多核苷酸、基因、轉錄物等修飾包括所有遺傳改造技術,包括(但不限於)基因編輯以及習用重組基因修飾技術(例如全部或部分基因插入、缺失及誘變(例如插入及缺失誘變)技術。
在一些實施例中,負荷分子係為疫苗或可編碼疫苗之多核苷酸。在一些實施例中,疫苗可刺激針對癌症之免疫反應。在一些實施例中,疫苗可刺激針對結腸直腸癌或胰臟癌之免疫反應。在一些實施例中,疫苗可產生不穩定環境用於產hCG細胞(例如產hCG癌細胞)。
基因修飾負荷多核苷酸
在一些實施例中,負荷分子可為多核苷酸或多肽,其可單獨或在作為系統之一部分遞送時,無論是否與系統之其他組分一起遞送,皆操作以修飾其遞送至之細胞之基因體、表觀基因體及/或轉錄體。此類系統包括(但不限於)CRISPR-Cas系統。其他基因修飾系統(例如TALEN、鋅指核酸酶、Cre-Lox、N-嗎啉基等)係可藉由本文所述之經改造病毒(例如AAV)粒子遞送一或多種組分之基因修飾系統的其他非限制性實例。
在一些實施例中,負荷分子係基因編輯系統或其組分。在一些實施例中,負荷分子係CRISPR-Cas系統分子或其組分。在一些實施例中,負荷分子係編碼基因修飾系統(例如CRISPR-Cas系統)之一或多種組分之多核苷酸。在一些實施例中,負荷分子係gRNA。
在一些實施例中,負荷分子可為多核苷酸或多肽,其可單獨或在作為系統之一部分遞送時,無論是否與系統之其他組分一起遞送,皆操作以修飾其遞送至之細胞之基因體、表觀基因體及/或轉錄體,使得其治療或預防肌肉或骨骼病症、神經疾病或病症及/或病毒(例如單股RNA病毒)之疾病、病症或其症狀。在一些實施例中,負荷分子無論是否與系統之其他組分一起遞送皆操作以修 飾其遞送至之細胞之基因體、表觀基因體及/或轉錄體,使得其治療或預防類早衰症(例如早老性椎板病變)、肝糖儲積病、免疫病症(例如自體免疫疾病)、癌症、杜興氏肌營養不良(DMD)、6肢帶型肌營養不良病(LGMD)、夏馬杜三氏病(CMT)、MPS IIIA、龐貝氏病或其他CNS相關之疾病(例如亨丁頓氏症及其他擴展重複疾病)。
在一些實施例中,負荷分子無論是否與系統之其他組分一起遞送皆操作以修飾其遞送至之細胞之基因體、表觀基因體及/或轉錄體,使得可修飾GAA基因,例如美國專利申請公開案20190284555中所述之彼等GAA基因中之任一者,該美國專利申請公開案之內容以引用方式併入如同在本文中表現其全文一般且可適用於本發明。
在一些實施例中,負荷分子包括偶聯至MHCK7、CK8或其他肌肉特異性啟動子之寡核苷酸。
在一些實施例中,負荷分子係微肌營養不良蛋白寡核苷酸,其僅含經最佳化用於蛋白質功能之肌營養不良蛋白基因之所選區域。在一些實施例中,所選區域包括血影蛋白樣重複1、2、3及24。參見例如Harper SQ、Hauser MA、DelloRusso C等人,Modular flexibility of dystrophin:implications for gene therapy of Duchenne muscular dystrophy.Nat Med.2002;8(3):253-261。在一些實施例中,微肌營養不良蛋白寡核苷酸係由rAAV劑(稱為AAVrh74.MHCK7微肌營養不良蛋白基因或SRP-9001)遞送,該rAAV劑經歷臨床試驗NCT03375164及NCT03769116。此微肌營養不良蛋白基因構築物包括NT-H1-R1-R2-R3-H2-R24-H4-CR-CT。在一些實施例中,微肌營養不良蛋白基因包括ABD-H1-R1-R2-R3-H2-R24-H4-CR-CT。在一些實施例中,微肌營養不良蛋白基因包括代表鉸鏈區之H。England SB等人,Nature.1990;343(6254):180-182;Wells DJ等人,Hum Mol Genet.1995;4(8):1245-1250;Salva MZ等人,Mol Ther.2007;15(2):320-329; Mendell JR等人,Neurosci Lett.2012;527(2):90-99;Rodino-Klapac LR等人,Hum Mol Genet.2013;22(24):4929-4937;Velazquez VM等人,Mol Ther Methods Clin Dev.2017;4:159-168;Harper SQ等人,Nat Med.2002;8(3):253-261;Nelson DM等人,Hum Mol Genet.2018;27(12):2090-2100。在一些實施例中,所選區域至少包括血影蛋白樣重複2及3。在一些實施例中,微肌營養不良蛋白基因含有nNOS結構域。在一些實施例中,nNOS結構域係由血影蛋白樣重複16及/或17構成。在一些實施例中,微肌營養不良蛋白基因包括血影蛋白樣重複16及17。在一些實施例中,nNOS結構域係由血影蛋白樣重複R1、R16、R17、R23及R24構成。在一些實施例中,微肌營養不良蛋白基因偶聯至肌肉特異性啟動子。在一些實施例中,微肌營養不良蛋白寡核苷酸偶聯至MHCK7、CK8、SNP18、SP0033、SP0051、SP0173、tmCK或另一肌肉特異性啟動子。
在一些實施例中,負荷微肌營養不良蛋白包括ABD(肌動蛋白結合結構域)、一或多個鉸鏈區(例如H1、H2、H3、H4)及一或多個血影蛋白樣重複(例如R1、R1’R2、R3、R16、R17、R20、R21、R22、R23、R24、R24’及視情況地肌營養不良蛋白聚糖結合結構域(DBD))。在一些實施例中,微肌營養不良蛋白係由ABD-H1-R1-R16-R17-R23-R24-H4-DBD構成。在一些實施例中,微肌營養不良蛋白係由ABD-H1-R1-R2-R3-H2-R24-H4-CR構成。在一些實施例中,微肌營養不良蛋白基因包括ABD-H1-R1-R2-R3-H2-R24-H4-CR-CT。在一些實施例中,微肌營養不良蛋白基因包括ABD-H1-R1’-R24’-H4-CR-CT。
在一些實施例中,負荷分子係可編碼微肌營養不良蛋白基因之多核苷酸,其中微肌營養不良蛋白基因含有血影蛋白樣重複R1、R16、R17、R23及R24。在一些實施例中,微肌營養不良蛋白基因含有鉸鏈區(H)4及/或H1。在一些實施例中,微肌營養不良蛋白基因含有N末端肌動蛋白結合結構域。在一些實施例中,微肌營養不良蛋白基因含有人類全長肌營養不良蛋白之C末端肌 營養不良蛋白聚糖結合結構域。微肌營養不良蛋白基因可含有nNOS結構域。在一些實施例中,nNOS結構域係由血影蛋白樣重複16及/或17構成。在一些實施例中,微肌營養不良蛋白基因包括血影蛋白樣重複16及17。微肌營養不良蛋白基因可如WO2019118806A1及WO2016/115543中所述,該等專利以引用方式併入如同在本文中表現其全文一般且可適用於本發明。在一些實施例中,負荷多核苷酸可編碼5-重複微肌營養不良蛋白,其自N末端至C末端含有N末端肌動蛋白結合結構域、鉸鏈區1(H1)、血影蛋白樣重複R1、R16、R17、R23及R24、鉸鏈區4(H4)及人類全長肌營養不良蛋白之C末端肌營養不良蛋白聚糖結合結構域。此5-重複微肌營養不良蛋白及相關肌營養不良蛋白微小基因之蛋白質序列闡述於WO2016/115543中。在一些實施例中,負荷多核苷酸可對應於微肌營養不良蛋白基因,其係如目前在臨床試驗中具有標識符編號NCT03368742之劑(稱為SGT001)之一部分。
在一些實施例中,負荷分子係minidys基因或載體。在一些實施例中,minidys基因或載體可由ABD-H1-R1-R2-R3-R16-R17-H3-R20-R21;ABD-H1-R1-R2-R3-R16-R17-H3-R20-R21-R22-R23-R24-H4-CR;或H3-R20-R21-R22-R23-R24-H4-CR-CT構成。
在一些實施例中,負荷分子係SCGB cDNA。在一些實施例中,SGCB cDNA偶聯至MHCK7、CK8啟動子、SNP18啟動子、SP0033啟動子、SP0051、SP0173啟動子、tmCK啟動子或另一肌肉特異性啟動子。在一些實施例中,負荷分子係β-肌聚糖cDNA、α-肌聚糖cDNA、肌失養蛋白cDNA、γ-肌聚糖cDNA、Calpin-3 cDNA、SGSH cDNA(例如LYS-SAF302)、神經營養因子3 cDNA、anoctamin-5 cDNA或其任一組合。
在一些實施例中,負荷分子無論是否與系統之其他組分一起遞送皆操作以修飾其遞送至之細胞之基因體、表觀基因體及/或轉錄體,使得治療、 預防及/或修飾與擴展重複疾病(例如亨丁頓氏症)相關之基因或基因產物,例如美國專利申請公開案20190100755、美國專利10066228中所述之彼等基因或基因產物,該等專利之內容以引用方式併入如同在本文中表現其全文一般且可適用於本發明。
在一些實施例中,負荷分子係反義寡聚物或RNA分子,例如美國專利申請公開案US20160251398、US20150267202、US20190015440、US20140287983、US20180216111、WO/2017/062835、US20190177723、US20170051278、US20180271893、WO/2016/14965、美國專利10076536、WO/2018/00580、WO/2018/11866、WO/2019/059973中所述之彼等寡聚物或RNA分子,該等專利之內容以引用方式併入如同在本文中表現其全文一般且可適用於本發明。
在一些實施例中,負荷分子無論是否與系統之其他組分一起遞送皆操作以修飾其遞送至之細胞之基因體、表觀基因體及/或轉錄體,使得其治療或預防單股RNA病毒,例如流感病毒、西尼羅病毒(West Nile Virus)、SARS病毒、C型肝炎病毒、登革熱病毒(dengue fever virus)、伊波拉病毒(Ebola virus)、馬堡病毒(Marburg virus)及/或杯狀病毒。在一些實施例中,負荷分子可為反義抗病毒化合物,例如US8703735B2中所述抗病毒化合物中之任一者,該專利之內容以引用方式併入如同在本文中表現其全文一般且可適用於本發明。
其他例示性遺傳病及基因相關疾病以及能夠由本文所述之負荷分子修飾之基因列於本文別處,參見例如表4及表5。
在一些實施例中,負荷分子可添加或修飾GALGT2基因。GALGT2基因療法以補償肌營養不良蛋白不存在之方式藉由增加在疾病中未突變或丟失之蛋白質之表現來強化肌肉之結構完整性,而非起再供應丟失的肌營 養不良蛋白之作用。GALGT2提供治療DMD之潛能而與具體肌營養不良蛋白突變無關,以及用於其他肌營養不良。
在一些實施例中,負荷分子係例如美國專利申請公開案US2018/0161359及US2019/0054113中之嗎啉基,該美國專利申請公開案之內容以引用方式併入如同在本文中表現其全文一般且可適用於本發明。在一些實施例中,N-嗎啉基係N-嗎啉基寡聚物(PMO)或肽連接N-嗎啉基PPMO。可使用基於PMO之平台藉由改變mRNA轉錄來治療遺傳病。PMO係在RNA之天然框架後建模之合成化學結構。儘管PMO具有在RNA中發現之相同核酸鹼基,但其結合至六邊嗎啉環而非五邊核糖環。另外,嗎啉環藉由磷二醯胺鏈接而非在RNA中發現之磷酸二酯鏈接彼此連接。PMO及PPMO可用於外顯子跳躍及轉譯抑制。
在一些實施例中,負荷分子可為如例如國際專利申請公開案WO2017106304A1中所述之肽-寡聚物結合物,該國際專利申請公開案之內容以引用方式併入如同在本文中表現其全文一般且可適用於本發明。
在一些實施例中,嗎啉基係在可有效地靶向肌營養不良蛋白mRNA之外顯子51之依替利森(Eteplirsen)中發現之嗎啉基。在一些實施例中,負荷分子可在DMD背景下產生外顯子跳躍,諸如例如美國專利申請公開案US2014/0315977A1及US2018/010581中所述之彼等,該等美國專利申請公開案之內容以引用方式併入如同在本文中表現其全文一般且可適用於本發明。
外顯子跳躍
在一些實施例中,核苷酸序列可編碼能夠誘導外顯子跳躍之核酸。此類經編碼核酸可為反義寡核苷酸或反義核苷酸系統。如本文所用之術語「外顯子跳躍」係指藉由用一或多種互補反義寡核苷酸(AON)靶向前mRNA內之剪接供體及/或受體位點來修飾前mRNA剪接。藉由阻斷剪接體進入一或多個 剪接供體或受體位點,AON可防止剪接反應,由此導致自完全加工之mRNA缺失一或多個外顯子。外顯子跳躍可在前mRNA之成熟過程期間在核中達成。在一些實例中,外顯子跳躍可包括藉由使用與前mRNA內之剪接供體序列互補之反義寡核苷酸(AON)來遮蔽參與靶向外顯子之剪接之關鍵序列。
在一些實施例中,核苷酸序列編碼能夠誘導肌營養不良蛋白mRNA中之外顯子跳躍之反義寡核苷酸或反義核苷酸系統。舉例而言,肌營養不良蛋白基因之外顯子x內之無義或框移突變產生羧基末端截短之非功能性肌營養不良蛋白。該成熟mRNA轉錄物之表現可產生功能性肌營養不良蛋白,其在由外顯子x編碼之胺基酸中缺失但包括彼等缺失胺基酸之N末端及C末端之肌營養不良蛋白胺基酸。
核苷酸序列可編碼能夠誘導外顯子1、2、3、4、5、6、7、8、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、45、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63、64、65、66、67、68、69、70、71、72、73、74、75、76、77、78、79或其任一組合之外顯子跳躍之反義寡核苷酸或反義核苷酸系統。核苷酸序列可編碼能夠誘導外顯子43、44、50、51、52、55或其任一組合之外顯子跳躍之反義寡核苷酸或反義核苷酸系統。
CRISPR-Cas系統負荷分子
在一些實施例中,本文所述之經改造病毒(例如AAV)或其他粒子可包括一或多個CRISPR-Cas系統分子,其可為多核苷酸或多肽。在一些實施例中,多核苷酸可編碼一或多種CRISPR-Cas系統分子。在一些實施例中,多核苷酸編碼Cas蛋白、CRISPR級聯蛋白、gRNA或其組合。其他CRISPR-Cas系統分子論述於本文別處且可作為多肽或多核苷酸來遞送。
一般而言,如本文及文件(例如國際專利申請公開案WO 2014/093622(PCT/US2013/074667))中所用之CRISPR-Cas或CRISPR系統統指參與CRISPR相關之(「Cas」)基因之表現或引導其活性之轉錄物及其他元件,包括編碼Cas基因之序列、tracr(反式活化CRISPR)序列(例如tracrRNA或活性部分tracrRNA)、tracr配對序列(在內源CRISPR系統之背景下涵蓋「直接重複」及tracrRNA加工之部分直接重複)、引導序列(在內源CRISPR系統之背景下亦稱為「間隔體」)或「RNA」(當在本文中使用該術語時)(例如引導Cas(例如Cas9)之RNA,例如CRISPR RNA及反式活化(tracr)RNA或單引導RNA(sgRNA)(嵌合RNA))或來自CRISPR基因座之其他序列及轉錄物。一般而言,CRISPR系統之特徵在於促進在靶序列之位點形成CRISPR複合物之元件(在內源CRISPR系統之背景下亦稱為原間隔體(protospacer))。參見例如Shmakov等人(2015)「Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems」,Molecular Cell,DOI:dx.doi.org/10.1016/j.molcel.2015.10.008。
在某些實施例中,原間隔體鄰近基元(PAM)或PAM樣基元引導如本文所揭示之效應蛋白複合物與所關注靶基因座之結合。在一些實施例中,PAM可為5’PAM(即位於原間隔體之5’末端上游)。在其他實施例中,PAM可為3’PAM(即位於原間隔體之5’末端下游)。術語「PAM」可與術語「PFS」或「原間隔體側接位點」或「原間隔體側接序列」互換使用。
在較佳實施例中,CRISPR效應蛋白可識別3’PAM。在某些實施例中,CRISPR效應蛋白可識別作為5’H之3’PAM,其中H係A、C或U。
在形成CRISPR複合物之背景中,「靶序列」係指引導序列經設計以與其具有互補性之序列,其中靶序列與引導序列之間之雜交促進CRISPR複合物之形成。靶序列可包含RNA多核苷酸。術語「靶RNA」係指為靶序列或包含靶序列之RNA多核苷酸。換言之,靶RNA可為RNA多核苷酸或RNA多核 苷酸之一部分,gRNA之一部分(即引導序列)經設計以與其具有互補性且向其定向由包含CRISPR效應蛋白及gRNA之複合物介導之效應功能。在一些實施例中,靶序列位於細胞之核或細胞質中。
在某些實例實施例中,CRISPR效應蛋白可使用編碼CRISPR效應蛋白之核酸分子來遞送。編碼CRISPR效應蛋白之核酸分子可有利地係密碼子最佳化CRISPR效應蛋白。在此情況下,密碼子最佳化序列之實例係經最佳化以在真核生物(例如人類)中表現(即經最佳化以在人類中表現)或用於如本文所論述之另一真核生物、動物或哺乳動物的序列;參見例如國際專利申請公開案WO 2014/093622(PCT/US2013/074667)中之SaCas9人類密碼子最佳化序列。儘管此實例係較佳的,但應瞭解,其他實例係可能的且已知用於除人類外之宿主物種之密碼子最佳化或用於特定器官之密碼子最佳化。在一些實施例中,編碼CRISPR效應蛋白之酶編碼序列經密碼子最佳化以在特定細胞(例如真核細胞)中表現。真核細胞可為或衍生自特定生物體之細胞,例如植物或哺乳動物,包括(但不限於)如本文所論述之人類或非人類真核生物或動物或哺乳動物,例如小鼠、大鼠、兔、狗、家畜或非人類哺乳動物或靈長類動物。在一些實施例中,可排除修飾人類生殖系遺傳身份之製程及/或修飾動物遺傳身份之製程,該等製程可能使人類或動物遭受痛苦且對人類或動物亦及源自此類製程之動物無任何實質性醫療益處。一般而言,密碼子最佳化係指藉由用更頻繁或最頻繁用於宿主細胞基因中之密碼子替代天然序列之至少一個密碼子(例如約或大於約1個、2個、3個、4個、5個、10個、15個、20個、25個、50個或更多個密碼子)、同時維持天然胺基酸序列來修飾核酸序列以增強所關注宿主細胞中之表現的過程。多個物種展現對特定胺基酸之某些密碼子之特定偏好。密碼子偏好(生物體之間之密碼子使用之差異)通常與信使RNA(mRNA)之轉譯效率相關聯,進而認為信使RNA之轉譯效率尤其取決於所轉譯密碼子之性質及特定轉移RNA(tRNA)分子之利用度。所 選tRNA在細胞中之優勢通常反映最頻繁用於肽合成之密碼子。因此,基因可基於密碼子最佳化進行調整用於給定生物體中之最佳基因表現。密碼子使用表可容易地在例如可在kazusa.orjp/codon/上獲得之「密碼子使用資料庫」上獲得且該等表可適用於多個方面。參見Nakamura,Y.等人,「Codon usage tabulated from the international DNA sequence databases:status for the year 2000」Nucl.Acids Res.28:292(2000)。亦可獲得使特定序列密碼子最佳化以在特定宿主細胞中表現之電腦算法,例如Gene Forge(Aptagen;Jacobus,PA)。在一些實施例中,編碼Cas之序列中之一或多個密碼子(例如1個、2個、3個、4個、5個、10個、15個、20個、25個、50個或更多個或所有密碼子)對應於最頻繁用於特定胺基酸之密碼子。
在某些實施例中,如本文所述之方法可包括提供Cas基因轉殖細胞,其中提供或引入編碼一或多種引導RNA之一或多種核酸,該一或多種核酸在細胞中與包含一或多種所關注基因之啟動子之調控元件可操作連接。如本文所用之術語「Cas基因轉殖細胞」係指其中已整合Cas基因之基因體之細胞,例如真核細胞。根據本發明,性質、類型或細胞起源無特定限制。另外,將Cas轉基因引入細胞中之方式可發生變化且可為為如此項技術中已知之任一方法。在某些實施例中,Cas基因轉殖細胞係藉由將Cas轉基因引入經分離細胞中來獲得。在某些其他實施例中,Cas基因轉殖細胞係藉由自Cas基因轉殖生物體分離細胞來獲得。舉例而言但不限於,如本文所提及之Cas基因轉殖細胞可衍生自Cas基因轉殖真核生物,例如Cas基因敲入真核生物。參考國際專利申請公開案WO 2014/093622(PCT/US13/74667),其以引用方式併入本文中。授予Sangamo BioSciences,Inc.之美國專利公開案第20120017290號及美國專利公開案第20110265198號之關於靶向Rosa基因座之方法可經修改用於本發明之CRISPR Cas系統。授予Cellectis之美國專利公開案第20130236946號之關於靶向Rosa基因座之方法亦可經修改用於本發明之CRISPR Cas系統。藉助另一實例,參考 Platt等人(Cell;159(2):440-455(2014)),其闡述Cas9基因敲入小鼠,該文獻以引用方式併入本文中。Cas轉基因可進一步包含Lox-Stop-多A-Lox(LSL)盒,由此使得Cas表現可由Cre重組酶誘導。替代地,Cas基因轉殖細胞可藉由將Cas轉基因引入經分離細胞中來獲得。轉基因之遞送系統為此項技術中所熟知。舉例而言,Cas轉基因可在例如真核細胞中藉助載體(例如AAV、腺病毒、慢病毒)及/或粒子及/或奈米粒子遞送來遞送,亦如本文別處所述。用於遞送CRISPR-Cas系統組分之慢病毒及反轉錄病毒系統以及非病毒系統通常為此項技術中已知。用於CRISPR-Cas系統組分之基於AAV及腺病毒之系統通常為此項技術中已知且闡述於本文中(例如本發明之經改造AAV)。
熟習此項技術者應理解,除具有整合Cas基因或在與能夠將Cas引導至靶基因座之RNA複合時外源自Cas之序列特異性作用之突變外,如本文所提及之細胞(例如Cas基因轉殖細胞)可包含其他基因體變化。
在某些實施例中,本發明涉及載體,例如用於將Cas及/或能夠將Cas引導至靶基因座之RNA(即引導RNA)遞送或引入細胞中,且亦用於使該等組分增殖(例如在原核細胞中)。此可另外用於遞送尚未由本文所述之經改造AAV粒子遞送之一或多種CRISPR-Cas組分或其他基因修飾系統組分。如本文所用之「載體」係允許或促進實體自一個環境轉移至另一環境之工具。其係其中可插入另一DNA區段以使插入區段複製之複製子,例如質體、噬菌體或黏粒。通常,載體能夠在與適當控制元件締合時複製。一般而言,術語「載體」係指能夠運輸與其連接之另一核酸之核酸分子。載體包括(但不限於)為單股、雙股或部分雙股之核酸分子;包含一或多個游離末端、無游離末端(例如環形)之核酸分子;包含DNA、RNA或二者之核酸分子;及此項技術中已知之多核苷酸之其他變化。一種類型之載體係「質體」,其係指其中可例如藉由標準分子選殖技術插入其他DNA區段之環形雙股DNA環。另一類型之載體係病毒載體,其中病毒源性DNA 或RNA序列存在於載體中用於包裝成病毒(例如反轉錄病毒、複製缺陷型反轉錄病毒、腺病毒、複製缺陷型腺病毒及腺相關病毒(AAV))。病毒載體亦包括由轉染至宿主細胞中之病毒攜帶之多核苷酸。某些載體能夠在其所引入之宿主細胞中自主複製(例如具有細菌複製起點之細菌載體及游離型哺乳動物載體)。其他載體(例如非游離型哺乳動物載體)在引入宿主細胞中後整合至宿主細胞之基因體中,且由此與宿主基因體一起複製。另外,某些載體能夠引導其可操作連接之基因之表現。此類載體在本文中稱為「表現載體」。常用於重組DNA技術中之表現載體通常呈質體形式。
重組表現載體可包含適於在宿主細胞中表現核酸之形式之本發明核酸,此意指重組表現載體包括可操作連接至欲表現核酸序列之一或多個調控元件,該一或多個調控元件可基於欲用於表現之宿主細胞來選擇。在重組表現載體內,「可操作連接」欲指,所關注核苷酸序列以允許表現核苷酸序列(例如在活體外轉錄/轉譯系統中或在宿主細胞中(當將載體引入宿主細胞中時))之方式連接至調控元件。關於重組及選殖方法,提及美國專利申請公開案2004/0171156,其內容之全文皆以引用方式併入本文中。因此,本文所揭示之實施例亦可包含含有CRISPR效應系統之基因轉殖細胞。在某些實例實施例中,基因轉殖細胞可用作個別離散體積。換言之,包含遮蔽構築物之樣品可例如在適宜遞送囊泡中遞送至細胞,且若在遞送囊泡中存在靶,則CRISPR效應物會活化且產生可偵測信號。
載體可包括調控元件,例如啟動子。載體可包含Cas編碼序列及/或單一的,但可能地亦可包含至少3條或8條或16條或32條或48條或50條引導RNA(例如sgRNA)編碼序列,例如1-2個、1-3個、1-4 1-5個、3-6個、3-7個、3-8個、3-9個、3-10個、3-8個、3-16個、3-30個、3-32個、3-48個、3-50個RNA(例如sgRNA)。在單一載體中,每一RNA(例如sgRNA)可存在啟動 子,有利地當存在高達約16個RNA時;且當單一載體提供16個以上之RNA時,一或多個啟動子可驅動一個以上之RNA之表現,例如當存在32個RNA時,每一啟動子可驅動兩個RNA之表現,且當存在48個RNA時,每一啟動子可驅動三個RNA之表現。藉由簡單的算術及充分建立之選殖方案及本揭示案中之教示,熟習此項技術者可容易地實踐本發明之適宜例示性載體(例如AAV)之RNA及適宜啟動子(例如U6啟動子)。舉例而言,AAV之包裝限值為約4.7kb。單一U6-gRNA(加限制性選殖位點)之長度為361bp。因此,熟習此項技術者可容易地在單一載體中裝配約12-16個(例如13個)U6-gRNA盒。此可藉由任何適宜方法來組裝,例如用於TALE組裝之金門策略(genome-engineering.org/taleffectors/))。熟習此項技術者亦可使用串聯引導策略使U6-gRNA之數量增加至大約1.5倍,例如自12-16個(例如13個)增加至大約18-24個(例如約19個)U6-gRNA。因此,熟習此項技術者可容易地在單一載體(例如AAV載體)中達到大約18-24個(例如約19個)啟動子-RNA,例如U6-gRNA。增加載體中啟動子及RNA之數量之另一方法係使用單一啟動子(例如U6)來表現藉由可裂解序列分離之RNA陣列。且增加載體中啟動子-RNA之數量之另一方法係表現藉由編碼序列或基因之內含子中之可裂解序列分離之啟動子-RNA陣列;且在此情況下,使用聚合酶II啟動子係有利的,其可具有增加之表現且使得長RNA能夠以組織特異性方式轉錄(參見例如nar.oxfordjournals.org/content/34/7/e53.short及nature.com/mt/journal/v16/n9/abs/mt2008144a.html)。在有利實施例中,AAV可包裝靶向高達約50個基因之U6串聯gRNA。因此,根據此項技術中之知識及本揭示案中之教示,熟習此項技術者無需任何過多實驗即可容易地製造及使用載體,例如單一載體,其在一或多個啟動子控制下或可操作或功能性連接至一或多 個啟動子下表現多個RNA或引導物,尤其關於本文所論述RNA或引導物之數量。
引導RNA編碼序列及/或Cas編碼序列可功能性或可操作連接至調控元件且因此調控元件驅動表現。啟動子可為組成型啟動子及/或條件型啟動子及/或誘導型啟動子及/或組織特異性啟動子。啟動子可選自由以下組成之群:RNA聚合酶、pol I、pol II、pol III、T7、U6、H1、反轉錄病毒勞斯肉瘤病毒(RSV)LTR啟動子、巨細胞病毒(CMV)啟動子、SV40啟動子、二氫葉酸還原酶啟動子、β-肌動蛋白啟動子、磷酸甘油激酶(PGK)啟動子及EF1α啟動子。有利啟動子係啟動子U6。
用於本發明之其他效應物可藉由其與cas1基因之接近度來鑑別,例如(但不限於)在距cas1基因起始20kb之區域及距cas1基因末端20kb之區域內。在某些實施例中,效應蛋白包含至少一個HEPN結構域及至少500個胺基酸,且其中C2c2效應蛋白天然存在於原核基因體中Cas基因或CRISPR陣列之上游或下游20kb內。Cas蛋白之非限制性實例包括Cas1、Cas1B、Cas2、Cas3、Cas4、Cas5、Cas6、Cas7、Cas8、Cas9(亦稱為Csn1及Csx12)、Cas10、Cas 12、Cas 12a、Cas 13a、Cas 13b、Csy1、Csy2、Csy3、Cse1、Cse2、Csc1、Csc2、Csa5、Csn2、Csm2、Csm3、Csm4、Csm5、Csm6、Cmr1、Cmr3、Cmr4、Cmr5、Cmr6、Csb1、Csb2、Csb3、Csx17、Csx14、Csx10、Csx16、CsaX、Csx3、Csx1、Csx15、Csf1、Csf2、Csf3、Csf4、其同源物或其經修飾形式。在某些實例實施例中,C2c2效應蛋白天然存在於原核基因體中Cas 1基因上游或下游之20kb內。術語「異種同源物(orthologue)」(在本文中亦稱為「異種同源物(ortholog)」)及「同源物(homologue)」(在本文中亦稱為「同源物(homolog)」)為此項技術中所熟知。藉助進一步引導,如本文所用之蛋白質之「同源物」係與其同源蛋白質發揮相同或相似功能之同一種類之蛋白質。同源蛋白質可能但無需係結構相關的,或僅係部 分結構相關的。如本文所用之蛋白質之「異種同源物」係與其異種同源蛋白質發揮相同或相似功能之不同種類之蛋白質。異種同源蛋白質可能但無需係結構相關的,或僅係部分結構相關的。
在一些實施例中,核酸靶向系統之一或多個元件衍生自包含內源CRISPR RNA靶向系統之特定生物體。在某些實施例中,CRISPR RNA靶向系統發現於真桿菌屬(Eubacterium)及瘤胃球菌屬(Ruminococcus)中。在某些實施例中,效應蛋白包含靶向及側枝ssRNA裂解活性。在某些實施例中,效應蛋白包含雙HEPN結構域。在某些實施例中,效應蛋白缺少Cas13a之螺旋-1結構域之對應部分。在某些實施例中,效應蛋白小於先前表徵之2類CRISPR效應物,其中值大小為928 aa。此中值大小比Cas13c小190 aa(17%),比Cas13b小200 aa(18%)以上,且比Cas13a小300 aa(26%)以上。在某些實施例中,效應蛋白無需側接序列(例如PFS、PAM)。
在某些實施例中,效應蛋白基因座結構包括含有WYL結構域之輔助蛋白(因此在該等結構域之最初鑑別之群中保守之三個胺基酸後表示;參見例如WYL結構域IPR026881)。在某些實施例中,WYL結構域輔助蛋白包含至少一個螺旋-小彎-螺旋(HTH)或帶-螺旋-螺旋(RHH)DNA結合結構域。在某些實施例中,含有WYL結構域之輔助蛋白增加RNA靶向效應蛋白之靶向及側枝ssRNA裂解活性。在某些實施例中,含有WYL結構域之輔助蛋白包含N末端RHH結構域以及主要疏水性保守殘基模式,包括對應於原始WYL基元之不變酪胺酸-白胺酸雙合物。在某些實施例中,含有WYL結構域之輔助蛋白係WYL1。WYL1係主要與瘤胃球菌屬(Ruminococcus)相關之單一WYL結構域蛋白。
在其他實例實施例中,VI型RNA靶向Cas酶係Cas 13d。在某些實施例中,Cas13d係惰性真桿菌(Eubacterium siraeum)DSM 15702(EsCas13d)或瘤胃球菌N15.MGS-57(RspCas13d)(參見例如Yan等人,Cas13d Is a Compact RNA-Targeting Type VI CRISPR Effector Positively Modulated by a WYL-Domain-Containing Accessory Protein,Molecular Cell(2018),doi.org/10.1016/j.molcel.2018.02.028)。RspCas13d及EsCas13d無需側接序列(例如PFS、PAM)。
本文所提供之方法、系統及工具可經設計用於1類CRISPR蛋白,其可為I型、III型或IV型Cas蛋白,如Makarova等人,The CRISPR Journal,第1卷,第5(2018)期;DOI:10.1089/crispr.2018.0033中所述,該文獻之全文皆以引用方式併入本文中,且尤其如圖1、第326頁中所述。1類系統通常使用多蛋白質效應複合物,其在一些實施例中可包括附屬蛋白,例如複合物(稱為CRISPR相關之抗病毒防禦複合物(Cascade))中之一或多種蛋白質、一或多種適應蛋白(例如Cas1、Cas2、RNA核酸酶)及/或一或多種輔助蛋白(例如Cas 4、DNA核酸酶)、含有CRISPR相關羅斯曼折疊(CRISPR associated Rossman fold,CARF)結構域之蛋白質及/或RNA轉錄酶。儘管1類系統具有有限的序列相似性,但1類系統蛋白質可藉由其相似架構來鑑別,包括一或多種重複相關之神秘蛋白(RAMP)家族次單元,例如Cas 5、Cas6、Cas7。RAMP蛋白之特徵在於具有一或多個RNA識別基元結構域。大次單元(例如cas8或cas10)及小次單元(例如cas11)亦為1類系統之典型特點。參見例如圖1及圖2。Koonin EV、Makarova KS.2019 Origins and evolution of CRISPR-Cas systems.Phil.Trans.R.Soc.B 374:20180087,DOI:10.1098/rstb.2018.0087。在一個實施例中,1類系統之特徵在於印記蛋白(signature protein)Cas3。Cascade、具體而言1類蛋白質可包含多種Cas蛋白之專用複合物,其結合前crRNA且招募另一Cas蛋白(例如Cas6或Cas5),該另一Cas蛋白係直接負責加工前crRNA之核酸酶。在一個實施例中,I型CRISPR蛋白包含含有一或多個Cas5次單元及兩個或更多個Cas7次單元之效應複合物。1類亞型包括I-A型、I-B型、I-C型、I-U型、I-D型、I-E型及I-F型、 IV-A型及IV-B型以及III-A型、III-D型、III-C型及III-B型。1類系統亦包括CRISPR-Cas變異體,包括I-A型、I-B型、I-E型、I-F型及I-U型變異體,其可包括由轉座子及質體攜帶之變異體,包括由大Tn7樣轉座子家族編碼之多種形式之亞型I-F,且較小Tn7樣轉座子群編碼以類似方式降解之亞型I-B系統。Peters等人,PNAS 114(35)(2017);DOI:10.1073/pnas.1709035114;亦參見Makarova等人,CRISPR Journal,第1卷,第5期,圖5。
Cas分子
在一些實施例中,負荷分子可為或包括Cas多肽及/或可編碼Cas多肽或其片段之多核苷酸。任一Cas分子可為負荷分子。在一些實施例中,負荷分子係I類CRISPR-Cas系統Cas多肽。在一些實施例中,負荷分子係II類CRISPR-Cas系統Cas多肽。在一些實施例中,Cas多肽係I型Cas多肽。在一些實施例中,Cas多肽係II型Cas多肽。在一些實施例中,Cas多肽係III型Cas多肽。在一些實施例中,Cas多肽係IV型Cas多肽。在一些實施例中,Cas多肽係V型Cas多肽。在一些實施例中,Cas多肽係VI型Cas多肽。在一些實施例中,Cas多肽係VII型Cas多肽。Cas蛋白之非限制性實例包括Cas1、Cas1B、Cas2、Cas3、Cas4、Cas5、Cas6、Cas7、Cas8、Cas9(亦稱為Csn1及Csx12)、Cas10、Cas 12、Cas 12a、Cas 13a、Cas 13b、Cas 13c、Cas 13d、Csy1、Csy2、Csy3、Cse1、Cse2、Csc1、Csc2、Csa5、Csn2、Csm2、Csm3、Csm4、Csm5、Csm6、Cmr1、Cmr3、Cmr4、Cmr5、Cmr6、Csb1、Csb2、Csb3、Csx17、Csx14、Csx10、Csx16、CsaX、Csx3、Csx1、Csx15、Csf1、Csf2、Csf3、Csf4、其同源物或其經修飾形式。
引導序列
如本文在CRISPR-Cas系統之背景中所用之術語「引導序列」及「引導分子」包含與靶核酸序列具有足夠互補性以與靶核酸序列雜交且引導核 酸靶向複合物與靶核酸序列之序列特異性結合的任一多核苷酸序列。使用本文所揭示之方法製造之引導序列可為全長引導序列、截短引導序列、全長sgRNA序列、截短sgRNA序列或E+F sgRNA序列。每一gRNA可經設計以包括特異性針對相同或不同之轉接蛋白之多個結合識別位點(例如適配體)。每一gRNA可經設計以結合至轉錄起始位點(即TSS)上游-1000 - +1個核酸、較佳地-200個核酸之啟動子區域。此定位改良影響基因活化(例如轉錄活化劑)或基因抑制(例如轉錄抑制物)之功能結構域。經修飾之gRNA可為靶向組合物中所包含之一或多個靶基因座之一或多個經修飾gRNA(例如至少1個gRNA、至少2個gRNA、至少5個gRNA、至少10個gRNA、至少20個gRNA、至少30個gRNA、至少50個gRNA)。該多條gRNA序列可串聯排列且較佳地藉由直接重複分開。
在一些實施例中,當使用適宜比對算法進行最佳比對時,引導序列與給定靶序列之互補度為約或大於約50%、60%、75%、80%、85%、90%、95%、97.5%、99%或更大。在某些實例實施例中,引導分子包含引導序列,其可經設計以與靶序列具有至少一個錯配,使得在引導序列與靶序列之間形成RNA雙鏈體。因此,互補度較佳地小於99%。例如,當引導序列係由24個核苷酸組成時,互補度更具體而言為約96%或更小。在具體實施例中,引導序列經設計以具有兩個或更多個鄰近錯配核苷酸之段,使得與整條引導序列之互補度進一步減小。例如,當引導序列係由24個核苷酸組成時,互補度更具體而言為約96%或更小、更具體而言約92%或更小、更具體而言約88%或更小、更具體而言約84%或更小、更具體而言約80%或更小、更具體而言約76%或更小、更具體而言約72%或更小,此端視兩個或更多個錯配核苷酸段之段係涵蓋2個、3個、4個、5個、6個或7個核苷酸等而定。在一些實施例中,除一或多個錯配核苷酸之段外,當使用適宜比對算法進行最佳比對時,互補度為約或大於約50%、60%、75%、80%、85%、90%、95%、97.5%、99%或更大。最佳比對可藉由使用任一 適宜算法比對序列來確定,該適宜算法之非限制性實例包括Smith-Waterman算法、Needleman-Wunsch算法、基於Burrows-Wheeler轉型之算法(例如Burrows Wheeler比對器)、ClustalW、Clustal X、BLAT、Novoalign(Novocraft Technologies;可在www.novocraft.com上獲得)、ELAND(Illumina,San Diego,CA)、SOAP(可在soap.genomics.org.cn上獲得)及Maq(可在maq.sourceforge.net上獲得)。引導序列(在核酸靶向引導RNA內)引導核酸靶向複合物與靶核酸序列之序列特異性結合之能力可藉由任一適宜分析來評價。舉例而言,可將核酸靶向CRISPR系統之足以形成核酸靶向複合物之組分(包括欲測試之引導序列)提供至具有相應靶核酸序列之宿主細胞,例如藉由用編碼核酸靶向複合物之組分之載體轉染,然後例如藉由如本文所述之Surveyor分析來評價靶核酸序列內之優先靶向(例如裂解)。類似地,靶核酸序列(或其附近之序列)之裂解可在試管中藉由提供靶核酸序列、核酸靶向複合物之組分(包括欲測試之引導序列)及不同於測試引導序列之對照引導序列、並比較測試與對照引導序列反應之間的靶序列處或附近之結合或裂解率來評估。其他分析係可能的,且將為熟習此項技術者所明瞭。可選擇引導序列及因此核酸靶向引導RNA來靶向任一靶核酸序列。
如本文所用之術語V型或VI型CRISPR-Cas基因座效應蛋白之「crRNA」或「引導RNA」或「單一引導RNA」或「sgRNA」或「一或多種核酸組分」包含與靶核酸序列具有足夠互補性以與靶核酸序列雜交且引導核酸靶向複合物與靶核酸序列之序列特異性結合的任一多核苷酸序列。在一些實施例中,當使用適宜比對算法進行最佳比對時,互補度為約或大於約50%、60%、75%、80%、85%、90%、95%、97.5%、99%或更大。最佳比對可藉由使用任一適宜算法比對序列來確定,該適宜算法之非限制性實例包括Smith-Waterman算法、Needleman-Wunsch算法、基於Burrows-Wheeler轉型之算法(例如Burrows Wheeler比對器)、ClustalW、Clustal X、BLAT、Novoalign(Novocraft Technologies; 可在www.novocraft.com上獲得)、ELAND(Illumina,San Diego,CA)、SOAP(可在soap.genomics.org.cn上獲得)及Maq(可在maq.sourceforge.net上獲得)。引導序列(在核酸靶向引導RNA內)引導核酸靶向複合物與靶核酸序列之序列特異性結合之能力可藉由任一適宜分析來評價。舉例而言,可將核酸靶向CRISPR系統之足以形成核酸靶向複合物之組分(包括欲測試之引導序列)提供至具有相應靶核酸序列之宿主細胞,例如藉由用編碼核酸靶向複合物之組分之載體轉染,然後例如藉由如本文所述之Surveyor分析來評價靶核酸序列內之優先靶向(例如裂解)。類似地,靶核酸序列之裂解可在試管中藉由提供靶核酸序列、核酸靶向複合物之組分(包括欲測試之引導序列)及不同於測試引導序列之對照引導序列、並比較測試與對照引導序列反應之間的靶序列處之結合或裂解率來評估。其他分析係可能的,且將為熟習此項技術者所明瞭。可選擇引導序列及因此核酸靶向引導物以靶向任一靶核酸序列。靶序列可為DNA。靶序列可為任一RNA序列。在一些實施例中,靶序列可為選自由以下組成之群之RNA分子內之序列:信使RNA(mRNA)、前mRNA、核糖體RNA(rRNA)、轉移RNA(tRNA)、微小RNA(miRNA)、小干擾RNA(siRNA)、小核RNA(snRNA)、小核仁RNA(snoRNA)、雙股RNA(dsRNA)、非編碼RNA(ncRNA)、長非編碼RNA(lncRNA)及小細胞質RNA(scRNA)。在一些較佳實施例中,靶序列可為選自由以下組成之群之RNA分子內之序列:mRNA、前mRNA及rRNA。在一些較佳實施例中,靶序列可為選自由以下組成之群之RNA分子內之序列:ncRNA及lncRNA。在一些更佳實施例中,靶序列可為mRNA分子或前mRNA分子內之序列。
在一些實施例中,選擇核酸靶向引導物以減小核酸靶向引導物內之二級結構之程度。在一些實施例中,核酸靶向引導物之約或小於約75%、50%、40%、30%、25%、20%、15%、10%、5%、1%或更少之核苷酸在最佳折疊時參與自互補鹼基配對。最佳折疊可藉由任一適宜多核苷酸折疊算法來確定。一些程 式係基於計算最小吉布斯自由能(Gibbs free energy)。一種此算法之實例係mFold,如Zuker及Stiegler(Nucleic Acids Res.9(1981),133-148)所述。另一實例折疊算法係線上網路伺服器RNAfold,其係在維也納大學(University of Vienna)之理論化學研究所(Institute for Theoretical Chemistry)使用形心結構預測算法開發(參見例如A.R.Gruber等人,2008,Cell 106(1):23-24;以及PA Carr及GM Church,2009,Nature Biotechnology 27(12):1151-62)。
在某些實施例中,引導RNA或crRNA可包含直接重複(DR)序列及引導序列或間隔體序列、基本上由其組成或由其組成。在某些實施例中,引導RNA或crRNA可包含融合或連接至引導序列或間隔體序列之直接重複序列、基本上由其組成或由其組成。在某些實施例中,直接重複序列可位於引導序列或間隔體序列之上游(即5’)。在其他實施例中,直接重複序列可位於引導序列或間隔體序列之下游(即3’)。
在某些實施例中,crRNA包含莖環,較佳地單一莖環。在某些實施例中,直接重複序列形成莖環,較佳地單一莖環。
在某些實施例中,引導RNA之間隔體長度為15nt至35nt。在某些實施例中,引導RNA之間隔體長度為至少15個核苷酸。在某些實施例中,間隔體長度為15nt至17nt(例如15nt、16nt或17nt)、17nt至20nt(例如17nt、18nt、19nt或20nt)、20nt至24nt(例如20nt、21nt、22nt、23nt或24nt)、23nt至25nt(例如23nt、24nt或25nt)、24nt至27nt(例如24nt、25nt、26nt或27nt)、27-30nt(例如27nt、28nt、29nt或30nt)、30-35nt(例如30nt、31nt、32nt、33nt、34nt或35nt)或35nt或更長。
「tracrRNA」序列或類似術語包括與crRNA序列具有足夠互補性以進行雜交之任一多核苷酸序列。在一些實施例中,當進行最佳比對時,tracrRNA序列與crRNA序列之間沿兩者中之較短序列之長度的互補度為約或大 於約25%、30%、40%、50%、60%、70%、80%、90%、95%、97.5%、99%或更高。在一些實施例中,tracr序列之長度為約或大於約5個、6個、7個、8個、9個、10個、11個、12個、13個、14個、15個、16個、17個、18個、19個、20個、25個、30個、40個、50個或更多個核苷酸。在一些實施例中,tracr序列及crRNA序列含於單一轉錄物內,使得兩者之間之雜交產生具有二級結構(例如髮夾結構)之轉錄物。在本發明之實施例中,轉錄物或所轉錄多核苷酸序列具有至少兩個或更多個髮夾結構。在較佳實施例中,轉錄物具有兩個、三個、四個或五個髮夾結構。在本發明之另一實施例中,轉錄物具有至多五個髮夾結構。在髮夾結構中,最終「N」之5’及環上游之序列部分對應於tracr配對序列,且環3’之序列部分對應於tracr序列。
一般而言,互補度係指sca序列及tracr序列沿兩條序列中之較短序列之長度的最佳比對。最佳比對可藉由任一適宜比對算法來確定,且可進一步考慮二級結構,例如sca序列或tracr序列內之自互補性。在一些實施例中,當進行最佳比對時,tracr序列與sca序列之間沿兩者中之較短序列之長度的互補度為約或大於約25%、30%、40%、50%、60%、70%、80%、90%、95%、97.5%、99%或更高。
一般而言,CRISPR-Cas、CRISPR-Cas9或CRISPR系統可如前述文件(例如國際專利申請公開案WO 2014/093622(PCT/US2013/074667))中所用,且統指參與CRISPR相關之(「Cas」)基因之表現或引導其活性之轉錄物及其他元件,包括編碼Cas基因、具體而言Cas9基因(在CRISPR-Cas9之情形下)之序列、tracr(反式活化CRISPR)序列(例如tracrRNA或活性部分tracrRNA)、tracr配對序列(在內源CRISPR系統之背景下涵蓋「直接重複」及tracrRNA加工之部分直接重複)、引導序列(在內源CRISPR系統之背景下亦稱為「間隔體」)或「RNA」(當在本文中使用該術語時)(例如引導Cas9之RNA,例如CRISPR RNA及反式 活化(tracr)RNA或單引導RNA(sgRNA)(嵌合RNA))或來自CRISPR基因座之其他序列及轉錄物。一般而言,CRISPR系統之特徵在於促進在靶序列之位點形成CRISPR複合物之元件(在內源CRISPR系統之背景下亦稱為原間隔體)。在形成CRISPR複合物之背景中,「靶序列」係指引導序列經設計以與其具有互補性之序列,其中靶序列與引導序列之間之雜交促進CRISPR複合物之形成。引導序列中與靶序列之互補性對裂解活性至關重要之部分在本文中稱為種子序列。靶序列可包含任一多核苷酸,例如DNA或RNA多核苷酸。在一些實施例中,靶序列位於細胞之核或細胞質中,且可包括存在於細胞內之粒線體、細胞器、囊泡、脂質體或粒子中或來自其之核酸。在一些實施例中,尤其對於非核用途,NLS並非較佳。在一些實施例中,CRISPR系統包含一或多個核輸出信號(NES)。在一些實施例中,CRISPR系統包含一或多個NLS及一或多個NES。在一些實施例中,直接重複可在電腦中藉由搜索滿足以下準則中之任一者或全部之重複基元來鑑別:1.發現於側接II型CRISPR基因座之基因體序列之2Kb窗中;2.跨越20bp至50bp;及3.間隔20bp至50bp。在一些實施例中,可使用該等準則中之2者,例如1及2、2及3或1及3。在一些實施例中,可使用所有3條準則。
在本發明之實施例中,術語引導序列及引導RNA(即能夠將Cas引導至靶基因體基因座之RNA)可如前述所引用文件(例如國際專利申請公開案WO 2014/093622(PCT/US2013/074667))中互換使用。一般而言,引導序列係與靶多核苷酸序列具有足夠互補性以與靶序列雜交且引導CRISPR複合物與靶序列之序列特異性結合的任一多核苷酸序列。在一些實施例中,當使用適宜比對算法進行最佳比對時,引導序列與其相應靶序列之間之互補度為約或大於約50%、60%、75%、80%、85%、90%、95%、97.5%、99%或更大。最佳比對可藉由使用任一適宜算法比對序列來確定,該適宜算法之非限制性實例包括Smith- Waterman算法、Needleman-Wunsch算法、基於Burrows-Wheeler轉型之算法(例如Burrows Wheeler比對器)、ClustalW、Clustal X、BLAT、Novoalign(Novocraft Technologies;可在www.novocraft.com上獲得)、ELAND(Illumina,San Diego,CA)、SOAP(可在soap.genomics.org.cn上獲得)及Maq(可在maq.sourceforge.net上獲得)。在一些實施例中,引導序列之長度為約或大於約5個、10個、11個、12個、13個、14個、15個、16個、17個、18個、19個、20個、21個、22個、23個、24個、25個、26個、27個、28個、29個、30個、35個、40個、45個、50個、75個或更多個核苷酸。在一些實施例中,引導序列之長度小於約75個、50個、45個、40個、35個、30個、25個、20個、15個、12個或更少核苷酸。較佳地,引導序列之長度為10至30個核苷酸。引導序列引導CRISPR複合物與靶序列之序列特異性結合之能力可藉由任一適宜分析來評價。舉例而言,可將CRISPR系統之足以形成CRISPR複合物之組分(包括欲測試之引導序列)提供至具有相應靶序列之宿主細胞,例如藉由用編碼CRISPR序列之組分之載體轉染,然後例如藉由如本文所述之Surveyor分析來評價靶序列內之優先裂解。類似地,靶多核苷酸序列之裂解可在試管中藉由提供靶序列、CRISPR複合物之組分(包括欲測試之引導序列)及不同於測試引導序列之對照引導序列、並比較測試與對照引導序列反應之間的靶序列處之結合或裂解率來評估。其他分析係可能的,且將為熟習此項技術者所明瞭。
在CRISPR-Cas系統之一些實施例中,引導序列與其相應靶序列之間之互補度可為約或大於約50%、60%、75%、80%、85%、90%、95%、97.5%、99%或100%;引導物或RNA或sgRNA之長度可為約或大於約5個、10個、11個、12個、13個、14個、15個、16個、17個、18個、19個、20個、21個、22個、23個、24個、25個、26個、27個、28個、29個、30個、35個、40個、45個、50個、75個或更多個核苷酸;或引導物或RNA或sgRNA之長度可小於約 75個、50個、45個、40個、35個、30個、25個、20個、15個、12個或更少核苷酸;且有利地,tracr RNA之長度為30或50個核苷酸。然而,本發明之實施例欲減少脫靶相互作用,例如減少引導物與具有低互補性之靶序列之相互作用。實際上,在實例中顯示,本發明涉及產生能夠區分靶序列與脫靶序列之CRISPR-Cas系統之突變,該等靶序列與脫靶序列具有大於80%至約95%互補性,例如83%-84%或88%-89%或94%-95%互補性(例如區分具有18個核苷酸之靶與具有1個、2個或3個錯配之18個核苷酸之脫靶)。因此,在本發明之上下文中,引導序列與其相應靶序列之間之互補度大於94.5%或95%或95.5%或96%或96.5%或97%或97.5%或98%或98.5%或99%或99.5%或99.9%或100%。脫靶之序列與引導物之間之互補性小於100%或99.9%或99.5%或99%或99%或98.5%或98%或97.5%或97%或96.5%或96%或95.5%或95%或94.5%或94%或93%或92%或91%或90%或89%或88%或87%或86%或85%或84%或83%或82%或81%或80%,且有利的是,脫靶之序列與引導物之間之互補性為100%或99.9%或99.5%或99%或99%或98.5%或98%或97.5%或97%或96.5%或96%或95.5%或95%或94.5%。
在本發明之尤佳實施例中,引導RNA(能夠將Cas引導至靶基因座)可包含(1)能夠與真核細胞中之基因體靶基因座雜交之引導序列;(2)tracr序列;及(3)tracr配對序列。所有(1)至(3)皆可處於單一RNA(即sgRNA)中(以5’至3’取向排列),或tracr RNA可為不同於含有引導物及tracr序列之RNA之RNA。tracr與tracr配對序列雜交且將CRISPR/Cas複合物引導至靶序列。當tracr RNA處於不同於含有引導物及tracr序列之RNA之RNA上時,每一RNA之長度可經最佳化以自其各別天然長度縮短,且各自可獨立地經化學修飾以免於細胞RNase降解或以其他方式增加穩定性。
如本文所述本發明之方法包括在如本文所論述之真核細胞中(活體外,即在經分離之真核細胞中)誘導一或多個突變,包括將如本文所論述之載體遞送至細胞。突變可包括經由引導RNA或sgRNA在細胞之每一靶序列處引入、缺失或取代一或多個核苷酸。突變可包括經由引導RNA或sgRNA在該(等)細胞之每一靶序列處引入、缺失或取代1-75個核苷酸。突變可包括經由引導RNA或sgRNA在該(等)細胞之每一靶序列處引入、缺失或取代1個、5個、10個、11個、12個、13個、14個、15個、16個、17個、18個、19個、20個、21個、22個、23個、24個、25個、26個、27個、28個、29個、30個、35個、40個、45個、50個或75個核苷酸。突變可包括經由引導RNA或sgRNA在該(等)細胞之每一靶序列處引入、缺失或取代5個、10個、11個、12個、13個、14個、15個、16個、17個、18個、19個、20個、21個、22個、23個、24個、25個、26個、27個、28個、29個、30個、35個、40個、45個、50個或75個核苷酸。突變包括經由引導RNA或sgRNA在該(等)細胞之每一靶序列處引入、缺失或取代10個、11個、12個、13個、14個、15個、16個、17個、18個、19個、20個、21個、22個、23個、24個、25個、26個、27個、28個、29個、30個、35個、40個、45個、50個或75個核苷酸。突變可包括經由引導RNA或sgRNA在該(等)細胞之每一靶序列處引入、缺失或取代20個、21個、22個、23個、24個、25個、26個、27個、28個、29個、30個、35個、40個、45個、50個或75個核苷酸。突變可包括經由引導RNA或sgRNA在該(等)細胞之每一靶序列處引入、缺失或取代40個、45個、50個、75個、100個、200個、300個、400個或500個核苷酸。
為最小化毒性及脫靶效應,控制所遞送Cas mRNA及引導RNA之濃度可能至關重要。Cas mRNA及引導RNA之最佳濃度可藉由在細胞或非人類真核生物動物模型中測試不同濃度並使用深度測序分析潛在脫靶基因體基因 座處之修飾程度來確定。替代地,為最小化毒性及脫靶效應之水準,Cas切口酶mRNA(例如具有D10A突變之化膿性鏈球菌(S.pyogenes)Cas9)可與靶向所關注位點之一對引導RNA一起遞送。最小化毒性及脫靶效應之引導序列及策略可如WO 2014/093622(PCT/US2013/074667)中所述;或經由如本文之突變來進行。
通常,在內源CRISPR系統之背景下,形成CRISPR複合物(包含與靶序列雜交且與一或多種Cas蛋白複合之引導序列)可裂解靶序列中或附近(例如在距靶序列1個、2個、3個、4個、5個、6個、7個、8個、9個、10個、20個、50或更多個鹼基對內)之一或兩個股。不希望受限於理論,可包含野生型tracr序列之全部或一部分(例如野生型tracr序列之約或大於約20個、26個、32個、45個、48個、54個、63個、67個、85個或更多個核苷酸)或由其組成之tracr序列亦可形成CRISPR複合物之一部分,例如藉由沿tracr序列之至少一部分與可操作連接至引導序列之tracr配對序列之全部或一部分雜交。
在某些實施例中,本發明之引導物包含非天然核酸及/或非天然核苷酸及/或核苷酸類似物及/或化學修飾。非天然核酸可包括例如天然及非天然核苷酸之混合物。非天然核苷酸及/或核苷酸類似物可在核糖、磷酸及/或鹼基部分進行修飾。在本發明之實施例中,引導核酸包含核糖核苷酸及非核糖核苷酸。在一個該實施例中,引導物包含一或多個核糖核苷酸及一或多個去氧核糖核苷酸。在本發明之實施例中,引導物包含一或多種非天然核苷酸或核苷酸類似物,例如含有硫代磷酸酯鏈接、硼磷酸酯鏈接之核苷酸、在核糖環之2'碳與4'碳之間包含亞甲基橋之鎖核酸(LNA)核苷酸、肽核酸(PNA)或橋接核酸(BNA)。經修飾核苷酸之其他實例包括2'-O-甲基類似物、2'-去氧類似物、2-硫尿苷類似物、N6-甲基腺苷類似物或2'-氟類似物。經修飾核苷酸之其他實例包括2’位之化學部分之鏈接,包括(但不限於)肽、核定位序列(NLS)、肽核酸(PNA)、聚乙二醇(PEG)、三乙二醇或四乙二醇(TEG)。經修飾鹼基之其他實例包括(但不限於)2-胺基嘌呤、 5-溴-尿苷、假尿苷(Ψ)、N1-甲基假尿苷(me1Ψ)、5-甲氧基尿苷(5moU)、肌苷、7-甲基鳥苷。引導RNA化學修飾之實例包括(但不限於)在一或多種末端核苷酸處納入2’-O-甲基(M)、2’-O-甲基-3’-硫代磷酸酯(MS)、硫代磷酸酯(PS)、S-受限乙基(cEt)、2’-O-甲基-3’-硫代PACE(MSP)或2’-O-甲基-3’-膦醯乙酸酯(MP)。與未經修飾之引導物相比,此類經化學修飾之引導物可包含增加之穩定性及增加之活性,但無法預測靶控對脫靶特異性。(參見Hendel,2015,Nat Biotechnol.33(9):985-9,doi:10.1038/nbt.3290,線上公開於2015年6月29日;Ragdarm等人,0215,PNAS,E7110-E7111;Allerson等人,J.Med.Chem.2005,48:901-904;Bramsen等人,Front.Genet.,2012,3:154;Deng等人,PNAS,2015,112:11870-11875;Sharma等人,MedChemComm.,2014,5:1454-1471;Hendel等人,Nat.Biotechnol.(2015)33(9):985-989;Li等人,Nature Biomedical Engineering,2017,1,0066 DOI:10.1038/s41551-017-0066;Ryan等人,Nucleic Acids Res.(2018)46(2):792-803)。在一些實施例中,引導RNA之5’及/或3’末端係藉由多個功能部分(包括螢光染料、聚乙二醇、膽固醇、蛋白質或偵測標籤)來修飾。(參見Kelly等人,2016,J.Biotech.233:74-83)。在某些實施例中,引導物包含結合至靶DNA之區域中之核糖核苷酸及結合至Cas9、Cpf1或C2c1之區域中之一或多種去氧核糖核苷酸及/或核苷酸類似物。在本發明之實施例中,將去氧核糖核苷酸及/或核苷酸類似物納入經改造之引導物結構中,例如(但不限於)5’及/或3’末端、莖環區及種子區。在某些實施例中,修飾並不處於莖環區之5’-柄中。引導物莖環區之5’-柄之化學修飾可消除其功能(參見Li等人,Nature Biomedical Engineering,2017,1:0066)。在某些實施例中,引導物之至少1個、2個、3個、4個、5個、6個、7個、8個、9個、10個、11個、12個、13個、14個、15個、16個、17個、18個、19個、20個、21個、22個、23個、24個、25個、26個、27個、28個、29個、30個、35個、40個、45個、50個或75個核苷酸經化學修飾。在一 些實施例中,引導物之3’或5’末端之3-5個核苷酸經化學修飾。在一些實施例中,僅在種子區中引入最小修飾,例如2’-F修飾。在一些實施例中,將2’-F修飾引入引導物之3’末端。在某些實施例中,用2’-O-甲基(M)、2’-O-甲基-3’-硫代磷酸酯(MS)、S-受限乙基(cEt)、2’-O-甲基-3’-硫代PACE(MSP)或2’-O-甲基-3’-膦醯乙酸酯(MP)對引導物之5’及/或3’末端之3至5個核苷酸進行化學修飾。此修飾可增強基因體編輯效率(參見Hendel等人,Nat.Biotechnol.(2015)33(9):985-989;Ryan等人,Nucleic Acids Res.(2018)46(2):792-803)。在某些實施例中,用硫代磷酸酯(PS)取代引導物之所有磷酸二酯鍵以增強基因破壞之水準。在某些實施例中,用2’-O-Me、2’-F或S-受限乙基(cEt)對引導物5’及/或3’末端之五個以上之核苷酸進行化學修飾。此經化學修飾之引導物可調介增強的基因破壞水準(參見Ragdarm等人,0215,PNAS,E7110-E7111)。在本發明之實施例中,引導物經修飾以在其3’及/或5’末端包含化學部分。此類部分包括(但不限於)胺、疊氮化物、炔烴、硫基、二苯并環辛烘(DBCO)、羅丹明(Rhodamine)、肽、核定位序列(NLS)、肽核酸(PNA)、聚乙二醇(PEG)、三乙二醇或四乙二醇(TEG)。在某些實施例中,化學部分藉由連接體(例如烷基鏈)結合至引導物。在某些實施例中,可使用經修飾引導物之化學部分將引導物連接至另一分子,例如DNA、RNA、蛋白質或奈米粒子。此經化學修飾之引導物可用於鑑別或富集藉由CRISPR系統遺傳編輯之細胞(參見Lee等人,eLife,2017,6:e25312,DOI:10.7554)。在一些實施例中,3’及5’末端中之每一者處之3個核苷酸經化學修飾。在特定實施例中,修飾包含2’-O-甲基或硫代磷酸酯類似物。在特定實施例中,四環中之12個核苷酸及莖環區中之16個核苷酸經2’-O-甲基類似物替代。此類化學修飾改良活體內編輯及穩定性(參見Finn等人,Cell Reports(2018),22:2227-2235)。在一些實施例中,引導物之60個或70個以上之核苷酸經化學修飾。在一些實施例中,此修飾包含用2’-O-甲基或2’-氟核苷酸類似物或磷酸二酯鍵之硫代磷酸酯 (PS)修飾來替代核苷酸。在一些實施例中,化學修飾包含在形成CRISPR複合物時延伸至核酸酶蛋白外之引導核苷酸之2’-O-甲基或2’-氟修飾、或引導物3’末端之20個至30個或更多個核苷酸之PS修飾。在具體實施例中,化學修飾進一步包含引導物5’末端之2’-O-甲基類似物或種子區及尾區中之2’-氟類似物。此類化學修飾改良對核酸酶降解之穩定性且維持或增強基因體編輯活性或效率,但所有核苷酸之修飾可消除引導物之功能(參見Yin等人,Nat.Biotech.(2018),35(12):1179-1187)。此類化學修飾可藉由CRISPR複合物之結構之知識、包括有限數量之核酸酶及RNA 2’-OH相互作用之知識來引導(參見Yin等人,Nat.Biotech.(2018),35(12):1179-1187)。在一些實施例中,一或多個引導RNA核苷酸可經DNA核苷酸替代。在一些實施例中,5’末端尾/種子引導區之高達2個、4個、6個、8個、10個或12個RNA核苷酸經DNA核苷酸替代。在某些實施例中,3’末端之大多數引導RNA核苷酸經DNA核苷酸替代。在具體實施例中,3’末端之16個引導RNA核苷酸經DNA核苷酸替代。在具體實施例中,5’末端尾/種子區之8個引導RNA核苷酸及3’末端之16個RNA核苷酸經DNA核苷酸替代。在具體實施例中,在形成CRISPR複合物時延伸至核酸酶蛋白外之引導RNA核苷酸經DNA核苷酸替代。與未經修飾之引導物相比,此多個RNA核苷酸經DNA核苷酸之替代可降低脫靶活性,但靶控活性相似;然而,替代3’末端之所有RNA核苷酸可消除引導物之功能(參見Yin等人,Nat.Chem.Biol.(2018)14,311-316)。此類修飾可藉由CRISPR複合物之結構之知識、包括有限數量之核酸酶及RNA 2’-OH相互作用之知識來引導(參見Yin等人,Nat.Chem.Biol.(2018)14,311-316)。
在本發明之一個實施例中,引導物包含Cpf1之經修飾之crRNA,其具有5’-柄及進一步包含種子區及3’末端之引導區段。在一些實施例中,經修飾引導物可與以下中任一者之Cpf1一起使用:胺基酸球菌(Acidaminococcus sp.) BV3L6 Cpf1(AsCpf1);土拉弗朗西斯菌(Francisella tularensis)亞種諾維達U112 Cpf1(FnCpf1);毛螺菌(L.bacterium)MC2017 Cpf1(Lb3Cpf1);瘤胃溶纖維丁酸弧菌(Butyrivibrio proteoclasticus)Cpf1(BpCpf1);帕庫氏菌(Parcubacteria bacterium)GWC2011_GWC2_44_17 Cpf1(PbCpf1);佩萊格里尼菌(Peregrinibacteria bacterium)GW2011_GWA_33_10 Cpf1(PeCpf1);良吉氏鉤端螺旋體(Leptospira inadai)Cpf1(LiCpf1);史密斯氏菌(Smithella sp.)SC_K08D17 Cpf1(SsCpf1);毛螺菌MA2020 Cpf1(Lb2Cpf1);狗口腔卟啉單胞菌(Porphyromonas crevioricanis)Cpf1(PcCpf1);獼猴卟啉單胞菌(Porphyromonas macacae)Cpf1(PmCpf1);候選白蟻甲烷支原體(Candidatus Methanoplasma termitum)Cpf1(CMtCpf1);挑剔真桿菌(Eubacterium eligens)Cpf1(EeCpf1);牛眼莫拉氏菌(Moraxella bovoculi)237 Cpf1(MbCpf1);解糖腖普雷沃氏菌(Prevotella disiens)Cpf1(PdCpf1);或毛螺菌ND2006 Cpf1(LbCpf1)。
在一些實施例中,對引導物之修飾係化學修飾、插入、缺失或拆分。在一些實施例中,化學修飾包括(但不限於)納入2'-O-甲基(M)類似物、2'-去氧類似物、2-硫尿苷類似物、N6-甲基腺苷類似物、2'-氟類似物、2-胺基嘌呤、5-溴-尿苷、假尿苷(Ψ)、N1-甲基假尿苷(me1Ψ)、5-甲氧基尿苷(5moU)、肌苷、7-甲基鳥苷、2’-O-甲基-3’-硫代磷酸酯(MS)、S-受限乙基(cEt)、硫代磷酸酯(PS)、2’-O-甲基-3’-硫代PACE(MSP)或2’-O-甲基-3’-膦醯乙酸酯(MP)。在一些實施例中,引導物包含一或多個硫代磷酸酯修飾。在某些實施例中,引導物之至少1個、2個、3個、4個、5個、6個、7個、8個、9個、10個、11個、12個、13個、14個、15個、16個、17個、18個、19個、20個或25個核苷酸經化學修飾。在一些實施例中,所有核苷酸經化學修飾。在某些實施例中,種子區中之一或多個核苷酸經化學修飾。在某些實施例中,3’末端中之一或多個核苷酸經化學修飾。在某些實施例中,5’-柄中之核苷酸皆未經化學修飾。在一些實施例中,種子區中 之化學修飾係最小修飾,例如納入2’-氟類似物。在特定實施例中,種子區之一個核苷酸經2’-氟類似物替代。在一些實施例中,3’末端中之5個或10個核苷酸經化學修飾。Cpf1 CrRNA之3’末端之此類化學修飾改良基因切割效率(參見Li等人,Nature Biomedical Engineering,2017,1:0066)。在特定實施例中,3’末端中之5個核苷酸經2’-氟類似物替代。在特定實施例中,3’末端中之10個核苷酸經2’-氟類似物替代。在特定實施例中,3’末端中之5個核苷酸經2’-O-甲基(M)類似物替代。在一些實施例中,3’及5’末端中之每一者處之3個核苷酸經化學修飾。在特定實施例中,修飾包含2’-O-甲基或硫代磷酸酯類似物。在特定實施例中,四環中之12個核苷酸及莖環區中之16個核苷酸經2’-O-甲基類似物替代。此類化學修飾改良活體內編輯及穩定性(參見Finn等人,Cell Reports(2018),22:2227-2235)。
在一些實施例中,引導物之5’-柄之環經修飾。在一些實施例中,引導物之5’-柄之環經修飾以具有缺失、插入、拆分或化學修飾。在某些實施例中,環包含3個、4個或5個核苷酸。在某些實施例中,環包含UCUU、UUUU、UAUU或UGUU序列。在一些實施例中,引導分子與單獨非共價連接序列形成莖環,該單獨非共價連接序列可為DNA或RNA。
合成連接之引導物
在一個實施例中,引導物包含經由非磷酸二酯鍵化學連接或結合之tracr序列及tracr配對序列。在一個實施例中,引導物包含經由非核苷酸環化學連接或結合之tracr序列及tracr配對序列。在一些實施例中,tracr及tracr配對序列經由非磷酸二酯共價連接體聯接。共價連接體之實例包括(但不限於)選自由以下組成之群之化學部分:胺基甲酸酯、醚、酯、醯胺、亞胺、脒、胺基三嗪、腙、二硫化物、硫醚、硫代酯、硫代磷酸酯、二硫代磷酸酯、磺醯胺、磺酸酯、砜、亞砜、脲、硫脲、醯肼、肟、三唑、光不穩定性鏈接、C-C鍵形成基團 (例如狄-阿二氏環加成對(Diels-Alder cyclo-addition pair)或環合置換對)及麥克反應對(Michael reaction pair)。
在一些實施例中,首先使用標準亞磷醯胺合成方案合成tracr及tracr配對序列(Herdewijn,P.編輯,Methods in Molecular Biology Col 288,Oligonucleotide Synthesis:Methods and Applications,Humana Press,New Jersey(2012))。在一些實施例中,tracr或tracr配對序列可使用此項技術中已知之標準方案功能化以含有適於聯接之官能基(Hermanson,G.T.,Bioconjugate Techniques,Academic Press(2013))。官能基之實例包括(但不限於)羥基、胺、羧酸、羧酸鹵化物、羧酸活性酯、醛、羰基、氯羰基、咪唑基羰基、氫氯噻嗪、半卡肼、硫代半卡肼、硫醇、馬來醯亞胺、鹵烷基、磺醯基、烯丙基、炔丙基、二烯、炔烴及疊氮化物。一旦tracr及tracr配對序列功能化,便立即可在兩個寡核苷酸之間形成共價共價鍵或鏈接。化學鍵之實例包括(但不限於)基於胺基甲酸酯、醚、酯、醯胺、亞胺、脒、胺基三嗪、腙、二硫化物、硫醚、硫代酯、硫代磷酸酯、二硫代磷酸酯、磺醯胺、磺酸酯、碸、亞碸、脲、硫脲、醯肼、肟、三唑、光不穩定性鍵、C-C鍵形成基團(例如狄-阿二氏環加成對或環合置換對)及麥克反應對之彼等化學鍵。
在一些實施例中,tracr及tracr配對序列可化學合成。在一些實施例中,化學合成使用自動化固相寡核苷酸合成機器及2’-乙氧基乙基原酸酯(2’-ACE)(Scaringe等人,J.Am.Chem.Soc.(1998)120:11820-11821;Scaringe,Methods Enzymol.(2000)317:3-18)或2’-硫代胺基甲酸酯(2’-TC)化學法(Dellinger等人,J.Am.Chem.Soc.(2011)133:11540-11546;Hendel等人,Nat.Biotechnol.(2015)33:985-989)。
在一些實施例中,tracr及tracr配對序列可使用多種生物結合反應、環、橋及非核苷酸連接經由修飾糖、核苷酸間磷酸二酯鍵、嘌呤及嘧啶殘基 進行共價連接。Sletten等人,Angew.Chem.Int.Ed.(2009)48:6974-6998;Manoharan,M.Curr.Opin.Chem.Biol.(2004)8:570-9;Behlke等人,Oligonucleotides(2008)18:305-19;Watts等人,Drug.Discov.Today(2008)13:842-55;Shukla等人,ChemMedChem(2010)5:328-49。
在一些實施例中,tracr及tracr配對序列可使用點擊化學法共價連接。在一些實施例中,tracr及tracr配對序列可使用三唑連接體共價連接。在一些實施例中,tracr及tracr配對序列可使用涉及炔烴及疊氮化物之惠斯根1,3-偶極環加成反應(Huisgen 1,3-dipolar cycloaddition reaction)共價連接,以產生高度穩定之三唑連接體(He等人,ChemBioChem(2015)17:1809-1812;WO 2016/186745)。在一些實施例中,tracr及tracr配對序列係藉由聯接5’-己炔tracrRNA及3’-疊氮化物crRNA來共價連接。在一些實施例中,5’-己炔tracrRNA及3’-疊氮化物crRNA中之任一者或兩者可用2’-乙氧基乙基原酸酯(2’-ACE)基團來保護,該基團隨後可使用Dharmacon方案去除(Scaringe等人,J.Am.Chem.Soc.(1998)120:11820-11821;Scaringe,Methods Enzymol.(2000)317:3-18)。
在一些實施例中,tracr及tracr配對序列可經由連接體(例如非核苷酸環)共價連接,該連接體包含諸如間隔體、連接物、生物結合物、發色團、報導基團、染料標記之RNA及非天然核苷酸類似物之部分。更特定而言,適用於本發明目的之間隔體包括(但不限於)聚醚(例如聚乙二醇、多元醇、聚丙二醇或乙二醇及丙二醇之混合物)、聚胺基團(例如精胺、亞精胺及其聚合衍生物)、聚酯(例如聚(丙烯酸乙酯))、聚磷酸二酯、伸烷基及其組合。適宜連接物包括可添加至連接體以將其他性質添加至連接體之任一部分,例如(但不限於)螢光標記。適宜生物結合物包括(但不限於)肽、糖苷、脂質、膽固醇、磷脂、二醯基甘油及二烷基甘油、脂肪酸、烴、酶受質、類固醇、生物素、地高辛(digoxigenin)、碳水化合物、多糖。適宜發色團、報導基團及染料標記之RNA包括(但不限於)螢光 染料(例如螢光黃及羅丹明)、化學發光、電化學發光及生物發光標記物化合物。結合兩種RNA組分之實例連接體之設計亦闡述於國際專利申請公開案WO 2004/015075中。
連接體(例如非核苷酸環)可具有任一長度。在一些實施例中,連接體之長度等效於約0-16個核苷酸。在一些實施例中,連接體之長度等效於約0-8個核苷酸。在一些實施例中,連接體之長度等效於約0-4個核苷酸。在一些實施例中,連接體之長度等效於約2個核苷酸。實例連接體設計亦闡述於國際專利申請公開案WO2011/008730中。
典型II型Cas9 sgRNA包含(在5’至3’方向上):引導序列、聚U束、第一互補段(「重複」)、環(四環)、第二互補段(與重複互補之「反重複」)、莖及其他莖環及莖以及聚A(通常為RNA中之聚U)尾(終止子)。在較佳實施例中,保留引導物架構之某些實施例,可例如藉由添加、減去或取代特徵來修飾引導物架構之某些實施例,而維持引導物架構之某些其他實施例。經改造之sgRNA修飾(包括但不限於插入、缺失及取代)之較佳位置包括sgRNA之在與CRISPR蛋白及/或靶(例如四環及/或環2)複合時暴露之引導物末端及區域。
在某些實施例中,本發明之引導物包含特異性針對轉接蛋白之結合位點(例如適配體),該等轉接蛋白可包含一或多個功能結構域(例如經由融合蛋白)。當此一引導物形成CRISPR複合物(即CRISPR酶與引導物及靶結合)時,轉接蛋白結合,且與轉接蛋白相關之功能結構域在有利於所屬功能有效之空間取向上定位。舉例而言,若功能結構域係轉錄活化劑(例如VP64或p65),則轉錄活化劑置於允許其影響靶轉錄之空間取向上。同樣,轉錄抑制物將有利地經定位以影響靶之轉錄且核酸酶(例如Fok1)將有利地經定位以裂解或部分裂解靶。
熟習此項技術者應理解,允許轉接子+功能結構域結合而非轉接子+功能結構域之適當定位(例如歸因於CRISPR複合物之三維結構內之位阻)之 對引導物之修飾並非預期之修飾。一或多種經修飾引導物可在如本文所述之四環、莖環1、莖環2或莖環3處、較佳地在四環或莖環2處、且最佳地在四環及莖環2二者處進行修飾。
重複:反重複雙鏈體將自sgRNA之二級結構顯而易見。其通常可為(在5’至3’方向上)在聚U束之後且在四環之前的第一互補段;及(在5’至3’方向上)在四環之後且在聚A束之前的第二互補段。第一互補段(「重複」)與第二互補段(「反重複」)互補。因此,其在相互折疊時進行沃森-克里克鹼基配對(Watson-Crick base pair)以形成dsRNA雙鏈體。因此,反重複序列係重複之互補序列且就A-U或C-G鹼基配對而言,但亦就因四環所致反重複處於相反取向上的事實而言。
在本發明之實施例中,引導物架構之修飾包含替代莖環2中之鹼基。舉例而言,在一些實施例中,莖環2中之「actt」(在RNA中為「acuu」)及「aagt」(在RNA中為「aagu」)鹼基經「cgcc」及「gcgg」替代。在一些實施例中,莖環2中之「actt」及「aagt」鹼基經具有4個核苷酸之富含GC之互補區域替代。在一些實施例中,具有4個核苷酸之富含GC之互補區域係「cgcc」及「gcgg」(皆在5’至3’方向上)。在一些實施例中,具有4個核苷酸之富含GC之互補區域係「gcgg」及「cgcc」(皆在5’至3’方向上)。具有4個核苷酸之富含GC之互補區域中之其他C及G組合將顯而易見,包括CCCC及GGGG。
在一個實施例中,莖環2(例如「ACTTgtttAAGT」(SEQ ID NO:36))可經任一「XXXXgtttYYYY」(SEQ ID NO:37)替代,例如其中XXXX及YYYY代表一起進行鹼基配對以產生莖之任何互補核苷酸集合。
在一個實施例中,莖包含含有互補X及Y序列之至少約4bp,但亦涵蓋具有更多(例如5個、6個、7個、8個、9個、10個、11個或12個)或更少(例如3個、2個)鹼基對之莖。因此,可涵蓋例如X2-12及Y2-12(其中X 及Y代表任何互補核苷酸集合)。在一個實施例中,由X及Y核苷酸構成之莖將與「gttt」一起在整體二級結構中形成完整的髮夾結構;且此可為有利的且鹼基對之量可為形成完整髮夾結構之任一量。在一個實施例中,容許任一互補X:Y鹼基配對序列(例如關於長度),只要保留整個sgRNA之二級結構即可。在一個實施例中,莖可為X:Y鹼基配對形式,其不會破壞整個sgRNA之二級結構之原因在於其具有DR:tracr雙鏈體及3個莖環。在一個實施例中,連接ACTT及AAGT(或由X:Y鹼基對構成之任一替代性莖)之「gttt」四環可為不會中斷sgRNA之整體二級結構之相同長度(例如4個鹼基對)或更長之任一序列。在一個實施例中,莖環可為進一步增長莖環2之物質,例如可為MS2適配體。在一個實施例中,莖環3「GGCACCGagtCGGTGC」(SEQ ID NO:38)同樣可採用「99196XagtYYYYYYY」(SEQ ID NO:39)形式,例如其中X7及Y7代表將一起進行彼此鹼基配對以產生莖之任何互補核苷酸集合。在一個實施例中,莖包含含有互補X及Y序列之約7bp,但亦涵蓋具有更多或更少鹼基對之莖。在一個實施例中,由X及Y核苷酸構成之莖將與「agt」一起在整體二級結構中形成完整的髮夾結構。在一個實施例中,容許任一互補X:Y鹼基配對序列,只要保留整個sgRNA之二級結構即可。在一個實施例中,莖可為X:Y鹼基配對形式,其不會破壞整個sgRNA之二級結構之原因在於其具有DR:tracr雙鏈體及3個莖環。在一個實施例中,莖環3之「agt」序列可延長或經通常以其他方式保留莖環3之架構之適配體(例如MS2適配體)或序列替代。在替代性莖環2及/或3之一個實施例中,每一X及Y對可指任一鹼基對。在一個實施例中,涵蓋非沃森克里克鹼基配對,其中此配對通常以其他方式保留該位置之莖環之架構。
在一個實施例中,DR:tracrRNA雙鏈體可經以下形式替代:gYYYYag(N)NNNNxxxxNNNN(AAN)uuRRRRu(SEQ ID NO:40)(使用核苷酸之標準IUPAC命名),其中(N)及(AAN)代表雙鏈體中凸起之一部分,且「xxxx」代 表連接體序列。直接重複上之NNNN可為任一者,只要其與tracrRNA之相應NNNN部分進行鹼基配對即可。在一個實施例中,DR:tracrRNA雙鏈體可藉由任一長度(xxxx...)、任一鹼基組成之連接體連接,只要其不改變整體結構即可。
在一個實施例中,sgRNA結構要求係具有雙鏈體及3個莖環。在大多數實施例中,許多特定鹼基要求之實際序列要求係寬鬆的,此乃因應保留DR:tracrRNA雙鏈體之架構,但產生架構(即莖、環、凸起等)之序列可發生變化。
適配體
含有第一適配體/RNA結合蛋白對之一種引導物可連接或融合至活化劑,而含有第二適配體/RNA結合蛋白對之第二引導物可連接或融合至抑制物。引導物係針對不同的靶(基因座),因此此允許一個基因活化且一個基因被抑制。舉例而言,以下示意圖顯示此一方法:
引導物1-MS2適配體-------MS2 RNA結合蛋白-------VP64活化劑;及
引導物2-PP7適配體-------PP7 RNA結合蛋白-------SID4x抑制物。
本發明亦係關於正交PP7/MS2基因靶向。在此實例中,用不同RNA環來修飾靶向sgRNA之不同基因座以招募MS2-VP64或PP7-SID4X,其分別活化及抑制其靶基因座。PP7係噬細菌體假單胞菌屬(Pseudomonas)之RNA結合外殼蛋白。與MS2一樣,其結合特定RNA序列及二級結構。PP7 RNA識別基元與MS2不同。因此,PP7及MS2可經多重化以同時調介不同基因體基因座處之不同效應。舉例而言,靶向sgRNA之基因座A可用MS2環修飾,從而招募MS2-VP64活化劑,而靶向sgRNA之另一基因座B可用PP7環修飾,從而招募PP7-SID4X抑制結構域。因此在相同細胞中,dCas9可調介正交基因座特異性修飾。此原理可擴展至納入其他正交RNA結合蛋白,例如Q-β。
正交壓抑之替代性選擇包括將具有交互壓抑功能之非編碼RNA環納入引導物中(在整合至引導物中之MS2/PP7環之相似位置或在引導物之3’末端)。例如,使用非編碼(但已知具有壓抑性)RNA環(例如使用干擾哺乳動物細胞中之RNA聚合酶II之Alu壓抑物(在RNA中))來設計引導物。Alu RNA序列如下進行定位:替代如本文所用之MS2 RNA序列(例如在四環及/或莖環2處);及/或在引導物之3’末端。此可能將四環及/或莖環2位置處之MS2、PP7或Alu進行組合,以及視情況地在引導物之3’末端添加Alu(利用或不利用連接體)。
使用兩種不同之適配體(不同RNA)允許活化劑-轉接蛋白融合物及抑制物-轉接蛋白融合物與不同引導物一起使用,以活化一種基因之表現,同時抑制另一基因。其及其不同之引導物可在多重化方法中一起投與,或實質上一起投與。大量此類經修飾引導物皆可同時使用,例如10個或20個或30個等,同時僅遞送一個(或至少最少量)Cas9s,此乃因相當少量之Cas9s可與大量經修飾引導物一起使用。轉接蛋白可與一或多種活化劑或一或多種抑制物締合(較佳地連接或融合)。舉例而言,轉接蛋白可與第一活化劑及第二活化劑締合。第一活化劑及第二活化劑可為相同的,但其較佳係不同之活化劑。舉例而言,一者可為VP64,而另一者可為p65,但該等活化劑僅係實例且設想其他轉錄活化劑。可使用三種或更多種或甚至四種或更多種活化劑(或壓抑物),但包裝大小可限制數量高於5個不同功能結構域。較佳使用連接體,而非直接融合至轉接蛋白,其中兩個或更多個功能結構域與轉接蛋白締合。適宜連接體可包括GlySer連接體。
亦設想酶-引導物複合物整體可與兩個或更多個功能結構域締合。舉例而言,可存在與酶締合之兩個或更多個功能結構域,或可存在與引導物締合(經由一或多種轉接蛋白)之兩個或更多個功能結構域,或可存在與酶締合 之一或多個功能結構域及與引導物締合(經由一或多種轉接蛋白)之一或多個功能結構域。
轉接蛋白與活化劑或壓抑物之間之融合物可包括連接體。舉例而言,可使用GlySer連接體GGGS。其可以3個((GGGGS)3(SEQ ID NO:35))或6個、9個或甚至12個或更多個重複使用,以視需要提供適宜長度。連接體可用於RNA結合蛋白與功能結構域(活化劑或壓抑物)之間或CRISPR酶(Cas9)與功能結構域(活化劑或壓抑物)之間。連接體使用者改造適當量之「機械撓性」。
死引導物
在一個實施例中,本發明提供引導序列,其以允許形成CRISPR複合物並成功地結合至靶、同時不允許成功的核酸酶活性(即無核酸酶活性/無插入/缺失活性)之方式進行修飾。為便於解釋,此類經修飾之引導序列稱為「死引導物」或「死引導序列」。該等死引導物或死引導序列可視為在核酸酶活性方面無催化活性或無構形活性。核酸酶活性可使用如此項技術中常用之surveyor分析或深度測序、較佳地surveyor分析來量測。類似地,就促進催化活性或區分靶控與脫靶結合活性之能力而言,死引導序列可能不足以參與生產性鹼基配對。簡言之,surveyor分析涉及純化及擴增基因之CRISPR靶位點並與擴增CRISPR靶位點之引子形成異源雙鏈體。在再退火後,用SURVEYOR核酸酶及SURVEYOR增強子S(Transgenomics)遵循製造商建議之方案處理產物,在凝膠上分析,且基於相對帶強度量化。
因此,在相關實施例中,本發明提供非天然或經改造之組合物Cas9 CRISPR-Cas系統,其包含如本文所述之功能性Cas9及引導RNA(gRNA),其中gRNA包含死引導序列,其中gRNA能夠與靶序列雜交,使得Cas9 CRISPR-Cas系統針對細胞中所關注之基因體基因座,而無源自如藉由SURVEYOR分析偵測到之系統之非突變體Cas9酶之核酸酶活性的可偵測到之插入/缺失活性。出 於速記之目的,包含死引導序列之gRNA在本文中稱為「死gRNA」,其中gRNA能夠與靶序列雜交,使得Cas9 CRISPR-Cas系統針對細胞中所關注之基因體基因座,而無源自如藉由SURVEYOR分析偵測到之系統之非突變體Cas9酶之核酸酶活性的可偵測到之插入/缺失活性。應理解,如本文別處所述之本發明之任一gRNA可用作包含如下文所述之死引導序列之死gRNA/gRNA。如本文別處所述之方法、產物、組合物及用途中之任一者同樣適用於包含如下文進一步詳述之死引導序列之死gRNA/gRNA。藉助進一步引導,提供以下具體實施例及實施例。
死引導序列引導CRISPR複合物與靶序列之序列特異性結合之能力可藉由任一適宜分析來評價。舉例而言,可將CRISPR系統之足以形成CRISPR複合物之組分(包括欲測試之死引導序列)提供至具有相應靶序列之宿主細胞,例如藉由用編碼CRISPR序列之組分之載體轉染,然後例如藉由如本文所述之Surveyor分析來評價靶序列內之優先裂解。類似地,靶多核苷酸序列之裂解可在試管中藉由提供靶序列、CRISPR複合物之組分(包括欲測試之死引導序列)及不同於測試死引導序列之對照引導序列、並比較測試與對照引導序列反應之間的靶序列處之結合或裂解率來評估。其他分析係可能的,且將為熟習此項技術者所明瞭。可選擇死引導序列來靶向任一靶序列。在一些實施例中,靶序列係細胞基因體內之序列。
如本文進一步解釋,若干結構參數允許適當框架到達此類死引導物。死引導序列短於各別引導序列,此導致活性Cas9特異性插入/缺失形成。死引導物比針對同一Cas9之各別引導物短5%、10%、20%、30%、40%、50%,從而導致活性Cas9特異性插入/缺失形成。
如下文所解釋且此項技術中已知,gRNA-Cas9特異性之一個實施例係直接重複序列,其適當連接至此類引導物。具體而言,此暗指直接重複序 列係根據Cas9之起源來設計。因此,可使用可用於經驗證死引導序列之結構資料來設計Cas9特異性等效物。可利用例如兩個或更多個Cas9效應蛋白之異種同源核酸酶結構域RuvC之間之結構相似性來轉移設計等效之死引導物。因此,本文死引導物之長度及序列可經適當修飾以反映此類Cas9特異性等效物,從而允許形成CRISPR複合物並成功地結合至靶,同時不允許成功的核酸酶活性。
在本文上下文以及技術現況中使用死引導物在活體外、離體及活體內應用中提供驚人且出人意料的網路生物學及/或系統生物學平台,從而允許多重基因靶向,且具體而言雙向多重基因靶向。在使用死引導物之前,解決例如用於活化、抑制及/或沈默基因活性之多個靶具有挑戰性且在一些情形下係不可能的。藉由使用死引導物,可解決多個靶且因此解決多種活性,例如在同一細胞中、在同一動物中或在同一患者中。此多重化可同時進行或在期望時程內交錯進行。
舉例而言,死引導物現允許第一次使用gRNA作為基因靶向之方式,而無核酸酶活性之後果,同時提供用於活化或抑制之定向方式。包含死引導物之引導物RNA可以允許活化或抑制基因活性、具體而言如本文別處所述之蛋白質轉接子(例如適配體)、從而允許功能性替代基因效應物(例如基因活性之活化劑或抑制物)之方式進行修飾以進一步包括元件。一個實例係納入適配體,如本文及技術現況中所解釋。藉由改造包含死引導物之gRNA以納入蛋白質相互作用適配體(Konermann等人,「Genome-scale transcription activation by an engineered CRISPR-Cas9 complex」,doi:10.1038/nature14136,其以引用方式併入本文中),一人可組裝由多個不同之效應物結構域組成之合成轉錄活化複合物。此可在天然轉錄活化過程後進行建模。舉例而言,選擇性結合效應物(例如活化劑或抑制物;二聚化MS2噬細菌體外殼蛋白作為與活化劑或抑制物之融合蛋白)之適配體或本身結合效應物(例如活化劑或抑制物)之蛋白質可附加至死gRNA 四環及/或莖環2。在MS2之情形下,融合蛋白MS2-VP64結合至四環及/或莖環2且進而調介轉錄上調,例如對於Neurog2。其他轉錄活化劑係例如VP64、P65、HSF1及MyoD1。僅以此概念舉例,用PP7相互作用莖環替代MS2莖環可用於招募抑制元件。
因此,一個實施例係包含死引導物之本發明gRNA,其中gRNA進一步包含提供基因活化或壓抑之修飾,如本文所述。死gRNA可包含一或多種適配體。適配體可特異性針對基因效應物、基因活化劑或基因壓抑物。替代地,適配體可特異性針對蛋白質,該蛋白質進而特異性針對且招募/結合特定基因效應物、基因活化劑或基因壓抑物。若存在多個活化劑或壓抑物招募位點,則位點較佳地特異性針對活化劑或壓抑物。若存在多個活化劑或壓抑物結合位點,則位點可特異性針對相同活化劑或相同壓抑物。位點亦可特異性針對不同活化劑或不同壓抑物。基因效應物、基因活化劑、基因壓抑物可以融合蛋白之形式存在。
在實施例中,如本文所述之死gRNA或如本文所述之Cas9 CRISPR-Cas複合物包括包含兩種或更多種轉接蛋白之非天然或經改造組合物,其中每一蛋白質與一或多個功能結構域締合且其中轉接蛋白結合至插入死gRNA之至少一個環中之不同RNA序列。
因此,實施例提供非天然或經改造之組合物,其包含含有能夠與細胞中之所關注基因體基因座中之靶序列雜交的死引導序列之引導RNA(gRNA),其中死引導序列係如本文所定義;含有至少一或多條核定位序列之Cas9,其中Cas9視情況地包含至少一個突變,其中死gRNA之至少一個環藉由插入結合至一或多種轉接蛋白之不同RNA序列來修飾,且其中轉接蛋白與一或多個功能結構域締合;或,其中死gRNA經修飾以具有至少一個非編碼功能環,且其中組合物包含兩種或更多種轉接蛋白,其中每一蛋白質與一或多個功能結構域締合。
在某些實施例中,轉接蛋白係包含功能結構域之融合蛋白、視情況地在轉接蛋白與功能結構域之間包含連接體之融合蛋白,連接體視情況地包括GlySer連接體。
在某些實施例中,死gRNA之至少一個環並未藉由插入結合至兩個或更多個轉接蛋白之不同RNA序列來修飾。
在某些實施例中,與轉接蛋白締合之一或多個功能結構域係轉錄活化結構域。
在某些實施例中,與轉接蛋白締合之一或多個功能結構域係包含VP64、p65、MyoD1、HSF1、RTA或SET7/9之轉錄活化結構域。
在某些實施例中,與轉接蛋白締合之一或多個功能結構域係轉錄抑制結構域。
在某些實施例中,轉錄壓抑結構域係KRAB結構域。
在某些實施例中,轉錄壓抑結構域係NuE結構域、NcoR結構域、SID結構域或SID4X結構域。
在某些實施例中,與轉接蛋白締合之一或多個功能結構域中之至少一者具有一或多種活性,包括甲基酶活性、去甲基酶活性、轉錄活化活性、轉錄壓抑活性、轉錄釋放因子活性、組織蛋白修飾活性、DNA整合活性、RNA裂解活性、DNA裂解活性或核酸結合活性。
在某些實施例中,DNA裂解活性歸因於Fok1核酸酶。
在某些實施例中,死gRNA經修飾,以使得在死gRNA後結合轉接蛋白且進一步結合至Cas9及靶,功能結構域處於允許功能結構域在其所屬功能中起作用之空間取向上。
在某些實施例中,死gRNA之至少一個環係四環及/或環2。在某些實施例中,死gRNA之四環及環2藉由插入不同RNA序列來修飾。
在某些實施例中,插入結合至一或多種轉接蛋白之不同RNA序列係適配體序列。在某些實施例中,適配體序列係特異性針對同一轉接蛋白之兩條或更多條適配體序列。在某些實施例中,適配體序列係特異性針對不同轉接蛋白之兩條或更多條適配體序列。
在某些實施例中,轉接蛋白包含MS2、PP7、Qβ、F2、GA、fr、JP501、M12、R17、BZ13、JP34、JP500、KU1、M11、MX1、TW18、VK、SP、FI、ID2、NL95、TW19、AP205、ΦCb5、ΦCb8r、ΦCb12r、ΦCb23r、7s、PRR1。
在某些實施例中,細胞係真核細胞。在某些實施例中,真核細胞係哺乳動物細胞,視情況地小鼠細胞。在某些實施例中,哺乳動物細胞係人類細胞。
在某些實施例中,第一轉接蛋白與p65結構域締合,且第二轉接蛋白與HSF1結構域締合。
在某些實施例中,組合物包含Cas9 CRISPR-Cas複合物,其具有至少三個功能結構域,該等功能結構域中之至少一者與Cas9締合且該等功能結構域中之至少兩者與死gRNA締合。
在某些實施例中,組合物進一步包含第二gRNA,其中第二gRNA係活gRNA,其能夠與第二靶序列雜交,使得第二Cas9 CRISPR-Cas系統針對細胞中之所關注第二基因體基因座,且在第二基因體基因座處具有源自系統之Cas9酶之核酸酶活性的可偵測到之插入/缺失活性。
在某些實施例中,組合物進一步包含複數個死gRNA及/或複數個活gRNA。
本發明之一個實施例係利用gRNA支架之模組性及可定制性來建立一系列之gRNA支架,其具有不同的結合位點(具體而言適配體)用於以正交方式招募不同類型之效應物。另外,為便於舉例及說明更廣泛的概念,用PP7相 互作用莖環替代MS2莖環可用於結合/招募抑制元件,從而實現多重化雙向轉錄控制。因此,一般而言,可使用包含死引導物之gRNA來提供多重轉錄控制及較佳雙向轉錄控制。此轉錄控制係基因中最佳的。舉例而言,可使用一或多個包含死引導物之gRNA來靶向一或多個靶基因之活化。同時,可使用一或多個包含死引導物之gRNA來靶向一或多個靶基因之抑制。此一序列可以多個不同組合應用,例如首先抑制靶基因且然後在適當時段活化其他靶,或在活化所選基因的同時抑制所選基因,然後進一步活化及/或抑制。因此,可有利地一起解決一或多個生物系統之多個組分。
在實施例中,本發明提供編碼死gRNA或如本文所述之Cas9 CRISPR-Cas複合物或組合物之核酸分子。
在實施例中,本發明提供載體系統,其包含:編碼如本文所定義之死引導RNA之核酸分子。在某些實施例中,載體系統進一步包含編碼Cas9之核酸分子。在某些實施例中,載體系統進一步包含編碼(活)gRNA之核酸分子。在某些實施例中,核酸分子或載體進一步包含可在真核細胞中操作之調控元件,其可操作連接至編碼引導序列(gRNA)之核酸分子及/或編碼Cas9之核酸分子及/或視情況存在之核定位序列。
在另一實施例中,亦可使用結構分析來研究實現DNA結合而非DNA切割之死引導物與活性Cas9核酸酶之間的相互作用。以此方式,確定對Cas9之核酸酶活性至關重要之胺基酸。此類胺基酸之修飾允許改良用於基因編輯之Cas9酶。
另一實施例係組合如本文所解釋之死引導物之使用與如本文所解釋以及此項技術中已知之CRISPR之其他應用。舉例而言,包含靶向多重基因活化或抑制或靶向多重雙向基因活化/抑制之死引導物之gRNA可與如本文所解釋包含維持核酸酶活性之引導物之gRNA組合。維持核酸酶活性之此包含引導 物之gRNA可或可不進一步包括允許抑制基因活性之修飾(例如適配體)。維持核酸酶活性之此包含引導物之gRNA可或可不進一步包括允許活化基因活性之修飾(例如適配體)。以此一方式,引入另一多重基因控制方式(例如,無核酸酶活性/無插入/缺失活性之多重基因靶向活化可與具有核酸酶活性之基因靶向抑制同時或以組合提供)。
舉例而言,1)使用包含靶向一或多個基因且進一步經適於招募基因活化劑之適配體修飾之死引導物的一或多個gRNA(例如1-50個、1-40個、1-30個、1-20個,較佳地1-10個,更佳地1-5個);2)可與包含靶向一或多個基因且進一步經適於招募基因抑制物之適配體修飾的死引導物之一或多個gRNA(例如1-50個、1-40個、1-30個、1-20個,較佳地1-10個,更佳地1-5個)組合。1)及/或2)隨後可與3)靶向一或多個基因之一或多個gRNA(例如1-50個、1-40個、1-30個、1-20個,較佳地1-10個,更佳地1-5個)組合。此組合隨後可進而與1)+2)+3)及4)靶向一或多個基因且進一步經適於招募基因活化劑之適配體修飾的一或多個gRNA(例如1-50個、1-40個、1-30個、1-20個,較佳地1-10個,更佳地1-5個)一起實施。此組合隨後可進而與1)+2)+3)+4)及5)靶向一或多個基因且進一步經適於招募基因抑制物之適配體修飾的一或多個gRNA(例如1-50個、1-40個、1-30個、1-20個,較佳地1-10個,更佳地1-5個)一起實施。因此,本發明包括多個用途及組合。舉例而言,組合1)+2);組合1)+3);組合2)+3);組合1)+2)+3);組合1)+2)+3)+4);組合1)+3)+4);組合2)+3)+4);組合1)+2)+4);組合1)+2)+3)+4)+5);組合1)+3)+4)+5);組合2)+3)+4)+5);組合1)+2)+4)+5);組合1)+2)+3)+5);組合1)+3)+5);組合2)+3)+5);組合1)+2)+5)。
在實施例中,本發明提供用於設計、評估或選擇將Cas9 CRISPR-Cas系統引導至靶基因座之死引導RNA靶向序列(死引導序列的算法。具體而 言,已確定,死引導RNA特異性與i)GC含量及ii)靶向序列長度相關,且可藉由改變i)GC含量及ii)靶向序列長度最佳化。在實施例中,本發明提供用於設計或評估最小化死引導RNA之脫靶結合或相互作用之死引導RNA靶向序列的算法。在本發明之實施例中,用於選擇將CRISPR系統引導至生物體中之基因座之死引導RNA靶向序列的算法包括,a)使一或多個CRISPR基元定位於基因座中,藉由以下方式分析每一CRISPR基元下游之20核苷酸(nt)序列:i)測定序列之GC含量;及ii)確定在生物體之基因體中是否存在最靠近CRISPR基元之15個下游核苷酸之脫靶匹配,及c)若15核苷酸序列之GC含量為70%或更小且未鑑別出脫靶匹配,則選擇該序列用於死引導RNA。在實施例中,若GC含量為60%或更小,則選擇序列用於靶向序列。在某些實施例中,若GC含量為55%或更小、50%或更小、45%或更小、40%或更小、35%或更小或30%或更小,則選擇序列用於靶向序列。在實施例中,分析基因座之兩條或更多條序列,且選擇具有最低GC含量或次低GC含量或次低GC含量之序列。在實施例中,若在生物體之基因體中未鑑別出脫靶匹配,則選擇序列用於靶向序列。在實施例中,若在基因體之調控序列中未鑑別出脫靶匹配,則選擇靶向序列。
在實施例中,本發明提供選擇將功能化CRISPR系統引導至生物體中之基因座之死引導RNA靶向序列的方法,其包括:a)使一或多個CRISPR基元定位於基因座中;b)藉由以下方式分析每一CRISPR基元下游之20nt序列:i)測定序列之GC含量;及ii)確定在生物體之基因體中是否存在序列之前15nt之脫靶匹配;及c)若序列之GC含量為70%或更小且未鑑別出脫靶匹配,則選擇該序列用於引導RNA。在實施例中,若GC含量為50%或更小,則選擇序列。在實施例中,若GC含量為40%或更小,則選擇序列。在實施例中,若GC含量為30%或更小,則選擇序列。在實施例中,分析兩條或更多條序列且選擇具有最低GC含量之序列。在實施例中,在生物體之調控序列中確定脫靶匹配。在實施 例中,基因座係調控區。實施例提供死引導RNA,其包含根據前文所提及之方法選擇之靶向序列。
在實施例中,本發明提供使功能化CRISPR系統靶向生物體中之基因座之死引導RNA。在本發明之實施例中,死引導RNA包含靶向序列,其中靶序列之CG含量為70%或更小,且靶向序列之前15nt並不與生物體中另一基因座之調控序列中之CRISPR基元下游的脫靶序列匹配。在某些實施例中,靶向序列之GC含量為60%或更小、55%或更小、50%或更小、45%或更小、40%或更小、35%或更小或30%或更小。在某些實施例中,靶向序列之GC含量為70%至60%、或60%至50%、或50%至40%、或40%至30%。在實施例中,靶向序列在基因座之潛在靶向序列中具有最低CG含量。
在本發明之實施例中,死引導物之前15nt與靶序列匹配。在另一實施例中,死引導物之前14nt與靶序列匹配。在另一實施例中,死引導物之前13nt與靶序列匹配。在另一實施例中,死引導物之前12nt與靶序列匹配。在另一實施例中,死引導物之前11nt與靶序列匹配。在另一實施例中,死引導物之前10nt與靶序列匹配。在本發明之實施例中,死引導物之前15nt並不與另一基因座調控區中之CRISPR基元下游之脫靶序列匹配。在其他實施例中,死引導物之前14nt或前13nt、或引導物之前12nt、或死引導物之前11nt、或死引導物之前10nt並不與另一基因座調控區中之CRISPR基元下游之脫靶序列匹配。在其他實施例中,死引導物之前15nt或前14nt或前13nt或前12nt或前11nt並不與基因體中之CRISPR基元下游之脫靶序列匹配。
在某些實施例中,死引導RNA包括不與靶序列匹配之3’末端之其他核苷酸。因此,包括CRISPR基元下游之前15nt或前14nt或前13nt或前12nt或前11nt之死引導RNA在3’末端之長度可延長至12nt、13nt、14nt、15nt、16nt、17nt、18nt、19nt、20nt或更長。
本發明提供將Cas9 CRISPR-Cas系統(包括但不限於死Cas9(dCas9)或功能化Cas9系統(其可包含功能化Cas9或功能化引導物))引導至基因座之方法。在實施例中,本發明提供用於選擇死引導RNA靶向序列並將功能化CRISPR系統引導至生物體中之基因座之方法。在實施例中,本發明提供用於選擇死引導RNA靶向序列並實現功能化Cas9 CRISPR-Cas系統對靶基因座之基因調控之方法。在某些實施例中,該方法用於實現靶基因調控,同時最小化脫靶效應。在實施例中,本發明提供用於選擇兩條或更多條死引導RNA靶向序列並實現功能化Cas9 CRISPR-Cas系統對兩個或更多個靶基因座之基因調控的方法。在某些實施例中,該方法用於實現兩個或更多個靶基因座之調控,同時最小化脫靶效應。
在實施例中,本發明提供選擇用於將功能化Cas9引導至生物體中之基因座之死引導RNA靶向序列的方法,其包括:a)使一或多個CRISPR基元定位於基因座中;b)藉由以下方式分析每一CRISPR基元下游之序列:i)選擇鄰近CRISPR基元之10nt至15nt,ii)測定序列之GC含量;及c)若10nt至15nt序列之GC含量為40%或更大,則選擇該序列作為靶向序列用於引導RNA中。在實施例中,若GC含量為50%或更大,則選擇序列。在實施例中,若GC含量為60%或更大,則選擇序列。在實施例中,若GC含量為70%或更大,則選擇序列。在實施例中,分析兩條或更多條序列且選擇具有最高GC含量之序列。在實施例中,該方法進一步包括將核苷酸添加至所選序列之3’末端,該等核苷酸並不與CRISPR基元下游之序列匹配。實施例提供死引導RNA,其包含根據前文所提及之方法選擇之靶向序列。
在實施例中,本發明提供將功能化CRISPR系統引導至生物體中之基因座之死引導RNA,其中死引導RNA之靶向序列係由鄰近基因座之CRISPR基元之10個至15個核苷酸組成,其中靶序列之CG含量為50%或更 大。在某些實施例中,死引導RNA進一步包含添加至靶序列3’末端之核苷酸,該等核苷酸並不與基因座之CRISPR基元下游之序列匹配。
在實施例中,本發明提供針對一或多個、或兩個或更多個基因座之單一效應物。在某些實施例中,效應物與Cas9締合,且使用一或多個、或兩個或更多個所選死引導RNA將Cas9締合之效應物引導至一或多個、或兩個或更多個所選靶基因座。在某些實施例中,效應物與一或多個、或兩個或更多個所選死引導RNA締合,每一所選死引導RNA在與Cas9酶複合時使其所締合效應物定位於死引導RNA靶。此類CRISPR系統之一個非限制性實例調節經歷相同轉錄因子調控之一或多個、或兩個或更多個基因座之活性。
在實施例中,本發明提供針對一或多個基因座之兩種或更多種效應物。在某些實施例中,採用兩個或更多個死引導RNA,兩種或更多種效應物中之每一者與所選死引導RNA締合,且兩種或更多種效應物中之每一者定位於其死引導RNA之所選靶。此類CRISPR系統之一個非限制性實例調節經歷不同轉錄因子調控之一或多個、或兩個或更多個基因座之活性。因此,在一個非限制性實施例中,兩種或更多種轉錄因子定位於單基因之不同調控序列。在另一非限制性實施例中,兩種或更多種轉錄因子定位於不同基因之不同調控序列。在某些實施例中,一種轉錄因子係活化劑。在某些實施例中,一種轉錄因子係抑制劑。在某些實施例中,一種轉錄因子係活化劑且另一轉錄因子係抑制劑。在某些實施例中,調控表現同一調控路徑之不同組分之基因座。在某些實施例中,調控表現不同調控路徑之組分之基因座。
在實施例中,本發明亦提供用於設計及選擇死引導RNA之方法及算法,該等死引導RNA特異性針對靶DNA裂解或靶結合及由活性Cas9 CRISPR-Cas系統介導之基因調控。在某些實施例中,Cas9 CRISPR-Cas系統使 用活性Cas9提供正交基因控制,該活性Cas9裂解一個基因座處之靶DNA,同時結合至另一基因座且促進其調控。
在實施例中,本發明提供選擇用於將功能化Cas9引導至生物體中之基因座而不裂解之死引導RNA靶向序列的方法,其包括,a)使一或多個CRISPR基元定位於基因座中;b)藉由以下方式分析每一CRISPR基元下游之序列:i)選擇鄰近CRISPR基元之10nt至15nt,ii)測定序列之GC含量,及c)若10nt至15nt序列之GC含量為30%、40%或更大,則選擇該序列作為靶向序列用於死引導RNA中。在某些實施例中,靶向序列之GC含量為35%或更大、40%或更大、45%或更大、50%或更大、55%或更大、60%或更大、65%或更大、或70%或更大。在某些實施例中,靶向序列之GC含量為30%至40%、或40%至50%、或50%至60%、或60%至70%。在本發明之實施例中,分析基因座中之兩條或更多條序列且選擇具有最高GC含量之序列。
在本發明之實施例中,靶向序列中評估GC含量之部分為最靠近PAM之15個靶核苷酸中之10至15個連續核苷酸。在本發明之實施例中,引導物中考慮GC含量之部分為最靠近PAM之15個核苷酸中之10至11個核苷酸、或11至12個核苷酸、或12至13個核苷酸、或13個、或14個、或15個連續核苷酸。
在實施例中,本發明進一步提供用於鑑別死引導RNA之算法,該等死引導RNA促進CRISPR系統基因座裂解,同時避免功能活化或抑制。觀察到,具有16至20個核苷酸之死引導RNA中之GC含量增加與DNA裂解增加及功能活化降低一致。
在一些實施例中,可藉由將核苷酸添加至引導RNA之3’末端來增加功能化Cas9之效率,該等核苷酸並不與CRISPR基元下游之靶序列匹配。舉例而言,在長度為11nt至15nt之死引導RNA中,較短引導物不太可能促進 靶裂解,但在促進CRISPR系統結合及功能控制方面亦不太有效。在某些實施例中,添加靶序列不與死引導RNA之3’末端匹配之核苷酸會增加活化效率,同時不會增加不期望之靶裂解。在實施例中,本發明亦提供用於鑑別改良之死引導RNA之方法及算法,該等改良之死引導RNA可有效地促進CRISPRP系統在DNA結合及基因調控中之功能,同時不會促進DNA裂解。因此,在某些實施例中,本發明提供死引導RNA,其包括CRISPR基元下游之前15nt、或前14nt、或前13nt、或前12nt、或前11nt,且3’末端之長度藉由與靶不匹配之核苷酸延長至12nt、13nt、14nt、15nt、16nt、17nt、18nt、19nt、20nt或更長。
在實施例中,本發明提供用於實現選擇性正交基因控制之方法。如根據本文之揭示案應瞭解,本發明之死引導物選擇,將引導物長度及GC含量考慮在內,藉由功能性Cas9 CRISPR-Cas系統提供有效之選擇性轉錄控制,例如以藉由活化或抑制調控基因座之轉錄且最小化脫靶效應。因此,藉由提供個別靶基因座之有效調控,本發明亦提供兩個或更多個靶基因座之有效正交調控。
在某些實施例中,正交基因控制係藉由活化或抑制兩個或更多個靶基因座來進行。在某些實施例中,正交基因控制係藉由活化或抑制一或多個靶基因座並裂解一或多個靶基因座來進行。
在一個實施例中,本發明提供細胞,其包含含有根據本文所述之方法或算法揭示或製造之一或多個死引導RNA之非天然Cas9 CRISPR-Cas系統,其中一或多種基因產物之表現已發生變化。在本發明之實施例中,細胞中兩種或更多種基因產物之表現已發生變化。本發明亦提供來自此一細胞之細胞株。
在一個實施例中,本發明提供包含一或多個細胞之多細胞生物體,該一或多個細胞包含含有根據本文所述之方法或算法揭示或製造之一或多個死引導RNA之非天然Cas9 CRISPR-Cas系統。在一個實施例中,本發明提供 來自細胞、細胞株或多細胞生物體之產物,該細胞、細胞株或多細胞生物體包含含有根據本文所述之方法或算法揭示或製造之一或多個死引導RNA之非天然Cas9 CRISPR-Cas系統。
本發明之另一實施例係使用包含如本文所述之死引導物之gRNA,視情況地與包含如本文或技術現況中所述之引導物之gRNA組合,與經改造用於過表現Cas9或較佳地基因敲入Cas9之系統(例如細胞、基因轉殖動物、基因轉殖小鼠、誘導型基因轉殖動物、誘導型基因轉殖小鼠)組合。因此,單一系統(例如基因轉殖動物、細胞)可用作系統/網路生物學中之多重基因修飾之基礎。由於死引導物,故此現在活體外、離體及活體內皆係可能的。
舉例而言,一旦提供Cas9,便可立即提供一或多個死gRNA來引導多重基因調控,且較佳地多重雙向基因調控。若需要或期望,一或多個死gRNA可以在空間及時間上適當之方式提供(例如Cas9表現之組織特異性誘導)。由於在所關注細胞、組織、動物中提供(例如表現)基因轉殖/誘導型Cas9,故包含死引導物之gRNA或包含引導物之gRNA皆同樣有效。以相同之方式,本發明之另一實施例係使用包含如本文所述之死引導物之gRNA,視情況地與包含如本文或技術現況中所述之引導物之gRNA組合,與經改造用於基因剔除Cas9 CRISPR-Cas之系統(例如細胞、基因轉殖動物、基因轉殖小鼠、誘導型基因轉殖動物、誘導型基因轉殖小鼠)組合。
因此,如本文所述死引導物與本文所述CRISPR應用及此項技術中已知之CRISPR應用的組合產生高度有效且準確的多重篩選系統(例如網路生物學)之方法。此篩選允許例如鑑別基因活性的特定組合以鑑別負責疾病(例如開/關組合)、具體而言基因相關疾病之基因。此篩選之較佳應用係癌症。以相同之方式,本發明包括對此類疾病之治療進行篩選。可將細胞或動物暴露於異常條件下,以產生疾病或疾病樣效應。候選組合物可提供並篩選期望多重環境中之效 應。舉例而言,可篩選患者之癌細胞之將引起其死亡之基因組合,且然後使用此資訊來建立適當療法。
在一個實施例中,本發明提供包含一或多種本文所述組分之套組。套組可包括如本文所述之死引導物,具或不具如本文所述之引導物。
本文所提供之結構資訊允許詢問死gRNA與靶DNA及Cas9之相互作用,從而容許改造或改變死gRNA結構,以最佳化整個Cas9 CRISPR-Cas系統之功能。舉例而言,藉由插入可結合至RNA之轉接蛋白,死gRNA之環可延長,而不與Cas9蛋白碰撞。該等轉接蛋白可進一步招募包含一或多個功能結構域之效應蛋白或融合物。
在一些較佳實施例中,功能結構域係轉錄活化結構域,較佳地VP64。在一些實施例中,功能結構域係轉錄抑制結構域,較佳地KRAB。在一些實施例中,轉錄抑制結構域係SID或SID之多聯體(例如SID4X)。在一些實施例中,功能結構域係表觀遺傳修飾結構域,使得提供表觀遺傳修飾酶。在一些實施例中,功能結構域係活化結構域,其可為P65活化結構域。
本發明之實施例係上述元件包含在單一組合物中或包含在個別組合物中。該等組合物可有利地應用於宿主以在基因體層級上引發功能效應。
一般而言,死gRNA係以提供特異性針對轉接蛋白之結合位點(例如適配體)之方式來修飾,該等轉接蛋白包含一或多個用於結合之功能結構域(例如經由融合蛋白)。對經修飾之死gRNA進行修飾,使得一旦死gRNA形成CRISPR複合物(即Cas9與死gRNA及靶結合),轉接蛋白便立即結合,且轉接蛋白上之功能結構域在有利於所屬功能有效之空間取向上定位。舉例而言,若功能結構域係轉錄活化劑(例如VP64或p65),則轉錄活化劑置於允許其影響靶轉錄之空間取向上。同樣,轉錄抑制物將有利地經定位以影響靶之轉錄且核酸酶(例如Fok1)將有利地經定位以裂解或部分裂解靶。
熟習此項技術者應理解,允許轉接子+功能結構域結合而非轉接子+功能結構域之適當定位(例如歸因於CRISPR複合物之三維結構內之位阻)之對死gRNA之修飾並非預期之修飾。一或多個經修飾之死gRNA可在如本文所述之四環、莖環1、莖環2或莖環3處、較佳地在四環或莖環2處、且最佳地在四環及莖環2二者處進行修飾。
如本文所解釋,功能結構域可為例如來自由以下組成之群之一或多個結構域:甲基酶活性、去甲基酶活性、轉錄活化活性、轉錄抑制活性、轉錄釋放因子活性、組織蛋白修飾活性、RNA裂解活性、DNA裂解活性、核酸結合活性及分子開關(例如光誘導型)。在一些情形下,另外提供至少一個NLS係有利的。在一些情況下,使NLS定位於N末端係有利的。當包括一個以上之功能結構域時,功能結構域可為相同或不同的。
死gRNA可經設計以包括特異性針對相同或不同轉接蛋白之多個結合識別位點(例如適配體)。死gRNA可經設計以結合至轉錄起始位點(即TSS)上游-1000 - +1個核酸、較佳地-200個核酸之啟動子區域。此定位改良影響基因活化(例如轉錄活化劑)或基因抑制(例如轉錄抑制物)之功能結構域。經修飾之死gRNA可為靶向組合物中所包含之一或多個靶基因座之一或多個經修飾gRNA(例如至少1個gRNA、至少2個gRNA、至少5個gRNA、至少10個gRNA、至少20個gRNA、至少30個gRNA、至少50個gRNA)。
轉接蛋白可為任一數量之蛋白質,其結合至引入經修飾死gRNA中之適配體或識別位點且一旦死gRNA已納入CRISPR複合物中,其允許一或多個功能結構域適當定位,以影響具有所屬功能之靶。如本申請案中所詳細解釋,此轉接蛋白可為外殼蛋白,較佳地噬細菌體外殼蛋白。與此類轉接蛋白(例如呈融合蛋白之形式)締合之功能結構域可包括例如來自由以下組成之群之一或多個結構域:甲基酶活性、去甲基酶活性、轉錄活化活性、轉錄壓抑活性、轉錄 釋放因子活性、組織蛋白修飾活性、RNA裂解活性、DNA裂解活性、核酸結合活性及分子開關(例如光誘導型)。較佳結構域係Fok1、VP64、P65、HSF1、MyoD1。在功能結構域係轉錄活化劑或轉錄壓抑物之事件中,另外提供至少NLS且較佳地在N末端提供係有利的。當包括一個以上之功能結構域時,功能結構域可為相同或不同的。轉接蛋白可利用已知之連接體來連接此類功能結構域。
因此,經修飾之死gRNA、(不活化)Cas9(具或不具功能結構域)及具有一或多個功能結構域之結合蛋白可各自個別地包含在組合物中且個別地或共同投與宿主。替代地,該等組分可提供於單一組合物中用於投與宿主。投與宿主可經由熟習此項技術者已知或本文所述用於遞送至宿主之病毒載體(例如慢病毒載體、腺病毒載體、AAV載體)來實施。如本文所解釋,使用不同之選擇標記物(例如用於慢病毒gRNA選擇)及gRNA濃度(例如取決於是否使用多個gRNA)可有利於引發改良之效應。
基於此概念,若干變化形式適於引發基因體基因座事件,包括DNA裂解、基因活化或基因去活化。使用所提供組合物,熟習此項技術者可有利地且特異性靶向具有相同或不同功能結構域之單一或多個基因座以引發一或多個基因體基因座事件。組合物可適用於在細胞文庫中篩選及活體內功能建模之眾多種方法中(例如lincRNA之基因活化及功能鑑別;功能獲得建模;功能喪失建模;使用本發明之組合物建立細胞株及基因轉殖動物用於最佳化及篩選目的)。
本發明包括使用本發明之組合物建立及利用條件型或誘導型CRISPR基因轉殖細胞/動物,此在本發明或應用之前不被支持。舉例而言,靶細胞條件性或誘導性地包含Cas9(例如呈Cre依賴性構築物之形式)及/或條件性或誘導性地包含轉接蛋白,且在表現引入靶細胞中之載體時,載體表現在靶細胞中誘導或產生Cas9表現及/或轉接子表現之條件的物質。藉由將本發明之教示及 組合物應用於產生CRISPR複合物之已知方法,受功能結構域影響之誘導型基因體事件亦係本發明之實施例。此事件之一個實例係產生CRISPR基因敲入/條件性基因轉殖動物(例如包含例如Lox-Stop-聚A-Lox(LSL)盒之小鼠),且隨後遞送一或多種組合物,該一或多種組合物提供如本文所述之一或多個經修飾死gRNA(例如所關注靶基因之-200個核苷酸至TSS,用於基因活化目的)(例如含有由外殼蛋白識別之一或多種適配體(例如MS2)之經修飾死gRNA)、如本文所述之一或多種轉接蛋白(連接至一或多個VP64之MS2結合蛋白)及誘導條件性動物之構件(例如使Cas9表現可誘導之Cre重組酶)。替代地,轉接蛋白可作為條件型或誘導型元件與條件型或誘導型Cas9一起提供,以提供用於篩選目的之有效模型,其有利地僅需要用於廣泛數量之應用的特異性死gRNA之最小設計及投與。
在另一實施例中,死引導物進一步經修飾以改良特異性。可合成經保護之死引導物,藉此將二級結構引入死引導物之3’末端以改良其特異性。經保護之引導RNA(pgRNA)包含能夠與細胞中所關注基因體基因座中之靶序列雜交之引導序列及保護股,其中保護股視情況地與引導序列互補且其中引導序列可部分地與保護股雜交。pgRNA視情況地包括延伸序列。藉由引導RNA與靶DNA之間之鹼基互補數量來確定pgRNA-靶DNA雜交之熱力學。藉由採用『熱力學保護』,可藉由添加保護序列來改良死gRNA之特異性。舉例而言,一種方法將不同長度之互補保護股添加至死gRNA內之引導序列之3’末端。因此,保護股結合至死gRNA之至少一部分且提供經保護之gRNA(pgRNA)。進而,可容易地使用所述實施例保護本文之死gRNA參考物,從而產生pgRNA。保護股可為單獨RNA轉錄物或股、或聯接至死gRNA引導序列3’末端之嵌合形式。
多重(串聯)靶向方法中之串聯引導物及用途
本發明者已顯示,如本文所定義之CRISPR酶可採用一種以上之RNA引導物而不損失活性。此使得能夠使用如本文所定義之CRISPR酶、系統或複合物以及如本文所定義之單一酶、系統或複合物來靶向多個DNA靶、基因或基因座。引導RNA可串聯排列,視情況地藉由核苷酸序列(例如如本文所定義之直接重複)分開。不同引導RNA之位置係串聯,不會影響活性。應注意,術語「CRISPR-Cas系統」、「CRISP-Cas複合物」、「CRISPR複合物」及「CRISPR系統」可互換使用。另外,術語「CRISPR酶」、「Cas酶」或「CRISPR-Cas酶」可互換使用。在較佳實施例中,該CRISPR酶、CRISP-Cas酶或Cas酶係Cas9或本文別處所述之其經修飾或突變變異體中之任一者。
在一個實施例中,本發明提供用於串聯或多重靶向之非天然或經改造之CRISPR酶,較佳地2類CRISPR酶,較佳地如本文所述之V型或VI型CRISPR酶,例如(但不限於)如本文別處所述之Cas9。應理解,如本文別處所述之本發明CRISPR(或CRISPR-Cas或Cas)酶、複合物或系統中之任一者可用於此一方法中。如本文別處所述之方法、產物、組合物及用途中之任一者同樣適用於下文進一步詳述之多重或串聯靶向方法。藉助進一步引導,提供以下具體實施例及實施例。
在一個實施例中,本發明提供如本文所定義之Cas9酶、複合物或系統於靶向多個基因座之用途。在一個實施例中,此可藉由使用多條(串聯或多重)引導RNA(gRNA)序列來建立。
在一個實施例中,本發明提供使用如本文所定義之Cas9酶、複合物或系統之一或多種元件進行串聯或多重靶向之方法,其中該CRISP系統包含多條引導RNA序列。較佳地,該等gRNA序列係藉由核苷酸序列(例如如本文別處所定義之直接重複)分開。
如本文所定義之Cas9酶、系統或複合物提供可有效地修飾多個靶多核苷酸之方法。如本文所定義之Cas9酶、系統或複合物具有眾多種效用,包括在多種細胞類型中修飾(例如缺失、插入、易位、不活化、活化)一或多個靶多核苷酸。因此,本發明之如本文所定義之Cas9酶、系統或複合物在例如基因療法、藥物篩選、疾病診斷及預後中具有廣泛應用,包括靶向單一CRISPR系統內之多個基因座。
在一個實施例中,本發明提供如本文所定義之Cas9酶、系統或複合物,即Cas9 CRISPR-Cas複合物,其具有具至少一個與其締合之去穩定結構域之Cas9蛋白,及靶向多個核酸分子(例如DNA分子)之多個引導RNA,其中該多個引導RNA中之每一者特異性靶向其相應核酸分子,例如DNA分子。每一核酸分子靶(例如DNA分子)可編碼基因產物或涵蓋基因座。因此,使用多個引導RNA使得能夠靶向多個基因座或多個基因。在一些實施例中,Cas9酶可裂解編碼基因產物之DNA分子。在一些實施例中,基因產物之表現有所變化。Cas9蛋白及引導RNA並非一起天然存在。本發明包括包含串聯排列之引導序列之引導RNA。本發明進一步包括經密碼子最佳化用於在真核細胞中表現之Cas9蛋白之編碼序列。在較佳實施例中,真核細胞係哺乳動物細胞、植物細胞或酵母菌細胞,且在更佳實施例中,哺乳動物細胞係人類細胞。基因產物之表現可有所減少。Cas9酶可形成CRISPR系統或複合物之一部分,該CRISPR系統或複合物進一步包含串聯排列之引導RNA(gRNA),該等串聯排列之引導RNA包含一系列2條、3條、4條、5條、6條、7條、8條、9條、10條、15條、25條、25條、30條或30條以上之引導序列,其各自能夠與細胞中之所關注基因體基因座中之靶序列特異性雜交。在一些實施例中,功能性Cas9 CRISPR系統或複合物結合至多條靶序列。在一些實施例中,功能性CRISPR系統或複合物可編輯多條靶序列,例如靶序列可包含基因體基因座,且在一些實施例中,可存在基因表現之變 化。在一些實施例中,功能性CRISPR系統或複合物可包含其他功能結構域。在一些實施例中,本發明提供用於改變或修飾多種基因產物之表現之方法。該方法可包括引入含有該等靶核酸(例如DNA分子)或含有並表現靶核酸(例如DNA分子)之細胞中;例如,靶核酸可編碼基因產物或提供基因產物之表現(例如調控序列)。
在較佳實施例中,用於多重靶向之CRISPR酶係Cas9,或CRISPR系統或複合物包含Cas9。在一些實施例中,用於多重靶向之CRISPR酶係AsCas9,或用於多重靶向之CRISPR系統或複合物包含AsCas9。在一些實施例中,CRISPR酶係LbCas9,或CRISPR系統或複合物包含LbCas9。在一些實施例中,Cas9酶用於多重靶向裂解DNA之兩股以產生雙股斷裂(DSB)。在一些實施例中,用於多重靶向之CRISPR酶係切口酶。在一些實施例中,用於多重靶向之Cas9酶係雙切口酶。在一些實施例中,用於多重靶向之Cas9酶係Cas9酶,例如如本文別處所定義之DD Cas9酶。
在一些一般實施例中,用於多重靶向之Cas9酶與一或多個功能結構域締合。在一些更特定實施例中,用於多重靶向之CRISPR酶係如本文別處所定義之死Cas9。
在實施例中,本發明提供遞送用於如本文所定義之多靶向之Cas9酶、系統或複合物或本文所定義之多核苷酸的方式。此類遞送方式之非限制性實例係例如遞送複合物組分之粒子、包含本文所論述多核苷酸之載體(例如編碼CRISPR酶、提供編碼CRISPR複合物之核苷酸)。在一些實施例中,載體可為質體或病毒載體,例如AAV或慢病毒。用質體瞬時轉染至例如HEK細胞中可能係有利的,尤其給定AAV之大小限制時,且儘管Cas9適合AAV,但一人可使用其他引導RNA達到上限。
亦提供組成型表現如本文所用之Cas9酶、複合物或系統用於多重靶向之模型。生物體可為基因轉殖的且可已經本載體轉染或可為如此轉染之生物體之後代。在另一實施例中,本發明提供組合物,其包含如本文所定義之CRISPR酶、系統及複合物或本文所述之多核苷酸或載體。亦提供Cas9 CRISPR系統或複合物,其包含較佳地呈串聯排列格式之多個引導RNA。該等不同之引導RNA可藉由核苷酸序列(例如直接重複)分開。
亦提供治療個體(例如有需要之個體)之方法,其包括藉由用編碼Cas9 CRISPR系統或複合物之多核苷酸或本文所述多核苷酸或載體中之任一者轉型個體並將其投與個體來誘導基因編輯。亦可提供適宜修復模板,例如藉由包含該修復模板之載體遞送。亦提供治療個體(例如有需要之個體)之方法,其包括藉由用本文所述之多核苷酸或載體轉型個體來誘導多個靶基因座之轉錄活化或抑制,其中該多核苷酸或載體編碼或包含含有較佳地串聯排列之多個引導RNA之Cas9酶、複合物或系統。倘若離體(例如在細胞培養物中)進行任何治療,則應瞭解,術語『個體』可由片語「細胞或細胞培養物」替代。
亦提供用於如本文別處所定義之治療方法中之組合物,其包含Cas9酶、複合物或系統,該Cas9酶、複合物或系統包含較佳地串聯排列之多個引導RNA;或編碼或包含該Cas9酶、複合物或系統之多核苷酸或載體,該Cas9酶、複合物或系統包含較佳地串聯排列之多個引導RNA。可提供部分之套組,包括此類組合物。亦提供該組合物之用途,其用於製造用於此類治療方法之藥物。本發明亦提供使用Cas9 CRISPR系統進行篩選,例如功能獲得篩選。人工強制過表現基因之細胞能夠隨時間下調基因(再建立平衡),例如藉由負反饋迴路。截至篩選開始時,未經調控之基因可能再次減少。使用誘導型Cas9活化劑允許恰好在篩選前誘導轉錄且因此最小化假陰性命中之機會。因此,藉由使用本發明進行篩選,例如功能獲得篩選,可最小化假陰性結果之機會。
在一個實施例中,本發明提供經改造之非天然CRISPR系統,其包含Cas9蛋白及多個引導RNA,該多個引導RNA各自特異性靶向編碼細胞中之基因產物之DNA分子,其中多個引導RNA各自靶向其編碼基因產物之特異性DNA分子,且Cas9蛋白裂解編碼基因產物之靶DNA分子,藉此改變基因產物之表現;且其中CRISPR蛋白及引導RNA並非一起天然存在。本發明包括包含多條引導序列之多個引導RNA,該多條引導序列較佳地藉由核苷酸序列(例如直接重複)分開且視情況地融合至tracr序列。在本發明之實施例中,CRISPR蛋白係V型或VI型CRISPR-Cas蛋白,且在更佳實施例中,CRISPR蛋白係Cas9蛋白。本發明進一步包括經密碼子最佳化用於在真核細胞中表現之Cas9蛋白。在較佳實施例中,真核細胞係哺乳動物細胞,且在更佳實施例中,哺乳動物細胞係人類細胞。在本發明之另一實施例中,基因產物之表現有所減少。
在另一實施例中,本發明提供經改造之非天然載體系統,其包含一或多個載體,該一或多個載體包含可操作連接至多個Cas9 CRISPR系統引導RNA之第一調控元件,該多個Cas9 CRISPR系統引導RNA各自特異性靶向編碼基因產物之DNA分子,及可操作連接之編碼CRISPR蛋白之第二調控元件。兩種調控元件可位於系統之相同載體或不同載體上。多個引導RNA靶向編碼細胞中之多種基因產物之多個DNA分子,且CRISPR蛋白可裂解編碼基因產物之多個DNA分子(其可裂解一或兩股或實質上不具核酸酶活性),藉此改變多種基因產物之表現;且其中CRISPR蛋白及多個引導RNA並非一起天然存在。在較佳實施例中,CRISPR蛋白係視情況地經密碼子最佳化用於在真核細胞中表現之Cas9蛋白。在較佳實施例中,真核細胞係哺乳動物細胞、植物細胞或酵母菌細胞,且在更佳實施例中,哺乳動物細胞係人類細胞。在本發明之另一實施例中,多種基因產物中每一者之表現有所變化,較佳地減少。
在一個實施例中,本發明提供包含一或多個載體之載體系統。在一些實施例中,系統包含:(a)可操作連接至直接重複序列及一或多個插入位點之第一調控元件,該一或多個插入位點用於在直接重複序列之上游或下游(以適用者為準)插入一或多條引導序列,其中在表現時,一或多條引導序列引導CRISPR複合物與真核細胞中之一或多條靶序列之序列特異性結合,其中CRISPR複合物包含與一或多條引導序列複合之Cas9酶,該一或多條引導序列與一或多條靶序列雜交;及(b)可操作連接至編碼該Cas9酶之酶編碼序列之第二調控元件,其較佳地包含至少一條核定位序列及/或至少一個NES;其中組分(a)及(b)位於系統之相同或不同之載體上。若適用,亦可提供tracr序列。在一些實施例中,組分(a)進一步包含可操作連接至第一調控元件之兩條或更多條引導序列,其中在表現時,兩條或更多條引導序列中之每一者引導Cas9 CRISPR複合物與真核細胞中之不同靶序列之序列特異性結合。在一些實施例中,CRISPR複合物包含一或多條核定位序列及/或一或多個NES,其強度足以驅動該Cas9 CRISPR複合物以可偵測量在真核細胞核中或之外累積。在一些實施例中,第一調控元件係聚合酶III啟動子。在一些實施例中,第二調控元件係聚合酶II啟動子。在一些實施例中,每一引導序列之長度為至少16個、17個、18個、19個、20個、25個核苷酸,或介於16-30個核苷酸之間,或介於16-25個核苷酸之間,或介於16-20個核苷酸之間。
重組表現載體可包含呈適於在宿主細胞中表現核酸之形式之多核苷酸,該等多核苷酸編碼用於如本文所定義之多靶向之Cas9酶、系統或複合物,此意指重組表現載體包括可操作連接至欲表現核酸序列之一或多個調控元件,該一或多個調控元件可基於欲用於表現之宿主細胞來選擇。
在一些實施例中,用一或多個載體瞬時或非瞬時轉染宿主細胞,該一或多個載體編碼用於如本文所定義之多靶向之Cas9酶、系統或複合物之多 核苷酸。在一些實施例中,細胞在其天然存在於個體中時經轉染。在一些實施例中,經轉染之細胞取自個體。在一些實施例中,細胞衍生自取自個體之細胞,例如細胞株。用於組織培養之眾多種細胞株為此項技術中已知且例示於本文別處。細胞株可自熟習此項技術者已知之多種來源獲得(參見例如美國菌種保存中心(ATCC)(Manassas,Va.))。在一些實施例中,使用經一或多個載體轉染之細胞來建立包含一或多條載體源性序列之新細胞株,該一或多個載體包含編碼用於如本文所定義之多靶向之Cas9酶、系統或複合物的多核苷酸。在一些實施例中,使用經用於如本文所述之多靶向Cas9 CRISPR系統或複合物之組分瞬時轉染(例如藉由一或多個載體瞬時轉染,或用RNA轉染)、且經Cas9 CRISPR系統或複合物之活性修飾的細胞來建立包含含有修飾但缺少任何其他外源序列之細胞之新細胞株。在一些實施例中,使用經一或多個載體瞬時或非瞬時轉染之細胞或衍生自此類細胞之細胞株來評價一或多種測試化合物,該一或多個載體包含編碼用於如本文所定義之多靶向之Cas9酶、系統或複合物的多核苷酸。
術語「調控元件」係如本文別處所定義。
有利載體包括慢病毒及腺相關病毒,且亦可選擇此類載體之類型來靶向特定類型之細胞。
在一個實施例中,本發明提供真核宿主細胞,其包含(a)可操作連接至直接重複序列及一或多個插入位點之第一調控元件,該一或多個插入位點用於在直接重複序列之上游或下游(以適用者為準)插入一或多條引導RNA序列,其中在表現時,引導序列引導Cas9 CRISPR複合物與真核細胞中之各別靶序列之序列特異性結合,其中Cas9 CRISPR複合物包含與一或多條引導序列複合之Cas9酶,該一或多條引導序列與各別靶序列雜交;及/或(b)可操作連接至編碼該Cas9酶之酶編碼序列之第二調控元件,其較佳地包含至少一條核定位序列及/或NES。在一些實施例中,宿主細胞包含組分(a)及(b)。若適用,亦可提供tracr 序列。在一些實施例中,組分(a)、組分(b)或組分(a)及(b)穩定整合至宿主真核細胞之基因體中。在一些實施例中,組分(a)進一步包含可操作連接至第一調控元件且視情況地藉由直接重複分開之兩條或更多條引導序列,其中在表現時,兩條或更多條引導序列中之每一者引導Cas9 CRISPR複合物與真核細胞中之不同靶序列之序列特異性結合。在一些實施例中,Cas9酶包含一或多條核定位序列及/或核輸出序列或NES,其強度足以驅動該CRISPR酶以可偵測量在真核細胞核中及/或之外累積。
在一些實施例中,Cas9酶係V型或VI型CRISPR系統酶。在一些實施例中,Cas9酶係Cas9酶。在一些實施例中,Cas9酶衍生自土拉弗朗西斯菌1、土拉弗朗西斯菌亞種諾維達(novicida)、蘇格蘭普雷沃氏菌(Prevotella albensis)、毛螺菌科(Lachnospiraceae)細菌MC20171、瘤胃溶纖維丁酸弧菌、佩萊格里尼菌GW2011_GWA2_33_10、帕庫氏菌GW2011_GWC2_44_17、史密斯氏菌SCADC、胺基酸球菌BV3L6、毛螺菌科細菌MA202O、候選白蟻甲烷支原體、挑剔真桿菌、牛眼莫拉氏菌237、良吉氏鉤端螺旋體、毛螺菌科細菌ND2006、狗口腔卟啉單胞菌3、解糖腖普雷沃氏菌或獼猴卟啉單胞菌Cas9,且可包括如本文別處所定義之Cas9之其他變化或突變,且可為嵌合Cas9。在一些實施例中,Cas9酶經密碼子最佳化用於在真核細胞中表現。在一些實施例中,CRISPR酶引導靶序列位置處之一或兩股之裂解。在一些實施例中,第一調控元件係聚合酶III啟動子。在一些實施例中,第二調控元件係聚合酶II啟動子。在一些實施例中,一或多條引導序列之長度(各自)為至少16個、17個、18個、19個、20個、25個核苷酸,或介於16-30個核苷酸之間,或介於16-25個核苷酸之間,或介於16-20個核苷酸之間。當使用多個引導RNA時,其較佳地藉由直接重複序列分開。
在一個實施例中,本發明提供在宿主細胞(例如真核細胞)中修飾多個靶多核苷酸之方法。在一些實施例中,該方法包括允許Cas9CRISPR複合物結合至多個靶多核苷酸,例如以實現該多個靶多核苷酸之裂解,由此修飾多個靶多核苷酸,其中Cas9CRISPR複合物包含與多條引導序列複合之Cas9酶,該多條引導序列各自與該靶多核苷酸內之特異性靶序列雜交,其中該多條引導序列連接至直接重複序列。若適用,亦可提供tracr序列(例如提供單一引導RNA,即sgRNA)。在一些實施例中,該裂解包括藉由該Cas9酶裂解每一靶序列位置處之一或兩股。在一些實施例中,該裂解可減少多個靶基因之轉錄。在一些實施例中,該方法進一步包括藉由與外源模板多核苷酸同源重組來修復該等裂解靶多核苷酸中之一或多者,其中該修復產生包含插入、缺失或取代該等靶多核苷酸中一或多者之一或多個核苷酸的突變。在一些實施例中,該突變產生自包含一或多條靶序列之基因表現之蛋白質之一或多個胺基酸變化。在一些實施例中,該方法進一步包括將一或多個載體遞送至該真核細胞,其中一或多個載體驅動以下中之一或多者之表現:Cas9酶及連接至直接重複序列之多條引導RNA序列。若適用,亦可提供tracr序列。在一些實施例中,將該等載體遞送至個體中之真核細胞。在一些實施例中,該修飾在細胞培養物中之該真核細胞中發生。在一些實施例中,該方法進一步包括在該修飾之前自個體分離該真核細胞。在一些實施例中,該方法進一步包括將該真核細胞及/或衍生自其之細胞返回該個體。
在一個實施例中,本發明提供修飾多個多核苷酸在真核細胞中之表現之方法。在一些實施例中,該方法包括允許Cas9 CRISPR複合物結合至多個多核苷酸,使得該結合可增加或減少該等多核苷酸之表現;其中Cas9 CRISPR複合物包含與多條引導序列複合之Cas9酶,該多條引導序列與其在該多核苷酸內之自身靶序列特異性雜交,其中該等引導序列連接至直接重複序列。若適用,亦可提供tracr序列。在一些實施例中,該方法進一步包括將一或多個載體遞送 至該真核細胞,其中一或多個載體驅動以下中之一或多者之表現:Cas9酶及連接至直接重複序列之多條引導序列。若適用,亦可提供tracr序列。
在一個實施例中,本發明提供重組多核苷酸,其包含直接重複序列上游或下游(以適用者為準)之多條引導RNA序列,其中每一引導序列在表現時引導Cas9CRISPR複合物與其存在於真核細胞中之相應靶序列之序列特異性結合。在一些實施例中,靶序列係存在於真核細胞中之病毒序列。若適用,亦可提供tracr序列。在一些實施例中,靶序列係原致癌基因或致癌基因。
本發明之實施例涵蓋非天然或經改造之組合物,其可包含含有能夠與細胞中所關注基因體基因座中之靶序列雜交之引導序列的引導RNA(gRNA),及可包含至少一或多條核定位序列之如本文所定義之Cas9酶。
本發明之實施例涵蓋藉由將本文所述之任一組合物引入細胞中來修飾所關注基因體基因座以改變細胞中之基因表現的方法。
本發明之實施例係上述元件包含在單一組合物中或包含在個別組合物中。該等組合物可有利地應用於宿主以在基因體層級上引發功能效應。
表現該等經改造之AAV衣殼之經改造細胞及生物體
本文闡述經改造之細胞,其可包括經改造之AAV衣殼多核苷酸、多肽、載體及/或載體系統中之一或多者。在一些實施例中,一或多種經改造之AAV衣殼多核苷酸可在經改造之細胞中表現。在一些實施例中,經改造之細胞可能夠產生闡述於本文別處之經改造之AAV衣殼蛋白及/或經改造之AAV衣殼粒子。本文亦闡述經修飾或經改造之生物體,其可包括本文所述之一或多種經改造之細胞。經改造之細胞可經改造以依賴於或獨立於如本文別處所述之經改造AAV衣殼多核苷酸表現負荷分子(例如負荷多核苷酸)。
眾多種動物、植物、藻類、真菌、酵母菌等及動物、植物、藻類、真菌、酵母菌細胞或組織系統可經改造以使用本文別處所提及之多種轉型方法 表現本文所述之經改造AAV衣殼系統之一或多種核酸構築物。此可產生能產生經改造之AAV衣殼粒子之生物體,例如用於生產目的、經改造之AAV衣殼設計及/或產生,及/或模型生物體。在一些實施例中,編碼本文所述之經改造AAV衣殼系統之一或多種組分之多核苷酸可穩定或瞬時納入植物、動物、藻類、真菌及/或酵母菌或組織系統之一或多個細胞中。在一些實施例中,一或多個經改造之AAV衣殼系統多核苷酸之基因體納入植物、動物、藻類、真菌及/或酵母菌或組織系統之一或多個細胞中。經修飾生物體及系統之其他實施例闡述於本文別處。在一些實施例中,本文所述之經改造AAV衣殼系統之一或多種組分在植物、動物、藻類、真菌、酵母菌或組織系統之一或多個細胞中表現。
經改造之細胞
本文闡述經改造細胞之多個實施例,其可包括本文別處所述之經改造AAV衣殼系統多核苷酸、多肽、載體及/或載體系統中之一或多者。在一些實施例中,細胞可表現一或多種經改造之AAV衣殼多核苷酸且可產生一或多種經改造之AAV衣殼粒子,其更詳細闡述於本文中。此類細胞在本文中亦稱為「生產細胞」。應瞭解,該等經改造之細胞與本文別處所述之「經修飾細胞」之不同之處在於,經修飾細胞不必為生產細胞(即其不會製造經改造之GTA遞送粒子),除非其包括經改造之AAV衣殼多核苷酸、經改造之AAV衣殼載體或使細胞能夠產生經改造之AAV衣殼粒子之本文所述其他載體中的一或多者。經修飾細胞可為經改造AAV衣殼粒子之接受細胞,且在一些實施例中可藉由遞送至接受細胞之經改造AAV衣殼粒子及/或負荷多核苷酸來修飾。經修飾之細胞更詳細論述於本文別處。術語修飾可與不依賴於成為接受細胞之細胞之修飾結合使用。舉例而言,可在接受經改造之AAV衣殼分子之前修飾經分離細胞。
在實施例中,本發明提供非人類真核生物體,例如多細胞真核生物體,包括含有任一所述實施例之本文所述經改造遞送系統之一或多種組分的 真核宿主細胞。在其他實施例中,本發明提供真核生物體;較佳地多細胞真核生物體,包含含有任一所述實施例之本文所述經改造遞送系統之一或多種組分的真核宿主細胞。在一些實施例中,生物體係AAV之宿主。
在具體實施例中,植物、藻類、真菌、酵母菌等、所獲得細胞或部分係基因轉殖植物,其包含納入細胞之全部或一部分之基因體中之外源DNA序列。
經改造之細胞可為原核細胞。原核細胞可為細菌細胞。原核細胞可為古菌細胞。細菌細胞可為任一適宜細菌細胞。適宜細菌細胞可來自以下屬:大腸桿菌屬(Escherichia)、芽孢桿菌屬(Bacillus)、乳酸桿菌屬(Lactobacillus)、赤球菌屬(Rhodococcus)、紅細菌屬(Rodhobacter)、聚球藻屬(Synechococcus)、集胞藻屬、假單胞菌屬、假交替單胞菌屬(Pseudoalteromonas)、寡養單胞菌屬(Stenotrophamonas)及鏈黴菌屬(Streptomyces)。適宜細菌細胞包括(但不限於)大腸桿菌細胞、新月柄桿菌(Caulobacter crescentus)細胞、類球紅細菌(Rodhobacter sphaeroides)細胞、遊海假交替單胞菌(Psedoaltermonas haloplanktis)細胞。適宜細菌菌株包括(但不限於)BL21(DE3)、DL21(DE3)-pLysS、BL21 Star-pLysS、BL21-SI、BL21-AI、Tuner、Tuner pLysS、Origami、Origami B pLysS、Rosetta、Rosetta pLysS、Rosetta-gami-pLysS、BL21 CodonPlus、AD494、BL2trxB、HMS174、NovaBlue(DE3)、BLR、C41(DE3)、C43(DE3)、Lemo21(DE3)、Shuffle T7、ArcticExpress及ArticExpress(DE3)。
經改造之細胞可為真核細胞。真核細胞可為或衍生自特定生物體之細胞,例如植物或哺乳動物,包括(但不限於)如本文所論述之人類或非人類真核生物或動物或哺乳動物,例如小鼠、大鼠、兔、狗、家畜或非人類哺乳動物或靈長類動物。在一些實施例中,經改造之細胞可為細胞株。細胞株之實例包括(但不限於)C8161、CCRF-CEM、MOLT、mIMCD-3、NHDF、HeLa-S3、Huh1、Huh4、 Huh7、HUVEC、HASMC、HEKn、HEKa、MiaPaCell、Panc1、PC-3、TF1、CTLL-2、C1R、Rat6、CV1、RPTE、A10、T24、J82、A375、ARH-77、Calu1、SW480、SW620、SKOV3、SK-UT、CaCo2、P388D1、SEM-K2、WEHI-231、HB56、TIB55、Jurkat、J45.01、LRMB、Bcl-1、BC-3、IC21、DLD2、Raw264.7、NRK、NRK-52E、MRC5、MEF、Hep G2、HeLa B、HeLa T4、COS、COS-1、COS-6、COS-M6A、BS-C-1猴腎上皮、BALB/3T3小鼠胚胎纖維母細胞、3T3 Swiss、3T3-L1、132-d5人類胎兒纖維母細胞;10.1小鼠纖維母細胞、293-T、3T3、721、9L、A2780、A2780ADR、A2780cis、A172、A20、A253、A431、A-549、ALC、B16、B35、BCP-1細胞、BEAS-2B、bEnd.3、BHK-21、BR 293、BxPC3、C3H-10T1/2、C6/36、Cal-27、CHO、CHO-7、CHO-IR、CHO-K1、CHO-K2、CHO-T、CHO Dhfr -/-、COR-L23、COR-L23/CPR、COR-L23/5010、COR-L23/R23、COS-7、COV-434、CML T1、CMT、CT26、D17、DH82、DU145、DuCaP、EL4、EM2、EM3、EMT6/AR1、EMT6/AR10.0、FM3、H1299、H69、HB54、HB55、HCA2、HEK-293、HeLa、Hepa1c1c7、HL-60、HMEC、HT-29、Jurkat、JY細胞、K562細胞、Ku812、KCL22、KG1、KYO1、LNCap、Ma-Mel 1-48、MC-38、MCF-7、MCF-10A、MDA-MB-231、MDA-MB-468、MDA-MB-435、MDCK II、MDCK II、MOR/0.2R、MONO-MAC 6、MTD-1A、MyEnd、NCI-H69/CPR、NCI-H69/LX10、NCI-H69/LX20、NCI-H69/LX4、NIH-3T3、NALM-1、NW-145、OPCN/OPCT細胞株、Peer、PNT-1A/PNT 2、RenCa、RIN-5F、RMA/RMAS、Saos-2細胞、Sf-9、SkBr3、T2、T-47D、T84、THP1細胞株、U373、U87、U937、VCaP、Vero細胞、WM39、WT-49、X63、YAC-1、YAR及其基因轉殖變化形式。細胞株可自熟習此項技術者已知之多種來源獲得(參見例如美國菌種保存中心(American Type Culture Collection,ATCC)(Manassas,Va.))。
在一些實施例中,經改造之細胞係肌肉細胞(例如心肌、骨骼肌及/或平滑肌)、骨細胞、血細胞、免疫細胞(包括但不限於B細胞、巨噬細胞、T細胞、CAR-T細胞及諸如此類)、腎細胞、膀胱細胞、肺細胞、心臟細胞、肝細胞、腦細胞、神經元、皮膚細胞、胃細胞、神經元支持細胞、腸細胞、上皮細胞、內皮細胞、幹細胞或其他祖細胞、腎上腺細胞、軟骨細胞及其組合。
在一些實施例中,經改造之細胞可為真菌細胞。如本文所用之「真菌細胞」係指真菌領域內任一類型之真核細胞。真菌領域內之門包括子囊菌門(Ascomycota)、擔子菌門(Basidiomycota)、牙枝黴門(Blastocladiomycota)、壺菌門(Chytridiomycota)、球囊菌門(Glomeromycota)、微孢子門(Microsporidia)及新美鞭菌門(Neocallimastigomycota)。真菌細胞可包括酵母菌、黴菌及絲狀真菌。在一些實施例中,真菌細胞係酵母菌細胞。
如本文所用之術語「酵母菌細胞」係指子囊菌門及擔子菌門內之任一真菌細胞。酵母菌細胞可包括出芽酵母菌細胞、裂殖酵母菌細胞及黴菌細胞。不限於該等生物體,用於實驗室及工業環境中之許多類型之酵母菌係子囊菌門之一部分。在一些實施例中,酵母菌細胞係釀酒酵母菌細胞、馬克斯克魯維酵母菌(Kluyveromyces marxianus)細胞或東方伊薩酵母菌(Issatchenkia orientalis)細胞。其他酵母菌細胞可包括(但不限於)念珠菌屬(Candida spp.,例如白色念珠菌(Candida albicans))、耶氏酵母屬(例如解脂耶氏酵母菌(Yarrowia lipolytica))、畢赤酵母屬(Pichia spp.,例如甲醇畢赤酵母(Pichia pastoris))、克魯維酵母屬(Kluyveromyces spp.,例如乳酸克魯維酵母菌(Kluyveromyces lactis)及馬克斯克魯維酵母菌)、紅黴菌屬(Neurospora spp.,例如紅麵包黴菌(Neurospora crassa))、錘形黴菌屬(Fusarium spp.,例如錘形黴菌)及伊薩酵母屬(Issatchenkia spp.,例如東方伊薩酵母菌,即庫德畢赤酵母(Pichia kudriavzevii)及似克魯斯念珠菌(Candida acidothermophilum))。在一些實施例中,真菌細胞係絲狀真菌細胞。如本文所用 之術語「絲狀真菌細胞」係指以絲(即菌絲或菌絲體)生長之任一類型之真菌細胞。絲狀真菌細胞之實例可包括(但不限於)麴菌屬(Aspergillus spp.,例如黑麴菌(Aspergillus niger))、木黴屬(Trichoderma spp.,例如裡氏木黴(Trichoderma reesei))、根黴菌屬(Rhizopus spp.,例如米根黴(Rhizopus oryzae))及被孢黴屬(Mortierella spp.,例如黃褐色被孢黴(Mortierella isabellina))。
在一些實施例中,真菌細胞係工業菌株。如本文所用之「工業菌株」係指用於工業製程(例如生產商業或工業規模之產品)中或自其分離之真菌細胞之任一菌株。工業菌株可指通常用於工業製程中之真菌物種,或其可指亦可用於非工業目的(例如實驗室研究)之真菌物種之分離物。工業製程之實例可包括發酵(例如在食品或飲品生產中)、蒸餾、生物燃料生產、化合物生產及多肽生產。工業菌株之實例可包括(但不限於)JAY270及ATCC4124。
在一些實施例中,真菌細胞係多倍體細胞。如本文所用之「多倍體」細胞可指基因體以一個以上之拷貝存在之任一細胞。多倍體細胞可指以多倍體狀態天然發現之一種類型之細胞,或其可指已經誘導以多倍體狀態存在(例如經由減數分裂、細胞質分裂或DNA複製之特異性調控、改變、不活化、活化或修飾)之細胞。多倍體細胞可指整個基因體為多倍體之細胞,或其可指在所關注特定基因體基因座中為多倍體之細胞。
在一些實施例中,真菌細胞係二倍體細胞。如本文所用之「二倍體」細胞可指基因體以兩個拷貝存在之任一細胞。二倍體細胞可指以二倍體狀態天然發現之一種類型之細胞,或其可指已經誘導以二倍體狀態存在(例如經由減數分裂、細胞質分裂或DNA複製之特異性調控、改變、不活化、活化或修飾)之細胞。舉例而言,釀酒酵母菌株S228C可維持在單倍體或二倍體狀態。二倍體細胞可指整個基因體為二倍體之細胞,或其可指在所關注特定基因體基因座中為二倍體之細胞。在一些實施例中,真菌細胞係單倍體細胞。如本文所用之「單 倍體」細胞可指基因體以一個拷貝存在之任一細胞。單倍體細胞可指以單倍體狀態天然發現之一種類型之細胞,或其可指已經誘導以單倍體狀態存在(例如經由減數分裂、細胞質分裂或DNA複製之特異性調控、改變、不活化、活化或修飾)之細胞。舉例而言,釀酒酵母菌株S228C可維持在單倍體或二倍體狀態。單倍體細胞可指整個基因體為單倍體之細胞,或其可指在所關注特定基因體基因座中為單倍體之細胞。
在一些實施例中,經改造之細胞係自個體獲得之細胞。在一些實施例中,個體係健康或非患病個體。在一些實施例中,個體係具有期望生理學及/或生物學特徵之個體,使得當產生經改造之AAV衣殼粒子時,其可包裝可能與期望生理學及/或生物學特徵相關及/或能夠修飾期望生理學及/或生物學特徵之一或多個負荷多核苷酸。因此,所產生之經改造AAV衣殼粒子之負荷多核苷酸可能夠將期望特徵轉移至接受細胞。在一些實施例中,負荷多核苷酸能夠修飾經改造細胞之多核苷酸,使得經改造之細胞具有期望生理學及/或生物學特徵。
在一些實施例中,使用經本文所述之一或多個載體轉染之細胞來建立包含一或多條載體源性序列之新細胞株。
經改造之細胞可用於產生經改造之病毒(例如AAV)衣殼多核苷酸、載體及/或粒子。在一些實施例中,產生、收穫經改造之病毒(例如AAV)衣殼多核苷酸、載體及/或粒子及/或將其遞送至有需要之個體。在一些實施例中,將經改造之細胞遞送至個體。經改造細胞之其他用途闡述於本文別處。在一些實施例中,經改造之細胞可包括在本文別處所述之調配物及/或套組中。
經改造之細胞可短期或長期儲存以備後用。適宜儲存方法通常為此項技術中已知。另外,恢復儲存細胞以備後用(例如解凍、復原及以其他方式刺激儲存後經改造細胞中之代謝)之方法亦通常為此項技術中已知。
調配物
本文所述之組合物、多核苷酸、多肽、粒子、細胞、載體系統及其組合可含於調配物(例如醫藥調配物)中。在一些實施例中,調配物可用於產生包括本文所述之一或多個肌肉特異性靶向部分之多肽及其他粒子。在一些實施例中,調配物可遞送至有需要之個體。在一些實施例中,本文所述之經改造AAV衣殼系統、經改造細胞、經改造AAV衣殼粒子及/或其組合之組分可包括在可遞送至個體或細胞之調配物中。在一些實施例中,調配物係醫藥調配物。本文所述多肽、多核苷酸、載體、細胞及其組合中之一或多者可單獨或作為活性成分(例如在醫藥調配物中)提供至有需要之個體或細胞。因此,本文亦闡述醫藥調配物,其含有一定量之本文所述多肽、多核苷酸、載體、細胞或其組合中之一或多者。在一些實施例中,醫藥調配物可含有有效量之本文所述多肽、多核苷酸、載體、細胞及其組合中之一或多者。可將本文所述之醫藥調配物投與有需要之個體或細胞。
在一些實施例中,基於有需要之個體之體重或可投與醫藥調配物之特定患者群體之平均體重,含於醫藥調配物中之本文所述多肽、多核苷酸、載體、細胞、病毒粒子、奈米粒子、其他遞送粒子及其組合中之一或多者之量可介於約1pg/kg至約10mg/kg之範圍內。醫藥調配物中之本文所述多肽、多核苷酸、載體、細胞及其組合中之一或多者之量可介於約1pg至約10g、約10nL至約10ml之範圍內。在醫藥調配物含有一或多個細胞之實施例中,量可介於約1個細胞至1×102個、1×103個、1×104個、1×105個、1×106個、1×107個、1×108個、1×109個、1×1010個或更多個細胞之範圍內。在醫藥調配物含有一或多個細胞之實施例中,量可介於每nL、每μL、每mL或每L約1個細胞至1×102個、1×103個、1×104個、1×105個、1×106個、1×107個、1×108個、1×109個、1×1010個或更多個細胞之範圍內。
在調配物包括經改造之AAV衣殼粒子之實施例中,調配物可含有1至1×101、1×102、1×103、1×104、1×105、1×106、1×107、1×108、1×109、1×1010、1×1011、1×1012、1×1013、1×1014、1×1015、1×1016、1×1017、1×1018、1×1019或1×1020轉導單位(TU)/mL之經改造AAV衣殼粒子。在一些實施例中,調配物之體積可為0.1mL至100mL且可含有1至1×101、1×102、1×103、1×104、1×105、1×106、1×107、1×108、1×109、1×1010、1×1011、1×1012、1×1013、1×1014、1×1015、1×1016、1×1017、1×1018、1×1019或1×1020轉導單位(TU)/mL之經改造AAV衣殼粒子。
醫藥學上可接受之載劑及輔助成分及劑
在實施例中,含有一定量之本文所述多肽、多核苷酸、載體、細胞、病毒粒子、奈米粒子、其他遞送粒子及其組合中之一或多者之醫藥調配物可進一步包括醫藥學上可接受之載劑。適宜醫藥學上可接受之載劑包括(但不限於)水、鹽溶液、醇、阿拉伯樹膠、植物油、苄基醇、聚乙二醇、明膠、碳水化合物(例如乳糖、直鏈澱粉或澱粉)、硬脂酸鎂、滑石、矽酸、黏性石蠟、芳香油、脂肪酸酯、羥甲基纖維素及聚乙烯吡咯啶酮,其不會與活性組合物發生有害反應。
醫藥調配物可經滅菌,且若需要與不會與活性組合物發生有害反應之輔助劑(例如潤滑劑、防腐劑、穩定劑、潤濕劑、乳化劑、影響滲透壓之鹽、緩衝劑、著色劑、矯味劑及/或芳族物質及諸如此類)混合。
除一定量之本文所述多肽、多核苷酸、載體、細胞、經改造之AAV衣殼粒子、奈米粒子、其他遞送粒子及其組合中之一或多者外,醫藥調配物亦可包括有效量之輔助活性劑,包括(但不限於)多核苷酸、胺基酸、肽、多肽、抗體、適配體、核酶、激素、免疫調節劑、退熱劑、抗焦慮藥、抗精神病藥、止痛藥、鎮痙藥、抗發炎藥、抗組胺、抗感染劑、化學治療劑及其組合。
適宜激素包括(但不限於)胺基酸源性激素(例如褪黑激素及甲狀腺素)、小肽激素及蛋白質激素(例如促甲狀腺素釋放激素、抗利尿激素、胰島素、生長激素、促黃體激素、卵泡刺激激素及甲狀腺刺激激素)、類花生酸(例如花生油酸、脂氧素及前列腺素)及類固醇激素(例如雌二醇、睪固酮、四氫睪固酮皮質醇)。適宜免疫調節劑包括(但不限於)普賴鬆(prednisone)、硫唑嘌呤、6-MP、環孢素、他克莫司(tacrolimus)、胺甲喋呤(methotrexate)、介白素(例如IL-2、IL-7及IL-12)、細胞介素(例如干擾素(例如IFN-a、IFN-β、IFN-ε、IFN-K、IFN-ω及IFN-γ)、顆粒球群落刺激因子及咪喹莫特(imiquimod))、趨化介素(例如CCL3、CCL26及CXCL7)、胞嘧啶磷酸-鳥苷、寡去氧核苷酸、葡聚糖、抗體及適配體)。
適宜退熱劑包括(但不限於)非類固醇抗發炎藥(例如布洛芬(ibuprofen)、萘普生(naproxen)、酮洛芬(ketoprofen)及尼美舒利(nimesulide))、阿司匹林(aspirin)及相關柳酸鹽(例如柳酸膽鹼、柳酸鎂及柳酸鈉)、對乙醯胺基酚(paracetamol)/乙醯胺酚(acetaminophen)、安乃近(metamizole)、萘丁美酮(nabumetone)、安替比林(phenazone)及奎寧(quinine)。
適宜抗焦慮藥包括(但不限於)苯并二氮呯(benzodiazepine,例如阿普唑崙(alprazolam)、溴西泮(bromazepam)、氯氮卓(chlordiazepoxide)、可那氮呯(clonazepam)、氯拉卓酸(clorazepate)、地西泮(diazepam)、氟西泮(flurazepam)、勞拉西泮(lorazepam)、奧沙西泮(oxazepam)、替馬西泮(temazepam)、三唑崙(triazolam)及托非索泮(tofisopam))、血清素能性抗抑鬱藥(例如選擇性血清素再攝取抑制劑、三環抗抑鬱藥及單胺氧化酶抑制劑)、美比卡(mebicar)、法莫替唑(fabomotizole)、塞蘭克(selank)、溴曼特(bromantane)、伊莫氧平(emoxypine)、阿扎哌隆(azapirone)、巴比妥鹽(barbiturate)、羥嗪(hydroxyzine)、普瑞巴林(pregabalin)、伐力多(validol)及β阻斷劑。
適宜抗精神病藥包括(但不限於)本哌利多(benperidol)、溴哌利多(bromoperidol)、氟哌利多(droperidol)、氟哌啶醇(haloperidol)、莫哌隆(moperone)、匹泮哌隆(pipamperone)、替米哌隆(timiperone)、氟司必林(fluspirilene)、五氟利多(penfluridol)、匹莫齊特(pimozide)、乙醯丙嗪(acepromazine)、氯丙嗪(chlorpromazine)、氰美馬嗪(cyamemazine)、地西拉嗪(dixyrazine)、氟非那嗪(fluphenazine)、左美丙嗪(levomepromazine)、美索達嗪(mesoridazine)、培拉嗪(perazine)、哌氰嗪(pericyazine)、奮乃靜(perphenazine)、哌泊噻嗪(pipotiazine)、丙氯拉嗪(prochlorperazine)、丙嗪(promazine)、異丙嗪(promethazine)、丙硫噴地(prothipendyl)、硫丙拉嗪(thioproperazine)、硫利達嗪(thioridazine)、三氟拉嗪(trifluoperazine)、三氟丙嗪(triflupromazine)、氯普噻噸(chlorprothixene)、氯哌噻噸(clopenthixol)、氟哌噻噸(flupentixol)、替沃噻噸(thiothixene)、珠氯噻醇(zuclopenthixol)、氯噻平(clotiapine)、洛沙平(loxapine)、丙硫噴地、卡匹帕明(carpipramine)、氯卡帕明(clocapramine)、嗎茚酮(molindone)、莫沙帕明(mosapramine)、舒必利(sulpiride)、維拉必利(veralipride)、胺磺必利(amisulpride)、阿莫沙平(amoxapine)、阿立哌唑(aripiprazole)、阿塞那平(asenapine)、氯氮平(clozapine)、佈南色林(blonanserin)、伊潘立酮(iloperidone)、魯拉西酮(lurasidone)、美哌隆(melperone)、奈莫必利(nemonapride)、奧氮平(olanzapine)、帕潘立酮(paliperidone)、哌羅匹隆(perospirone)、喹硫平(quetiapine)、瑞莫必利(remoxipride)、利培酮(risperidone)、舍吲哚(sertindole)、曲米帕明(trimipramine)、齊拉西酮(ziprasidone)、佐替平(zotepine)、阿斯托尼(alstonie)、比非普魯(bifeprunox)、比托派汀(bitopertin)、布瑞哌唑(brexpiprazole)、大麻二酚、卡哌嗪(cariprazine)、匹馬西林(pimavanserin)、波馬美他甲硫胺酸(pomaglumetad methionil)、戊卡色林(vabicaserin)、呫諾美林(xanomeline)及齊洛那平(zicronapine)。
適宜止痛藥包括(但不限於)對乙醯胺基酚/乙醯胺酚、非類固醇抗發炎藥(例如布洛芬、萘普生、酮洛芬及尼美舒利)、COX-2抑制劑(例如羅非昔布(rofecoxib)、塞來昔布(celecoxib)及依託昔布(etoricoxib))、類鴉片(例如嗎啡(morphine)、可待因(codeine)、羥考酮(oxycodone)、氫可酮(hydrocodone)、二氫嗎啡、哌替啶(pethidine)、丁丙諾啡(buprenorphine))、曲馬多(tramadol)、去甲腎上腺素(norepinephrine)、氟吡汀(flupirtine)、奈福泮(nefopam)、奧芬那君(orphenadrine)、普瑞巴林(pregabalin)、加巴噴丁(gabapentin)、環苯紮林(cyclobenzaprine)、東莨菪鹼(scopolamine)、美沙酮(methadone)、酮貝酮(ketobemidone)、吡曲醯胺(piritramide)及阿司匹林及相關柳酸鹽(例如柳酸膽鹼、柳酸鎂及柳酸鈉)。
適宜鎮痙藥包括(但不限於)美貝維林(mebeverine)、罌粟鹼(papaverine)、環苯紮林、卡立普多(carisoprodol)、奧芬那君、替紮尼定(tizanidine)、美他沙酮(metaxalone)、美索巴莫(methocarbamol)、氯唑沙宗(chlorzoxazone)、巴氯芬(baclofen)、丹曲洛林(dantrolene)、巴氯芬、替紮尼定及丹曲洛林。適宜抗發炎藥包括(但不限於)普賴鬆、非類固醇抗發炎藥(例如布洛芬、萘普生、酮洛芬及尼美舒利)、COX-2抑制劑(例如羅非昔布、塞來昔布及依託昔布)及免疫選擇性抗發炎衍生物(例如頜下腺肽-T及其衍生物)。
適宜抗組胺包括(但不限於)H1受體拮抗劑(例如阿伐斯汀(acrivastine)、氮卓斯汀(azelastine)、比拉斯汀(bilastine)、溴苯那敏(brompheniramine)、布克力嗪(buclizine)、溴苯海拉明(bromodiphenhydramine)、卡比沙明(carbinoxamine)、西替利嗪(cetirizine)、氯丙嗪、賽克力嗪(cyclizine)、氯苯那敏(chlorpheniramine)、氯馬斯汀(clemastine)、賽庚啶(cyproheptadine)、地氯雷他定(desloratadine)、右溴苯那敏(dexbrompheniramine)、右氯苯那敏(dexchlorpheniramine)、茶苯海明(dimenhydrinate)、二甲茚定(dimetindene)、苯海 拉明、多西拉敏(doxylamine)、依巴斯汀(ebastine)、恩布拉敏(embramine)、非索非那定(fexofenadine)、羥嗪、左西替利嗪(levocetirizine)、氯雷他定(loratadine)、美克洛嗪(meclizine)、米氮平(mirtazapine)、奧洛他定(olopatadine)、奧芬那君、苯茚胺(phenindamine)、非尼拉敏(pheniramine)、苯托沙敏(phenyltoloxamine)、異丙嗪、吡拉明(pyrilamine)、喹硫平、盧帕他定(rupatadine)、曲吡那敏(tripelennamine)及曲普利啶(triprolidine))、H2-受體拮抗劑(例如西咪替丁(cimetidine)、法莫替丁(famotidine)、拉呋替丁(lafutidine)、尼扎替丁(nizatidine)、雷尼替丁(ranitidine)及羅沙替丁(roxatidine))、曲托喹啉(tritoqualine)、兒茶素(catechin)、色甘酸鹽、奈多羅米(nedocromil)及p2-腎上腺素促效劑。
適宜抗感染劑包括(但不限於)抗阿米巴藥(例如硝唑尼特(nitazoxanide)、巴龍黴素(paromomycin)、甲硝唑(metronidazole)、替硝唑(tinidazole)、氯喹(chloroquine)、米替福新(miltefosine)、兩性黴素b(amphotericin b)及雙碘喹啉(iodoquinol))、胺基糖苷(例如巴龍黴素、妥布黴素(tobramycin)、妥布黴素慶大黴素(gentamicin)、阿卡米星(amikacin)、康黴素及新黴素)、驅蟲劑(例如噻嘧啶(pyrantel)、甲苯達唑(mebendazole)、伊維菌素(ivermectin)、吡喹酮(praziquantel)、阿苯達唑(albendazole)、噻苯達唑(thiabendazole)、奧沙尼喹(oxamniquine))、抗真菌藥(例如吡咯抗真菌藥(例如伊曲康唑(itraconazole)、氟康唑(fluconazole)、帕康唑(parconazole)、酮康唑(ketoconazole)、克黴唑(clotrimazole)、咪康唑(miconazole)及伏立康唑(voriconazole))、棘球白素(例如卡泊芬淨(caspofungin)、阿尼芬淨(anidulafungin)及米卡芬淨(micafungin))、灰黃黴素(griseofulvin)、特比萘芬(terbinafine)、氟胞嘧啶及聚烯(例如制黴菌素(nystatin)及兩性黴素b)、抗劑(例如乙胺嘧啶/磺胺多辛(sulfadoxine)、蒿甲醚(artemether)/本芴醇、阿托伐醌(atovaquone)/氯胍(proguanil)、奎寧、羥氯喹、甲氟喹(mefloquine)、氯喹、多西環素(doxycycline)、乙胺嘧啶及鹵泛群(halofantrine))、 抗結核劑(例如胺基柳酸鹽(例如胺基柳酸)、異菸肼/利福平(rifampin)、異菸肼/吡嗪醯胺/利福平、貝達喹啉(bedaquiline)、異菸肼、乙胺丁醇、利福平、利福布丁(rifabutin)、利福噴汀(rifapentine)、捲曲黴素(capreomycin)及環絲胺酸)、抗病毒藥(例如金剛烷胺、金剛乙胺、阿巴卡韋(abacavir)/拉米夫定(lamivudine)、恩曲他濱(emtricitabine)/替諾福韋(tenofovir)、考比司他(cobicistat)/艾格列韋(elvitegravir)/恩曲他濱/替諾福韋、依非韋倫(efavirenz)/恩曲他濱/替諾福韋、阿巴卡韋/拉米夫定/齊多夫定(zidovudine)、拉米夫定/齊多夫定、恩曲他濱/替諾福韋、恩曲他濱/洛匹那韋(l0pinavir)/利托那韋(ritonavir)/替諾福韋、干擾素α-2v/利巴韋林(ribavirin)、聚乙二醇干擾素α-2b、馬拉韋羅(maraviroc)、拉替拉韋(raltegravir)、多替拉韋(dolutegravir)、恩夫韋肽(enfuvirtide)、膦甲酸(foscarnet)、福米韋生(fomivirsen)、奧司他韋(oseltamivir)、扎那米韋(zanamivir)、奈韋拉平(nevirapine)、依非韋倫、依曲韋林(etravirine)、利匹韋林(rilpivirine)、地拉韋啶(delavirdine)、奈韋拉平、恩替卡韋(entecavir)、拉米夫定、阿德福韋(adefovir)、索非不韋(sofosbuvir)、去羥肌苷、替諾福韋、阿巴卡韋、齊多夫定、司他夫定(stavudine)、恩曲他濱、扎西他濱(zalcitabine)、替比夫定(telbivudine)、司美匹韋(simeprevir)、波塞瑞韋(boeeprevir)、特拉匹韋(telaprevir)、洛匹那韋/利托那韋、波塞瑞韋、達蘆那韋(darunavir)、利托那韋、替拉那韋(tipranavir)、阿扎那韋(atazanavir)、奈非那韋(nelfinavir)、安普那韋(amprenavir)、英地綱韋(indinavir)、沙奎那韋(saquinavir)、利巴韋林、伐昔洛韋(valacyclovir)、阿昔洛韋(acyclovir)、泛昔洛韋(famciclovir)、更昔洛韋(ganciclovir)及纈更昔洛韋(valganciclovir))、碳青霉烯(例如多利培南(doripenem)、美羅培南(meropenem)、厄他培南(ertapenem)及西司他丁(cilastatin)/亞胺培南(imipenem))、頭孢菌素(例如頭孢羥胺苄(cefadroxil)、頭孢拉定(cephradine)、頭孢唑林(cefazolin)、頭孢胺苄(cephalexin)、頭孢吡肟(cefepime)、頭孢唑啉(cefazoline)、氯碳頭孢(loracarbef)、頭孢替坦(cefotetan)、頭孢呋辛 (cefuroxime)、頭孢丙烯(cefprozil)、氯碳頭孢、頭孢西丁(cefoxitin)、頭孢克洛(cefaclor)、頭孢布烯(ceftibuten)、頭孢曲鬆(ceftriaxone)、頭孢噻肟(cefotaxime)、頭孢泊肟(cefpodoxime)、頭孢他尼(cefdinir)、頭孢克肟(cefixime)、頭孢托崙(cefditoren)、頭孢唑肟(ceftizoxime)及頭孢他啶(ceftazidime))、糖肽抗生素(例如萬古黴素(vancomycin)、達巴萬星(dalbavancin)、奧利萬星(oritavancin)及替拉萬星(telavancin))、甘胺醯環素(例如替吉環素(tigecycline))、抗麻瘋藥(例如氯法齊明(clofazimine)及沙利度胺(thalidomide))、林可黴素(lincomycin)及其衍生物(例如克林黴素(clindamycin)及林可黴素)、大環內脂及其衍生物(例如泰利黴素(telithromycin)、非達黴素(fidaxomicin)、紅黴素(erythromycin)、阿奇黴素(azithromycin)、克拉黴素(clarithromycin)、地紅黴素(dirithromycin)及醋竹桃黴素(troleandomycin))、利奈唑胺(linezolid)、磺胺甲噁唑(sulfamethoxazole)/甲氧苄啶(trimethoprim)、利福昔明(rifaximin)、氯黴素(chloramphenicol)、磷黴素、甲硝唑、胺曲南(aztreonam)、桿菌肽(bacitracin)、青黴素(penicillin,阿莫西林(amoxicillin)、胺苄青黴素、巴胺西林(bacampicillin)、羧苄西林(carbenicillin)、哌拉西林(piperacillin)、替卡西林(ticarcillin)、阿莫西林/克拉維酸鹽(clavulanate)、胺苄青黴素/舒巴克坦(sulbactam)、哌拉西林/三唑巴坦(tazobactam)、克拉維酸鹽/替卡西林、青黴素、普魯卡因(procaine)青黴素、苯唑西林(oxacillin)、雙氯西林(dicloxacillin)及雙氯西林(nafcillin))、喹諾酮(例如洛美沙星(lomefloxacin)、諾氟沙星(norfloxacin)、氧氟沙星(ofloxacin)、加替沙星(gatifloxacin)、莫西沙星(moxifloxacin)、環丙沙星(ciprofloxacin)、左氧氟沙星(levofloxacin)、吉米沙星(gemitloxacin)、莫西沙星、西諾沙星(cinoxacin)、萘啶酸、依諾沙星(enoxacin)、格帕沙星(grepafloxacin)、加替沙星、曲伐沙星(trovafloxacin)及司帕沙星(sparfloxacin))、磺醯胺(例如磺胺甲噁唑/甲氧苄啶、柳氮磺吡啶(sulfasalazine)及磺胺異噁唑(sulfisoxazole))、四環素(例如多西環素、地美環素(demeclocycline)、 米諾環素(minocycline)、多西環素/柳酸、多西環素/ω-3多不飽和脂肪酸及四環素)及尿路抗感染劑(例如呋喃妥因(nitrofurantoin)、烏洛托品(methenamine)、磷黴素(Fosfomycin)、西諾沙星、萘啶酸、甲氧苄啶及亞甲基藍)。
適宜化學治療劑包括(但不限於)太平洋紫杉醇(paclitaxel)、貝倫妥單抗維多汀(brentuximab vedotin)、多柔比星(doxorubicin)、5-FU(氟尿嘧啶)、依韋莫司(everolimus)、培美曲塞(pemetrexed)、美法崙(melphalan)、帕米磷酸鹽(pamidronate)、阿那曲唑(anastrozole)、依西美坦(exemestane)、奈拉濱(nelarabine)、奧法木單抗(ofatumumab)、貝伐珠單抗(bevacizumab)、貝林司他(belinostat)、托西莫單抗(tositumomab)、卡莫司汀(carmustine)、博來黴素(bleomycin)、博舒替尼(bosutinib)、白消安(busulfan)、阿倫單抗(alemtuzumab)、伊立替康(irinotecan)、凡德他尼(vandetanib)、比卡魯胺(bicalutamide)、洛莫司汀(lomustine)、道諾黴素(daunorubicin)、氯法拉濱(clofarabine)、卡博替尼(cabozantinib)、放線菌素D(dactinomycin)、雷莫蘆單抗(ramucirumab)、阿糖胞苷(cytarabine)、癌得星(Cytoxan)、環磷醯胺、地西他濱(decitabine)、地塞米松(dexamethasone)、多西他賽(docetaxel)、羥基脲、達卡巴嗪(dacarbazine)、柳培林(leuprolide)、泛艾黴素(epirubicin)、奧沙利鉑(oxaliplatin)、天冬醯胺酶、雌氮芥(estramustine)、西妥昔單抗(cetuximab)、維莫德吉(vismodegib)、天冬醯胺酶菊歐文氏菌(Erwinia chrysanthemi)、阿米福汀(amifostine)、依託泊苷(etoposide)、氟他胺(flutamide)、托瑞米芬(toremifene)、氟維司群(fulvestrant)、來曲唑(letrozole)、地加瑞克(degarelix)、普拉曲沙(pralatrexate)、胺甲喋呤、氟尿苷、奧妥珠單抗(obinutuzumab)、吉西他濱(gemcitabine)、阿法替尼(afatinib)、甲磺酸伊馬替尼(imatinib mesylate)、卡莫司汀、艾日布林(eribulin)、曲妥珠單抗(trastuzumab)、六甲蜜胺(altretamine)、拓撲替康(topotecan)、普納替尼(ponatinib)、伊達比星(idarubicin)、異環磷醯胺(ifosfamide)、依魯替尼(ibrutinib)、阿西替尼(axitinib)、 干擾素α-2a、吉非替尼(gefitinib)、羅米地辛(romidepsin)、伊沙匹隆(ixabepilone)、魯索替尼(ruxolitinib)、卡巴他賽(cabazitaxel)、阿多-曲妥珠單抗艾坦辛(ado-trastuzumab emtansine)、卡非咗米(carfilzomib)、苯丁酸氮芥(chlorambucil)、沙格司亭(sargramostim)、克拉屈濱(cladribine)、米托坦(mitotane)、長春新鹼(vincristine)、丙卡巴肼(procarbazine)、甲地孕酮(megestrol)、曲美替尼(trametinib)、美司鈉(mesna)、氯化鍶-89、氮芥(mechlorethamine)、絲裂黴素(mitomycin)、白消安、吉妥單抗奧佐米星(gemtuzumab ozogamicin)、長春瑞濱(vinorelbine)、非格司亭(filgrastim)、聚乙二醇化非格司亭、索拉菲尼(sorafenib)、尼魯米特(nilutamide)、噴司他丁(pentostatin)、他莫昔芬(tamoxifen)、米托蒽醌(mitoxantrone)、培門冬酶(pegaspargase)、地尼介白素(denileukin diftitox)、阿利維A酸(alitretinoin)、卡鉑(carboplatin)、帕妥珠單抗(pertuzumab)、順鉑(pertuzumab)、泊馬度胺(pomalidomide)、普賴鬆、阿地介白素(aldesleukin)、巰基嘌呤、唑來膦酸(zoledronic acid)、雷利竇邁(lenalidomide)、利妥昔單抗(rituximab)、奧曲肽(octreotide)、達沙替尼(dasatinib)、瑞戈非尼(regorafenib)、組胺瑞林(histrelin)、舒尼替尼(sunitinib)、司妥昔單抗(siltuximab)、奧美西汀(omacetaxine)、硫鳥嘌呤(硫代鳥嘌呤)、達拉非尼(dabrafenib)、埃羅替尼(erlotinib)、貝沙羅汀(bexarotene)、替莫唑胺(temozolomide)、塞替派(thiotepa)、沙利度胺、卡介苗(Bacillus Calmette-Guerin,BCG)、替西羅莫司(temsirolimus)、鹽酸苯達莫斯汀(bendamustine hydrochloride)、曲普瑞林(triptorelin)、三氧化二砷、拉帕替尼(lapatinib)、戊柔比星(valrubicin)、帕尼單抗(panitumumab)、長春鹼(vinblastine)、硼替佐米(bortezomib)、維A酸(tretinoin)、阿扎胞苷(azacitidine)、帕唑帕尼(pazopanib)、替尼泊苷(teniposide)、甲醯四氫葉酸、克唑替尼(crizotinib)、卡培他濱(capecitabine)、恩雜魯胺(enzalutamide)、伊匹單抗(ipilimumab)、戈捨瑞林(goserelin)、伏立諾他(vorinostat)、艾帶阿里斯(idelalisib)、色瑞替尼(ceritinib)、阿比特龍(abiraterone)、伊沙匹隆 (epothilone)、他氟泊苷(tafluposide)、硫唑嘌呤、去氧氟尿苷、長春地辛(vindesine)及所有反式視黃酸。
在除本文所述多肽、多核苷酸、CRISPR-Cas複合物、載體、細胞、病毒粒子、奈米粒子、其他遞送粒子及其組合中之一或多者外醫藥調配物含有輔助活性劑之實施例中,輔助活性劑之量(例如有效量)將端視輔助活性劑而變化。在一些實施例中,輔助活性劑之量介於0.001微克至約1毫克之範圍內。在其他實施例中,輔助活性劑之量介於約0.01IU至約1000IU之範圍內。在其他實施例中,輔助活性劑之量介於0.001mL至約1mL之範圍內。在其他實施例中,輔助活性劑之量介於總醫藥調配物之約1% w/w至約50% w/w之範圍內。在其他實施例中,輔助活性劑之量介於總醫藥調配物之約1% v/v至約50% v/v之範圍內。在其他實施例中,輔助活性劑之量介於總醫藥調配物之約1% w/v至約50% w/v之範圍內。
劑量形式
在一些實施例中,本文所述之醫藥調配物可呈劑量形式。劑量形式可適於藉由任何適當途徑投與。適當途徑包括(但不限於)口服(包括頰側或舌下)、直腸、硬膜外、顱內、眼內、吸入、鼻內、局部(包括頰側、舌下或經皮)、陰道、尿道內、非經腸、顱內、皮下、肌內、靜脈內、腹膜內、真皮內、骨內、心內、關節內、海綿體內、鞘內、玻璃體內、大腦內、齒齦、齒齦下、腦室內及真皮內。此類調配物可藉由此項技術中已知之任一方法製備。
適於口服投與之劑量形式可為離散劑量單位,例如膠囊、丸劑或錠劑、粉劑或顆粒、水性或非水性液體中之溶液或懸浮液;食用泡沫或攪打物或水包油液體乳液或油包水液體乳液。在一些實施例中,適於口服投與之醫藥調配物亦包括對醫藥調配物進行矯味、防腐、著色或幫助分散之一或多種劑。經製備用於口服投與之劑量形式亦可呈可以泡沫、噴霧劑或液體溶液遞送之液體溶液 之形式。在一些實施例中,口服劑量形式可含有約1ng至1000g之醫藥調配物,其含有治療有效量或其適當分數之靶向效應物融合蛋白及/或其複合物或含有本文所述多肽、多核苷酸、載體、細胞及其組合中之一或多者之組合物。口服劑量形式可投與有需要之個體。
若適當,本文所述之劑量形式可經微囊封。
劑量形式亦可經製備以延長或持續任一成分之釋放。在一些實施例中,本文所述多肽、多核苷酸、載體、細胞及其組合中之一或多者可為其釋放延遲之成分。在其他實施例中,延遲視情況地納入之輔助成分之釋放。適於延長成分釋放之方法包括(但不限於)將成分包覆或包埋於聚合物、蠟、凝膠及諸如此類中之材料中。延遲釋放劑量調配物可如諸如以下之標準參考文獻中所述來製備:「Pharmaceutical dosage form tablets」,Liberman等人編輯(New York,Marcel Dekker,Inc.,1989),「Remington-The science and practice of pharmacy」,第20版,Lippincott Williams & Wilkins,Baltimore,MD,2000及「Pharmaceutical dosage forms and drug delivery systems」,第6版,Ansel等人(Media,PA:Williams及Wilkins,1995)。該等參考文獻提供關於用於製備錠劑及膠囊以及錠劑及丸劑之延遲釋放劑量形式、膠囊及顆粒之賦形劑、材料、設備及製程的資訊。延遲釋放可為約1小時至約3個月或更長時間。
適宜包覆材料之實例包括(但不限於)纖維素聚合物,例如乙酸鄰苯二甲酸纖維素、羥丙基纖維素、羥丙基甲基纖維素、鄰苯二甲酸羥丙基甲基纖維素及乙酸琥珀酸羥丙基甲基纖維素;聚乙酸鄰苯二甲酸乙烯酯、丙烯酸聚合物及共聚物及以商品名EUDRAGIT®在市面上有售之甲基丙烯酸樹脂(Roth Pharma,Westerstadt,Germany)、玉米醇溶蛋白、蟲膠及多糖。
包衣可使用不同比率之水溶性聚合物、水不溶性聚合物及/或pH依賴性聚合物來形成,具或不具水不溶性/水溶性非聚合賦形劑,以產生期望釋 放概況。包覆係在劑量形式(基質或簡單劑量形式)上實施,其包括(但不限於)錠劑(使用或不使用包衣珠粒壓縮)、膠囊(具或不具包衣珠粒)、珠粒、粒子組合物、調配為(但不限於)懸浮液形式或噴劑劑量形式之「原樣成分」。
適於局部投與之劑量形式可調配為軟膏、乳霜、懸浮液、洗劑、粉劑、溶液、糊劑、凝膠、噴霧劑氣溶膠或油。在一些實施例中,為治療眼或其他外部組織,例如口腔或皮膚,以局部軟膏或乳霜形式施用醫藥調配物。當以軟膏調配時,可使用石蠟或水可混溶軟膏基底來調配本文所述多肽、多核苷酸、載體、細胞及其組合中之一或多者。在一些實施例中,活性成分可使用水包油乳霜基底或油包水基底調配於乳霜中。適於口腔中之局部投與之劑量形式包括菱形錠劑、軟錠劑及漱口劑。
適於鼻或吸入投與之劑量形式包括氣溶膠、溶液、懸浮滴劑、凝膠或乾粉。在一些實施例中,適於吸入之劑量形式中所含之本文所述多肽、多核苷酸、載體、細胞及其組合中之一或多者呈藉由微粉化獲得或可獲得之粒度減小形式。在一些實施例中,大小減小之(例如微粉化)化合物或其鹽或溶劑合物之粒度定義係藉由如藉由此項技術中已知之適當方法所量測之約0.5微米至約10微米之D50值來定義。適於藉由吸入投與之劑量形式亦包括粒子塵或霧。其中載劑或賦形劑係作為鼻噴霧劑或滴劑投與之液體之適宜劑量形式包括活性成分(例如本文所述多肽、多核苷酸、載體、細胞及其組合中之一或多者及/或輔助活性劑)之水性或油性溶液/懸浮液,其可藉由多種類型之計量劑量之加壓氣溶膠、霧化器或吹入器來產生。
在一些實施例中,劑量形式可為適於藉由吸入投與之氣溶膠調配物。在該等實施例中之一些實施例中,氣溶膠調配物可含有本文所述多肽、多核苷酸、載體、細胞及其組合中之一或多者及醫藥學上可接受之水性或非水性溶劑之溶液或細懸浮液。氣溶膠調配物可單劑量或多劑量量以無菌形式呈現於密封 容器中。對於該等實施例中之一些實施例,密封容器係單劑量或多劑量裝配有計量閥之鼻或氣溶膠分配器(例如計量劑量吸入器),其意欲用於當容器之內容物已耗盡使進行處置。
當氣溶膠分配器中含有氣溶膠劑量形式時,分配器含有適於壓力下之推進劑,例如壓縮空氣、二氧化碳或有機推進劑,包括(但不限於)氫氟化碳。在其他實施例中,幫浦噴霧器中含有氣溶膠調配物劑量形式。加壓氣溶膠調配物亦可含有本文所述多肽、多核苷酸、載體、細胞及其組合中之一或多者之溶液或懸浮液。在其他實施例中,氣溶膠調配物亦可含有經納入以改良例如調配物之穩定性及/或味道及/或細粒子質量特徵(量及/或概況)之共溶劑及/或改質劑。氣溶膠調配物之投與可為每天一次或每天幾次,例如每天2次、每天3次、每天4次或每天8次,其中每次遞送1個、2個或3個劑量。
對於適宜及/或適於吸入投與之一些劑量形式,醫藥調配物係乾粉可吸入調配物。除本文所述多肽、多核苷酸、載體、細胞及其組合中之一或多者、輔助活性成分及/或其醫藥學上可接受之鹽外,此一劑量形式可含有粉末基底,例如乳糖、葡萄糖、海藻糖、甘露醇及/或澱粉。在該等實施例中之一些實施例中,本文所述多肽、多核苷酸、載體、細胞及其組合中之一或多者呈粒度減小之形式。在其他實施例中,效能改質劑,例如L-白胺酸或另一胺基酸、八乙酸纖維二糖及/或硬脂酸之金屬鹽,例如硬脂酸鎂或硬脂酸鈣。
在一些實施例中,氣溶膠劑量形式可經排列,以使得氣溶膠之每一計量劑量含有預定量之活性成分,例如本文所述多肽、多核苷酸、載體、細胞及其組合中之一或多者。
適於陰道投與之劑量形式可呈現為子宮托、棉塞、乳霜、凝膠、糊劑、泡沫或噴霧劑調配物。適於直腸投與之劑量形式包括栓劑或灌腸劑。
適於非經腸投與及/或適於任一注射類型(例如靜脈內、腹膜內、皮下、肌內、真皮內、骨內、硬膜外、心內、關節內、海綿體內、齒齦、齒齦下、鞘內、玻璃體內、大腦內及腦室內)之劑量形式可包括水性及/或非水性無菌注射溶液,其可含有抗氧化劑、緩衝劑、抑菌劑、使組合物與個體血液等滲之溶質及水性及非水性無菌懸浮液,其可包括懸浮劑及增稠劑。適於非經腸投與之劑量形式可呈現於單一單位劑量或多單位劑量容器中,包括(但不限於)密封安瓿或小瓶。劑量可經凍乾且重新懸浮於無菌載劑中以在投與之前復原劑量。在一些實施例中,可自無菌粉末、顆粒及錠劑製備臨時注射溶液及懸浮液。
適於眼部投與之劑量形式可包括水性及/或非水性無菌溶液,其可視情況地適於注射且可視情況地含有抗氧化劑、緩衝劑、抑菌劑、使組合物與眼或其中所含之流體或個體眼周圍之流體等滲之溶質以及水性及非水性無菌懸浮液,其可包括懸浮劑及增稠劑。
對於一些實施例,劑量形式之每單位劑量含有預定量之本文所述多肽、多核苷酸、載體、細胞及其組合中之一或多者。因此,在一些實施例中,可每天一次或每天一次以上投與預定量之此類單位劑量。此類醫藥調配物可藉由此項技術中所熟知之任一方法製備。
套組
本文亦闡述套組,其含有本文所述組合物、多肽、多核苷酸、載體、細胞或其他組分及其組合中之一或多者及本文所述之醫藥調配物中之一或多者。在實施例中,本文所述多肽、多核苷酸、載體、細胞及其組合中之一或多者可呈現為組合套組。如本文所用之術語「組合套組」或「部分之套組」係指用於包裝、篩選、測試、銷售、出售、遞送及/或投與元件之組合或其中所含之單一元件(例如活性成分)之化合物或調配物及其他組分。此類其他組分包括(但不限於)包裝、注射器、泡罩包裝、瓶及諸如此類。組合套組可含有一或多種組分 (例如多肽、多核苷酸、載體、細胞及其組合中之一或多者),或其調配物可以單一調配物(例如液體、凍乾粉末等)或以單獨調配物提供。單獨組分或調配物可含於單一包裝或套組內之單獨包裝中。套組亦可包括有形表現介質中之說明書,其可含有關於其中所含之組分及/或調配物之含量之資訊及/或說明、關於其中所含之組分及/或調配物之含量之安全性資訊、關於其中所含之組分及/或調配物之量、劑量、使用適應症、篩選方法、組分設計建議及/或資訊、建議治療方案的資訊。如本文所用之「有形表現介質」係指在物理上有形或可訪問且不僅僅係抽象的想法或未記錄之口頭語言之介質。「有形表現介質」包括(但不限於)纖維素或塑膠材料上之語言或以適宜電腦可讀記憶形式儲存之資料。資料可儲存在單位器件(例如快閃記憶體驅動或CD-ROM)上或使用者可經由例如網路介面訪問之伺服器上。
在一個實施例中,本發明提供包含一或多種本文所述組分之套組。在一些實施例中,套組包含載體系統及使用套組之說明書。在一些實施例中,載體系統包括可操作連接至一或多個經改造之多核苷酸(例如如本文別處所述含有肌肉特異性靶向部分之彼等多核苷酸)之調控元件,及視情況地負荷分子,其可視情況地可操作連接至調控元件。一或多個經改造之多核苷酸(例如如本文別處所述含有肌肉特異性靶向部分之多核苷酸),且在套組內含有負荷分子之實施例中可包括在與負荷分子相同或不同之載體上。
在一些實施例中,套組包含載體系統及使用套組之說明書。在一些實施例中,載體系統包含(a)可操作連接至直接重複序列及一或多個插入位點之第一調控元件,該一或多個插入位點用於在直接重複序列之上游或下游(以適用者為準)插入一或多條引導序列,其中在表現時,引導序列引導Cas9 CRISPR複合物與真核細胞中之靶序列之序列特異性結合,其中Cas9 CRISPR複合物包含與引導序列複合之Cas9酶,該引導序列與靶序列雜交;及/或(b)可操作連接至 編碼該Cas9酶之酶編碼序列之第二調控元件,其包含核定位序列。若適用,亦可提供tracr序列。在一些實施例中,套組包含位於系統之相同或不同載體上之組分(a)及(b)。在一些實施例中,組分(a)進一步包含可操作連接至第一調控元件之兩條或更多條引導序列,其中在表現時,兩條或更多條引導序列中之每一者引導CRISPR複合物與真核細胞中之不同靶序列之序列特異性結合。在一些實施例中,Cas9酶包含一或多條核定位序列,其強度足以驅動該CRISPR酶以可偵測量在真核細胞核中之累積。在一些實施例中,CRISPR酶係V型或VI型CRISPR系統酶。在一些實施例中,CRISPR酶係Cas9酶。在一些實施例中,Cas9酶衍生自土拉弗朗西斯菌1、土拉弗朗西斯菌亞種諾維達、蘇格蘭普雷沃氏菌、毛螺菌科細菌MC2017 1、瘤胃溶纖維丁酸弧菌、佩萊格里尼菌GW2011_GWA2_33_10、帕庫氏菌GW2011_GWC2_44_17、史密斯氏菌SCADC、胺基酸球菌BV3L6、毛螺菌科細菌MA2020、候選白蟻甲烷支原體、挑剔真桿菌、牛眼莫拉氏菌237、良吉氏鉤端螺旋體、毛螺菌科細菌ND2006、狗口腔卟啉單胞菌3、解糖腖普雷沃氏菌或獼猴卟啉單胞菌Cas9(例如經修飾以具有或與至少一個DD締合),並可包括Cas9之其他變化或突變,且可為嵌合Cas9。在一些實施例中,DD-CRISPR酶經密碼子最佳化用於在真核細胞中表現。在一些實施例中,DD-CRISPR酶引導靶序列位置處之一或兩股之裂解。在一些實施例中,DD-CRISPR酶缺少或實質上DNA股裂解活性(例如與野生型酶或不具降低核酸酶活性之突變或變化之酶相比不超過5%之核酸酶活性)。在一些實施例中,第一調控元件係聚合酶III啟動子。在一些實施例中,第二調控元件係聚合酶II啟動子。在一些實施例中,引導序列之長度為至少16個、17個、18個、19個、20個、25個核苷酸,或介於16-30個核苷酸之間,或介於16-25個核苷酸之間,或介於16-20個核苷酸之間。
使用方法
一般論述
通常可使用包括一或多個肌肉特異性靶向部分之組合物、經改造之AAV衣殼系統多核苷酸、多肽、載體、經改造之細胞、經改造之AAV衣殼粒子將一或多個負荷包裝及/或遞送至接受細胞。在一些實施例中,遞送係基於靶向部分之特異性以細胞特異性方式進行。在一些實施例中,此係由經改造AAV衣殼之向性賦予,該經改造AAV衣殼之向性可至少部分地受納入本文別處所述之一個或n聚體基元的影響。在一些實施例中,包括一或多個肌肉特異性靶向部分之組合物(經改造之AAV衣殼粒子)可投與個體或細胞、組織及/或器官且促進負荷轉移及/或整合至接受細胞。在其他實施例中,能夠產生含有一或多個肌肉特異性靶向部分之組合物(例如多肽及其他粒子,例如經改造之AAV衣殼及病毒粒子)之經改造細胞可自本文所述之多核苷酸、載體及載體系統等產生。此包括(但不限於)經改造之AAV衣殼系統分子(例如多核苷酸、載體及載體系統等)。在一些實施例中,能夠產生含有一或多個肌肉特異性靶向部分之組合物(例如多肽及其他粒子,例如經改造之AAV衣殼及病毒粒子)之本文所述之多核苷酸、載體及載體系統可活體內、離體或活體外遞送至細胞或組織。在一些實施例中,當遞送至個體時,組合物可活體內或離體轉型個體之細胞以產生經改造之細胞,其可能夠製造含有本文所述之一或多個肌肉特異性靶向部分之本文所述之組合物,包括(但不限於)經改造之AAV衣殼粒子,該本文所述之組合物可自經改造之細胞釋放,且將負荷分子活體內遞送至接受細胞或產生個性化之經改造組合物(例如AAV衣殼粒子)以再引入自其獲得接受細胞之個體中。
在一些實施例中,經改造之細胞可遞送至個體,其中其可釋放所產生之本發明組合物(包括但不限於經改造之AAV衣殼粒子),使得其隨後可將負荷(例如負荷多核苷酸)遞送至接受細胞。該等一般過程可在生物製造中及在其 他多種應用中以多種方式使用來治療及/或預防個體之疾病或其症狀,產生模型細胞,產生經修飾之生物體,提供細胞選擇及篩選分析。
在一些實施例中,可將含有一或多個肌肉特異性靶向部分之組合物(例如多肽及其他粒子,例如經改造之AAV衣殼及病毒粒)遞送至個體或細胞、組織及/或器官。以此方式,其可用於遞送其可含有或與肌肉細胞締合之任一負荷。
在一些實施例中,經改造之AAV衣殼多核苷酸、載體及其系統可用於產生經改造之AAV衣殼變異體文庫,該等經改造之AAV衣殼變異體文庫可挖掘具有期望細胞特異性之變異體。如由多個實例支持之本文所提供之描述可證實,具有所需期望細胞特異性者可利用如本文所述之本發明來獲得具有期望細胞特異性之衣殼。
本發明可用作其中傳輸結果或資料之研究項目之一部分。可使用電腦系統(或數位器件)來接受、傳輸、顯示及/或儲存結果,分析資料及/或結果,及/或產生結果及/或資料及/或分析之報告。電腦系統可理解為邏輯裝置,其可讀取來自可視情況地連接至具有固定介質之伺服器之介質(例如軟體)及/或網路端口(例如來自網際網絡)之指令。電腦系統可包括CPU、磁碟驅動、輸入器件(例如鍵盤及/或鼠標)及顯示器(例如監視器)中之一或多者。資料通信(例如傳輸指令或報告)可經由通信至本地或遠程位置之伺服器之介質來達成。通信介質可包括傳輸及/或接受資料之任何構件。舉例而言,通信介質可為網路連接、無線連接或網際網絡連接。此一連接可經由全球資訊網(World Wide Web)提供通信。設想與本發明相關之資料可經由此類網路或連接(或任何其他適於傳輸資訊之方式,包括但不限於郵寄體檢報告,例如列印件)來傳輸用於接收器接收及/或審查。接收器可為(但不限於)個體或電子系統(例如一或多台電腦及/或一或多台伺服器)。在一些實施例中,電腦系統包括一或多個處理器。處理器可與一或多個控制器、 計算單元及/或電腦系統之其他單元締合或視需要植入韌體中。若在軟體中實施,則可將程序儲存在任何電腦可讀記憶體中,例如儲存在RAM、ROM、快閃記憶體、磁碟、雷射磁碟或其他適宜儲存介質中。同樣,此軟體可經由任一已知遞送方法遞送至計算器件,包括例如經由通信通道,例如電話線、網際網絡、無線連接等,或經由可運輸介質,例如電腦可讀磁碟、快閃驅動等。多個步驟可實施為多個組塊、操作、工具、模組及技術,其進而可在硬體、韌體、軟體或硬體、韌體及/或軟體之任一組合中實施。當在硬體中實施時,可在例如定制積體電路(IC)、特殊應用積體電路(ASIC)、現場可程式化邏輯陣列(FPGA)、可程式化邏輯陣列(PLA)等中實施一些或所有組塊、操作、技術等。客戶端-伺服器、關系資料庫架構可用於本發明之實施例中。客戶端-伺服器架構係其中網路上之每一電腦或過程係客戶端或伺服器之網路架構。伺服器電腦通常係專用於管控磁碟驅動(文檔伺服器)、列印機(列印伺服器)或網路流量(網路伺服器)之功能強大的電腦。客戶端電腦包括使用者在其上運行應用程序之PC(個人電腦)或工作站以及如本文所揭示之實例輸出器件。客戶端電腦依賴於伺服器電腦來獲取資源,例如文檔、器件及甚至處理能力。在本發明之一些實施例中,伺服器電腦處理所有資料庫功能。客戶端電腦可具有處理所有前端資料管控之軟體且亦可自使用者接收資料輸入。包含電腦可執行代碼之機器可讀介質可採用許多形式,包括(但不限於)有形儲存介質、載波介質或物理傳輸介質。非揮發性儲存介質包括例如光學或磁碟,例如任一(些)電腦或諸如此類中之任一儲存器件,例如可用於實施圖式中所顯示之資料庫等。揮發性儲存介質包括多態性記憶體,例如此一電腦平台之主記憶體。有形傳輸介質包括同軸電纜;銅線及纖維光學器件,包括包含電腦系統內之總線之線。載波傳輸介質可採用電或電磁信號、或聲波或光波,例如在射頻(RF)及紅外(IR)資料通信期間產生之彼等波。因此,電腦可讀介質之常見形式包括例如:軟碟(floppy disk)、軟碟(flexible disk)、硬碟、磁帶、任何其他磁性介 質、CD-ROM、DVD或DVD-ROM、任何其他光學介質、穿孔卡紙帶、具有孔圖案之任何其他物理儲存介質、RAM、ROM、PROM及EPROM、FLASH-EPROM、任何其他記憶體晶片或盒式磁帶、運輸資料或指令之載波、運輸此一載波之電纜或連接或電腦可自其讀取程式化代碼及/或資料之任何其他介質。該等形式之電腦可讀介質中之許多可參與將一或多個指令之一或多條序列攜帶至處理器用於執行。因此,本發明包括實施本文所論述之任一方法及儲存及/或傳輸資料及/或來自其之結果及/或其分析以及實施本文所論述之任一方法之產物,包括中間體。
治療劑
在一些實施例中,含有本文所述之一或多個肌肉特異性靶向部分之組合物(包括但不限於本文所述之經改造AAV衣殼粒子、經改造之細胞及/或其調配物)可遞送至有需要之個體作為一或多種疾病之療法。在一些實施例中,欲治療之疾病係基於遺傳之疾病或基於表觀遺傳之疾病。在一些實施例中,欲治療之疾病並非基於遺傳之疾病或基於表觀遺傳之疾病。在一些實施例中,含有本文所述之一或多個肌肉特異性靶向部分之組合物(包括但不限於本文所述之經改造AAV衣殼粒子、經改造之細胞及/或其調配物)可遞送至有需要之個體作為疾病之治療或預防(或作為治療或預防之一部分)。應瞭解,欲藉由遞送本發明之組合物、調配物、細胞及諸如此類治療及/或預防之特定疾病可端視偶聯至、連接至、含於或以其他方式與本發明之組合物、調配物、細胞及諸如此類締合之負荷而定。
可治療之遺傳病更詳細論述於本文別處(參見例如下文關於基於基因修飾之療法之論述)。其他疾病包括(但不限於)以下中之任一者:癌症、不動桿菌(Acinetobacter)感染、放線菌病(actinomycosis)、非洲睡眠病(African sleeping sickness)、AIDS/HIV、阿米巴病(amoebiasis)、邊蟲病(Anaplasmosis)、住血線蟲 感染症(Angiostrongyliasis)、胃線蟲症(Anisakiasis)、炭疽、溶血隱秘桿菌(Arcanobacterium haemolyticum)感染、阿根廷出血熱(Argentine hemorrhagic fever)、蛔蟲病(Ascariasis)、麴菌病(Aspergillosis)、星狀病毒(Astrovirus)感染、焦蟲病(Babesiosis)、細菌性腦膜炎、細菌性肺炎、細菌性陰道病、擬桿菌(Bacteroide)感染、絨毛蟲症(balantidiasis)、巴東蟲症(Bartonellosis)、貝斯利蛔蟲(Baylisascaris)感染、BK病毒感染、黑節病(Black Piedra)、母細胞增多症、芽生菌病(Blastomycosis)、玻利維亞出血熱(Bolivian hemorrhagic fever)、肉毒症、巴西出血熱(Brazilian hemorrhagic fever)、布氏桿菌病(brucellosis)、黑死病、伯克氏菌(Burkholderia)感染、布如裡氏潰瘍(buruli ulcer)、杯狀病毒(calicivirus)發明、曲桿菌症(campylobacteriosis)、念珠菌病(Candidiasis)、毛細線蟲病(Capillariasis)、同巴東體病(Carrion’s disease)、貓抓病、蜂窩組織炎、南美錐蟲病(Chagas Disease)、軟下疳、水痘、屈公病(Chikungunya)、披衣菌屬(Chlamydia)、肺炎披衣菌、霍亂、產色黴菌病(Chromoblastomycosis)、壺菌病(Chytridiomycosis)、華支睪吸蟲病(Clonorchiasis)、艱難梭菌性結腸炎、球黴菌病(Coccidioidomycosis)、科羅拉多壁蝨熱(Colorado tick fever)、鼻病毒/冠狀病毒病毒感染(普通感冒)、庫賈氏病(Creutzfeldt-Jakob disease)、克里米亞剛果出血熱(Crimean-congo hemorrhagic fever)、隱球菌病(Cryptococcosis)、隱孢子蟲病(Cryptosporidiosis)、移動性幼蟲疹(Cutaneous larva migrans,CLM)、環孢子蟲病(cyclosporiasis)、囊蟲症(cysticercosis)、巨細胞病毒感染、登革熱、柵藻(Desmodesmus)感染、雙核阿米巴病(Dientamoebiasis)、白喉、裂頭條蟲病(Diphyllobothriasis)、龍線蟲病(Dracunculiasis)、伊波拉、包蟲病(Echinococcosis)、艾麗希體症(Ehrlichiosis)、蟯蟲病(enterobiasis)、腸球菌(Enterococcus)感染、腸病毒(Enterovirus)感染、流行性斑疹傷寒、感染性紅斑(Erythema Infectiosum)、幼兒急疹、片吸蟲症(Fascioliasis)、肥大吸蟲病(Fasciolopsiasis)、致死性家族性失眠症、絲蟲病(filariasis)、產氣莢膜 芽孢梭菌(Clostridium perfringens)感染、細梭菌(Fusobacterium)感染、氣疽症(氣性壞疽)、地絲菌症(geotrichosis)、吉-史-先三氏症候群(Gerstmann-Straussler-Scheinker syndrome)、梨形鞭毛蟲症(Giardiasis)、鼻疽、頜口蟲病(Gnathostomiasis)、淋病、腹股溝肉芽腫、A群鏈球菌感染、B群鏈球菌感染、流感嗜血桿菌(Haemophilus influenzae)感染、手足口病、漢他病毒肺症候群(hantavirus pulmonary syndrome)、心臟地帶病毒病、幽門螺旋桿菌(helicobacter pylori)感染、腎症候群出血熱、亨德拉病毒(Hendra virus)感染、肝炎(所有A群、B群、C群、D群、E群)、單純疱疹、組織漿菌症、鉤蟲感染、人類波卡病毒(bocavirus)感染、人類尤氏艾麗希體症(human ewingii ehrlichiosis)、人類顆粒球邊蟲病、人類間質肺炎病毒感染、人類單核艾麗希體症、人類乳突狀瘤病毒、膜樣條蟲病(Hymenolepiasis)、愛潑斯坦-巴爾感染(Epstein-Barr infection)、單核白血球增多症、流感病毒、等孢子球蟲病、川崎病(Kawasaki disease)、金氏金桿菌(Kingella kingae)感染、庫魯病(Kuru)、賴薩熱(Lassa fever)、退伍軍人病(軍團病(Legionnaires disease)及波多馬克熱(Potomac Fever))、利什曼病(Leishmaniasis)、麻瘋、鉤端螺旋體病(Leptospirosis)、李氏菌病(Listeriosis)、萊姆病(Lyme disease)、淋巴絲蟲病、淋巴球性脈絡叢腦膜炎、瘧疾、馬堡出血熱、麻疹、中東呼吸症候群(Middle East respiratory syndrome)、類鼻疽、腦膜炎、腦膜炎球菌病(Meningococcal disease)、偏殖器吸蟲病(Metagonimiasis)、微孢子蟲病(Microsporidosis)、傳染性軟疣、猴痘、腮腺炎、鼠類斑疹傷寒、微漿菌(Mycoplasma)肺炎、生殖器微漿菌感染、足菌病(Mycetoma)、蛆病、結膜炎、立百病毒(Nipah virus)感染、諾羅病毒(Norovirus)、變異型庫賈氏病、奴卡菌病(Nocardiosis)、蟠尾絲蟲病(Onchocerciasis)、肝吸蟲症(Opisthorchiasis)、巴西副球黴菌病(Paracoccidioidomycosis)、肝吸蟲病(Paragonimiasis)、巴氏桿菌症(Pasteurellosis)、頭蝨病(Pediculosisi capitis)、體蝨病(Pediculosis corporis)、隱蝨 病(Pediculosis pubis)、盆腔炎、百日咳、鼠疫、肺炎球菌感染、肺囊蟲(pneumocystis)肺炎、肺炎、脊髓灰質炎、普雷沃菌感染、原發性阿米巴腦膜腦炎、進行性多發性腦白質病變、鸚鵡病、Q熱、狂犬病、回歸熱、呼吸道融合病毒感染、鼻病毒感染、立克次體感染、立克次體痘、立夫特山谷熱(Rift Valley Fever)、落磯山斑疹熱(Rocky Mountain Spotted Fever)、輪狀病毒(Rotavirus)感染、風疹、沙氏桿菌病(Salmonellosis)、SARS、疥瘡、猩紅熱、血吸蟲病(Schistosomiasis)、敗血症、志賀桿菌病(Shigellosis)、帶狀疱疹、天花、孢子絲菌病、葡萄球菌感染(包括MRSA)、類原蟲病(strongyloidiasis)、亞急性硬化性泛腦炎、梅毒、條蟲病(Taeniasis)、破傷風、髮癬菌(Trichophyton species)感染、蛔蟲症(Toxocariasis)、弓蟲症(Toxoplasmosis)、沙眼、旋毛蟲症(Trichinosis)、毛線蟲病(Trichiniasis)、結核病、兔熱病(Tularemia)、傷寒熱、斑疹傷寒熱、解脲支原體(Ureaplasma urealyticum)感染、山谷熱(Valley fever)、委內瑞拉馬腦炎(Venezuelan equine encephalitis)、委內瑞拉出血熱(Venezuelan hemorrhagic fever)、弧菌(Vibrio species)感染、病毒肺炎、西尼羅熱、毛幹白節病(White Piedra)、假性結核病耶氏桿菌(Yersinia pseudotuberculosis)、耶爾森菌病(Yersiniosis)、黃熱病、玉米孢子囊病(Zeaspora)、茲卡熱(Zika fever)、接合菌病(Zygomycosis)及其組合。
可使用本發明之實施例治療之其他疾病及病症包括(但不限於)內分泌疾病(例如I型及II型糖尿病、妊娠糖尿病、低血糖症、升糖素瘤、甲狀腺腫、甲狀腺功能亢進症、甲狀腺低能症、甲狀腺炎、甲狀腺癌、甲狀腺激素抗性、副甲狀腺病症、骨質疏鬆症、變形性骨炎、佝僂病、軟骨病、腦垂體低能症、垂體瘤等)、感染及非感染性來源之皮膚疾患、感染或非感染性來源之眼病、感染或非感染性來源之胃腸病症、感染或非感染性來源之心血管疾病、感染或非感染性來源之腦及神經元疾病、感染或非感染性來源之神經系統疾病、感染或非感染性來源之肌肉疾病、感染或非感染性來源之骨病、感染或非感染性來源之生殖 系統疾病、感染或非感染性來源之腎系統疾病、感染或非感染性來源之血液疾病、感染或非感染性來源之淋巴系統疾病、感染或非感染性來源之免疫系統疾病、感染或非感染性來源之精神疾病及諸如此類。
在一些實施例中,欲治療之疾病係肌肉或肌肉相關疾病或病症,例如遺傳性肌肉疾病或病症。
熟習此項技術者將瞭解其他疾病及病症。
授受性細胞療法
一般而言,授受性細胞轉移涉及將細胞(自體、同種異體及/或異種)轉移至個體。細胞在遞送至個體之前可或可不經修飾及/或以其他方式操縱。
在一些實施例中,如本文所述之經改造細胞可包括在授受性細胞轉移療法中。在一些實施例中,如本文所述之經改造細胞可遞送至有需要之個體。在一些實施例中,細胞可自個體分離、活體外操縱,使得其含有及/或能夠產生含有本文別處所述之肌肉特異性靶向部分之本文所述之本發明組合物(包括但不限於經改造之AAV衣殼粒子),以產生經改造之細胞且以自體方式遞送回個體或以同種異體或異種方式遞送至不同個體。經分離、操縱及/或遞送之細胞可為真核細胞。經分離、操縱及/或遞送之細胞可為幹細胞。經分離、操縱及/或遞送之細胞可為分化細胞。經分離、操縱及/或遞送之細胞可為免疫細胞、血細胞、內分泌細胞、腎細胞、外分泌細胞、神經系統細胞、血管細胞、肌肉細胞、泌尿系統細胞、骨細胞、軟組織細胞、心臟細胞、神經元或外皮系統細胞。熟習此項技術者將即刻瞭解其他特定細胞類型。
在一些實施例中,經分離細胞可經操縱,使得其變成如本文別處所述之經改造細胞(例如含有及/或表現本文別處所述之一或多種經改造之遞送系統分子或載體)。製造此類經改造細胞之方法更詳細闡述於本文別處。
本發明之細胞或細胞群體之投與可以任一便利方式來實施,包括藉由氣溶膠吸入、注射、消化、輸液、植入或移植。細胞或細胞群體可皮下、真皮內、腫瘤內、結節內、髓內、肌內、藉由靜脈內或淋巴內注射或腹膜內投與患者。在一個實施例中,本發明之細胞組合物較佳地藉由靜脈內注射來投與。
細胞或細胞群體之投與可為或涉及投與104-109個細胞/kg體重,包括彼等範圍內之細胞數之所有整數值。在一些實施例中,遞送105至106個細胞/kg。授受性細胞療法中之給藥可例如涉及投與106至109個細胞/kg,具或不具例如使用環磷醯胺之淋巴清除過程。細胞或細胞群體可以一或多個劑量投與。在另一實施例中,有效量之細胞係作為單劑量投與。在另一實施例中,有效量之細胞係作為一個以上之劑量在一定時間段內投與。投與時間由主治醫師判斷,且端視患者之臨床狀況而定。細胞或細胞群體可自任一來源(例如血液庫或供體)獲得。儘管個體需要發生變化,但確定具體疾病或疾患之給定細胞類型之有效量之最佳範圍為熟習此項技術者所熟知。有效量意指提供治療或預防益處之量。所投與劑量將端視接受者之年齡、健康狀況及體重、同步治療(若有)之類型、治療頻率及期望效應之性質而定。
在另一實施例中,細胞或包含彼等細胞之組合物之有效量係非經腸投與。投與可為靜脈內投與。投與可直接藉由注射於組織內來進行。在一些實施例中,組織可為腫瘤。
為防止可能的不良反應,可向經改造之細胞配備基因轉殖安全開關,其呈使細胞易於暴露於特定信號之轉基因形式。舉例而言,可以此方式使用單純皰疹病毒胸苷激酶(TK)基因,例如藉由引入經改造之細胞中來進行,類似於Greco等人,Improving the safety of cell therapy with the TK-suicide gene.Front.Pharmacol.2015;6:95中所論述。在此類細胞中,投與核苷前藥(例如更昔洛韋或阿昔洛韋)會引起細胞死亡。替代性安全開關構築物包括誘導型半胱天冬酶9, 例如藉由投與使兩個非功能性icasp9分子一起形成活性酶之小分子二聚化劑來觸發。已闡述實施細胞增殖控制之眾多種替代方法(參見美國專利公開案第20130071414號;PCT專利公開案WO2011146862;PCT專利公開案WO2014011987;PCT專利公開案WO2013040371;Zhou等人,BLOOD,2014,123/25:3895-3905;Di Stasi等人,The New England Joumal of Medicine 2011;365:1673-1683;Sadelain M,The New England Journal of Medicine 2011;365:1735-173;Ramos等人,Stem Cells 28(6):1107-15(2010))。
修飾經分離細胞以獲得具有期望性質之經改造細胞之方法闡述於本文別處。在一些實施例中,該等方法可包括基因體修飾,包括(但不限於)使用CRISPR-Cas系統進行基因體編輯以修飾細胞。此可為除引入經改造之AAV衣殼系統分子外闡述於本文別處之方法。
宿主免疫系統會快速地排斥同種異體細胞。已展示,存在於未經照射之血液產品中之同種異體白血球將持續不超過5天至6天(Boni,Muranski等人,2008 Blood 1;112(12):4746-54)。因此,為防止同種異體細胞排斥,通常必須在一定程度上抑制宿主之免疫系統。然而,在授受性細胞轉移之情形下,使用免疫抑制藥物亦對所引入治療性細胞(例如本文所述之經改造細胞)具有有害效應。因此,為在該等條件下有效地使用授受性免疫療法,所引入細胞將需要對免疫抑制治療有抗性。因此,在具體實施例中,本發明進一步包括較佳地藉由不活化編碼免疫抑制劑之靶之至少一個基因來修飾經改造之細胞以使其對免疫抑制劑有抗性的步驟。免疫抑制劑係藉由若干作用機制中之一者抑制免疫功能之劑。免疫抑制劑可為(但不限於)鈣調神經磷酸酶抑制劑、雷帕黴素(rapamycin)之靶、介白素-2受體α-鏈阻斷劑、肌苷單磷酸去氫酶抑制劑、二氫葉酸還原酶抑制劑、皮質類固醇或免疫抑制抗代謝物。本發明藉由不活化經改造之細胞中免疫抑制劑之靶允許賦予經改造之細胞免疫抑制抗性用於授受性細胞療法。作為非限制性 實例,免疫抑制劑之靶可為免疫抑制劑之受體,例如:CD52、糖皮質素受體(GR)、FKBP家族基因成員及親環素家族基因成員。
免疫檢查點係減緩或終止免疫反應且防止來自免疫細胞之不受控活性之過度組織損傷的抑制路徑。在某些實施例中,所靶向免疫檢查點係程式化死亡-1(PD-1或CD279)基因(PDCD1)。在其他實施例中,所靶向免疫檢查點係細胞毒性T淋巴球相關抗原(CTLA-4)。在其他實施例中,所靶向免疫檢查點係CD28及CTLA4 Ig超家族之另一成員,例如BTLA、LAG3、ICOS、PDL1或KIR。在其他實施例中,所靶向免疫檢查點係TNFR超家族之成員,例如CD40、OX40、CD137、GITR、CD27或TIM-3。
其他免疫檢查點包括含有Src同源2結構域之蛋白酪胺酸磷酸酶1(SHP-1)(Watson HA等人,SHP-1:the next checkpoint target for cancer immunotherapy?Biochem Soc Trans.2016年4月15日;44(2):356-62)。SHP-1係廣泛表現之抑制蛋白酪胺酸磷酸酶(PTP)。在T細胞中,其係抗原依賴性活化及增殖之負調控劑。其係胞質蛋白,且因此不適於抗體介導之療法,但其在活化及增殖中之作用使其成為授受性轉移策略(例如嵌合抗原受體(CAR)T細胞)中之遺傳操縱之有吸引力之靶。免疫檢查點亦可包括具有Ig及ITIM結構域(TIGIT/Vstm3/WUCAM/VSIG9)及VISTA(Le Mercier I等人(2015)Beyond CTLA-4 and PD-1,the generation Z of negative checkpoint regulators.Front.Immunol.6:418)之T細胞免疫受體。
WO2014172606係關於使用MT1及/或MT1抑制劑來增加耗盡的CD8+ T細胞之增殖及/或活性且減少CD8+ T細胞耗盡(例如減少功能性耗盡的或無反應之CD8+免疫細胞)。在某些實施例中,金屬硫蛋白係藉由授受性轉移之T細胞中之基因編輯來靶向。
在某些實施例中,基因編輯之靶可為參與免疫檢查點蛋白之表現之至少一個靶向基因座。此類靶可包括(但不限於)CTLA4、PPP2CA、PPP2CB、PTPN6、PTPN22、PDCD1、ICOS(CD278)、PDL1、KIR、LAG3、HAVCR2、BTLA、CD160、TIGIT、CD96、CRTAM、LAIR1、SIGLEC7、SIGLEC9、CD244(2B4)、TNFRSF10B、TNFRSF10A、CASP8、CASP10、CASP3、CASP6、CASP7、FADD、FAS、TGFBRII、TGFRBRI、SMAD2、SMAD3、SMAD4、SMAD10、SKI、SKIL、TGIF1、IL10R-A、IL10RB、HMOX2、IL6R、IL6ST、EIF2AK4、CSK、PAG1、SIT1、FOXP3、PRDM1、BATF、VISTA、GUCY1A2、GUCY1A3、GUCY1B2、GUCY1B3、MT1、MT2、CD40、OX40、CD137、GITR、CD27、SHP-1或TIM-3。在一些實施例中,靶向參與PD-1或CTLA-4基因表現之基因座。在一些實施例中,靶向基因之組合,例如(但不限於)PD-1及TIGIT。
在一些實施例中,編輯至少兩種基因。基因對可包括(但不限於)PD1及TCRα、PD1及TCRβ、CTLA-4及TCRα、CTLA-4及TCRβ、LAG3及TCRα、LAG3及TCRβ、Tim3及TCRα、Tim3及TCRβ、BTLA及TCRα、BTLA及TCRβ、BY55及TCRα、BY55及TCRβ、TIGIT及TCRα、TIGIT及TCRβ、B7H5及TCRα、B7H5及TCRβ、LAIR1及TCRα、LAIR1及TCRβ、SIGLEC10及TCRα、SIGLEC10及TCRβ、2B4及TCRα、2B4及TCRβ。
不論在經改造之細胞(例如經改造之T細胞(例如經分離細胞係T細胞))之遺傳或其他修飾之前抑或之後,通常可使用如例如美國專利6,352,694;美國專利6,534,055;美國專利6,905,680;美國專利5,858,358;美國專利6,887,466;美國專利6,905,681;美國專利7,144,575;美國專利7,232,566;美國專利7,175,843;美國專利5,883,223;美國專利6,905,874;美國專利6,797,514;美國專利6,867,041;及美國專利7,572,631中所述之方法來活化及擴增經改造之細胞。可活體外或活體內擴增經改造之細胞。
在一些實施例中,該方法包括藉由本文別處所述之適宜基因修飾方法離體編輯經改造之細胞(例如經由CRISPR-Cas系統進行基因編輯),以消除潛在同種異體反應性TCR或其他受體,從而允許同種異體授受性轉移。在一些實施例中,藉由CRISPR-Cas系統或其他適宜基因體修飾技術離體編輯T細胞以基因剔除或基因敲低編碼TCR(例如αβ TCR)或其他相關受體之內源基因來避免移植物抗宿主病(GVHD)。在一些實施例中,當經改造之細胞係T細胞時,藉由CRISPR或其他適當基因修飾方法離體編輯經改造之細胞以使TRAC基因座突變。在一些實施例中,經由CRISPR-Cas系統使用靶向TRAC之第一外顯子之一或多條引導序列離體編輯T細胞。參見Liu等人,Cell Research 27:154-157(2017)。在一些實施例中,使用另一適當基因修飾方法來修飾TRAC之第一外顯子。在一些實施例中,該方法包括使用CRISPR或其他適當方法將編碼CAR或TCR之外源基因基因敲入TRAC基因座中,同時基因剔除內源TCR(例如使用CAR cDNA後之編碼自裂解P2A肽之供體序列)。參見Eyquem等人,Nature 543:113-117(2017)。在一些實施例中,外源基因包含無啟動子之CAR編碼序列或TCR編碼序列,其可操作插入內源TCR啟動子之下游。
在一些實施例中,該方法包括經由CRISPR-Cas系統離體編輯經改造之細胞(例如經改造之T細胞),以基因剔除或基因敲低編碼HLA-I蛋白之內源基因,從而最小化經編輯細胞(例如經改造之T細胞)之免疫原性。在一些實施例中,可經由CRISPR-Cas系統離體編輯經改造之T細胞以使β-2微球蛋白(B2M)基因座突變。在一些實施例中,經由CRISPR-Cas系統使用靶向B2M之第一外顯子之一或多條引導序列離體編輯經改造之細胞,例如經改造之T細胞。B2M之第一外顯子亦可使用另一適當修飾方法來修飾。參見Liu等人,Cell Research 27:154-157(2017)。B2M之第一外顯子亦可使用熟習此項技術者將瞭解之另一適當修飾方法來修飾。在一些實施例中,該方法包括使用CRISPR-Cas系 統將編碼CAR或TCR之外源基因基因敲入B2M基因座中,同時基因剔除內源B2M(例如使用CAR cDNA後之編碼自裂解P2A肽之供體序列)。參見Eyquem等人,Nature 543:113-117(2017)。此亦可使用熟習此項技術者將瞭解之另一適當修飾方法來實現。在一些實施例中,外源基因包含無啟動子之CAR編碼序列或TCR編碼序列,其可操作插入內源B2M啟動子之下游。
在一些實施例中,該方法包括經由CRISPR-Cas系統離體編輯經改造之細胞(例如經改造之T細胞),以基因剔除或基因敲低編碼外源CAR或TCR靶向之抗原之內源基因。此亦可使用熟習此項技術者將瞭解之另一適當修飾方法來實現。在一些實施例中,經由CRISPR-Cas系統離體編輯經改造之細胞(例如經改造之T細胞)以基因剔除或基因敲低選自以下之腫瘤抗原之表現:人類端粒酶反轉錄酶(hTERT)、存活素、小鼠雙微體2同源物(MDM2)、細胞色素P450 1B 1(CYP1B)、HER2/neu、威爾姆氏腫瘤基因1(WT1)、活素、α甲胎蛋白(AFP)、癌胚胎抗原(CEA)、黏蛋白16(MUC16)、MUC1、前列腺特異性膜抗原(PSMA)、p53或細胞週期蛋白(DI)(參見例如國際專利申請公開案WO2016/011210)。此亦可使用熟習此項技術者將瞭解之另一適當修飾方法來實現。在一些實施例中,經由CRISPR-Cas系統離體編輯經改造之細胞(例如經改造之T細胞)以基因剔除或基因敲低選自以下之腫瘤抗原之表現:B細胞成熟抗原(BCMA)、跨膜活化劑及CAML相互作用劑(TACI)或B細胞活化因子受體(BAFF-R)、CD38、CD138、CS-1、CD33、CD26、CD30、CD53、CD92、CD100、CD148、CD150、CD200、CD261、CD262或CD362(參見例如國際專利申請公開案WO2017/011804)。此亦可使用熟習此項技術者將瞭解之另一適當修飾方法來實現。
基因驅動
本發明亦涵蓋使用含有本文別處所述之肌肉特異性靶向部分之組合物、其調配物、其細胞、載體系統及諸如此類,經由遞送一或多個負荷多核 苷酸或產生含有本文別處所述之肌肉特異性靶向部分及能夠產生基因驅動之一或多個負荷多核苷酸之組合物(包括但不限於經改造之AAV衣殼粒子)來產生基因驅動。在一些實施例中,基因驅動可為Cas介導之RNA引導之基因驅動,例如Cas-以提供RNA引導之基因驅動,例如在類似於國際專利申請公開案WO 2015/105928中所述之基因驅動之系統中。此類系統可例如提供藉由將編碼RNA引導之DNA核酸酶及一或多個引導RNA之核酸序列引入生殖系細胞中來改變真核生殖系細胞之方法。引導RNA可經設計以與生殖系細胞之基因體DNA上之一或多個靶位置互補。編碼RNA引導之DNA核酸酶之核酸序列及編碼引導RNA之核酸序列可在側接序列之間之構築物上提供,其中啟動子經排列,使得生殖系細胞可表現RNA引導之DNA核酸酶及引導RNA以及亦位於側接序列之間之任何期望負荷編碼序列。側接序列通常將包括與所選靶染色體上之相應序列一致之序列,以使得側接序列與構築物編碼之組分一起作用以藉由諸如同源重組之機制促進外源核酸構築物序列插入基因體DNA中之靶切割位點,從而使生殖系細胞為外源核酸序列純合的。以此方式,基因驅動系統能夠將期望負荷基因滲入整個繁殖群體中(參見例如Gantz等人,2015,Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi,PNAS 2015,於2015年11月23日提前公開,doi:10.1073/pnas.1521077112;Esvelt等人,2014,Concerning RNA-guided gene drives for the alteration of wild populations eLife 2014;3:e03401)。在所選實施例中,可選擇在基因體中具有極少潛在脫靶位點之靶序列。使用多個引導RNA靶向靶基因座內之多個位點可增加切割頻率且阻礙驅動抗性對偶基因之進化。截短的引導RNA可減少脫靶切割。可使用成對切口酶替代單一核酸酶,以進一步增加特異性。基因驅動構築物(例如基因驅動改造之遞送系統構築物)可包括編碼轉錄調控劑之負荷序列,例如以活化同源重組基因及/或抑制非同源末端聯接。可在 必需基因內選擇靶位點,以使得非同源末端聯接事件可引起致死而非產生驅動抗性對偶基因。基因驅動構築物可經改造以在一系列宿主中在一系列溫度下起作用(Cho等人,2013,Rapid and Tunable Control of Protein Stability in Caenorhabditis elegans Using a Small Molecule,PLoS ONE 8(8):e72393。doi:10.1371/journal.pone.0072393)。
移植及異種移植
含有本文別處所述之肌肉特異性靶向部分之組合物、其調配物、其細胞、載體系統及諸如此類可用於遞送負荷多核苷酸及/或以其他方式參與修飾組織用於在兩個不同的人之間(移植)或兩個物種之間(異種移植)移植。用於產生基因轉殖動物之此類技術闡述於本文別處。物種間移植技術通常為此項技術中已知。舉例而言,RNA引導之DNA核酸酶可使用本文所述經改造之AAV衣殼多核苷酸、載體、經改造之細胞及/或經改造之AAV衣殼粒子來遞送,且可用於基因剔除、基因敲低或破壞用於移植之器官中之所選基因(例如離體(例如在收穫後但在移植前)或活體內(在供體或接受者中))、動物(例如基因轉殖豬,例如人類血紅素氧化酶-1基因轉殖豬株),例如藉由破壞編碼人類免疫系統識別之抗原決定基之基因(即異種抗原基因)之表現。用於破壞之候選豬基因可例如包括α(1,3)-半乳糖基轉移酶及胞苷單磷酸-N-乙醯神經胺酸羥化酶基因(參見PCT專利公開案WO 2014/066505)。另外,可破壞編碼內源反轉錄病毒之基因,例如編碼所有豬內源反轉錄病毒之基因(參見Yang等人,2015,Genome-wide inactivation of porcine endogenous retroviruses(PERVs),Science,2015年11月27日:第350卷第6264期第1101-1104頁)。另外,RNA引導之DNA核酸酶可用於靶向將其他基因(例如人類CD55基因)整合於異種移植物供體動物中之位點以改良對超急性排斥之保護。
當作為物種間移植(例如人類至人類)時,可使用含有本文別處所述之肌肉特異性靶向部分之組合物(例如本文所述經改造之AAV衣殼系統分子、載體、經改造之細胞及/或經改造之遞送粒子)來遞送負荷多核苷酸及/或以其他方式參與修飾欲移植之組織。在一些實施例中,修飾可包括修飾一或多種HLA抗原或其他組織類型決定簇,使得與供體相比,免疫原性概況與接受者之免疫原性概況更相似或一致,以減小接受者排斥之發生率。相關組織類型決定簇為此項技術中已知(例如用於確定器官匹配之決定簇),且確定免疫原性概況(其構成組織類型決定簇之表現印記)之技術通常為此項技術中已知。
在一些實施例中,供體(例如在收穫前)或接受者(在移植後)可接受本文所述含有本文別處所述之肌肉特異性靶向部分之組合物、其調配物、其細胞、載體系統、經改造之AAV衣殼系統分子、載體、經改造之細胞及/或經改造之遞送粒子中之一或多者,其能夠修飾所移植細胞、組織及/或器官之免疫原性概況。在一些實施例中,可自供體收穫所移植細胞、組織及/或器官,且能夠將所收穫細胞、組織及/或器官修飾成例如免疫原性較低或修飾成具有一些特定特徵的本文所述含有本文別處所述之肌肉特異性靶向部分之組合物、其調配物、其細胞、載體系統、經改造之AAV衣殼系統分子、載體、經改造之細胞及/或經改造之遞送粒子在接受者中移植時可離體遞送至所收穫細胞、組織及/或器官。遞送後,可將細胞、組織及/或器官移植至供體中。
基因修飾及具有遺傳或表觀遺傳態樣之疾病活療
含有肌肉特異性靶向部分之本文所述經改造之遞送系統分子、載體、經改造之細胞及/或經改造之遞送粒子可用於修飾基因或其他多核苷酸及/或治療具有遺傳及/或表觀遺傳態樣之疾病。如本文別處所述,負荷分子可為可遞送至細胞且在一些實施例中整合至細胞基因體中之多核苷酸。在一些實施例中,負荷分子可為一或多種CRISPR-Cas系統組分。在一些實施例中,CRISPR-Cas 組分在藉由本發明之組合物或其調配物(例如本文所述之經改造AAV衣殼粒子)遞送時可視情況地在接受細胞中表現且用於以序列特異性方式修飾接受細胞之基因體。在一些實施例中,可藉由本文所述經改造之AAV衣殼粒子或其他粒子及/或組合物包裝及遞送之負荷分子可經由不依賴於CRISPR-Cas之方法促進/調介基因體修飾。此類非CRISPR-Cas基因體修飾系統將即刻由熟習此項技術者所瞭解且另外至少部分地闡述於本文別處。在一些實施例中,修飾處於特定靶靶序列處。在其他實施例中,修飾處於似乎在整個基因體中隨機之位置。
疾病相關基因及多核苷酸之實例及疾病特異性資訊可自約翰˙霍普金斯大學麥克庫希克-納坦斯遺傳醫學研究所(McKusick-Nathans Institute of Genetic Medicine,Johns Hopkins University,Baltimore,Md.)及國家醫學圖書館國家生物技術資訊中心(National Center for Biotechnology Information,National Library of Medicine,Bethesda,Md.)獲得,且可在全球資訊網上獲得。該等疾病中之任一者可適於藉由本文所述之一或多種方法來治療。在一些實施例中,疾病係肌肉疾病或病症、神經-肌肉疾病或病症或心肌病。在一些實施例中,疾病或病症選自以下中之任一或多者:
(a)自體免疫疾病;
(b)癌症;
(c)肌營養不良;
(d)神經肌肉疾病;
(e)糖或肝糖儲積病;
(f)擴展重複疾病;
(g)顯性負性疾病;
(h)心肌病;
(i)病毒性疾病;
(j)類早衰症;或
(k)其任一組合。
在一些實施例中,擴展重複疾病係亨丁頓氏症、肌強直性營養不良或面肩胛臂型肌營養不良(FSHD)。在一些實施例中,肌營養不良係杜興氏肌營養不良、貝克氏肌營養不良、肢帶型肌營養不良、埃德二氏肌營養不良、肌強直性營養不良或FSHD。在一些實施例中,肌強直性營養不良為1型或2型。在一些實施例中,心肌病係擴張性心肌病、肥厚性心肌病、DMD相關之心肌病或達農病。在一些實施例中,糖或肝糖儲積病係III型MPS疾病或龐貝氏病。在一些實施例中,III型MPS疾病係IIIA型、IIIB型、IIIC型或IIID型MPS。在一些實施例中,神經肌肉疾病係夏馬杜三氏病或弗氏共濟失調。
更特定而言,該等基因及路徑之突變可產生影響功能之不適當蛋白質或不適量蛋白質。基因、疾病及蛋白質之其他實例皆以於2012年12月12日提出申請之美國臨時申請案61/736,527之引用方式併入本文中。此類基因、蛋白質及路徑可為CRISPR複合物之靶多核苷酸或本發明之其他基因修飾方法。疾病相關及/或細胞功能相關之基因及多核苷酸之實例列於表4表5中。其他實例論述於本文別處。
Figure 110126971-A0202-12-0207-259
Figure 110126971-A0202-12-0208-14
Figure 110126971-A0202-12-0209-15
Figure 110126971-A0202-12-0210-16
Figure 110126971-A0202-12-0211-17
Figure 110126971-A0202-12-0212-18
Figure 110126971-A0202-12-0213-19
Figure 110126971-A0202-12-0214-20
Figure 110126971-A0202-12-0215-21
Figure 110126971-A0202-12-0216-22
Figure 110126971-A0202-12-0217-23
Figure 110126971-A0202-12-0218-24
Figure 110126971-A0202-12-0219-25
Figure 110126971-A0202-12-0220-26
Figure 110126971-A0202-12-0221-27
Figure 110126971-A0202-12-0222-28
Figure 110126971-A0202-12-0223-29
Figure 110126971-A0202-12-0224-30
Figure 110126971-A0202-12-0225-31
Figure 110126971-A0202-12-0226-32
Figure 110126971-A0202-12-0227-33
Figure 110126971-A0202-12-0228-34
Figure 110126971-A0202-12-0229-35
Figure 110126971-A0202-12-0230-36
Figure 110126971-A0202-12-0231-37
Figure 110126971-A0202-12-0232-38
Figure 110126971-A0202-12-0233-39
Figure 110126971-A0202-12-0234-40
Figure 110126971-A0202-12-0235-41
Figure 110126971-A0202-12-0236-42
Figure 110126971-A0202-12-0237-43
Figure 110126971-A0202-12-0238-44
Figure 110126971-A0202-12-0239-45
Figure 110126971-A0202-12-0240-46
Figure 110126971-A0202-12-0241-47
Figure 110126971-A0202-12-0242-48
Figure 110126971-A0202-12-0243-50
Figure 110126971-A0202-12-0243-51
Figure 110126971-A0202-12-0244-52
Figure 110126971-A0202-12-0245-53
Figure 110126971-A0202-12-0246-54
Figure 110126971-A0202-12-0247-55
Figure 110126971-A0202-12-0248-56
Figure 110126971-A0202-12-0249-57
Figure 110126971-A0202-12-0250-58
Figure 110126971-A0202-12-0251-59
Figure 110126971-A0202-12-0252-60
Figure 110126971-A0202-12-0253-61
Figure 110126971-A0202-12-0254-62
Figure 110126971-A0202-12-0255-63
Figure 110126971-A0202-12-0256-64
Figure 110126971-A0202-12-0257-65
Figure 110126971-A0202-12-0258-66
Figure 110126971-A0202-12-0259-67
Figure 110126971-A0202-12-0260-68
Figure 110126971-A0202-12-0261-69
因此,本文亦闡述在如本文所論述之真核或原核細胞中(活體外,即在經分離真核細胞中)誘導一或多個突變之方法,其包括將如本文所述之載體遞送至細胞。突變可包括在細胞之靶序列處引入、缺失或取代一或多個核苷酸。在一些實施例中,突變可包括在該(等)細胞之每一靶序列處引入、缺失或取代1-75個核苷酸。突變可包括在每一靶序列處引入、缺失或取代1個、5個、10個、11個、12個、13個、14個、15個、16個、17個、18個、19個、20個、21個、22個、23個、24個、25個、26個、27個、28個、29個、30個、35個、40個、45個、50個或75個核苷酸。突變可包括在該(等)細胞之每一靶序列處引入、缺失或取代5個、10個、11個、12個、13個、14個、15個、16個、17個、18個、19個、20個、21個、22個、23個、24個、25個、26個、27個、28個、29個、30個、35個、40個、45個、50個或75個核苷酸。突變包括在該(等)細胞之每一靶序列處引入、缺失或取代10個、11個、12個、13個、14個、15個、16個、17個、18個、19個、20個、21個、22個、23個、24個、25個、26個、27個、28個、29個、30個、35個、40個、45個、50個或75個核苷酸。突變可包括在該(等)細胞之每一靶序列處引入、缺失或取代20個、21個、22個、23個、24個、25個、26個、27個、28個、29個、30個、35個、40個、45個、50個或75個核苷酸。突變可包括在該(等)細胞之每一靶序列處引入、缺失或取代40個、45個、50個、75個、100個、200個、300個、400個或500個核苷酸。突變可包括在該(等)細胞之每一靶序列處引入、缺失或取代500個、600個、700個、800個、900個、1000個、1100個、1200個、1300個、1400個、1500個、1600個、1700個、1800個、1900個、2000個、2100個、2200個、2300個、2400個、2500個、2600個、2700個、2800個、2900個、3000個、3100個、3200個、3300個、 3400個、3500個、3600個、3700個、3800個、3900個、4000個、4100個、4200個、4300個、4400個、4500個、4600個、4700個、4800個、4900個、5000個、5100個、5200個、5300個、5400個、5500個、5600個、5700個、5800個、5900個、6000個、6100個、6200個、6300個、6400個、6500個、6600個、6700個、6800個、6900個、7000個、7100個、7200個、7300個、7400個、7500個、7600個、7700個、7800個、7900個、8000個、8100個、8200個、8300個、8400個、8500個、8600個、8700個、8800個、8900個、9000個、9100個、9200個、9300個、9400個、9500個、9600個、9700個、9800個或9900個至10000個核苷酸。
在一些實施例中,修飾可包括經由核酸組分(例如引導RNA或sgRNA)(例如由CRISPR-Cas系統介導之彼等組分)在該(等)細胞之每一靶序列處引入、缺失或取代核苷酸。
在一些實施例中,修飾可包括經由非CRISPR-Cas系統或技術在該(等)細胞之靶序列或隨機處引入、缺失或取代核苷酸。此類技術論述於本文別處,例如其中論述經改造之細胞及產生經改造之細胞及生物體的方法。
為最小化毒性及脫靶效應,在使用CRISPR-Cas系統時,控制所遞送Cas mRNA及引導RNA之濃度可能至關重要。Cas mRNA及引導RNA之最佳濃度可藉由在細胞或非人類真核生物動物模型中測試不同濃度並使用深度測序分析潛在脫靶基因體基因座處之修飾程度來確定。替代地,為最小化毒性及脫靶效應之水準,Cas切口酶mRNA(例如具有D10A突變之化膿性鏈球菌Cas9樣)可與靶向所關注位點之一對引導RNA一起遞送。最小化毒性及脫靶效應之引導序列及策略可如國際專利申請公開案WO 2014/093622(PCT/US2013/074667)中所述;或經由如本文之突變來進行。
通常,在內源CRISPR系統之背景下,形成CRISPR複合物(包含與靶序列雜交且與一或多種Cas蛋白複合之引導序列)可裂解靶序列中或附近 (例如在距靶序列1個、2個、3個、4個、5個、6個、7個、8個、9個、10個、20個、50或更多個鹼基對內)之一或兩個股。不希望受限於理論,可包含野生型tracr序列之全部或一部分(例如野生型tracr序列之約或大於約20個、26個、32個、45個、48個、54個、63個、67個、85個或更多個核苷酸)或由其組成之tracr序列亦可形成CRISPR複合物之一部分,例如藉由沿tracr序列之至少一部分與可操作連接至引導序列之tracr配對序列之全部或一部分雜交。
在一個實施例中,本發明提供修飾真核細胞中之靶多核苷酸之方法。在一些實施例中,該方法包括將具有CRISPR-Cas分子作為負荷分子之本文所述之經改造細胞及/或本文所述之經改造AAV衣殼粒子遞送至個體及/或細胞。所遞送之CRISPR-Cas系統分子可複合以結合至靶多核苷酸,例如以實現該靶多核苷酸之裂解,由此修飾靶多核苷酸,其中CRISPR複合物包含與引導序列複合之CRISPR酶,該引導序列與該靶多核苷酸內之靶序列雜交,其中該引導序列可連接至tracr配對序列,進而與tracr序列雜交。在一些實施例中,該裂解包括藉由該CRISPR酶裂解靶序列位置處之一或兩股。在一些實施例中,該裂解可減少靶基因之轉錄。在一些實施例中,該方法進一步包括藉由與外源模板多核苷酸同源重組來修復該裂解靶多核苷酸,其中該修復產生包含插入、缺失或取代該靶多核苷酸之一或多個核苷酸的突變。在一些實施例中,該突變產生自包含靶序列之基因表現之蛋白質之一或多個胺基酸變化。在一些實施例中,該方法進一步包括將一或多個載體遞送至該真核細胞,其中一或多個載體包含CRISPR酶且一或多個載體驅動以下中之一或多者之表現:連接至tracr配對序列之引導序列及tracr序列。在一些實施例中,該CRISPR酶驅動以下中之一或多者之表現:連接至tracr配對序列之引導序列及tracr序列。在一些實施例中,此CRISPR酶遞送至個體中之真核細胞。在一些實施例中,該修飾在細胞培養物中之該真核細胞中發生。在一些實施例中,該方法進一步包括在該修飾之前自個體分離真核 細胞。在一些實施例中,該方法進一步包括將該真核細胞及/或衍生自其之細胞返回該個體。在一些實施例中,經分離細胞可在將一或多個經改造之AAV衣殼粒子遞送至經分離細胞後返回個體。在一些實施例中,經分離細胞可在將本文所述經改造遞送系統之一或多個分子遞送至經分離細胞後返回個體,由此使經分離細胞成為如先前所述之經改造細胞。
篩選及細胞選擇
本文所述經改造之AAV衣殼系統載體、經改造之細胞及/或經改造之AAV衣殼粒子可用於篩選分析及/或細胞選擇分析中。經改造之遞送系統載體、經改造之細胞及/或經改造之AAV衣殼粒子可遞送至個體及/或細胞。在一些實施例中,細胞係真核細胞。細胞可為活體外、離體、原位或活體內。本文所述經改造之AAV衣殼系統分子、載體、經改造之細胞及/或經改造之AAV衣殼粒子可將外源分子或化合物引入其遞送至之個體或細胞。可偵測外源分子或化合物之存在,此可允許鑑別細胞及/或其屬性。在一些實施例中,所遞送分子或粒子可賦予基因或其他核苷酸修飾(例如突變、基因或多核苷酸插入及/或缺失等)。在一些實施例中,可藉由測序在細胞中偵測核苷酸修飾。在一些實施例中,核苷酸修飾可進行細胞之生理學及/或生物修飾,從而在細胞中產生可偵測到之表型變化,此可允許偵測、鑑別及/或選擇細胞。在一些實施例中,表型變化可為細胞死亡,例如CRISPR複合物與靶多核苷酸結合引起細胞死亡之實施例。本發明之實施例允許選擇特異性細胞而無需選擇標記物或可包括反選擇系統之兩步製程。細胞可為原核或真核細胞。
在一個實施例中,本發明提供藉由將一或多個突變引入一或多個細胞中之基因中來選擇一或多個細胞之方法,該方法包括:將一或多個載體引入細胞中,該一或多個載體可包括本文別處所述之一或多個經改造之遞送系統分子或載體,其中一或多個載體可包括CRISPR酶及/或驅動以下中之一或多者之 表現:連接至tracr配對序列之引導序列、tracr序列及編輯模板;或欲插入細胞及/或其基因體中之其他多核苷酸;其中,例如在CRISPR酶及/或編輯模板內表現及由CRISPR酶及/或編輯模板活體內表現者在包括時包含消除CRISPR酶裂解之一或多個突變;允許編輯模板與欲選擇細胞中之靶多核苷酸同源重組;允許CRISPR複合物結合至靶多核苷酸以實現該基因內之靶多核苷酸裂解,其中CRISPR複合物包含與以下序列複合之CRISPR酶:(1)與靶多核苷酸內之靶序列雜交之引導序列,及(2)與tracr序列雜交之tracr配對序列,其中CRISPR複合物與靶多核苷酸之結合誘導細胞死亡,由此允許選擇其中已引入一或多個突變之一或多個細胞。在較佳實施例中,CRISPR酶係Cas蛋白。在本發明之另一實施例中,欲選擇之細胞可為真核細胞。
涉及經改造之AAV衣殼系統分子、載體、經改造之細胞及/或經改造之AAV衣殼粒子之篩選方法(包括但不限於將另一CRISPR-Cas系統分子遞送至細胞之彼等分子、載體、細胞及/或粒子)可用於偵測方法(例如螢光原位雜交(FISH))中。在一些實施例中,包括無催化活性之Cas蛋白之經改造CRISPR-Cas系統之一或多種組分可藉由本文別處所述之經改造之AAV衣殼系統分子、經改造之細胞及/或經改造之AAV衣殼粒子遞送至細胞且用於FISH方法中。CRISPR-Cas系統可包括不活化的Cas蛋白(dCas)(例如dCas9),其缺少產生DNA雙股斷裂之能力,該等DNA雙股斷裂可與標記物(例如螢光蛋白,例如增強的綠色螢光蛋白(eEGFP))融合且與小引導RNA共表現以活體內靶向臂間、中心及端粒重複。dCas系統可用於使人類基因體中之重複序列及個別基因二者可視化。經標記dCas、dCas CRISPR-Cas系統、經改造之AAV衣殼系統分子、經改造之細胞及/或經改造之AAV衣殼粒子之此類新應用可用於使細胞成像且研究功能性核架構,尤其在具有小核體積或複雜3-D結構之情形下。(Chen B、Gilbert LA、Cimini BA、Schnitzbauer J、Zhang W、Li GW、Park J、Blackburn EH、Weissman JS、 Qi LS、Huang B.2013.Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system.Cell 155(7):1479-91.doi:10.1016/j.cell.2013.12.001.,其教示可應用於及/或適於本文所述之CRISPR系統。涉及多核苷酸融合至標記物(例如螢光標記物)之類似方法可經由本文所述之經改造之AAV衣殼系統分子、載體、經改造之細胞及/或經改造AAV衣殼粒子遞送至細胞,且整合至細胞之基因體中及/或以其他方式與細胞基因體區域相互作用用於FISH分析。
用於研究其他細胞細胞器及其他細胞結構之類似方法可藉由將融合至標記物(例如螢光標記物)之一或多個分子遞送至細胞(例如經由本文所述之經改造之遞送AAV衣殼分子、經改造之細胞及/或經改造AAV衣殼粒子)來實現,其中融合至標記物之分子能夠靶向一或多個細胞結構。藉由分析標記物之存在,可鑑別特定細胞結構及/或使其成像。
在一些實施例中,經改造之AAV衣殼系統分子及/或經改造之AAV衣殼粒子可用於細胞內或細胞外之篩選分析中。在一些實施例中,篩選分析可包括經由經改造之AAV衣殼粒子遞送CRISPR-Cas負荷分子。
本發明亦提供使用本系統進行篩選,例如功能獲得篩選。人工強制過表現基因之細胞能夠隨時間下調基因(再建立平衡),例如藉由負反饋迴路。截至篩選開始時,未經調控之基因可能再次減少。其他篩選分析論述於本文別處。
在實施例中,本發明提供來自活體外遞送方法之細胞或活體外遞送方法之細胞,其中該方法包括使遞送系統與細胞、視情況地真核細胞接觸,藉此遞送至遞送系統成分之細胞中,且視情況地自接觸獲得資料或結果,並傳輸資料或結果。
在實施例中,本發明提供來自活體外遞送方法之細胞或活體外遞送方法之細胞,其中該方法包括使遞送系統與細胞、視情況地真核細胞接觸,藉此遞送至遞送系統成分之細胞中,且視情況地自接觸獲得資料或結果,並傳輸資料或結果;且其中與不與遞送系統接觸之細胞相比,細胞產物有所變化,例如與本應為野生型但用於接觸之細胞相比有所變化。在實施例中,細胞產物係非人類或動物的。在一些實施例中,細胞產物係人類的。
在一些實施例中,用本文所述之一或多個載體瞬時或非瞬時轉染宿主細胞。在一些實施例中,細胞在其天然存在於視情況地欲再引入其中之個體中時經轉染。在一些實施例中,經轉染之細胞取自個體。在一些實施例中,細胞係自取自個體之細胞(例如細胞株)獲得或自其衍生而來。經改造之AAV衣殼系統、經改造之AAV衣殼粒子之遞送機制及技術闡述於本文別處。
在一些實施例中,設想將經改造之AAV衣殼系統分子及/或經改造之AAV衣殼粒子直接引入宿主細胞。例如,經改造之AAV衣殼系統分子可與欲包裝至經改造之AAV衣殼粒子中之一或多個負荷分子一起遞送。
在一些實施例中,本發明提供在細胞中表現欲包裝於經改造GTA粒子中之經改造遞送分子及負荷分子的方法,其可包括根據本文所揭示之任一載體遞送系統引入載體之步驟。
本發明進一步闡述於以下實例中,該等實例並不限制申請專利範圍中所述之本發明範圍。
實例
實例1-基於mRNA之偵測方法對AAV變異體之選擇更嚴格。
圖1展示腺相關病毒(AAV)轉導機制,其可產生mRNA。如圖1中所展示,AAV粒子對細胞之功能性轉導可產生mRNA股。非功能性轉導將不產生此一產物,但病毒基因體可使用基於DNA之分析來偵測。因此,藉由例如 AAV偵測轉導之基於mRNA之偵測分析可能更嚴格且提供關於能夠功能性轉導細胞之病毒粒子之功能之反饋。圖2顯示可展示AAV變異體之基於mRNA之選擇可能比基於DNA之選擇更嚴格之圖。病毒文庫係在CMV啟動子控制下表現。
實例2-可使用基於mRNA之偵測方法自衣殼變異體文庫偵測AAV衣殼變異體
圖3A及圖3B顯示可展示肝臟中之病毒文庫與載體基因體DNA(圖3A)及mRNA(圖3B)之間的關聯之圖。圖4A至圖4F顯示可展示在不同組織中鑑別之在mRNA層級上表現之衣殼變異體的圖。
實例3-衣殼mRNA表現可由組織特異性啟動子驅動
圖5A至圖5C顯示可展示在細胞類型特異性啟動子控制下不同組織中之衣殼mRNA表現(如x軸上所注明)的圖。納入CMV作為例示性組成型啟動子。CK8係肌肉特異性啟動子。MHCK7係肌肉特異性啟動子。hSyn係神經元特異性啟動子。
實例4-衣殼變異體文庫產生、變異體篩選及變異體鑑別
通常,AAV衣殼文庫可藉由在適當AAV生產細胞株中表現各自含有先前所述之經改造之AAV衣殼多核苷酸之經改造衣殼載體來產生。參見例如圖8。此可產生可含有另一經改造之期望細胞特異性AAV衣殼變異體之AAV衣殼文庫。圖7顯示展示產生AAV衣殼變異體文庫、具體而言將隨機n聚體(n=3-15個胺基酸)插入野生型AAV(例如AAV9)中之實施例的示意圖。在此實例中,隨機7聚體插入AAV9病毒蛋白之可變區VIII之aa588-589之間且用於形成含有載體之病毒基因體,其中每載體具有一種變異體。如圖8中所顯示,使用衣殼變異體載體文庫產生AAV粒子,其中每一衣殼變異體將其編碼序列囊封為載體基因體。圖9顯示代表性AAV衣殼質體文庫載體(參見例如圖8)之載體圖,該等代表性AAV衣殼質體文庫載體可用於AAV載體系統中以產生AAV衣 殼變異體文庫。文庫可使用衣殼變異體多核苷酸在組織特異性啟動子或組成型啟動子控制下產生。文庫亦使用包括多腺苷酸化信號之衣殼變異體多核苷酸製成。
如圖6中所顯示,AAV衣殼文庫可投與各種非人類動物用於第一輪基於mRNA之選擇。如圖1中所顯示,藉由AAV及相關載體之轉導過程可產生反映轉導細胞之病毒之基因體的mRNA分子。如至少本文[實例]中所展示,基於mRNA之選擇對於確定能夠功能性轉導細胞之病毒粒子可能更具特異性且更有效,此乃因其係基於所產生之功能產物,而非僅藉由量測病毒DNA之存在來偵測細胞中病毒粒子之存在。
在第一輪投與後,具有期望衣殼變異體之一或多個經改造之AAV病毒粒子隨後可用於形成經過濾之AAV衣殼文庫。可藉由量測衣殼變異體之mRNA表現並確定與非期望細胞類型相比在期望細胞類型中高度表現之變異體來鑑別期望AAV病毒粒子。在期望細胞、組織及/或器官類型中高度表現之變異體粒子係期望AAV衣殼變異體粒子。在一些實施例中,編碼AAV衣殼變異體之多核苷酸處於在期望細胞、組織或器官中具有選擇活性之組織特異性啟動子之控制下。
隨後可將自第一輪鑑別之經改造之AAV衣殼變異體粒子投與多種非人類動物。在一些實施例中,用於第二輪選擇及鑑別中之動物與用於第一輪選擇及鑑別之彼等動物並不相同。與第1輪相似,在投與後,期望細胞、組織及/或器官類型中之頂部表現變異體可藉由量測細胞中之病毒mRNA表現來鑑別。然後可將在第2輪後鑑別之頂部變異體視情況地條碼化且視情況地匯集。在一些實施例中,然後可將來自第二輪之頂部變異體投與非人類靈長類動物以鑑別頂部細胞特異性變異體,尤其在頂部變異體最終用於人類中時。每一輪之投與可為全身性。
圖10顯示可展示由使用不同啟動子產生之文庫產生之病毒效價(計算為AAV9載體基因體/15cm培養皿)的圖。如圖10中所展示,使用不同的啟動子並不顯著影響病毒效價。
實例5-肌肉向性增強之myoAAV衣殼
使用肌肉特異性啟動子開發第一代及第二代肌肉特異性AAV衣殼,且在小鼠及非人類靈長類動物中篩選所得衣殼文庫,如本文別處及/或例如美國臨時申請案第62/899,453號、美國臨時申請案第62/916,207號及美國臨時申請案第63/018,454號中所述。如先前所述在小鼠及非人類靈長類動物中進一步最佳化第一代及第二代myoAAV衣殼以產生增強之myoAAV衣殼(參見例如圖11)。表2及表3顯示各表內增強的肌肉特異性n聚體基元及其編碼序列按照等級次序排列之頂部命中。圖12可展示,在全身性遞送後,與第一代MyoAAV相比,增強的MyoAAV(eMyoAAV)衣殼變異體可更有效地轉導小鼠肌肉。
圖13可展示,第一代及第二代myoAAV衣殼變異體依賴於aVb6整合素異二聚體來轉導人類原代肌管。
Figure 110126971-A0202-12-0270-260
Figure 110126971-A0202-12-0271-71
Figure 110126971-A0202-12-0272-72
Figure 110126971-A0202-12-0273-73
Figure 110126971-A0202-12-0274-74
Figure 110126971-A0202-12-0275-75
Figure 110126971-A0202-12-0275-76
Figure 110126971-A0202-12-0276-77
Figure 110126971-A0202-12-0277-78
Figure 110126971-A0202-12-0278-79
Figure 110126971-A0202-12-0279-80
實例6-經改造之AAV衣殼及肌肉衣殼變異體之定向進化
重組腺相關病毒(rAAV)係最常用於臨床前及臨床研究中之活體內基因替代療法及基因編輯之媒劑,但特定組織在全身性遞送後之選擇性轉導仍係挑戰。使用天然衣殼產生之重組AAV在全身性注射後主要隔絕於肝臟中。此隔絕限制其他器官中之轉導效率(Gao等人,2006;Murrey等人,2014;Zincarelli等人,2008)且對基因遞送至骨骼肌具有特別挑戰。由於肌肉佔總身體質量高達40%,故在具有天然衣殼變異體之肌肉中達成治療臨限值需要極高之病毒劑量(約2E+14vg/kg)(Duan,2018a,b),此產生載體製造之巨大障礙且可產生療法限制性毒性,如在一些最新臨床試驗中所觀察到(Morales等人,2020)。
與活體內選擇偶聯之AAV衣殼蛋白改造係有希望實現將基因強效遞送至多個組織之方法。AAV衣殼自5個VP1、5個VP2及50個VP3次單元組裝而成,該等次單元聯合形成在全身性遞送後界定組織向性之複雜3D結構。甚至位於衣殼表面上之VP3次單元中之單一胺基酸變化仍可改變對不同組織之向性(Pulicherla等人,2011;Wu等人,2006)。因此,AAV衣殼改造策略通常涉及藉由多種方法產生多樣性衣殼文庫,然後在動物模型中選擇具有期望向性之變異體。此方法已產生最佳化載體用於遞送至多個組織,包括小鼠視網膜(Dalkara等人,2013)以及中樞及外周神經系統(Chan等人,2017;Deverman等人,2016)。
無論如何,當前衣殼改造方法在其選擇方法、其可使用之動物模型及其可篩選之文庫多樣性方面具有關鍵限制。AAV轉導係多步製程,包括結合至細胞表面上之受體、細胞內輸送、胞內體逃逸、核進入、載體基因體第二股DNA合成及轉基因表現((Berry及Asokan,2016;Ding等人,2005)、圖21A),且該等步驟中之任一者無效可能限制載體功效。因此,成功地鑑別強效衣殼需要選擇在所有轉導階段中有效進行之變異體。參與AAV轉導之基因之編碼序列及表現的物種及品系特異性差別呈現另一挑戰,此乃因在特定小鼠品系中選擇之 衣殼變異體可能無法在其他品系或其他物種中產生強效轉導(Hordeaux等人,2018)。因此,高度期望使得能夠在不同品系及物種中選擇強效衣殼變異體之改造方法。
此實例闡述DELIVER(AAV衣殼利用活體內轉基因RNA表現之定向進化,Directed Evolution of AAV capsids Leveraging In Vivo Expression of transgene RNA)策略來解決該等挑戰。DELIVER組合多樣性衣殼文庫產生與基於轉錄物之嚴格活體內選擇且實現定向進化,然後鑑別任一所關注組織及任一動物模型中之強效衣殼變異體。在此處,展示DELIVER在小鼠中開發肌肉向性衣殼之效用,且將結果與AAV9進行比較,AAV9係天然AAV衣殼,目前在臨床上用於杜興氏肌營養不良(DMD)之基因替代試驗(臨床試驗.gov標識符:NCT03362502及NCT03368742)。總之,肌肉定向載體展示轉導骨骼肌及心臟組織二者之優異的功效及選擇性,從而在與AAV9相比實質上減小之劑量下提供治療效力,且對小鼠及人類肌肉細胞具有保守感染力。另外,肌肉富集之變異體衣殼序列之交叉比較鑑別出在頂部變異體中常見之RGD基元,且其他分析發現與RGD結合整合素異二聚體之靶細胞表現之強相互作用及依賴性。總之,此實例尤其展示在紋狀肌肉中之治療劑開發及測試中具有特別效用之一類新衣殼變異體,以及用於將來具有替代組織向性之其他AAV家族進化之實驗框架。
結果
使用DELIVER之AAV9衣殼之活體內進化鑑別出一類肌肉向性變異體
文庫設計係任一篩選運動成功之重要決定因素。經設計用於此研究之基於AAV9之衣殼文庫包括若干關鍵特徵以促進鑑別活體內使用之高效肌肉定向載體。首先,每一變異體包括插入AAV9衣殼之超變區VIII中之胺基酸588與589之間的隨機7聚體肽,該設計確保衣殼表面上之可變肽序列暴露((DiMattia等人,2012)、圖14A)。每一變異體亦囊封在遍在或細胞類型特異性 哺乳動物啟動子控制下編碼其自身衣殼序列之轉基因,此允許轉基因(衣殼變異體)在用於產生病毒文庫之HEK293細胞中(圖14B)及在活體內遞送後經病毒轉導之動物組織中(圖14C及圖14D)表現。
在C57BL/6J小鼠中使用病毒文庫評估DELIVER選擇功能性轉導離散小鼠組織之衣殼變異體之嚴格度,其中衣殼變異體係在遍在CMV啟動子控制下表現。鑑別在多個組織中在DNA及mRNA層級上相對於病毒文庫富集之變異體。與基於載體基因體DNA之存在之選擇相比,基於mRNA表現選擇變異體產生所選極少功能性衣殼(圖21B至圖21G),此表明僅小部分以物理方式進入靶細胞之衣殼變異體可功能性轉導該等細胞以表現其經編碼轉基因。與此發現一致,儘管在所注射病毒文庫中具有較高豐度之衣殼變異體在載體基因體DNA層級上更大量存在於所注射動物之肝中,但在病毒文庫中每一變異體之豐度與肝中來自相同變異體之轉基因mRNA水準之間幾乎無關聯(圖21H至圖21I)。
然後評估使用肌肉特異性啟動子增強對強效肌肉向性衣殼變異體之選擇之可行性。骨骼肌及心肌含有若干不同之細胞類型,但能夠將轉基因有效地遞送至兩種細胞類型(具體而言肌肉纖維及心肌細胞)之AAV衣殼對於遺傳性肌病之治療基因遞送最合意。為實現在該等細胞類型中活體內特異性表現之變異體之選擇,吾人在HEK293細胞中使用含ITR之構築物產生AAV衣殼文庫,其中肌肉特異性CK8或MHCK7啟動子控制衣殼編碼序列之表現。該等構築物產生之rAAV效價與使用在遍在CMV啟動子控制下表現衣殼之構築物產生之rAAV效價相似(圖14B)。另外,在經注射小鼠之骨骼肌及心肌內,與在CMV下表現之病毒文庫相比,在CK8或MHCK7啟動子下表現之病毒文庫產生甚至更高之轉基因mRNA表現,此極大地促進轉導肌肉纖維及心肌細胞之功能性變異體之鑑別(圖14C及圖14D)。
使用定向進化實施兩輪活體內選擇,且篩選在C57BL/6J小鼠之多種不同肌肉中自MHCK7啟動子表現之變異體。該過程起始於5,000,000個以上之衣殼變異體之多樣性文庫,且選擇在7種肌肉(四頭肌、脛骨前肌、腓腸肌、三頭肌、腹肌、橫膈膜及心臟)中高度表現之頂部30,000種變異體(圖14A及圖14E)。對於第二輪活體內選擇,納入兩種對照。第一種係同義密碼子對照,其中使用同義DNA密碼子編碼對來自初級篩選之每一所選變異體鑑別之相同的7聚體插入肽。第二種係表現對照,其中產生兩份病毒文庫以在兩種骨骼肌特異性啟動子CK8或MHCK7中之任一者下表現變異體(圖14A)。圖14F顯示在第二輪基於轉錄物之選擇後在小鼠肌肉中最高表現之衣殼變異體中之7聚體插入序列。每組中具有相同色彩之變異體係由同義DNA密碼子編碼。
引人注目地,在第二輪選擇中,CK8或MHCK7文庫之在肌肉中高度表現之所有12種頂部衣殼變異體在7聚體插入物之前3個胺基酸位置含有相同的精胺酸-甘胺酸-天冬胺酸(RGD)基元。此進一步暗指在該等衣殼變異體之優異的肌肉轉導中包括特定肽序列,CK8組中頂部12個命中中之10個及MHCK7組中頂部12個命中中之8個來自同義對(即由同義DNA密碼子編碼之相應變異體亦在頂部12個肌肉表現變異體內)(圖14F)。
對使用頂部5個含RGD之獨特衣殼變異體產生之rAAV效價進行量化以評價將該等經改造之衣殼用於活體內研究之可行性。rAAV效價之比較顯示,頂部5個含RGD之衣殼變異體與母體AAV9衣殼之間無顯著差別(圖22E)。選擇含有RGDLTTP肽插入之變異體,其亦與頂部12個含RGD之命中之每一位置之一致胺基酸匹配,用於進一步表徵且將此變異體命名為「MyoAAV」。
MyoAAV在全身性投與後以空前效率轉導小鼠肌肉
為研究使用MyoAAV產生之rAAV在全身性遞送後在不同小鼠組織中之轉導概況及生物分佈,向成年C57BL/6J小鼠中注射1E+12vg(約4E+13 vg/kg)AAV9-CMV-EGFP或MyoAAV-CMV-EGFP,並在注射後兩週分析不同組織中之轉基因表現及載體基因體豐度。所收穫組織之整體螢光成像顯露在注射有MyoAAV之小鼠肌肉中之螢光強度遠大於AAV9注射之小鼠(圖15A及圖22A)。重要地,MyoAAV對心臟(許多遺傳性肌病中之關鍵受侵襲器官)之轉導比AAV9更有效。藉由免疫螢光分析進一步確認MyoAAV注射之小鼠之肌肉纖維及心肌細胞中之強轉基因表現(圖15B及圖22B)。顯著地,MyoAAV在全身性遞送後在C57BL/6J小鼠中顯示相對減少之肝轉導,此表明與AAV9相比,此變異體之肝臟去靶向之轉導概況(圖15A至圖15C)。
不同骨骼肌中EGFP mRNA之量化顯露,與AAV9注射之小鼠相比,MyoAAV注射之小鼠之肌肉中之轉基因表現提高至10至25倍(圖15C)。在MyoAAV注射動物中,EGFP mRNA表現在心臟中提高至6.3倍且在肝臟中低2.8倍(圖15C)。值得注意地,藉由MyoAAV之改良之轉導效率限於紋狀肌肉組織,且此經改造之衣殼變異體以與AAV9相比相似或較低之效率轉導經注射動物之肺、腎、脾及腦(圖15C及圖22C)。生物分佈分析展示,MyoAAV比AAV9更有效地將載體基因體遞送至C57BL/6J小鼠之所有肌肉,腹肌除外,且在全身性投與後在肝臟中產生顯著較低數量之載體基因體(圖22D)。
然後分析MyoAAV轉導人類骨骼肌之效率。用AAV9-CK8-Nano螢光素酶(Nluc)或MyoAAV-CK8-Nano螢光素酶活體外轉導4個不同供體(2個雄性及2個雌性)之人類原代肌管。MyoAAV對不同供體之肌管之轉導效率相較於AAV9提高至35至52倍(圖15D)。MyoAAV對C57BL/6J小鼠之小鼠原代肌管之轉導效率相較於AAV9亦提高至23倍(圖15D)。
另外,在6月齡mdx-Ai9小鼠中在靜脈內投與後評估MyoAAV對肌肉幹細胞(衛星細胞)之轉導效率。該等肌營養不良蛋白缺陷性小鼠係人類DMD之遺傳模型,且另外攜帶Cre可活化tdTomato轉基因,其用作Cre編碼 AAV之轉導之報導基因。注射有AAV8-CMV-Cre、AAV9-CMV-Cre或MyoAAV-CMV-Cre之小鼠肌肉之衛星細胞的螢光活化細胞分選(FACS)顯示,在接受MyoAAV之動物中轉導顯著較大百分比之衛星細胞(圖22F至圖22I)。
為研究在全身性遞送MyoAAV後活體內基因表現之動力學,吾人向成年BALB/cJ小鼠中注射4E+11vg(約1.6E+13vg/kg)AAV8-CMV-螢火蟲螢光素酶(Fluc)、AAV9-CMV-螢火蟲螢光素酶或MyoAAV-CMV-螢火蟲螢光素酶,且在注射後120天內之不同時間點實施全身生物發光成像。與注射有AAV8或AAV9之小鼠相比,接受MyoAAV之小鼠在其四肢及其全身中顯示較快之動力學及顯著較高之總轉基因表現水準(圖16A、圖16B及圖23A)。在注射後四個月收穫之小鼠肌肉之全器官生物發光成像確認在MyoAAV注射動物之肌肉中具有顯著較高之螢光素酶表現(圖16C、圖16D及圖23B)。在Balb/cJ中而非C57BL/6J中獲得之該等資料另外展示,MyoAAV在全身性遞送後之強效肌肉轉導在不同小鼠品系中係保守的。
在小鼠DMD及XLMTM模型中,使用MyoAAV全身性投與治療性轉基因產生功能改良
為研究將MyoAAV用於活體內遞送治療性轉基因之可行性,向成年mdx小鼠(在Dmd外顯子23中攜帶無義突變之小鼠DMD模型)中注射AAV9或攜帶編碼SaCas9之構築物之MyoAAV以及靶向mdx突變之5’及3’的引導RNA(gRNA)(圖24A及圖24B)。先前已顯示,此CRISPR-Cas9介導之方法可自mdx細胞之基因體切除外顯子23且在肌肉中表現肌營養不良蛋白之截短但仍具功能之形式(Nelson等人,2016;Tabebordbar等人,2016)。儘管產生截短變異體,但此框內缺失仍產生功能蛋白,由此提供DMD之治療益處。
MyoAAV-Dmd CRISPR可在不同mdx肌肉中產生外顯子23缺失之Dmd mRNA,且效率介於總Dmd mRNA之3.4%至25%之範圍內。相比之下, 在注射有相同劑量之AAV9 Dmd CRISPR之mdx小鼠肌肉中產生外顯子23缺失之mRNA之效率僅介於1.3%至8.7%之範圍內(圖17C)。SaCas9及gRNA表現之量化指示在MyoAAV注射之小鼠之肌肉中與AAV9注射動物相比,SaCas9表現提高至6.7至19倍且gRNA表現提高至3.5至7.8倍(圖24C及圖24D)。
若干發現指出與AAV9-Dmd CRISPR相比,MyoAAV-Dmd CRISPR對肌營養不良蛋白之表現具有更好的拯救作用。免疫螢光及西方墨點法分析確認與AAV9-Dmd CRISPR相比,注射有MyoAAV-Dmd CRISPR之小鼠肌肉中更大且更廣泛的肌營養不良蛋白恢復(圖17A及圖17B)。AAV-CRISPR治療之動物之脛骨前肌(TA)之生理學評價展示顯著較高之比力(圖17D)及在離心收縮後減小之力降%(圖17E)(在MyoAAV-Dmd CRISPR注射之mdx小鼠中,與媒劑或AAV9-Dmd CRISPR注射之對照相比)。因此,MyoAAV展現與習用且廣泛使用之AAV9相比,將治療基因編輯複合物遞送至肌肉之顯著增強之功效。
在小鼠X連鎖肌管肌病(XLMTM)模型中評價MyoAAV在低劑量全身性投與後用於基因替代之效能。Mtm1基因剔除(KO)小鼠提供優良的XLMTM遺傳及表型模型;其顯示明顯的肌肉萎縮、活動性喪失及顯著縮短之壽命。向4週齡Mtm1 KO小鼠中注射2E+12vg/kg之編碼在MHCK7啟動子控制下表現之人類MTM1(hMTM1)(MHCK7-hMTM1)之AAV9或MyoAAV。吾人量測在7個月時段內每組之體重、活動及存活率(圖17F及圖24E)。用於本實驗中之病毒劑量比用於正在進行之人類XLMTM臨床試驗(臨床試驗.gov標識符:NCT03199469)中之劑量低50-150倍,且比用於先前公開之臨床前XLMTM基因療法研究中之劑量低15-250倍(Childers等人,2014;Elverman等人,2017;Mack等人,2017)。
MyoAAV-MHCK7-hMTM1注射之小鼠表現出功能及存活率之顯著改良。注射有2E+12vg/kg之AAV9-MHCK7-hMTM1之所有小鼠活動性最 小且在注射後11-21週之間達到安樂死之人道終點。相比之下,在整個研究中,注射有相同劑量之MyoAAV-MHCK7-hMTM1之所有小鼠皆以與野生型小鼠相似之軌跡存活,且與AAV9注射之小鼠相比體重亦增加且明顯更活躍(圖17G至圖17K)。
MyoAAV依賴於整合素異二聚體來轉導小鼠及人類原代肌管
鑑於在MyoAAV及吾人選擇之所有其他頂部變異體中存在RGD基元,評價RGD結合整合素異二聚體在MyoAAV轉導中之作用。RGD基元首次在1984年識別為纖連蛋白中之最小序列,其促進與其受體之結合,後來鑑別為整合素異二聚體α5β1(Pierschbacher及Ruoslahti,1984;Pytela等人,1985)。此後,RGD鑑別為若干不同整合素異二聚體之識別基元;具體而言,αIIbβ3、α5β1、α8β1、αVβ1、αVβ3、αVβ5、αVβ6及αVβ8(Ruoslahti,1996)。在過表現該8種人類RGD結合整合素異二聚體中之每一者之HEK293細胞中比較AAV9-CMV-Nluc及MyoAAV-CMV-Nluc之轉導效率(圖25A至圖25I)。與PUC19轉染之對照相比,α8β1、αVβ1、αVβ3、αVβ6或αVβ8之過表現增加經轉染HEK293細胞中MyoAAV之轉導效率,而過表現該等整合素異二聚體中之任一者不會影響AAV9轉導(圖18A)。
然後,經由過表現實驗評估不同整合素異二聚體對MyoAAV及AAV9與細胞表面之結合效率之效應。對結合至經8種RGD結合整合素異二聚體中之每一者或PUC19對照質體轉染之HEK293細胞表面之載體基因體進行量化,且發現與PUC19轉染之對照相比,α8β1、αVβ6及在較小程度上αVβ1增加MyoAAV而非AAV9與整合素轉染之細胞之結合(圖18B)。亦研究兩種不同之泛-αV整合素拮抗劑(CWHM-12及GLPG-0187)對原代細胞中之MyoAAV轉導效率之影響。兩種抑制劑皆以劑量依賴性方式阻礙小鼠(圖18C及圖26A)及人類(圖18D及圖26B至圖26H)原代骨骼肌肌管中之MyoAAV轉導,同時兩種抑制 劑對AAV9轉導效率皆不具劑量依賴性效應。該等結果展示,抑制含αV之整合素異二聚體幾乎完全消除MyoAAV轉導小鼠及人類原代肌管之能力。
為進一步闡明個別含αV之整合素異二聚體對MyoAAV之結合親和力之影響,使用MyoAAV或AAV9在將該等病毒與αVβ1、αVβ3、αVβ6、αVβ8或麥芽糖結合蛋白(MBP)重組蛋白一起預培育後轉導人類原代肌管。明顯地,MyoAAV與遞增濃度之αVβ6一起預培育可劑量依賴性抑制人類原代肌管之轉導,而吾人測試之其他重組蛋白對MyoAAV或AAV9之細胞轉導皆不具劑量依賴性效應(圖18E及圖18F)。相反,人類肌管與遞增濃度之抗αVβ6抗體一起預培育以劑量依賴性方式減小MyoAAV之轉導效率,且不會影響AAV9對肌管之轉導(圖18G)。該等資料表明,在具有促進MyoAAV轉導能力之含αV之整合素異二聚體中,αVβ6具有結合至此衣殼變異體之最高親和力。另外,αVβ6必須可在人類肌肉細胞之表面上獲得以實現MyoAAV對其之最佳轉導。
評估MyoAAV轉導對先前鑑別之AAV受體(AAVR)之依賴性。先前鑑別之AAV受體係除AAV4及AAVrh32.33外之大多數已知AAV血清型之有效轉導所需之快速胞吞之質膜蛋白(Dudek等人,2018;Pillay等人,2016)。用AAV4-CMV-Nluc、AAV2-CMV-Nluc、AAV9-CMV-Nluc或MyoAAV-CMV-Nluc轉導HEK293FT AAVR基因剔除(KO)及母體HEK293FT野生型(WT)細胞,且發現與AAV2及AAV9相似,MyoAAV轉導需要AAVR表現(圖18H)。
為研究整合素異二聚體及AAVR在MyoAAV轉導中是否起冗餘作用,使α8β1、αVβ1、αVβ3、αVβ6或αVβ8在AAVR過表現存在或不存在下在HEK293FT AAVR KO細胞中過表現,且然後用MyoAAV-CMV-Nluc轉導細胞。該等結果展示,儘管與模擬物轉染之對照相比,整合素異二聚體之過表現增加AAVR KO細胞中之MyoAAV轉導效率,但整合素過表現不足以將轉導減少至在過表現AAVR之AAVR KO細胞或WT HEK293FT細胞中觀察到之水準(圖 26I)。該等資料表明,整合素異二聚體及AAVR在MyoAAV轉導之不同階段中起不同作用且可能用於該等不同階段中。
使用DELIVER之其他輪活體內進化產生含RGD之第二代肌肉/向性變異體
鑑於RGD基元與整合素異二聚體之相互作用對MyoAAV轉導肌管的重要性且不受限於理論,認為修飾鄰近基元之胺基酸可改良此相互作用,從而產生甚至更強效之肌肉向性衣殼變異體。基於MyoAAV超變區VIII表面環之預測結構,將RGD基元上游之位置586、587及588以及RGD基元下游之位置592、593、594及595的胺基酸鑑別為可能位於MyoAAV之表面環中(圖19A)。產生衣殼之多樣性文庫,該等衣殼各自具有固定在位置589、590及591之RGD基元及上文所提及側接位置之不同胺基酸(圖19B)。
在C57BL/6J及mdx小鼠中使用DELIVER實施兩輪活體內肌肉向性變異體選擇。注射兩種不同劑量(1E+12vg及1E+11vg/小鼠)之第二輪病毒文庫以鑑別在高劑量及低劑量下可有效地轉導肌肉組織之變異體(圖19B)。吾人發現在來自該等選擇之吾人之頂部命中中,甘胺酸及丙胺酸在位置588處富集且麩醯胺酸在位置592處富集。在1E+12及1E+11劑量下,含有GPGRGDQTTL(SEQ ID NO:2)序列之變異體作為最高度選擇之肌肉向性衣殼自第二輪選擇出現(圖19B)。此第二代變異體命名為「增強的MyoAAV」(EMyoAAV)且其用於進一步表徵。
與AAV9及MyoAAV相比,在全身性遞送低劑量之病毒後在不同小鼠組織中評估EMyoAAV之轉導效率。向C57BL/6J小鼠中注射2E+11vg(約8E+12vg/kg)之AAV9-CMV-EGFP、MyoAAV-CMV-EGFP或EMyoAAV-CMV-EGFP且分析各個組織中之轉基因表現及載體基因體生物分佈。全組織螢光成像展示,在不同骨骼肌中,EMyoAAV之全身性基因遞送產生高於MyoAAV或AAV9之轉基因表現水準(圖19C-圖19D)。EGFP mRNA之量化顯露,與AAV9 相比,EMyoAAV對小鼠骨骼肌之轉導效率提高至10-80倍,且對心臟之轉導效率提高至17倍。另外,與AAV9注射之小鼠相比,轉基因mRNA表現在EMyoAAV注射之動物之肝臟中低2.5倍(圖19E)。類似地,載體基因體生物分佈分析顯示,與AAV9注射之動物相比,EMyoAAV注射之小鼠在骨骼肌及心臟中具有顯著較高之載體基因體/二倍體基因體,且在肝臟中具有顯著較低之載體基因體/二倍體基因體(圖27A)。
然後分析EMyoAAV於轉導人類原代肌管之效率及整合素依賴性。明顯地,EMyoAAV對人類原代肌管之轉導效率相較於AAV9提高至128倍且相較於MyoAAV提高至4.1倍(圖19F)。遞增濃度之泛-αV整合素拮抗劑GLPG-0187可劑量依賴性減小EMyoAAV之轉導效率(圖19G),從而確認EMyoAAV感染力仍依賴於在靶細胞上表現之含αV之整合素異二聚體。
為評估EMyoAAV對不同個別αV整合素異二聚體之結合親和力,將EMyoAAV或AAV9與αVβ1、αVβ3、αVβ6、αVβ8或麥芽糖結合蛋白(MBP)重組蛋白一起預培育,然後轉導人類原代肌管。有趣的是且與在使用MyoAAV之該等相同分析中獲得之結果(圖18E)相反,所測試之所有四種含αV之整合素異二聚體皆以劑量依賴性方式抑制EMyoAAV對人類肌管之轉導(圖19H及圖19I),而對AAV9轉導無劑量依賴性效應。此結果表明,與主要依賴於αVβ6之MyoAAV相比,包括在EMyoAAV中之胺基酸取代實現與更廣泛類別之αV整合素異二聚體之更高親和力結合。
評估使用DELIVER進化之頂部第一代及第二代衣殼變異體對αVβ6異二聚體之依賴性。將人類原代肌管與抗αVβ6抗體一起預培育,然後用頂部第一代(RGDLTTP(SEQ ID NO:12)、RGDLSTP(SEQ ID NO:8)、RGDLNQY(SEQ ID NO:9)、RGDATEL(SEQ ID NO:10)、RGDTMSK(SEQ ID NO:11))及第二代(GPGRGDQTTL(SEQ ID NO:2)、AEGRGDQYTR(SEQ ID NO:3)、 ATGRGDLGQA(SEQ ID NO:4)、AVARGDQGLI(SEQ ID NO:5)、NISRGDQGYQ(SEQ ID NO:6)、APARGDQGSQ(SEQ ID NO:7))變異體轉導細胞。儘管所有該等變異體之抗體結合在一定程度上抑制人類肌管之轉導,但第一代衣殼顯著更依賴於αVβ6進行肌管轉導(圖27B)。
EMyoAAV在注射低劑量之病毒後顯示較大治療潛能
最後,檢查EMyoAAV與當前用於人類神經肌肉疾病臨床測試中之衣殼相比之治療相關性。特定而言,對於DMD,在正在進行之臨床試驗(臨床試驗.gov標識符:NCT03362502、NCT03368742及NCT03769116)中研究AAV9及AAVrh74二者。全身性投與自肌肉特異性MHCK7啟動子表現且使用AAVrh74載體遞送之功能互補肌營養不良蛋白微小基因(稱為微肌營養不良蛋白)已在最近報導之涉及四名DMD患者之人類臨床試驗中顯示有希望的結果。在此試驗中,投與2E+14vg/kg之高病毒劑量產生肌肉中之轉基因表現及疾病表型之功能改良(Mendell等人,2020)。
比較EMyoAAV介導之基因遞送與AAVrh74及AAV9載體介導之基因遞送,且進一步研究DBA-mdx小鼠DMD模型中之效能。在縱向活體內成像實驗中,吾人向成年BABL/cJ小鼠注射低劑量(2E+11vg,代表約8E+12vg/kg)之編碼CMV-Fluc報導基因之AAVrh74、AAV9或EMyoAAV。在分析之所有時間點,與接受AAVrh74或AAV9之小鼠相比,EMyoAAV注射之小鼠在四肢及全身展示顯著較高之生物發光信號(圖19J及圖19K)。吾人隨後使用等效低劑量(2E+13vg/kg)之每一AAV測試攜帶微肌營養不良蛋白轉基因(CK8-微肌營養不良蛋白-FLAG)之EMyoAAV或AAV9至DBA-mdx小鼠DMD模型中之全身性遞送。在多個肌肉組中,與AAV9注射之動物相比,EMyoAAV注射之動物展示位於肌膜處之微肌營養不良蛋白之相對更大且更廣泛之表現(圖20A)。西方墨點法確認與AAV9注射之動物相比,注射有EMyoAAV之小鼠肌肉中較高 之微肌營養不良蛋白水準(圖20B)。定量RT-PCR指示與AAV9-CK8-微肌營養不良蛋白-FLAG相比,注射有EMyoAAV-CK8-微肌營養不良蛋白-FLAG之小鼠骨骼肌中微肌營養不良蛋白mRNA之水準提高至7.6-15倍(圖20C)。
最後,評價與AAV9注射之動物相比,EMyoAAV注射之小鼠中之載體基因體豐度及肌肉功能。與AAV9相比,EMyoAAV遞送之載體基因體之數量/二倍體基因體在DBA-mdx小鼠之骨骼肌中提高至12-46倍,且載體基因體/二倍體基因體在肝臟中低2.5倍(圖20D)。顯著地,儘管AAV9注射之動物之載體基因體之數量/二倍體基因體在其肝臟中相較於其肌肉中提高至40倍以上,但EMyoAAV注射之小鼠在其肝臟及肌肉中具有相似的水準。離心損傷後肌肉比力及力降%之量化展示,與接受等劑量之AAV9之小鼠之肌肉相比及與媒劑注射之動物相比,EMyoAAV注射之DBA-mdx小鼠之TA肌肉恢復顯著更大之比力且受到更好的保護免於損傷(圖20E及圖20F)。
方法細節
構築物
藉由使用基普森組裝將巨細胞病毒(CMV)啟動子、EGFP編碼測序及牛生長激素多腺苷酸化信號(bGH pA)選殖至pZac2.1 AAV質體骨架中來產生用於產生AAV-CMV-EGFP之質體。藉由用Nluc編碼序列及Fluc編碼序列分別替代pZac2.1-CMV-EGFP-bGHpA中之EGFP編碼序列來產生用於產生AAV-CMV-Nluc及AAV-CMV-Fluc之構築物。pZac2.1構築物購自賓夕法尼亞大學載體核心(University of Pennsylvania vector core)。先前已闡述用於產生AAV-CMV-Cre及AAV-CRISPR病毒之質體(Goldstein等人,2019;Tabebordbar等人,2016)。藉由使用基普森組裝將CMV、MHCK7(Salva等人,2007)或CK8(Bengtsson等人,2017)啟動子、AAV2 rep之剪接序列(自(Deverman等人,2016)中所述之序列修飾以包括保守剪接供體(Farris及Pintel,2008))、緊接在Q486及Q588後含 有BsmBI限制位點之AAV9衣殼編碼序列及SV40多腺苷酸化信號選殖至pZac2.1骨架中來產生質體文庫接受質體。為產生編碼整合素蛋白及AAVR之構築物,自人類骨骼肌cDNA擴增人類整合素αV、α5、α8、αIIb、β1、β3、β5、β6、β8及AAVR之編碼序列。使用基普森組裝將擴增子插入人類延伸因子1 α(EF1α)啟動子下游及SV40晚期多腺苷酸化信號序列上游之pUC57骨架中。藉由使用基普森組裝將MHCK7啟動子、pCI-neo哺乳動物表現載體(Prω)之嵌合內含子、人類MTM1編碼序列及bGH pA選殖至pZac2.1 AAV質體骨架中來產生用於產生AAV-MHCK7-人類MTM1之質體。藉由將CK8啟動子、五重複微肌營養不良蛋白之編碼序列(Hakim等人,2017)、FLAG標籤及合成多腺苷酸化信號(Levitt等人,1989)納入pZac2.1骨架之ITR之間來選殖pZac2.1-CK8-微肌營養不良蛋白-FLAG。
衣殼文庫產生
為製備用於第一輪選擇之衣殼文庫,吾人用BsmBI消化含有CMV或MHCK7啟動子之AAV文庫接受質體。吾人使用lib-F(5’-GCAACATGGCTGTCCAGGGAAGAAACTACATACCTG-3’(SEQ ID NO:769))及NNK-R(5’-GTTTTGAACCCAGCCGGTCTGCGCCTGTGCMNNMNNMNNMNNMNNMNNMN
NTTGGGCACTCTGGTGGTTTGTGGCC-3’(SEQ ID NO:770))引子、使用AAV9衣殼編碼序列作為模板擴增編碼隨機7聚體之片段,並使用基普森組裝將此片段納入經消化之文庫接受質體中。為產生第二輪質體文庫,吾人使用編碼在第一輪中選擇之變異體之寡核苷酸之匯集物以及由Agilent合成之同義DNA密碼子重複。使用寡核苷酸文庫匯集物替代NNK-R引子來產生用於基普森組裝至經消化之文庫接受質體中之擴增子。在轉染前1天,將HEK293細 胞以2×107個細胞/培養皿之密度接種於15cm培養皿中。使用PEI MAX(Polysciences)用16μg之pALDX-80輔助質體(Aldevron)、8μg之Rep-AAP質體(來自Ben Deverman之慷慨的禮物(Deverman等人,2016))、8μg pUC19及10ng之質體文庫轉染每一板。自細胞及培養基收穫衣殼文庫,且藉由超離心機使用如先前所述之碘克沙醇(iodixanol)梯度(Rosemary C Challis,2018)純化。
重組AAV產生及純化
將HEK293細胞以2×107個細胞/培養皿之密度平鋪於15cm培養皿中。第二天,使用PEI MAX(Polysciences)用16μg之pALDX-80輔助質體(Aldevron)、8μg之Rep/Cap質體及8μg之含ITR之質體每一板轉染。自細胞及培養基收穫重組病毒,且藉由超離心機使用如先前所述之碘克沙醇(iodixanol)梯度(Rosemary C Challis,2018)純化。藉由基於taqman之qPCR量化AAV效價。
活體內選擇
向C57BL/6J小鼠中注射1E+12vg之衣殼文庫。在注射後兩週,向小鼠中灌注PBS,且收穫多種骨骼肌(脛骨前肌、四頭肌、腓腸肌、三頭肌、腹肌及橫膈膜)及心臟。使用TRIzol試劑(Thermo Fisher)自組織提取總RNA及DNA。使用寡dT珠粒(NEB)自總RNA樣品富集mRNA且使用SuperScript IV反轉錄酶(Thermo Fisher)及衣殼特異性引子(5’-GAAAGTTGCCGTCCGTGTGAGG-3’(SEQ ID NO:771))實施cDNA合成。使用結合至7聚體插入物上游(5’-ACAAGTGGCCACAAACCACCA-3’(SEQ ID NO:772))及下游(5’-GGTTTTGAACCCAGCCGGTC-3’(SEQ ID NO:773))之引子使用Q5高保真2×主混合物,分別自DNA及cDNA樣品擴增衣殼變異體DNA及所表現mRNA。使用qubit量化含有Illumina轉接子及獨特指數(NEB E7600S)之擴增子,以等莫耳比匯集,且在Nextseq上測序。
下一代測序數據分析及病毒文庫設計
使用bcl2fastq2-v2.17.1對Illumina測序讀段去多重化。將所得FASTQ序列過濾以僅保留與提取21bp變異體之可變區周圍之相應構築物序列直接匹配之彼等FASTQ序列。對於成對末端測序運行,將變異體進一步過濾以僅保留正向及反向讀段一致之變異體。對每一樣品之變異體計數且藉由測序深度正規化為每百萬讀段(RPM)。亦視需要藉由用變異體之RPM除以所匹配病毒文庫樣品中相同變異體之RPM來實施其他正規化。為簡化進一步分析,丟棄具有少於10個讀段之樣品變異體用於將來分析。使用樣品RPM除以病毒文庫RPM之RPM比率對變異體分級,且鑑別出得分最高之變異體用於第二輪選擇。對於每一所選胺基酸變異體,在第二輪文庫之設計中納入編碼具有同義DNA密碼子之相同胺基酸之變異體作為對照。對於已在測序樣品中觀察到同義變異體之變異體,在第二輪設計中納入得分最高之同義變異體。對於在測序樣品中不具同義形式之變異體,藉由將原始胺基酸序列之每一可能的密碼子隨機化至不同密碼子(若可能)以計算方式產生同義變異體,由此最大程度地加擾原始DNA序列。另外,吾人將5%之寡核苷酸設計成含有終止密碼子之隨機變異體以控制病毒文庫產生期間之交叉包裝。使用經設計之變異體處理第二輪選擇之測序數據並如上文計數,且另一限制係過濾出不與寡核苷酸設計匯集物匹配之變異體。
外顯子跳躍、轉基因表現及載體基因體量化
對於AAV-CRISPR及AAV-CMV-EGFP實驗,使用TRIzol(Thermo Fisher)自組織樣品提取RNA。對於AAV-CRISPR及微肌營養不良蛋白實驗之樣品,用Turbo DNase(Thermo Fisher)處理所提取RNA,且使用SuperScript IV VILO主混合物(Thermo Fisher)製造cDNA。使用針對外顯子4-5接合處之taqman分析來量化總Dmd轉錄物,且使用針對外顯子22-24接合處之另一分析來量化外顯子23缺失轉錄物。對於外顯子4-5及外顯子22-24擴增子中之每一者,藉由在每一運行中擴增含有taqman分析靶序列之gblock來產生標準曲線。 基於標準曲線量化Dmd轉錄物及外顯子23缺失轉錄物之總量。使用taqman分析量化該等組織樣品中之SaCas9及gRNA表現。使用小鼠GAPDH mRNA作為量化SaCas9及gRNA表現之管家對照。對於AAV-CMV-EGFP實驗之樣品,用Turbo DNase(Thermo Fisher)處理所提取RNA,且使用SuperScript IV反轉錄酶(Thermo Fisher)及寡dT引子來產生cDNA。使用小鼠β肌動蛋白mRNA作為量化微肌營養不良蛋白表現之管家對照。分別使用來自IDT之預先設計之taqman分析Mm.PT.39a.1及Mm.PT.39a.22214843.g來量化小鼠GAPDH及β肌動蛋白mRNA(管家對照)。對於載體基因體量化實驗,使用快速DNA提取溶液(Lucigen)自組織樣品提取總DNA。基於qPCR使用經設計以擴增轉基因(EGFP或微肌營養不良蛋白)或小鼠GAPDH DNA之taqman分析來量化載體基因體之數量/二倍體基因體。使用藉由在每一運行中擴增不同量之taqman分析靶序列產生之標準曲線來量化每一樣品中轉基因及GAPDH分子之絕對數量。
活體外AAV轉導及結合實驗
人類及小鼠原代肌管係分別自人類肌母細胞及小鼠衛星細胞分化而來。將原代人類骨骼肌肌母細胞(Lonza)在37℃及5% CO2下維持於SkGM-2培養基(Lonza)中。如先前所述自C57BL/6J小鼠分離原代小鼠衛星細胞(Cerletti等人,2008),且使其在小鼠肌肉幹細胞生長培養基(20%供體馬血清(Atlanta Biologics)於F10(Gibco)中,含有1% Glutamax(LifeTech)、1%青黴素-鏈黴素(Streptomycin)(LifeTech)及5ng/ml bFGF(Sigma))中擴增6天。將人類及小鼠肌母細胞以15,000個細胞/孔之密度接種至包被有膠原及層黏蛋白(Thermo Fisher)之96孔板(Corning)中。在平鋪後24小時,將培養基更換為含有2%馬血清(Gibco)之DMEM(Gibco)且使肌母細胞經4-6天分化成肌管,然後將其用AAV9-Ck8-Nluc或MyoAAV-Ck8-Nluc以5E+3vg/細胞轉導。對於整合素過表現實驗,將HEK293細胞以35,000細胞/孔接種於96孔板(Corning)中之含有5%胎牛血清 (Gibco)之DMEM(Gibco)中。對於整合素過表現實驗,在第二天使用PEI MAX(Polysciences)用不同整合素構築物對以總共100ng質體/孔轉染細胞。在轉染後72小時,用1E+4vg/細胞之AAV9-CMV-Nluc或MyoAAV-CMV-Nluc轉導細胞。對於整合素過表現及轉導分析實驗,添加等於板中之培養基體積之Nano-Glo螢光素酶分析試劑(Prω),且在轉導後24小時在SpectraMax L微量板讀數器上量測發光。對於整合素過表現及結合分析實驗,將細胞在冰上冷卻以抑制胞吞作用,且在轉染後72小時,將AAV9-Nluc或MyoAAV-Nluc以1E+4vg/細胞添加至細胞中。將細胞在冰上保持30min且用PBS將其洗滌3次,然後將其溶解於快速DNA提取溶液(Lucigen)中。藉由taqman qPCR使用靶向Nluc編碼序列及人類GAPDH基因體基因座之分析來量化載體基因體及二倍體基因體。對於AAVR依賴性實驗,將HEK293FT AAVR KO及HEK293FT AAVR WT細胞以35,000個細胞/孔接種於96孔板(Corning)中。第二天,用AAV2-CMV-NLuc、AAV4-CMV-NLuc、AAV9-CMV-NLuc或MyoAAV-CMV-NLuc以1E+3vg/細胞轉導細胞。對於AAVR拯救實驗,用33.3ng之每一整合素構築物或pUC19及33.3ng之AAVR構築物或pUC19轉染HEK293FT AAVR KO及HEK293FT WT細胞。每次轉染使用總共100ng質體DNA。在轉染後48,用MyoAAV-CMV-Nluc以1E+3vg/細胞轉導細胞。在轉導後24小時以等於板中之培養基體積之體積添加Nano-lo0螢光素酶分析試劑(Promega),且使用SpectraMax L微量板讀數器量測發光。
小分子及抗體抑制實驗
以指定濃度將Pan-α V整合素拮抗劑CWHM-12及GLPG0187(MedChem Express)或抗αVβ6抗體(ab77906,abcam)稀釋於含有2%馬血清之DMEM中。自分化肌管去除培養基且更換為經稀釋之抑制劑,然後將肌管在冰上培育30分鐘以抑制胞吞作用。在此培育後,將AAV9-CK8-Nluc、MyoAAV- CK8-Nluc或EMyoAAV-CK8-Nluc以5E+3vg/細胞添加至細胞中且將板轉移回至組織培養物培育器。在轉導後24小時,使用Nano-Glo螢光素酶分析(Prω)來量測螢光素酶強度。
重組蛋白抑制實驗
人類原代骨骼肌肌母細胞(Lonza)在96孔聚D-離胺酸包被之板上在含有2%馬血清之DMEM(Gibco)中分化成肌管,該等板另外包被有膠原及層黏蛋白。將MyoAAV-CMV-Nluc、AAV9-CMV-Nluc或EMyoAAV-CMV-Nluc與重組可溶性人類整合素異二聚體αVβ1、αVβ3、αVβ6、αVβ8(R&D Systems)或麥芽糖結合蛋白(Novus Biologicals)在37℃下一起預培育30分鐘。然後將病毒及蛋白質以1E+4vg/細胞添加至細胞中。使細胞返回37℃並保持24小時,然後使用Nano-Glo螢光素酶分析(Promega)來量測螢光素酶強度。
小鼠及AAV注射
所有動物護理及實驗程序皆係根據博德研究所實驗動物護理及使用委員會(Broad Institute Institutional Animal Care and Use Committee,IACUC)以及哈佛大學(Harvard University)及波士頓兒童醫院(Boston Children’s hospital)IACUC來進行。以下小鼠購自Jackson實驗室:mdx(JAX,#001801)、C57BL/6J(JAX,#000664)、DBA/2J(JAX,000671)、DBA/2J-mdx(JAX,013141)及BALB/cJ小鼠(JAX,#000651)。對於AAV-CMV-EGFP實驗,向8週齡C57BL/6J小鼠注射1E+12vg之AAV9-CMV-EGFP或MyoAAV-CMV-EGFP、或2E+11vg之AAV9-CMV-EGFP、MyoAAV-CMV-EGFP或EMyoAAV-CMV-EGFP。對於AAV-CRISPR實驗,向8週齡mdx小鼠注射4.5E+12vg之AAV9-CMV-SaCas9或MyoAAV-CMV-SaCas9及9E+12vg之AAV9-gRNA或MyoAAV-gRNA。對於活體內成像實驗,吾人向8週齡BALB/cJ小鼠中注射4E+11vg之AAV8-CMV-Fluc、AAV9-CMV-Fluc或MyoAAV-CMV-Fluc,或2E+11vg之AAVrh74-CMV- Fluc、AAV9-CMV-Fluc或EMyoAAV-CMV-Fluc。對於衛星細胞轉導實驗,向6月齡mdx;Ai9小鼠中注射4E+11vg之AAV8-CMV-Cre、AAV9-CMV-Cre或MyoAAV-CMV-Cre。向MTM1 KO小鼠中注射2E+12vg/kg之AAV9-MHCK7-hMTM1或MyoAAV-MHCK7-hMTM1。吾人向DBA/2J-mdx小鼠中注射2E+13vg/kg之AAV9-CK8-微肌營養不良蛋白-FLAG或EMyoAAV-CK8-微肌營養不良蛋白-FLAG。所有注射皆係以眶後方式實施。
小鼠活動量測
使用活動計(Harvard Apparatus)來量測每一小鼠每兩週之站立事件數。將每一動物於活動計籠中放置5分鐘且使用Actitrack軟體量化該時間段內之站立事件數。為量測自發轉輪旋轉,將小鼠在5週齡及其一生中個別地圈養於配備有低剖面無線轉輪(low-profile wireless running wheel)(Med Associates)之籠中。動物可自由接近其轉輪且可在其上自由奔跑。連續記錄每一輪之旋轉,且在清潔轉輪並檢查其適當操作時每週下載數據。為將數據正規化,將每週之總活動表示為每小時總輪旋轉之平均值。
免疫螢光
對於自注射有AAV-CMV-EGFP之C67BL/6J小鼠收穫之組織,在室溫(RT)下用4%多聚甲醛(PFA)將樣品固定1h且用DPBS洗滌3次。將經固定組織浸於4℃下30%蔗糖中直至浸沒,包埋於O.C.T化合物(Tissue-Tek)中,且冷凍於液氮-冷異戊烷中。在解剖後立即將將自注射有AAV-CRIPSR之mdx小鼠收穫之肌肉冷凍於液氮-冷異戊烷中。使用CM1860低溫恆溫器(Leica Biosciences)將組織製成厚度為12μm之切片。如先前所述實施組織切片之層黏蛋白及肌營養不良蛋白免疫染色(Tabebordbar等人,2016)。對於微肌營養不良蛋白-FLAG免疫染色,使用兔抗FLAG抗體(Sigma)使用與肌營養不良蛋白免疫染色相同之方案對組織切片染色。對於肝臟樣品之凝集素染色,用PBST(PBS +0.1% Tween-20)將組織切片洗滌3×5min,與用Dylight 594(Vector laboratories)標記之番茄(Lycopersicon Esculentum,西紅柿)凝集素以10μg/ml在RT下一起培育10min,用PBST洗滌3×5min,用10μg/ml之Hoechst 33342(Thermo Fisher)染色5min,用PBST洗滌2×5min且用不含DAPI之Vectashield防偽封固培養基(Vector Laboratories)封固。如先前所述對活體外分化之肌管之肌凝蛋白重鏈(MHC)進行免疫染色(Tabebordbar等人,2016)。
西方墨點法
對於肌營養不良蛋白西方墨點法,使用RIPA緩衝液(Cell signaling)自肌肉樣品提取蛋白質。藉由電泳使用Tris-乙酸鹽3%-8%無染色劑聚丙烯醯胺凝膠(Bio-Rad)分離總蛋白質(25μg)且將其轉移至聚偏二氟乙烯(PVDF)膜(Biorad)。對於每一凝膠上之前三個泳道,將不同百分比之野生型肌肉蛋白稀釋於來自同一肌肉類型之mdx蛋白中,以使得所有泳道之總蛋白量係相同的(25μg)。用TBST(TBS+0.1% Tween-20)中之5%脫脂乳(Biorad)在RT下將膜封閉1小時。分別藉由針對肌營養不良蛋白之一級抗體(1:100,Abcam,ab15277)及針對GAPDH之一級抗體(1:25000,Santa-Cruz Biotechnology sc-32233)、然後藉由山羊抗兔IgG HRP連接之二級抗體(1:5000,abcam ab97051)或馬抗小鼠IgG HRP連接之二級抗體(1:5000,Cell Signaling 7076P2)來偵測肌營養不良蛋白及GAPDH(加載對照)。由於肌營養不良蛋白及GAPDH之大小差別較大且需要不同之電泳時間,故在兩個Tris-乙酸鹽3%-8%凝膠上運行同一蛋白質樣品以產生肌營養不良蛋白及GAPDH墨點。在使用Supersignal west Dura ECL套組(Thermo Fisher)後,使用FluorChem E成像系統(Protein Simple)來偵測化學發光。根據使用Image J計算之肌營養不良蛋白及GAPDH信號之比率半定量地評估總蛋白質中肌營養不良蛋白之相對豐度且以任意單位(A.U.)呈現。對於微肌營養不良蛋白-FLAG西方墨點法,使用Pierce 660nm蛋白質分析試劑(Thermo Fisher)來量測AAV9及 EMyoAAV注射之小鼠之脛骨前肌、四頭肌、三頭肌及心臟的組織溶解物中之蛋白質含量。藉由4%-20% Criterion TGX凝膠(Bio-Rad)上之SDS-PAGE對每一樣品之20μg總蛋白質進行分級分離且根據製造商之說明書(Bio-Rad)轉移至濕式轉移罐中之PVDF膜。將膜在TBST(10mM Tris,pH 8.0、150mM NaCl、1% Tween-20)中之5% w/v脫脂乳粉中封閉1小時,用TBST洗滌3次,每次10分鐘,且與針對FLAG標籤之一級抗體(Millipore F7425,1:400)或針對GAPDH之一級抗體(Santa Cruz sc-32233,1:25,000)在4℃下一起培育16小時。然後用TBST將膜洗滌3次,每次10分鐘且在室溫下在辣根過氧化物酶結合之抗兔二級抗體(Abcam ab97051,1:5000)或抗小鼠二級抗體(Cell Signaling 7076P2,1:5000)中培育1小時。用TBST將墨點洗滌三次,用SuperSignal West Pico PLUS化學發光受質(Thermo Fisher)顯影,且使用CCD成像儀成像。
對於整合素α8及αIIb西方墨點法,全細胞提取物係自過表現pUC19、α8或αIIb整合素單鏈之HEK293細胞藉由溶解於NP-40溶劑緩衝液(150mM NaCl、50mM Tris-HCl pH 7.5、1% NP-40)中且離心以去除細胞碎片來製備。在4%-20% Mini-PROTEAN TGX凝膠(Bio-Rad)上對每一樣品之2μg總蛋白質實施電泳且轉移至PVDF膜。將膜於TBST中之5% w/v脫脂乳粉中封閉1小時,且與針對整合素α8之一級抗體(1:1000,Invitrogen MA5-31449)、針對整合素αIIb之一級抗體(1:5000,abcam ab134131)或針對α-微管蛋白之一級抗體(1:5000,abcam ab7291)在4℃下一起培育16小時。然後用TBST將膜洗滌3次,每次10分鐘,且在室溫下在辣根過氧化物酶結合之抗小鼠或抗兔二級抗體之1:10,000稀釋物中培育1小時。用TBST將墨點洗滌三次且用SuperSignal West Pico PLUS化學發光受質(Thermo Fisher)顯影。使用CCD成像儀(ProteinSimple)使α8個墨點成像且使αIIb墨點在X射線膠片上成像,其中α-微管蛋白及αIIb切片之曝光時間分別為20秒及15分鐘。
流式細胞術
在含有5mM EDTA之PBS中收穫過表現pUC19或整合素單鏈之HEK293細胞且用染色緩衝液(2% FBS於PBS中)洗滌3次。然後將細胞在4℃下在稀釋於染色緩衝液中之一級抗體中染色1小時。用染色緩衝液將細胞洗滌3次。對於用整合素β8抗體染色之樣品,將細胞在4℃下與稀釋於染色緩衝液中之PE結合之山羊抗小鼠IgG二級抗體(Invitrogen,12-4010-82)一起培育30分鐘。將細胞洗滌3次,重懸浮於染色緩衝液中,且使用CytoFLEX S流式細胞儀(Beckman)分析。使用Flow Jo分析流式細胞術資料。
小鼠衛星細胞分離、培養及分化
如先前所述自注射有AAV-CMV-Cre之mdx-Ai9小鼠分離衛星細胞(Goldstein等人,2019)。將自經注射動物分離之衛星細胞接種於膠原/層黏蛋白包被之板上之衛星細胞生長培養基(F10(Gibco)中之20%供體馬血清(Atlanta Biologics),含有1% Glutamax(LifeTech)、1%青黴素-鏈黴素(LifeTech)及5ng/ml bFGF(Sigma))中。每隔一天更換生長培養基。6天後,收穫衛星細胞,對細胞數量進行計數,且將細胞以10,000個細胞/孔之密度再平鋪於96孔板之多個孔中用於分化。第二天,將生長培養基更換為分化培養基(含有2%供體馬血清(Atlanta Biologics)之DMEM(GIBCO))。在開始分化後,用4% PFA將肌管固定60小時。
肌肉生理學分析
如先前所述使小鼠準備用於脛骨前肌之原位評估(Tabebordbar等人,2016)。在介於20Hz至200Hz範圍內之9個不同刺激頻率下記錄力。藉由形式P=Pmin+((Pmax-Pmin)/(1+(K/f)H))之S形曲線來擬合所得數據,其中P係刺激頻率f下之力,Pmin係最小力,Pmax係最大力,K係曲線拐點處之刺激頻率,且H係希爾係數(Hill coefficient)或斜率(Chan等人,2007)。使用參數K來計算拐點處之力,其稱為中間力或Pint。然後使TA經受一系列之5次等長離心 收縮以評價其對損傷之易感性(100ms固定端收縮,隨後立即以4個纖維長度/s主動增長至1.2個纖維長度之最終長度)。將該系列用等長收縮框入,以使得等長力之損失可量化為方案前力與方案後力之間的相對差別。如先前所述計算纖維長度及TA橫截面積(Tabebordbar等人,2016)。
生物發光成像
向小鼠中注射150mg/kg之D-螢光素(Goldbio)且在成像前用異氟烷麻醉。在D-螢光素注射後5min獲取生物發光影像,以每2分鐘一個影像之速率持續25分鐘。使用Living Image 4.7.3軟體(PerkinElmer)量測相同大小之所關注區域(ROI)之總輻射及平均輻射。將成像時間內之最高捕獲輻射確定為動力學曲線之峰值且挑選出用於分析。為量測解剖之肌肉之輻射,在D-螢光素注射後12分鐘對小鼠實施安樂死。將解剖之肌肉置於培養皿中,然後使用IVIS Spectrum進行生物發光成像。
參考文獻
Asokan, A.、Hamra, J.B.、Govindasamy, L.、Agbandje-McKenna, M.及Samulski, R.J. (2006). Adeno-associated virus type 2 contains an integrin alpha5beta1 binding domain essential for viral cell entry. J Virol 80, 8961-8969。
Bengtsson, N.E.、Hall, J.K.、Odom, G.L.、Phelps, M.P.、Andrus, C.R.、Hawkins, R.D.、Hauschka, S.D.、Chamberlain, J.R.及Chamberlain, J.S. (2017). Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy. Nat Commun 8, 14454。
Berry, G.E.及Asokan, A. (2016). Cellular transduction mechanisms of adeno-associated viral vectors. Curr Opin Virol 21, 54-60。
Cerletti, M.、Jurga, S.、Witczak, C.A.、Hirshman, M.F.、Shadrach, J.L.、Goodyear, L.J.及Wagers, A.J. (2008). Highly efficient, functional engraftment of skeletal muscle stem cells in dystrophic muscles. Cell 134, 37-47。
Chan, K.Y.、Jang, M.J.、Yoo, B.B.、Greenbaum, A.、Ravi, N.、Wu, W.L.、Sanchez-Guardado, L.、Lois, C.、Mazmanian, S.K.、Deverrman,B.E.等人(2017). Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nat Neurosci 20, 1172-1179。
Chan, S.、Head, S.I.及Morley, J.W. (2007). Branched fibers in dystrophic mdx muscle are associated with a loss of force following lengthening contractions. Am J Physiol Cell Physiol 293, C985-992。
Childers, M.K.、Joubert, R.、Poulard, K.、Moal, C.、Grange, R.W.、Doering, J.A.、Lawlor, M.W.、Rider, B.E.、Jamet, T.、Daniele, N.等人(2014). Gene therapy prolongs survival and restores function in murine and canine models of myotubular myopathy. Sci Transl Med 6, 220ra210。
Dalkara, D.、Byrne, L.C.、Klimczak, R.R.、Visel, M.、Yin, L.、Merigan, W.H.、Flannery, J.G.及Schaffer, D.V. (2013). In vivo-directed evolution of a new adeno-associated virus for therapeutic outer retinal gene delivery from the vitreous. Sci Transl Med 5, 189ra176。
Davidsson, M.、Wang, G.、Aldrin-Kirk, P.、Cardoso, T.、Nolbrant, S.、Hartnor, M.、Mudannayake, J.、Parmar, M.及Bjorklund, T. (2019). A systematic capsid evolution approach performed in vivo for the design of AAV vectors with tailored properties and tropism. Proc Natl Acad Sci U S A。
Deverman, B.E.、Pravdo, P.L.、Simpson, B.P.、Kumar, S.R.、Chan, K.Y.、Banerjee, A.、Wu, W.L.、Yang, B.、Huber, N.、Pasca, S.P.等人(2016). Cre- dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat Biotechnol 34, 204-209。
DiMattia, M.A.、Nam, H.J.、Van Vliet, K.、Mitchell, M.、Bennett, A.、Gurda, B.L.、McKenna, R.、Olson, N.H.、Sinkovits, R.S.、Potter, M.等人(2012). Structural insight into the unique properties of adeno-associated virus serotype 9. J Virol 86, 6947-6958。
Ding, W.、Zhang, L.、Yan,Z.及Engelhardt, J.F. (2005). Intracellular trafficking of adeno-associated viral vectors. Gene Ther 12, 873-880。
Duan, D. (2018a). Micro-Dystrophin Gene Therapy Goes Systemic in Duchenne Muscular Dystrophy Patients. Hum Gene Ther 29, 733-736。
Duan, D. (2018b). Systemic AAV Micro-dystrophin Gene Therapy for Duchenne Muscular Dystrophy. Mol Ther 26, 2337-2356。
Dudek, A.M.、Pillay, S.、Puschnik, A.S.、Nagamine, C.M Cheng, F.、Qiu, J.、Carette,J.E.及Vandenberghe, L.H. (2018). An Alternate Route for Adeno-associated Virus (AAV) Entry Independent of AAV Receptor. J Virol 92。
Elverman, M.、Goddard, M.A.、Mack, D.、Snyder, J.M.、Lawlor, M.W.、Meng, H.、Beggs, A.H.、Buj-Bello, A.、Poulard, K.、Marsh, A.P.等人(2017). Long-term effects of systemic gene therapy in a canine model of myotubular myopathy. Muscle Nerve 56, 943-953。
Farris, K.D.及 Pintel, D.J. (2008). Improved splicing of adeno-associated viral (AAV) capsid protein-supplying pre-mRNAs leads to increased recombinant AAV vector production. Hum Gene Ther 19,1421-1427。
Gao, G.、Lu, Y.、Calcedo, R.、Grant, R.L.、Bell, P.、Wang, L.、Figueredo, J.、Lock, M.及Wilson, J.M. (2006). Biology of AAV serotype vectors in liver-directed gene transfer to nonhuman primates. Mol Ther 13, 77-87。
Goldstein, J.M.、Tabebordbar, M.、Zhu, K.、Wang, L.D.、Messemer, K.A.、Peacker, B.、Ashrafi Kakhki, S.、Gonzalez-Celeiro, M.、Shwartz, Y.、Cheng, J.K.W.等人(2019). In Situ Modification of Tissue Stem and Progenitor Cell Genomes. Cell Rep 27, 1254-1264 e1257。
Hakim, C.H.、Wasala, N.B.、Pan, X.、Kodippili, K.、Yue, Y.、Zhang, K.、Yao, G.、Haffner, B.、Duan, S.X.、Ramos, J.等人(2017). A Five-Repeat Micro-Dystrophin Gene Ameliorated Dystrophic Phenotype in the Severe DBA/2J-mdx Model of Duchenne Muscular Dystrophy. Mol Ther Methods Clin Dev 6, 216-230。
Hanlon, K.S.、Meltzer, J.C.、Buzhdygan, T.、Cheng, M.J.、Sena-Esteves, M.、Bennett, R.E.、Sullivan, T.P.、Razmpour, R.、Gong, Y.、Ng, C.等人(2019). Selection of an Efficient AAV Vector for Robust CNS Transgene Expression. Mol Ther Methods Clin Dev 15, 320-332。
Hinderer, C.、Katz, N.、Buza, E.L.、Dyer, C.、Goode, T.、Bell, P.、Richman, L.K.及Wilson, J.M. (2018). Severe Toxicity in Nonhuman Primates and Piglets Following High-Dose Intravenous Administration of an Adeno-Associated Virus Vector Expressing Human SMN. Hum Gene Ther 29, 285-298。
Hordeaux, J.、Wang, Q.、Katz, N.、Buza,E.L.、Bell, P.及Wilson, J.M. (2018). The Neurotropic Properties of AAV-PHP.B Are Limited to C57BL/6J Mice. Mol Ther 26, 664-668。
Levitt, N.、Briggs, D.、Gil,A.及Proudfoot, N.J. (1989). Definition of an efficient synthetic poly(A) site. Genes Dev 3, 1019-1025。
Li, C.及Samulski, R.J. (2020). Engineering adeno-associated virus vectors for gene therapy. Nat Rev Genet 21, 255-272。
Mack, D.L.、Poulard, K.、Goddard, M.A.、Latournerie, V.、Snyder, J .M.、Grange, R.W.、Elverman, M.R.、Denard, J.、Veron, P.、Buscara, L.等人(2017). Systemic AAV8-Mediated Gene Therapy Drives Whole-Body Correction of Myotubular Myopathy in Dogs. Mol Ther 25, 839-854。
Mendell,J.R.、Sahenk, Z.、Lehman, K.、Nease, C.、Lowes, L.P.、Miller, N.F.、Iammarino, M.A.、Alfano, L.N.、Nicholl, A.、Al-Zaidy, S.等人(2020). Assessment of Systemic Delivery of rAAVrh74.MHCK7.micro-dystrophin in Children With Duchenne Muscular Dystrophy: A Nonrandomized Controlled Trial. JAMA Neurol。
Morales, L.、Gambhir, Y.、Bennett, J.及Stedman, H.H. (2020). Broader Implications of Progressive Liver Dysfunction and Lethal Sepsis in Two Boys following Systemic High-Dose AAV. Mol Ther 28, 1753-1755。
Murrey, D.A.、Naughton, B.J.、Duncan, F.J.、Meadows, A.S.、Ware, T.A.、Campbell, K.J.、Bremer, W.G.、Walker, C.M.、Goodchild, L.、Bolon, B.等 人(2014). Feasibility and safety of systemic rAAV9-hNAGLU delivery for treating mucopolysaccharidosis IIIB: toxicology, biodistribution, and immunological assessments in primates. Hum Gene Ther Clin Dev 25, 72-84。
Nelson, C.E.、Hakim, C.H.、Ousterout, D.G.、Thakore, P.I.、Moreb,E.A.、Castellanos Rivera, R.M.、Madhavan, S.、Pan, X.、Ran, F.A.、Yan, W.X.等人(2016). In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 351, 403-407。
Pierschbacher, M.D.及Ruoslahti, E. (1984). Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 309, 30-33。
Pillay, S.、Meyer, N.L.、Puschnik, A.S.、Davulcu, O.、Diep, J.、Ishikawa, Y.、Jae, L.T.、Wosen,J.E.、Nagamine, C.M.、Chapman, M.S.等人(2016). An essential receptor for adeno-associated virus infection. Nature 530, 108-112。
Pulicherla, N.、Shen, S.、Yadav, S.、Debbink, K.、Govindasamy, L.、Agbandje-McKenna, M.及Asokan, A. (2011). Engineering liver-detargeted AAV9 vectors for cardiac and musculoskeletal gene transfer. Mol Ther 19, 1070-1078。
Pytela, R.、Pierschbacher, M.D.及Ruoslahti, E. (1985). Identification and isolation of a 140 kd cell surface glycoprotein with properties expected of a fibronectin receptor. Cell 40, 191-198。
Rosemary C Challis、S.R.K.、Ken Y Chan、Collin Challis、Min J Jang、Pradeep S Rajendran、John D Tompkins、Kalyanam Shivkumar、Benjamin E Deverman、Viviana Gradinaru (2018). Widespread and targeted gene expression by systemic AAV vectors: Production, purification, and administration. bioRxiv。
Ruoslahti, E. (1996). RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol 12, 697-715。
Salva, M.Z.、Himeda, C.L.、Tai, P.W.、Nishiuchi, E.、Gregorevic, P.、Allen, J.M.、Finn, E.E.、Nguyen, Q.G.、Blankinship, M.J.、Meuse, L.等人(2007). Design of tissue-specific regulatory cassettes for high-level rAAV-mediated expression in skeletal and cardiac muscle. Mol Ther 15, 320-329。
Summerford, C.、Bartlett, J.S.及Samulski, R.J. (1999). AlphaVbeta5 integrin: a co-receptor for adeno-associated virus type 2 infection. Nat Med 5, 78-82。
Tabebordbar, M.、Zhu, K.、Cheng, J.K.W.、Chew, W.L.、Widrick, J.J.、Yan, W.X.、Maesner, C.、Wu, E.Y.、Xiao, R.、Ran, F.A.等人(2016). In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 351, 407-411。
Wu, Z.、Asokan, A.、Grieger, J.C.、Govindasamy, L.、Agbandje-McKenna, M.及Samulski, R.J. (2006). Single amino acid changes can influence titer, heparin binding, and tissue tropism in different adeno-associated virus serotypes. J Virol 80, 11393-11397。
Zincarelli, C.、Soltys, S.、Rengo, G.及Rabinowitz, J.E. (2008). Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection. Mol Ther 16, 1073-1080。
實例7-實現強效肌肉定向基因跨物種遞送之一類經改造之AAV衣殼變異體之定向進化。
重組腺相關病毒(rAAV)係最常用於臨床前及臨床研究中之活體內基因替代療法及基因編輯之媒劑,但特定組織在全身性遞送後之選擇性轉導仍係挑戰。使用天然衣殼產生之重組AAV在全身性注射後主要隔絕於肝臟中。此隔絕限制其他器官中之轉導效率(Gao等人,2006;Murrey等人,2014;Zincarelli等人,2008)且對基因遞送至骨骼肌具有特別挑戰。由於肌肉佔總身體質量高達40%,故在具有天然衣殼變異體之肌肉中達成治療臨限值需要極高之病毒劑量(約2E+14vg/kg)(Duan,2018),此產生載體製造之巨大障礙且可產生療法限制性毒性,如在一些最新臨床試驗中所觀察到(Morales等人,2020)。
活體內選擇偶聯之AAV衣殼蛋白改造係有希望實現將基因強效遞送至多個組織之方法。AAV衣殼定向進化策略通常涉及藉由多種方法產生多樣性衣殼文庫,然後在動物模型中選擇具有期望向性之變異體。此方法已產生用於遞送至多個組織之最佳化載體(Choudhury等人,2016;Dalkara等人,2013; Deverman等人,2016;Korbelin等人,2016;Li等人,2016;Michelfelder等人,2009;Tse等人,2017;Yang等人,2009;Yang及Xiao,2013)。
AAV轉導係多步製程,包括結合至細胞表面上之受體、細胞內輸送、胞內體逃逸、核進入、載體基因體第二股DNA合成及轉基因表現((Berry及Asokan,2016;Ding等人,2005)、圖S1A),且該等步驟中之任一者無效可能限制載體功效。因此,成功地鑑別強效衣殼需要選擇在所有轉導階段中有效進行之變異體。然而,在所關注組織中,大多數活體內衣殼定向進化策略基於載體基因體DNA而非轉基因mRNA之存在來選擇成功的衣殼變異體(Li及Samulski,2020)。參與AAV轉導之基因之編碼序列及表現的物種及品系特異性差別呈現另一挑戰,此乃因在特定小鼠品系中選擇之衣殼變異體可能無法在其他品系或其他物種中產生強效轉導(Hordeaux等人,2018)。因此,使得能夠在不同品系及物種中嚴格選擇功能性衣殼變異體之定向進化方法係高度適用且需要的。
此實例闡述且展示至少DELIVER(AAV衣殼利用活體內轉基因RNA表現之定向進化,Directed Evolution of AAV capsids Leveraging In Vivo Expression of transgene RNA)策略,其組合多樣性衣殼文庫產生與基於轉錄物之嚴格活體內選擇並實現定向進化,然後在任一所關注組織及任一動物模型中鑑別功能性衣殼變異體。此實例展示DELIVER在小鼠及非人類靈長類動物中開發肌肉向性衣殼之效用且比較吾人之結果與AAV9及AAVrh74,其係之天然AAV衣殼,目前在臨床上用於杜興氏肌營養不良(DMD)之基因替代試驗(臨床試驗.gov標識符:NCT03362502、NCT03368742、NCT03375164及NCT03769116)。總之,此肌肉定向載體展示轉導骨骼肌及心臟組織之優異功效及選擇性,從而在與AAV9相比實質上減小之劑量下提供治療效力,且在小鼠、NHP及人類肌肉細胞中具有保守的轉導功效。另外,小鼠及NHP中肌肉富集之變異體衣殼序列之交叉比較鑑別出在頂部變異體中常見之RGD基元,且其他分析發現與RGD 結合整合素異二聚體之靶細胞表現之強相互作用及依賴性。總之,此工作提供一類新衣殼變異體,其在紋狀肌肉中之治療劑開發及測試中具有特別效用,以及用於具有替代組織向性之其他AAV家族之將來進化之實驗框架。
結果
使用DELIVER之AAV9衣殼之活體內進化鑑別出一類肌肉向性變異體
經設計用於此研究之基於AAV9之衣殼文庫包括若干關鍵特徵以促進鑑別活體內使用之高效肌肉定向載體。首先,每一變異體包括插入AAV9衣殼之超變區VIII中之胺基酸588與589之間的隨機7聚體肽,該設計確保衣殼表面上之可變肽序列暴露((Borner等人,2020;DiMattia等人,2012))、圖14A)。每一變異體亦囊封在遍在或細胞類型特異性哺乳動物啟動子控制下編碼其自身衣殼序列之轉基因,此允許轉基因(衣殼變異體)在用於產生病毒文庫之HEK293細胞中(圖14B)及在活體內遞送後經病毒轉導之動物組織中(圖14C及圖14D)表現。
首先在C57BL/6J小鼠中使用病毒文庫評估DELIVER選擇功能性轉導離散小鼠組織之衣殼變異體之嚴格度,其中衣殼變異體係在遍在CMV啟動子控制下表現。鑑別在多個組織中在DNA及mRNA層級上相對於病毒文庫富集之變異體。與基於載體基因體DNA之存在之選擇(圖21A至圖21G)相比,基於mRNA表現選擇變異體產生所選極少功能性衣殼,此表明僅小部分在物理上進入靶細胞之衣殼變異體可功能性轉導該等細胞以表現其經編碼轉基因。與此發現一致,儘管在所注射病毒文庫中具有較高豐度之衣殼變異體在載體基因體DNA層級上更高度存在於所注射動物之肝中,但在病毒文庫中每一變異體之豐度與肝中來自相同變異體之轉基因mRNA水準之間幾乎無關聯(圖21H及圖21I)。
然後,評估使用肌肉特異性啟動子增強對強效肌肉向性衣殼變異體之選擇之可行性。骨骼肌及心肌含有若干不同之細胞類型,但能夠將轉基因有效地遞送至兩種細胞類型(具體而言肌肉纖維及心肌細胞)之AAV衣殼對於遺傳性肌病之治療基因遞送最合意。為實現在該等細胞類型中活體內特異性表現之變異體之選擇,吾人在HEK293細胞中使用含ITR之構築物產生AAV衣殼文庫,其中肌肉特異性CK8或MHCK7啟動子控制衣殼編碼序列之表現。該等構築物產生之rAAV效價與使用在遍在CMV啟動子控制下表現衣殼之構築物產生之rAAV效價相似(圖14B)。另外,在經注射小鼠之骨骼肌及心肌內,與在CMV下表現之病毒文庫相比,在CK8或MHCK7啟動子下表現之病毒文庫產生甚至更高之轉基因mRNA表現,此極大地促進轉導肌肉纖維及心肌細胞之功能性變異體之鑑別(圖14C及圖14D)。
使用定向進化實施兩輪活體內選擇,從而篩選在C57BL/6J小鼠之多種不同肌肉中自MHCK7啟動子表現之衣殼變異體。對第一輪病毒文庫測序鑑別出5,000,000個以上之獨特衣殼變異體。在第一輪選擇後,吾人選擇在7種肌肉(四頭肌、脛骨前肌、腓腸肌、三頭肌、腹肌、橫膈膜及心臟)中高度表現之頂部30,000種變異體(圖14A及圖14E)。對於第二輪活體內選擇,納入兩種對照。第一種係同義密碼子對照,其中使用同義DNA密碼子編碼對來自初級篩選之每一所選變異體鑑別之相同的7聚體插入肽。第二種係表現對照,其中產生兩份病毒文庫以在兩種骨骼肌特異性啟動子CK8或MHCK7中之任一者下表現變異體(圖14A)。
顯著地,在第二輪選擇中,CK8或MHCK7文庫之在肌肉中高度表現之所有12種頂部衣殼變異體在7聚體插入物之前3個胺基酸位置含有相同的精胺酸-甘胺酸-天冬胺酸(RGD)基元。CK8組中頂部12個命中中之10個及MHCK7組中頂部12個命中中之8個來自同義對(即由同義DNA密碼子編碼之 相應變異體亦在頂部12個肌肉表現變異體內),此進一步暗指在該等衣殼變異體之優異的肌肉轉導中包括特定肽序列(圖14F)。
對使用頂部5個含RGD之獨特衣殼變異體產生之rAAV效價進行量化以評價將該等經改造之衣殼用於活體內研究之可行性。rAAV效價之比較顯示,頂部5個含RGD之衣殼變異體與母體AAV9衣殼之間無顯著差別(圖22E)。選擇含有RGDLTTP(SEQ ID NO:12)肽插入之變異體,其亦與頂部12個含RGD之命中之每一位置之一致胺基酸匹配,用於進一步表徵且將此變異體命名為「MyoAAV 1A」(其在本文別處亦稱為MyoAAV)。
MyoAAV 1A在全身性投與後高效轉導小鼠肌肉
為研究使用MyoAAV 1A產生之rAAV在全身性遞送後在不同小鼠組織中之轉導概況及生物分佈,向成年C57BL/6J小鼠中注射1E+12vg(約4E+13vg/kg)AAV9-CMV-EGFP或MyoAAV 1A-CMV-EGFP,並在注射後兩週分析不同組織中之轉基因表現及載體基因體豐度。所收穫組織之整體螢光成像顯露在注射有MyoAAV 1A之小鼠肌肉中遠大於AAV9注射之小鼠之螢光強度(圖15A及圖22A)。重要地,MyoAAV 1A對心臟(許多遺傳性肌病中之關鍵受侵襲器官)之轉導比AAV9更有效。藉由免疫螢光分析進一步確認MyoAAV 1A注射之小鼠之肌肉纖維及心肌細胞中之強轉基因表現(圖15B及圖22B)。顯著地,MyoAAV 1A在全身性遞送後在C57BL/6J小鼠中顯示相對減少之肝轉導,此表明與AAV9相比,此變異體之肝臟去靶向之轉導概況(圖15A至圖15C)。
雄性及雌性C57BL/6J小鼠之不同骨骼肌中EGFP mRNA之量化顯露,與AAV9注射之小鼠相比,MyoAAV 1A注射之小鼠之肌肉中之轉基因表現提高至10至29倍(圖15C)。在MyoAAV 1A注射之動物中,EGFP mRNA表現在心臟中提高至6.3倍且在肝臟中低2.8倍(圖15C)。應注意,藉由MyoAAV 1A之改良之轉導效率限於紋狀肌肉組織,且此經改造之衣殼變異體以與AAV9 相比相似或較低之效率轉導經注射動物之肺、腎、脾及腦(圖15C及圖22C)。西方墨點法分析確認與AAV9注射之小鼠相比,腓腸肌及三頭肌中顯著較高之EGFP蛋白表現及MyoAAV 1A注射之動物之肝臟中較低之EGFP表現(圖22J)。生物分佈分析展示,MyoAAV 1A比AAV9更有效地將載體基因體遞送至C57BL/6J小鼠之所有肌肉,腹肌除外,且在全身性投與後在肝臟中產生顯著較低數量之載體基因體(圖22D)。
為評估在全身性投與MyoAAV 1A後在不同小鼠品系中肌肉轉導之效率,向來自BALB/cJ及DBA/2J背景之雄性及雌性小鼠中注射1E+12vg(約4E+13vg/kg)之AAV9-CMV-EGFP或MyoAAV 1A-CMV-EGFP,且比較經注射小鼠之不同組織中之轉基因表現。全器官成像及EGFP mRNA量化顯示,MyoAAV 1A之強效肌肉轉導及肝去靶向特徵亦擴展至BALB/cJ及DBA/2J小鼠(圖29A至圖29E)。
亦評價與AAV9相比在肌內遞送MyoAAV 1A後肌肉轉導之效率。將2E+10vg之AAV9-CMV-EGFP或MyoAAV 1A-CMV-EGFP肌內投與C57BL/6J小鼠之TA肌肉在MyoAAV 1A注射之肌肉中相對於AAV9注射之小鼠之肌肉產生提高至14倍之EGFP mRNA表現,以及顯著較高之EGFP蛋白表現,其係藉由西方墨點法及免疫螢光分析(圖22E、圖22F及圖22K)。
為研究在全身性MyoAAV 1A投與後肝損傷之可能性,吾人量測在注射前以及注射後14天及28天,注射有媒劑(鹽水)或1E+12vg(約4E+13vg/kg)之AAV9-CMV-EGFP或MyoAAV 1A-CMV-EGFP的C57BL/6J小鼠血清中丙胺酸胺基轉移酶(ALT)及天冬胺酸鹽胺基轉移酶(AST)之水準。AAV9或MyoAAV 1A注射之小鼠血清中ALT及AST酶之水準與媒劑注射之動物相比並無顯著不同,此表明在吾人注射之劑量下不存在肝損傷(圖22G、圖22H)。分析自注射有AAV9-EGFP或MyoAAV 1A-EGFP之小鼠分離之血清對AAV9及 MyoAAV 1A轉導之抑制證實,針對AAV9產生之抗體與MyoAAV 1A交叉反應且反之亦然(圖29K及圖29L)。
然後,分析MyoAAV 1A轉導人類骨骼肌之效率。用AAV9-CK8-Nano螢光素酶(Nluc)或MyoAAV 1A-CK8-Nano螢光素酶活體外轉導4個不同供體(2個雄性及2個雌性)之人類原代肌管。MyoAAV 1A對不同供體之肌管之轉導效率相較於AAV9提高至35至52倍(圖15D)。MyoAAV 1A對C57BL/6J小鼠之小鼠原代肌管之轉導效率相較於AAV9亦提高至23倍(圖15D)。
另外,在6月齡mdx-Ai9小鼠中在靜脈內投與後評估MyoAAV 1A對肌肉幹細胞(衛星細胞)之轉導效率。該等肌營養不良蛋白缺陷性小鼠係人類DMD之遺傳模型,且另外攜帶Cre可活化tdTomato轉基因,其用作Cre編碼AAV之轉導之報導基因。注射有AAV8-CMV-Cre、AAV9-CMV-Cre或MyoAAV 1A-CMV-Cre之小鼠肌肉之衛星細胞的螢光活化細胞分選(FACS)顯示,在接受MyoAAV 1A之動物中顯著較大之衛星細胞轉導百分比(圖22I至圖22K)。
為研究在全身性遞送MyoAAV 1A後活體內基因表現之動力學,向成年BALB/cJ小鼠中注射4E+11vg(約1.6E+13vg/kg)AAV8-CMV-螢火蟲螢光素酶(Fluc)、AAV9-CMV-螢火蟲螢光素酶或MyoAAV 1A-CMV-螢火蟲螢光素酶,且在注射後120天內之不同時間點實施全身生物發光成像。與注射有AAV8或AAV9之小鼠相比,接受MyoAAV 1A之小鼠在其四肢及其全身中顯示較快之動力學及顯著較高之總轉基因表現水準(圖16A及圖16B)。在注射後四個月收穫之小鼠肌肉之全器官生物發光成像確認在MyoAAV 1A注射動物之肌肉中顯著較高之螢光素酶表現(圖29M至圖29O)。
進一步支持MyoAAV 1A在來自DBA/2J及BALB/cJ背景之小鼠中在全身性投與後可有效地轉導不同之骨骼肌、且在肌內遞送後在肌肉轉導中高度強效的其他結果顯示於圖29F至圖29L中。
在小鼠DMD及X連鎖肌管肌病(XLMTM)模型中,使用MyoAAV 1A全身性投與治療性轉基因產生功能改良
為研究將MyoAAV 1A用於活體內遞送治療性轉基因之可行性,向成年mdx小鼠(在Dmd外顯子23中攜帶無義突變之小鼠DMD模型)中注射AAV9或攜帶編碼SaCas9之構築物之MyoAAV 1A以及靶向mdx突變之5’及3’的引導RNA(gRNA)(圖24A及圖24B)。申請者及他人先前已顯示,此CRISPR-Cas9介導之方法可自mdx細胞之基因體切除外顯子23且在肌肉中表現肌營養不良蛋白之截短但仍具功能之形式。(Nelson等人,2016;Tabebordbar等人,2016)。儘管產生截短變異體,但此框內缺失仍產生功能蛋白,由此提供DMD之治療益處。
MyoAAV 1A-Dmd CRISPR可在不同mdx肌肉中產生外顯子23缺失之Dmd mRNA,且效率介於總Dmd mRNA之3.4%至25%之範圍內。相比之下,在注射有相同劑量之AAV9-Dmd CRISPR之mdx小鼠肌肉中產生外顯子23缺失之mRNA之效率僅介於1.3%至8.7%之範圍內(圖4C)。SaCas9及gRNA表現之量化指示在MyoAAV 1A注射之小鼠之肌肉中與AAV9注射動物相比,SaCas9表現提高至6.7至19倍且gRNA表現提高至3.5至7.8倍(圖24F、圖24C)。
若干發現指出與AAV9-Dmd CRISPR相比,MyoAAV 1A-Dmd CRISPR對肌營養不良蛋白之表現具有更好的拯救作用。免疫螢光及西方墨點法分析確認與AAV9-Dmd CRISPR相比,注射有MyoAAV 1A-Dmd CRISPR之小鼠肌肉中更大且更廣泛的肌營養不良蛋白恢復(圖18I、圖18J及圖24F)。AAV- CRISPR治療之動物之脛骨前肌(TA)之生理學評價展示在離心收縮後顯著較高之比力(圖4D)及減小之力降%(圖18E)(在MyoAAV 1A-Dmd CRISPR注射之mdx小鼠中,與媒劑或AAV9-Dmd CRISPR注射之對照相比)。因此,MyoAAV 1A展現與習用且廣泛使用之AAV9相比,將治療基因編輯複合物遞送至肌肉之顯著增強之功效。
在小鼠XLMTM模型中進一步評價MyoAAV 1A在低劑量全身性投與後用於基因替代之效能。Mtm1基因剔除(KO)小鼠提供優良的XLMTM遺傳及表型模型;其顯示明顯的肌肉萎縮、活動性喪失及顯著縮短之壽命。向4週齡Mtm1 KO小鼠中注射2E+12vg/kg之編碼在MHCK7啟動子控制下表現人類MTM1(hMTM1)之AAV9或MyoAAV 1A(圖24E)。吾人量測在8個月時段內每組之體重、活動及存活率(圖18F)。吾人用於本實驗中之病毒劑量比用於正在進行之人類XLMTM臨床試驗(臨床試驗.gov標識符:NCT03199469)中之劑量低50-150倍,且比用於先前公開之臨床前XLMTM基因療法研究中之劑量低15-250倍(Childers等人,2014;Elverman等人,2017;Mack等人,2017)。
MyoAAV 1A-MHCK7-hMTM1注射之小鼠表現出功能及存活率之顯著改良。注射有2E+12vg/kg之AAV9-MHCK7-hMTM1之所有小鼠活動性最小且在注射後11-21週之間達到安樂死之人道終點。相比之下,在整個研究中,注射有相同劑量之MyoAAV 1A-MHCK7-hMTM1之所有小鼠以與野生型小鼠相似之軌跡存活,且與AAV9注射之小鼠相比體重亦增加且明顯更活躍(圖29G至圖29J及圖24G)。在AAV投與後4週經注射小鼠之腓腸肌、四頭肌、心臟及肝臟中hMTM1 mRNA表現及載體基因體生物分佈的量化顯示在MyoAAV 1A-MHCK7-hMTM1注射之小鼠之肌肉中與AAV9-MHCK7-hMTM1注射之動物相比顯著較高之轉基因表現及vg/dg,而注射有MyoAAV 1A-MHCK7-hMTM1之小鼠肝臟中hMTM1之表現及vg/dg數低於注射有AAV9-MHCK7- hMTM1之動物(圖17L及圖17M)。西方墨點法分析確認在注射有MyoAAV 1A-MHCK7-hMTM1之小鼠之腓腸肌及四頭肌中較高之hMTM1蛋白表現(圖17N),且伸趾長肌(EDL)之生理學分析展示MyoAAV 1A-MHCK7-hMTM1注射之小鼠中顯著較高之比力,皆與媒劑或AAV9-MHCK7-hMTM1注射之對照相比(圖17O)。
在小鼠DMD及XLMTM模型中全身性投與MyoAAV-Dmd CRISPR及MyoAAV-人類MTM1之其他結果分別顯示於圖17A-圖17I及圖17K中。MyoAAV 1A依賴於整合素異二聚體來轉導小鼠及人類原代肌管。
鑑於在MyoAAV及選擇之所有其他頂部變異體中存在RGD基元,評價RGD結合整合素異二聚體在MyoAAV 1A轉導中之作用。RGD基元首次在1984年識別為纖連蛋白中之最小序列,其促進與其受體之結合,後來鑑別為整合素異二聚體α5β1(Pierschbacher及Ruoslahti,1984;Pytela等人,1985)。此後,RGD鑑別為若干不同整合素異二聚體之識別基元;具體而言,αIIbβ3、α5β1、α8β1、αVβ1、αVβ3、αVβ5、αVβ6及αVβ8(Ruoslahti,1996)。比較MyoAAV 1A-CMV-Nluc在用編碼該8種人類RGD結合整合素異二聚體中之每一者之質體或pUC19質體作為對照轉染之HEK293細胞中的轉導效率。與pUC19轉染之對照相比,α8β1、αVβ1、αVβ3、αVβ6或αVβ8之過表現增加經轉染HEK293細胞中MyoAAV 1A之轉導效率(圖18I及圖25A至圖25K)。
然後,經由過表現實驗分析不同整合素異二聚體對MyoAAV 1A與細胞表面之結合效率之效應。對結合至經8種RGD結合整合素異二聚體中之每一者或pUC19對照質體轉染之HEK293細胞表面之載體基因體進行量化,且發現與pUC19轉染之對照相比,αVβ6及在較小程度上α8β1及αVβ1增加MyoAAV 1A與整合素轉染之細胞之結合(圖18J)。亦研究兩種不同之泛-αV整合素拮抗劑(CWHM-12及GLPG-0187)對原代細胞中之MyoAAV 1A轉導效率之影 響。兩種抑制劑皆以劑量依賴性方式阻礙小鼠(圖26A及圖26J)及人類(圖18K、圖18D及圖26C至圖26H)原代骨骼肌肌管中之MyoAAV 1A轉導,同時兩種抑制劑對AAV9轉導效率皆不具劑量依賴性效應。該等結果展示,抑制含αV之整合素異二聚體幾乎完全消除MyoAAV 1A轉導小鼠及人類原代肌管之能力。
為進一步闡明個別含αV之整合素異二聚體對MyoAAV 1A之結合親和力之影響,吾人使用MyoAAV 1A或AAV9在將該等病毒與αVβ1、αVβ3、αVβ6、αVβ8或麥芽糖結合蛋白(MBP)重組蛋白一起預培育後轉導人類原代肌管。明顯地,MyoAAV 1A與遞增濃度之αVβ6一起預培育可劑量依賴性抑制人類原代肌管之轉導,而吾人測試之其他重組蛋白對MyoAAV 1A或AAV9之細胞轉導皆不具劑量依賴性效應(圖18E、圖18F)。相反,人類肌管與遞增濃度之抗αVβ6抗體一起預培育以劑量依賴性方式減小MyoAAV 1A之轉導效率,且不會影響AAV9對肌管之轉導(圖18G、圖18L)。該等資料表明,在具有促進MyoAAV 1A轉導能力之含αV之整合素異二聚體中,αVβ6具有結合至此衣殼變異體之最高親和力。另外,αVβ6必須可在人類肌肉細胞之表面上獲得以實現MyoAAV 1A對其之最佳轉導。
鑑於具有末端唾液酸之聚糖對AAV9轉導及與細胞結合之重要性(Bell等人,2011),隨後評價聚糖及唾液酸對MyoAAV 1A轉導及結合之作用。與未經處理之對照相比,用將唾液酸鏈接裂解成細胞表面上之聚糖之神經胺糖酸苷酶(NA)處理HEK293細胞使MyoAAV 1A對經處理細胞之轉導提高至172倍且有效結合增大至4倍(圖26K、圖26L)。進一步測試末端半乳糖是否在MyoAAV 1A之轉導及結合中至關重要。將結合至細胞表面上之末端半乳糖之刺桐(Erythrina cristagalli)凝集素(ECL)添加至NA處理之HEK293細胞顯著抑制AAV9及MyoAAV 1A之結合及轉導,同時其對AAV2結合及轉導不具效應(圖 26M、圖26N)。該等結果展示,與AAV9相似,去除唾液酸且暴露細胞表面上之半乳糖會增強MyoAAV 1A對細胞之轉導及結合。
評估MyoAAV 1A轉導對先前鑑別之AAV受體(AAVR)之依賴性。AAVR係除AAV4及AAVrh32.33外之大多數已知AAV血清型之有效轉導所需之快速胞吞之質膜蛋白(Dudek等人,2018;Pillay等人,2016)。用AAV4-CMV-Nluc、AAV2-CMV-Nluc、AAV9-CMV-Nluc或MyoAAV 1A-CMV-Nluc轉導HEK293FT AAVR基因剔除(KO)及母體HEK293FT野生型(WT)細胞,且發現與AAV2及AAV9相似,MyoAAV轉導需要AAVR表現(圖26O)。
為研究整合素異二聚體及AAVR在MyoAAV 1A轉導中是否起冗餘作用,吾人使α8β1、αVβ1、αVβ3、αVβ6或αVβ8在AAVR過表現存在或不存在下在HEK293FT AAVR KO細胞中過表現,且然後用MyoAAV 1A-CMV-Nluc轉導細胞。該等結果展示,儘管與模擬物轉染之對照相比,整合素異二聚體之過表現增加AAVR KO細胞中之MyoAAV 1A轉導效率,但整合素過表現不足以將轉導減少至在過表現AAVR之AAVR KO細胞或WT HEK293FT細胞中觀察到之水準(圖26I)。此資料表明,整合素異二聚體及AAVR在MyoAAV 1A轉導之不同階段中起不同作用且可能用於該等不同階段中。
使用DELIVER之其他輪活體內進化在小鼠中產生含RGD之第二代肌肉向性變異體
鑑於RGD基元與整合素異二聚體之相互作用對MyoAAV 1A轉導肌管的重要性,假設修飾鄰近基元之胺基酸可改良此相互作用,從而產生甚至更強效之肌肉向性衣殼變異體。基於MyoAAV 1A超變區VIII表面環之預測結構,吾人將RGD基元上游之位置586、587及588以及RGD基元下游之位置592、593、594及595的胺基酸鑑別為可能位於MyoAAV 1A之表面環中(圖19A)。 然後產生衣殼之多樣性文庫,該等衣殼各自具有固定在位置589、590及591之RGD基元及上文所提及側接位置之不同胺基酸(圖19B)。
在C57BL/6J及mdx小鼠中使用DELIVER實施兩輪活體內肌肉向性變異體選擇。注射兩種不同劑量(1E+12vg及1E+11vg/小鼠)之第二輪RGD固定之病毒文庫以鑑別在高劑量及低劑量下可有效地轉導肌肉組織之變異體(圖19B)。發現在來自該等選擇之吾人之頂部命中中,甘胺酸及丙胺酸在位置588處富集且麩醯胺酸在位置592處富集。在1E+12及1E+11劑量下,含有GPGRGDQTTL(SEQ ID NO:2)序列之變異體作為最高度選擇之肌肉向性衣殼自第二輪選擇出現(圖19B)。此命名為此第二代變異體MyoAAV 2A(在此文件中亦稱為EMyoAAV或增強的MyoAAV),其將其用於進一步表徵。
在全身性遞送低劑量之病毒後,檢查MyoAAV 2A在不同小鼠組織中之轉導效率。向C57BL/6J小鼠中注射2E+11vg(約8E+12vg/kg)之AAV9-CMV-EGFP、MyoAAV 1A-CMV-EGFP或MyoAAV 2A-CMV-EGFP且分析各個組織中之轉基因表現及載體基因體生物分佈。全組織螢光成像展示,在不同骨骼肌中,MyoAAV 2A之全身性基因遞送產生高於MyoAAV 1A或AAV9之轉基因表現水準(圖19C及圖19D)。EGFP mRNA之量化顯露,與AAV9相比,MyoAAV 2A對小鼠骨骼肌之轉導效率提高至10-80倍,且對心臟之轉導效率提高至17倍。另外,與AAV9注射之小鼠相比,轉基因mRNA表現在MyoAAV 2A注射之動物之肝臟中低2.5倍(圖19E)。類似地,載體基因體生物分佈分析顯示,與AAV9注射之動物相比,MyoAAV 2A注射之小鼠在骨骼肌及心臟中具有顯著較高之vg/dg,且在肝臟中具有顯著較低之vg/dg(圖19L)。
然後,分析MyoAAV 2A於轉導人類原代肌管之效率及整合素依賴性。明顯地,MyoAAV 2A對人類原代肌管之轉導效率相較於AAV9提高至128倍且相較於MyoAAV 1A提高至4.1倍(圖19F)。遞增濃度之泛-αV整合素拮 抗劑GLPG-0187使MyoAAV 2A之轉導效率產生劑量依賴性減小(圖19G),其確認MyoAAV 2A感染力仍依賴於在靶細胞上表現之含αV之整合素異二聚體。
為評估MyoAAV 2A對不同個別αV整合素異二聚體之結合親和力,吾人將MyoAAV 2A或AAV9與αVβ1、αVβ3、αVβ6、αVβ8或麥芽糖結合蛋白(MBP)重組蛋白一起預培育,然後轉導人類原代肌管。有趣的是且與使用MyoAAV 1A之該等相同分析中獲得之結果(圖18E)相反,所測試之所有四種含αV之整合素異二聚體皆以劑量依賴性方式抑制MyoAAV 2A對人類肌管之轉導(圖19H),而對AAV9轉導無劑量依賴性效應(圖19I)。此結果表明,與主要依賴於αVβ6之MyoAAV 1A相比,包括在MyoAAV 2A中之胺基酸取代實現與更廣泛類別之αV整合素異二聚體之更高親和力結合。
檢查在小鼠中使用DELIVER進化之頂部第一代及第二代衣殼變異體對αVβ6異二聚體之依賴性。將人類原代肌管與抗αVβ6抗體一起預培育,然後用頂部第一代(MyoAAV 1A、MyoAAV 1B、MyoAAV 1C、MyoAAV 1E、MyoAAV 1F)及第二代(MyoAAV 2A、MyoAAV 2B、MyoAAV 2C、MyoAAV 2D、MyoAAV 2E、MyoAAV 2F)小鼠變異體轉導細胞。儘管所有該等變異體之抗體結合在一定程度上抑制人類肌管之轉導,但第一代衣殼顯著更依賴於αVβ6進行肌管轉導(圖19M)。
MyoAAV 2A在注射低劑量之病毒後顯示較大治療潛能
為評價MyoAAV 2A與當前用於人類神經肌肉疾病之臨床測試中之衣殼相比之潛在將來治療相關性,比較MyoAAV 2A之轉導效率與正在進行之DMD臨床試驗(臨床試驗.gov標識符:NCT03362502、NCT03368742及NCT03769116)中進行研究之AAV9及AAVrh74。全身性投與自肌肉特異性MHCK7啟動子表現且使用AAVrh74載體遞送之功能互補肌營養不良蛋白微小基因(稱為微肌營養不良蛋白)已在最近報導之涉及四名DMD患者之人類臨床試 驗中顯示有希望的結果。在此試驗中,投與2E+14vg/kg之高病毒劑量產生肌肉中之轉基因表現及疾病表型之功能改良(Mendell等人,2020)。
比較MyoAAV 2A介導之基因遞送與AAVrh74及AAV9載體介導之基因遞送,且進一步研究DBA/2J-mdx小鼠DMD模型中之效能。在縱向活體內成像實驗中,吾人向成年BABL/cJ小鼠注射低劑量(2E+11vg,代表約8E+12vg/kg)之編碼CMV-Fluc報導基因之AAVrh74、AAV9或MyoAAV 2A。與接受AAVrh74或AAV9之小鼠相比,MyoAAV 2A注射之小鼠在四肢及全身展示顯著較高之生物發光信號(圖19J及圖19K)。隨後使用等效低劑量(2E+13vg/kg)之每一AAV測試攜帶微肌營養不良蛋白轉基因(CK8-微肌營養不良蛋白-FLAG)之MyoAAV 2A或AAV9至DBA/2J-mdx小鼠DMD模型中之全身性遞送。在多個肌肉組中,與AAV9注射之動物相比,MyoAAV 2A注射之動物展示位於肌膜處之微肌營養不良蛋白之相對更大且更廣泛之表現(圖20A)。西方墨點法確認與AAV9注射之動物相比,注射有MyoAAV 2A之小鼠肌肉中較高之微肌營養不良蛋白水準(圖20B)。定量RT-PCR指示與AAV9-CK8-微肌營養不良蛋白-FLAG相比,注射有MyoAAV 2A-CK8-微肌營養不良蛋白-FLAG之小鼠骨骼肌中微肌營養不良蛋白mRNA之水準提高至7.6-15倍(圖20C)。
最後,評價與AAV9注射之動物相比,MyoAAV 2A注射之小鼠中之載體基因體豐度及肌肉功能。與AAV9相比,MyoAAV 2A遞送之vg/dg之數量在DBA/2J-mdx小鼠之骨骼肌中提高至12-46倍,且vg/dg在肝臟中低2.5倍(圖20D)。顯著地,儘管AAV9注射之動物之vg/dg之數量在其肝臟中相較於其肌肉中提高至40倍以上,但MyoAAV 2A注射之小鼠在其肝臟及肌肉中具有相似的水準。離心損傷後肌肉比力及力降%之量化展示,與接受等劑量之AAV9之小鼠之肌肉相比及與媒劑注射之動物相比,MyoAAV 2A注射之DBA/2J-mdx小鼠之TA肌肉恢復顯著更大之比力且受到更好的保護免於損傷(圖20E-20F)。
在食蟹獼猴中,活體內定向進化將MyoAAV類衣殼變異體鑑別為頂部命中
為鑑別在NHP中在全身性投與後實現強效肌肉定向基因遞送之衣殼變異體,在食蟹獼猴中使用DELIVER實施AAV9之活體內定向進化。起始於588位點處之隨機7聚體肽插入之兩輪活體內選擇鑑別出含有RGD基元之6種變異體作為頂部命中(圖28A)。該等結果提供在靈長類動物中在全身性投與後MyoAAV類衣殼之高肌肉向性的證據。為選擇實現強效跨物種肌肉轉導之進一步進化之MyoAAV類變異體,使用自小鼠中之第一輪吾人之RGD固定選擇鑑別之頂部120,000種變異體來實施NHP中之一輪活體內選擇(圖28B)。有趣的是,發現酪胺酸在吾人在NHP中鑑別之頂部命中之RGD基元後之第一位置富集。
在NHP中鑑別之最具肌肉向性之變異體(MyoAAV 3A-F及MyoAAV 4A-E)以及在以高效率轉導人類原代肌管之小鼠中鑑別之4種肌肉向性變異體(MyoAAV 1C、MyoAAV 1E、MyoAAV 2A及MyoAAV 2E)(圖28C)的轉導效率在小鼠及NHP中以AAVrh74及AAV9為基準。使用每一衣殼變異體以及AAVrh74及AAV9r產生AAV,以在CBh啟動子控制下編碼人類Frataxin(hFXN)轉基因。使用每一衣殼產生之重組AAV在轉基因之3’非翻譯區(3’UTR)含有一組獨特的條碼(圖28D)。製備含有等效價之所有17種病毒之rAAV匯集物且然後將匯集物投與食蟹獼猴及小鼠二者。與獼猴中之AAVrh74及AAV9相比,NHP不同組織中轉基因mRNA表現之量化將MyoAAV 4A、MyoAAV 4E、MyoAAV 3A及MyoAAV 4C鑑別為轉導不同骨骼肌之最強效變異體(圖28D-圖28E及圖30B)。與小鼠及NHP中之AAVrh74及AAV9相比,該4種變異體亦極有效地轉導不同的小鼠骨骼肌且自肝臟去靶向(圖30A及圖28E)。
為評估頂部4種衣殼之產率,吾人使用6個同轉基因使用頂部4種變異體以及AAVrh74及AAV9製造rAAV。AAV9在吾人測試之衣殼中係最 佳生產者,且與AAVrh74相比,所有MyoAAV變異體產生相似或較高之病毒效價(圖28F)。
然後評價頂部4種衣殼變異體對αV整合素異二聚體之轉導依賴性及親和力。遞增濃度之GLPG-0187可劑量依賴性地減少人類原代肌管中所有4種變異體之轉導(圖28G)。將衣殼變異體與αVβ1、αVβ3、αVβ6、αVβ8或MBP一起預培育展示,所有4種頂部變異體對αVβ6具有最高親和力,其次為αVβ8及αVβ3(圖28H-28I)。與該等結果一致,用遞增濃度之αVβ6抗體處理人類原代肌管可劑量依賴性地減少所有4種變異體之轉導(圖28J)。另外,分析AAVR KO及野生型細胞中頂部4種變異體之轉導效率顯露,所有該等變異體皆依賴於AAVR進行轉導(圖28K)。
最後,鑑於MyoAAV類衣殼變異體對αVβ6之高依賴性及親和力,吾人分析整合素β6在小鼠、NHP及人類肌肉中之表現,其僅與αV形成二聚體(Hynes,2002)。免疫螢光分析展示整合素β6在所有三個物種之肌肉中之表現(圖30C)。
討論
此實例至少闡述且證實用於改造及選擇強效基因遞送至任一所關注組織及/或細胞類型中之有效AAV衣殼變異體的策略。DELIVER組合嚴格且廣泛適用之AAV衣殼改造策略所需之三個關鍵特徵:(i)DELIVER使得能夠選擇衣殼變異體,其不僅在物理上活體內結合或進入細胞,且亦在特定細胞類型中在功能上轉導組織並表現其轉基因。(ii)DELIVER可活體內或活體外應用於任何哺乳動物物種,使得能夠鑑別可自臨床前動物模型直接轉化成人類應用之載體系統。(iii)DELIVER支持極具多樣性之衣殼文庫之篩選且與定向進化方法完全相容。
最終,對開發DELIVER系統之興趣根植於其經由產生更強效且更具選擇性之病毒載體來推進其對基因體醫學之潛在益處,且在本研究中鑑別之肌肉定向AAV衣殼變異體用作此應用之重要概念證明。然而,確保肝臟之轉導減少與增加衣殼之肌肉功效同樣重要。在大動物模型(Hinderer等人,2018)及人類患者(Morales等人,2020)中,肝臟係天然AAV衣殼之主要轉導位點及與高劑量投與AAV載體相關之毒性之靶。具體而言,兩項基因療法試驗(臨床試驗標識符NCT03368742及NCT03199469)因與肝臟毒性相關之重度不良效應而由FDA臨床擱置。最近在遺傳性肌病之基於AAV之基因療法之臨床應用中出現的該等挫折(Morales等人,2020)強調向肌肉遞送之特殊挑戰,且說明對強效肌肉定向AAV變異體(例如此實例中所述之AAV變異體)之明確需求。
DELIVER應用於開發新穎AAV衣殼,當全身性投與時,與當前用於臨床試驗及臨床前發現工作中之衣殼相比,該新穎AAV衣殼可以更高之效率及選擇性以及潛在更有利之安全性概況,將遺傳負荷運輸至全身之骨骼肌。兩輪基於轉錄物之嚴格選擇發現一類新穎的含RGD之衣殼變異體,包括MyoAAV1A,其展現相較於廣泛使用之衣殼提高至10倍以上之肌肉轉導效率。另外,使用DELIVER選擇之肌肉定向AAV顯示顯著減少之肝臟靶向。該兩種屬性表明,此類新AAV衣殼可降低達成靶細胞轉導治療水準所需之病毒劑量,且減輕肝細胞中轉導之潛在有害後果,其中轉導對於治療益處是不必要的。
DELIVER鑑別出帶有關鍵RGD基元之多種變異體,已知該基元可結合至整合素異源二聚體,且進一步工作表明此基元對轉導小鼠及人類原代肌管之功能重要性。小鼠及NHP中肌肉靶向衣殼之篩選鑑別出含有RGD作為插入之7聚體肽之前三個胺基酸之變異體的顯著富集。來自活體內選擇之頂部變異體顯示與整合素異二聚體之相互作用且可藉由可溶性整合素異二聚體、抗整合素抗體及小分子拮抗劑轉導靶細胞來阻斷。此觀察到之整合素依賴性在 小鼠及人類原代肌管中係保守的,此表明MyoAAV類衣殼轉導之常見作用機制。MyoAAV類衣殼與整合素之相互作用似乎與先前鑑別之AAV結合蛋白AAVR平行起作用,此亦為該等變異體轉導靶細胞所必需的。在RGD結合整合素異二聚體中,αVβ6顯示最高結合親和力且係人類肌肉細胞表面上特異性需要的以實現吾人鑑別之頂部變異體對其之轉導。根據AAV2之先前研究,該等觀察尤其有趣,該AAV2缺少RGD基元但仍利用整合素異二聚體(包括α5β1及αVβ5)作為病毒內化之輔助受體,明顯地經由相關NGR基元(Asokan等人,2006;Summerford等人,1999)。
儘管需要更多工作來理解AAV介導之基因遞送至肌肉之RGD-整合素異二聚體相互作用的分子基礎,但其對吾人發現之一類肌肉定向載體之重要性使得吾人能夠藉由系統地改變必需RGD基元周圍之側接殘基來使該等衣殼進一步進化。此第二輪進化鑑別出能夠以甚至高於MyoAAV 1A之親和力結合整合素異二聚體之更廣泛亞組之其他變異體。在活體內及活體外分析中,小鼠中之頂部第二代變異體MyoAAV 2A顯示顯著增加之肌肉轉導功效(高達AAV9之128倍),同時維持低肝臟轉導,且其成功地為用於其他所關注靶組織之超高功效載體之反復開發提供框架。
以推進基因體醫學為吾人之目標,我們將MyoAAV 1A及MyoAAV 2A應用為當前正在開發之基因編輯及基因療法以及測試人類遺傳性肌病之遞送載體。該等研究採用充分建立之小鼠DMD及XLMTM模型,其中靶向DNA切除及轉錄物「再框架化(re-framing)」(Nelson等人,2016;Tabebordbar等人,2016)或與全長或小型化治療性轉基因之遺傳互補(Childers等人,2014;Hakim等人,2017)先前已顯示功能益處。在兩種模型中,觀察到顯著之治療效應,包括拯救疾病靶向蛋白之表現、顯著增加肌肉強度及效能,且在XLMTM之 情形下,顯著拯救疾病誘導之死亡率,此顯著延長MyoAAV 1A治療之動物之觀察壽命,超過未經治療及AAV9治療之對照之平均壽命。
鑑於治療結果係在注射之治療載體劑量比基於相同基因療法之先前公開之臨床前研究(Childers等人,2014;Elverman等人,2017;Hakim等人,2017;Mack等人,2017)或當前正在進行之人類臨床試驗(臨床試驗.gov標識符:NCT03362502、NCT03368742、NCT03769116及NCT03199469)中使用的治療載體劑量低10-250倍後達成,故該等治療結果皆更顯著。使用該等新AAV變體達成治療效力之較低劑量要求可在臨床應用中具有實質性益處,包括改良表現及安全性概況以及降低製造成本。
最後,在NHP中活體內定向進化後,MyoAAV類衣殼之變異體鑑別為最具肌肉向性之變異體。該等結果表明MyoAAV類衣殼變異體可直接應用於小鼠、NHP及人類,此乃因該等變異體在多種近交系小鼠品系(包括C57BL/6J、BALB/cJ、DBA/2J、mdx及DBA/2J-mdx)以及食蟹獼猴及自多個供體獲得之人類原代肌母細胞培養物中顯示廣泛之肌肉轉導活性。此外,整合素異二聚體對MyoAAV類衣殼在小鼠及人類肌肉細胞中之感染力之必要性強烈表明小鼠及人類肌肉中之保守轉導模式,該保守轉導模式可加快開發及實施針對廣泛遺傳性肌病之新基因療法之時間線。
Weinmann等人之最新公開案(Weinmann等人,2020)報導在小鼠中全身性投與後,在測試183種野生型及經修飾AAV衣殼之轉導效率後,肌肉向性衣殼變異體之鑑別。有趣的是,Weinmann等人自其篩選鑑別之肌肉向性變異體含有呈現於衣殼表面上之RGD基元且可用作吾人發現之獨立驗證。然而,作者並未表徵其變異體在NHP及人類細胞中之轉導機制及轉導效率。本實例中來自小鼠及NHP之衣殼活體內定向進化之發現證實,所插入肽中之RGD基元周圍之胺基酸序列在定義不同物種中衣殼之轉導效率方面起關鍵作用。儘管自 小鼠及NHP之活體內定向進化中鑑別之最具肌肉向性之變異體皆含有RGD基元,如本實例中所展示,但每個物種中鑑別為頂部命中之個別變異體之基元周圍的胺基酸序列有所不同。舉例而言,MyoAAV 2A係吾人在小鼠中鑑別之頂部第二代變異體且其在轉導小鼠肌肉方面高度強效,但其在全身性投與後無法高效地轉導NHP肌肉。事實上,當在NHP中作為重組AAV全身性遞送後測試肌肉轉導時,自本文之該等NHP選擇鑑別之所有變異體皆優於在小鼠中鑑別之變異體。幸運的是,來自吾人NHP選擇之頂部衣殼變異體在轉導小鼠肌肉方面亦係高度強效的,從而使其高度適用于治療開發。該等結果強調使用活體內定向進化及嚴格選擇策略來選擇靈長類動物中最強效之衣殼變異體之重要性。
總之,本實例闡述且展示跨物種之高度強效之肌肉定向AAV衣殼變異體家族之進化、改造及機制表徵。本文亦展示該等載體在遺傳性肌肉疾病之多個小鼠模型中之治療效力,甚至在低劑量下亦如此。該等載體具有推進大量肌肉骨骼疾病之肌肉定向治療性基因遞送的潛能。更廣泛而言,本文所述之DELIVER系統提供高度適用之平台,用於識別體內任何組織或細胞類型之精確AAV衣殼變異體,該創新可極大地擴展此載體系統在各個領域及學科之臨床及實驗應用。將DELIVER應用於其他組織及器官系統將對加快多種人類疾病之新穎基因療法及其他基因體醫學方法之開發及轉化具有深遠影響。
實例7之參考文獻
Asokan, A.、Hamra, J.B.、Govindasamy, L.、Agbandje-McKenna, M.及Samulski, R.J. (2006). Adeno-associated virus type 2 contains an integrin alpha5beta1 binding domain essential for viral cell entry. J Virol 80, 8961-8969。
Bell, C.L.、Vandenberghe, L.H.、Bell, P.、Limberis, M.P.、Gao, G.P.、Van Vliet, K.、Agbandje-McKenna, M.及Wilson, J.M. (2011). The AAV9 receptor and its modification to improve in vivo lung gene transfer in mice. J Clin Invest 121, 2427-2435。
Berry, G.E.及Asokan, A. (2016). Cellular transduction mechanisms of adeno-associated viral vectors. Curr Opin Virol 21, 54-60。
Borner, K.、Kienle, E.、Huang, L.Y.、Weinmann, J.、Sacher, A.、Bayer, P.、Stullein, C.、Fakhiri, J.、Zimmermann, L.、Westhaus, A.等人(2020). Pre-arrayed Pan-AAV Peptide Display Libraries for Rapid Single-Round Screening. Mol Ther 28, 1016-1032。
Childers, M.K.、Joubert, R.、Poulard, K.、Moal, C.、Grange, R.W.、Doering, J.A.、Lawlor, M.W.、Rider, B.E.、Jamet, T.、Daniele, N.等人,(2014). Gene therapy prolongs survival and restores function in murine and canine models of myotubular myopathy. Sci Transl Med 6, 220ra210。
Choudhury, S.R.、Fitzpatrick, Z.、Harris, A.F.、Maitland, S.A.、Ferreira, J.S.、Zhang, Y.、Ma, S.、Sharma, R.B.、Gray-Edwards, H.L.、Johnson, J.A. 等人(2016). In Vivo Selection Yields AAV-B1 Capsid for Central Nervous System and Muscle Gene Therapy. Mol Ther 24, 1247-1257。
Dalkara, D.、Byrne, L.C.、Klimczak, R.R.、Visel, M.、Yin, L.、Merigan, W.H.、Flannery, J.G.及Schaffer, D.V.(2013). In vivo-directed evolution of a new adeno-associated virus for therapeutic outer retinal gene delivery from the vitreous. Sci Transl Med 5, 189ra176。
Deverman, B.E.、Pravdo, P.L.、Simpson, B.P.、Kumar, S.R.、Chan, K.Y.、Banerjee, A.、Wu, W.L.、Yang, B.、Huber, N.、Pasca, S.P.等人,(2016). Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat Biotechnol 34, 204-209。
DiMattia, M.A.、Nam, H.J.、Van Vliet, K.、Mitchell, M.、Bennett, A.、Gurda, B.L.、McKenna, R.、Olson, N.H.、Sinkovits, R.S.、Potter, M.等人,(2012). Structural insight into the unique properties of adeno-associated virus serotype 9. J Virol 86, 6947-6958。
Ding, W.、Zhang, L.、Yan, Z.及Engelhardt, J.F.(2005). Intracellular trafficking of adeno-associated viral vectors. Gene Ther 12, 873-880。
Duan, D. (2018). Systemic AAV Micro-dystrophin Gene Therapy for Duchenne Muscular Dystrophy. Mol Ther 26, 2337-2356。
Dudek, A.M.、Pillay, S.、Puschnik, A.S.、Nagamine, C.M.、Cheng, F.、Qiu, J.、Carette, J.E.及Vandenberghe, L.H.(2018). An Alternate Route for Adeno-associated Virus (AAV) Entry Independent of AAV Receptor. J Virol 92
Elverman, M.、Goddard, M.A.、Mack, D.、Snyder, J.M.、Lawlor, M.W.、Meng, H.、Beggs, A.H.、Buj-Bello, A.、Poulard, K.、Marsh, A.P.等人,(2017). Long-term effects of systemic gene therapy in a canine model of myotubular myopathy. Muscle Nerve 56, 943-953。
Gao, G.、Lu, Y.、Calcedo, R.、Grant, R.L.、Bell, P.、Wang, L.、Figueredo, J.、Lock, M.及Wilson, J.M.(2006). Biology of AAV serotype vectors in liver-directed gene transfer to nonhuman primates. Mol Ther 13, 77-87。
Hakim, C.H.、Wasala, N.B.、Pan, X.、Kodippili, K.、Yue, Y.、Zhang, K.、Yao, G.、Haffner, B.、Duan, S.X.、Ramos, J.等人,(2017). A Five-Repeat Micro-Dystrophin Gene Ameliorated Dystrophic Phenotype in the Severe DBA/2J-mdx Model of Duchenne Muscular Dystrophy. Mol Ther Methods Clin Dev 6, 216-230。
Hinderer, C.、Katz, N.、Buza, E.L.、Dyer, C.、Goode, T.、Bell, P.、Richman, L.K.及Wilson, J.M.(2018). Severe Toxicity in Nonhuman Primates and Piglets Following High-Dose Intravenous Administration of an Adeno-Associated Virus Vector Expressing Human SMN. Hum Gene Ther 29, 285-298。
Hordeaux, J.、Wang, Q.、Katz, N.、Buza, E.L.、Bell, P.及Wilson, J.M.(2018). The Neurotropic Properties of AAV-PHP.B Are Limited to C57BL/6J Mice. Mol Ther 26, 664-668。
Hynes, R.O. (2002). Integrins: bidirectional, allosteric signaling machines. Cell 110, 673-687。
Korbelin,J.、Sieber, T.、Michelfelder, S.、Lunding, L.、Spies, E.、Hunger, A.、Alawi, M.、Rapti, K.、Indenbirken, D.、Muller, O.J.等人(2016). Pulmonary Targeting of Adeno-associated Viral Vectors by Next-generation Sequencing-guided Screening of Random Capsid Displayed Peptide Libraries. Mol Ther 24, 1050-1061。
Li, C.及Samulski, R.J.(2020). Engineering adeno-associated virus vectors for gene therapy. Nat Rev Genet 21, 255-272。
Li, C.、Wu, S.、Albright, B.、Hirsch, M.、Li, W.、Tseng, Y.S.、Agbandje-McKenna, M.、McPhee, S.、Asokan, A.及Samulski, R.J. (2016). Development of Patient-specific AAV Vectors After Neutralizing Antibody Selection for Enhanced Muscle Gene Transfer. Mol Ther 24, 53-65。
Mack, D.L.、Poulard, K.、Goddard, M.A.、Latournerie, V.、Snyder, J.M.、Grange, R.W.、Elverman, M.R.、Denard, J.、Veron, P.、Buscara, L.等人, (2017). Systemic AAV8-Mediated Gene Therapy Drives Whole-Body Correction of Myotubular Myopathy in Dogs. Mol Ther 25, 839-854。
Mendell, J.R.、Sahenk, Z.、Lehman, K.、Nease, C.、Lowes, L.P.、Miller, N.F.、Iammarino, M.A.、Alfano, L.N.、Nicholl, A.、Al-Zaidy, S.等人,(2020). Assessment of Systemic Delivery of rAAVrh74.MHCK7.micro-dystrophin in Children With Duchenne Muscular Dystrophy: A Nonrandomized Controlled Trial. JAMA Neurol。
Michelfelder, S.、Kohlschutter, J.、Skorupa, A.、Pfennings, S.、Muller, O.、Kleinschmidt, J.A.及Trepel, M. (2009). Successful expansion but not complete restriction of tropism of adeno-associated virus by in vivo biopanning of random virus display peptide libraries. PLoS One 4, e5122。
Morales, L.、Gambhir, Y.、Bennett, J.及Stedman, H.H.(2020). Broader Implications of Progressive Liver Dysfunction and Lethal Sepsis in Two Boys following Systemic High-Dose AAV. Mol Ther 28, 1753-1755。
Murrey, D.A.、Naughton, B.J.、Duncan, F.J.、Meadows, A.S.、Ware, T.A.、Campbell, K.J.、Bremer, W.G.、Walker, C.M.、Goodchild, L.、Bolon, B.等人,(2014). Feasibility and safety of systemic rAAV9-hNAGLU delivery for treating mucopolysaccharidosis IIIB: toxicology, biodistribution, and immunological assessments in primates. Hum Gene Ther Clin Dev 25, 72-84。
Nelson, C.E.、Hakim, C.H.、Ousterout, D.G.、Thakore, P.I.、Moreb, E.A.、Castellanos Rivera, R.M.、Madhavan, S.、Pan, X.、Ran, F.A.、Yan, W.X.等人,(2016). In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 351, 403-407。
Pierschbacher, M.D.及Ruoslahti, E. (1984). Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 309, 30-33。
Pillay, S.、Meyer, N.L.、Puschnik, A.S.、Davulcu, O.、Diep, J.、Ishikawa, Y.、Jae, L.T.、Wosen, J.E.、Nagamine, C.M.、Chapman, M.S.等人,(2016). An essential receptor for adeno-associated virus infection. Nature 530, 108-112。
Pytela, R.、Pierschbacher, M.D.及Ruoslahti, E. (1985). Identification and isolation of a 140 kd cell surface glycoprotein with properties expected of a fibronectin receptor. Cell 40, 191-198。
Ruoslahti, E. (1996). RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol 12, 697-715。
Summerford, C.、Bartlett, J.S.及Samulski, R.J.(1999). AlphaVbeta5 integrin: a co-receptor for adeno-associated virus type 2 infection. Nat Med 5, 78-82。
Tabebordbar, M.、Zhu, K.、Cheng, J.K.W.、Chew, W.L.、Widrick, J.J.、Yan, W.X.、Maesner, C.、Wu, E.Y.、Xiao, R.、Ran, F.A.等人,(2016). In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 351, 407-411。
Tse, L.V.、Klinc, K.A.、Madigan, V.J.、Castellanos Rivera, R.M.、Wells, L.F.、Havlik, L.P.、Smith, J.K.、Agbandje-McKenna, M.及Asokan, A. (2017). Structure-guided evolution of antigenically distinct adeno-associated virus variants for immune evasion. Proc Natl Acad Sci U S A 114, E4812-E4821。
Weinmann, J.、Weis, S.、Sippel, J.、Tulalamba, W.、Remes, A.、El Andari, J.、Herrmann, A.K.、Pham, Q.H.、Borowski, C.、Hille, S.等人(2020). Identification of a myotropic AAV by massively parallel in vivo evaluation of barcoded capsid variants. Nat Commun 11, 5432。
Yang, L.、Jiang, J.、Drouin, L.M.、Agbandje-McKenna, M.、Chen, C.、Qiao, C.、Pu, D.、Hu, X.、Wang, D.Z.、Li, J.等人(2009). A myocardium tropic adeno-associated virus (AAV) evolved by DNA shuffling and in vivo selection. Proc Natl Acad Sci U S A 106, 3946-3951。
Yang, L.及Xiao, X. (2013). Creation of a cardiotropic adeno-associated virus: the story of viral directed evolution. Virol J 10, 50。
Zincarelli, C.、Soltys, S.、Rengo, G.及Rabinowitz, J.E.(2008). Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection. Mol Ther 16, 1073-1080。
***
在不脫離本發明之範圍及精神之情況下,熟習此項技術者將明瞭本發明之所述方法、醫藥組合物及套組之各種修改及變化。儘管已結合特定實施例闡述了本發明,但應理解,其能夠進一步修改且所主張之本發明不應不適當地限於該等特定實施例。實際上,對熟習此項技術者顯而易見之用於實施本發明之所述模式之各種修改意欲在本發明之範圍內。本申請案意欲涵蓋本發明之任何變化形式、用途或更改,一般而言,遵循本發明之原理且包括對本揭示案之此類偏離,此類偏離在本發明所屬領域之已知常規實踐內,且可在闡釋之前應用於本文之基本特徵。

Claims (113)

  1. 一種組合物,其包含:
    可有效地靶向肌肉細胞之靶向部分,其中該靶向部分包含一或多個n聚體基元,其中該一或多個n聚體基元之至少一個n聚體基元包含XmRGDXn或由其組成,其中Xm及Xn各自獨立地選自任一胺基酸,其中n係1、2、3、4、5、6、7、8或9,且其中m係1至4;及
    視情況地負荷,其中該負荷偶聯至或以其他方式與該靶向部分締合。
  2. 如請求項1所述之組合物,其中該至少一個n聚體基元係如表2(SEQ ID NO:2-7、20-21、41-409)、表3(SEQ ID NO:2、28、30-32、55、76、96、103、135、158、207、214、252、306、316、398、410-768)、圖14F(SEQ ID NO:8-12、14-18)中之任一者或其任一組合。
  3. 如請求項1或2所述之組合物,其中該靶向部分包含多肽、多核苷酸、脂質、聚合物、糖或其組合。
  4. 如請求項1至3中任一項所述之組合物,其中該靶向部分包含病毒蛋白。
  5. 如請求項4所述之組合物,其中該病毒蛋白係衣殼蛋白。
  6. 如請求項4或5所述之組合物,其中該病毒蛋白係腺相關病毒(AAV)蛋白。
  7. 如請求項5或6所述之組合物,其中該n聚體基元位於該病毒蛋白之兩個胺基酸之間,使得該n聚體基元在病毒衣殼外部。
  8. 如請求項6或7所述之組合物,其中該n聚體基元插入AAV9衣殼多肽中之胺基酸262-269、327-332、382-386、452-460、488-505、527-539、545-558、581-593、704-714或其任一組合之間的任兩個連續胺基酸之間,或 AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAV rh.74、AAV rh.10衣殼多肽中之類似位置。
  9. 如請求項6至8中任一項所述之組合物,其中該n聚體基元插入AAV9衣殼多肽中之胺基酸588與589之間或AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAV rh.74、AAV rh.10衣殼多肽中之類似位置。
  10. 如請求項1至9中任一項所述之組合物,其中該組合物係經改造之病毒粒子。
  11. 如請求項10所述之組合物,其中該經改造之病毒粒子係經改造之AAV病毒粒子。
  12. 如請求項11所述之組合物,其中該AAV病毒粒子係經改造之AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAV9、AAV rh.74或AAV rh.10病毒粒子。
  13. 如請求項1至12中任一項所述之組合物,其中該n聚體基元係3-15個胺基酸。
  14. 如請求項1至13中任一項所述之組合物,其中該組合物對非肌肉細胞具有減小或消除的特異性。
  15. 如請求項14所述之組合物,其中該非肌肉細胞係肝細胞。
  16. 如請求項5至14中任一項所述之組合物,其中該病毒衣殼係經改造之AAV衣殼蛋白,其與相應野生型AAV衣殼多肽相比在非肌肉細胞中具有減少或消除的攝取。
  17. 如請求項16所述之組合物,其中野生型衣殼多肽係AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAV9、AAV rh.74或AAV rh.10衣殼多肽。
  18. 如請求項16或17所述之組合物,其中該經改造之AAV衣殼蛋白包含使得減少或消除非肌肉細胞中之攝取之一或多個突變。
  19. 如請求項18所述之組合物,其中該一或多個突變處於AAV9衣殼蛋白(SEQ ID NO:1)中之
    a.位置267中,
    b.位置269中,
    c.位置504中,
    d.位置505中,
    e.位置590中,
    f.或其任一組合
    或非AAV9衣殼多肽中對應於其之一或多個位置。
  20. 如請求項19所述之組合物,其中該非AAV9衣殼蛋白係AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAV rh.74或AAV rh.10衣殼多肽。
  21. 如請求項19所述之組合物,其中該AAV9衣殼蛋白(SEQ ID NO:1)中之位置267或非AAV9衣殼多肽中對應於其之位置的突變係G或X至A突變,其中X係任一胺基酸。
  22. 如請求項19所述之組合物,其中該AAV9衣殼蛋白(SEQ ID NO:1)中之位置269或非AAV9衣殼多肽中對應於其之位置的突變係S或X至T突變,其中X係任一胺基酸。
  23. 如請求項19所述之組合物,其中該AAV9衣殼蛋白(SEQ ID NO:1)中之位置504或非AAV9衣殼多肽中對應於其之位置的突變係G或X至A突變,其中X係任一胺基酸。
  24. 如請求項19所述之組合物,其中該AAV9衣殼蛋白(SEQ ID NO:1)中之位置505或非AAV9衣殼多肽中對應於其之位置的突變係P或X至A突變,其中X係任一胺基酸。
  25. 如請求項19所述之組合物,其中該AAV9衣殼蛋白(SEQ ID NO:1)中之位置590或非AAV9衣殼多肽中對應於其之位置的突變係Q或X至A突變,其中X係任一胺基酸。
  26. 如請求項18所述之組合物,其中該經改造之AAV衣殼蛋白係包含野生型AAV9衣殼蛋白(SEQ ID NO:1)之位置267、位置269或二者處之突變的經改造之AAV9衣殼多肽,其中該位置267處之突變係G至A突變且其中該位置269處之突變係S至T突變。
  27. 如請求項18所述之組合物,其中該經改造之AAV衣殼蛋白係包含野生型AAV9衣殼蛋白(SEQ ID NO:1)之位置590處之突變的經改造之AAV9衣殼多肽,其中該位置509處之突變係Q至A突變。
  28. 如請求項18所述之組合物,其中該經改造之AAV衣殼蛋白係包含野生型AAV9衣殼蛋白(SEQ ID NO:1)之位置504、位置505或二者處之突變的經改造之AAV9衣殼多肽,其中該位置504處之突變係G至A突變且其中該位置505處之突變係P至A突變。
  29. 如請求項1至28中任一項所述之組合物,其中該視情況存在之負荷能夠治療或預防肌肉疾病或病症。
  30. 如請求項29所述之組合物,其中該肌肉疾病或病症係
    a.自體免疫疾病;
    b.癌症;
    c.肌營養不良;
    d.神經肌肉疾病;
    e.糖或肝糖儲積病;
    f.擴展重複疾病;
    g.顯性負性疾病;
    h.心肌病;
    i.病毒性疾病;
    j.類早衰症;或
    k.其任一組合。
  31. 如請求項1至30中任一項所述之組合物,其中該負荷係N-嗎啉基、肽連接之N-嗎啉基、反義寡核苷酸、PMO、治療性轉基因、編碼治療性多肽或肽之多核苷酸、PPMO、一或多種肽、編碼CRISPR-Cas蛋白之一或多種多核苷酸、引導RNA或二者、核糖核蛋白,其中該核糖核蛋白包含CRISPR-Cas系統分子、治療性轉基因RNA、或其他基因修飾或治療性RNA及/或蛋白質、或其任一組合。
  32. 如請求項1至31中任一項所述之組合物,其中該負荷能夠誘導基因中之外顯子跳躍。
  33. 如請求項1至32中任一項所述之組合物,其中該負荷能夠誘導肌營養不良蛋白基因中之外顯子跳躍。
  34. 如請求項1至33中任一項所述之組合物,其中該負荷係微小或微肌營養不良蛋白基因。
  35. 如請求項34所述之組合物,其中該微小或微肌營養不良蛋白基因包含血影蛋白樣重複1、2、3及24以及視情況地nNOS結構域。
  36. 如請求項29至35中任一項所述之組合物,其中該擴展重複疾病係亨丁頓氏症(Huntington’s disease)、肌強直性營養不良或面肩胛臂型肌營養不良(FSHD)。
  37. 如請求項29至36中任一項所述之組合物,其中該肌營養不良係杜興氏肌營養不良(Duchene muscular dystrophy)、貝克氏肌營養不良(Becker Muscular dystrophy)、肢帶型肌營養不良、埃德二氏肌營養不良(Emery Dreifuss muscular dystrophy)、肌強直性營養不良或FSHD。
  38. 如請求項36所述之組合物,其中該肌強直性營養不良為1型或2型。
  39. 如請求項29至38中任一項所述之組合物,其中該心肌病係擴張性心肌病、肥厚性心肌病、DMD相關之心肌病或達農病(Dannon disease)。
  40. 如請求項29至39中任一項所述之組合物,其中該糖或肝糖儲積病係III型MPS疾病或龐貝氏病(Pompe disease)。
  41. 如請求項40所述之組合物,其中該III型MPS疾病係IIIA型、IIIB型、IIIC型或IIID型MPS。
  42. 如請求項29至41中任一項所述之組合物,其中該神經肌肉疾病係夏馬杜三氏病(Charcot-Marie-Tooth disease)或弗氏共濟失調(Friedreich’s Ataxia)。
  43. 如請求項1至42中任一項所述之組合物,其中該組合物具有增加之肌肉細胞功效、肌肉細胞特異性、降低之免疫原性或其任一組合。
  44. 一種載體系統,其包含:
    載體,其包含:
    一或多種多核苷酸,其各自編碼可有效地靶向肌肉細胞之一或多個靶向部分之全部或一部分,其中每一靶向部分包含一或多個n聚體基元,其中該一或多個n聚體基元之至少一個n聚體基元包含XmRGDXn或由其組成,其中Xm及Xn各自獨立地選自任一胺基酸,其中n係1、2、3、4、5、6、7、8或9,且其中m 係1至4,且其中該一或多種多核苷酸中之至少一者至少編碼該至少一個n聚體基元;及
    視情況地,調控元件,其可操作偶聯至該(等)多核苷酸中之一或多者。
  45. 如請求項44所述之載體系統,其中該至少一個n聚體基元係如表2(SEQ ID NO:2-7、20-21、41-409)、表3(SEQ ID NO:2、28、30-32、55、76、96、103、135、158、207、214、252、306、316、398、410-768)、圖14F(SEQ ID NO:8-12、14-18)中之任一者、或其任一組合。
  46. 如請求項44或45所述之載體系統,其進一步包含負荷。
  47. 如請求項46所述之載體系統,其中該負荷係負荷多核苷酸且視情況地偶聯至編碼該靶向部分之該一或多種多核苷酸中之一或多者。
  48. 如請求項46或47所述之載體系統,其中該負荷多核苷酸存在於與編碼該靶向部分之該一或多種多核苷酸相同之載體或不同之載體上。
  49. 如請求項44至48中任一項所述之載體系統,其中該載體系統能夠產生當存在時含有該負荷之病毒粒子。
  50. 如請求項44至49中任一項所述之載體系統,其中該載體系統能夠產生包含該等靶向部分中之一或多者之病毒多肽。
  51. 如請求項50所述之載體系統,其中該病毒多肽係衣殼多肽。
  52. 如請求項51所述之載體系統,其中該衣殼多肽係AAV衣殼多肽。
  53. 如請求項44至51中任一項所述之載體系統,其中該載體系統能夠產生AAV病毒粒子。
  54. 如請求項53所述之載體系統,其中該等AAV病毒粒子係經改造之AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAV9、AAV rh.74或AAV rh.10病毒粒子。
  55. 如請求項51至54中任一項所述之載體系統,其中該衣殼多肽係經改造之AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAV9、AAV rh.74、AAV rh.10衣殼多肽。
  56. 如請求項50至55中任一項所述之載體系統,其中編碼一個n聚體基元之該一或多種多核苷酸插入對應於該病毒多肽之兩個胺基酸之兩個密碼子之間,使得該(等)n聚體基元在該病毒衣殼外部。
  57. 如請求項56所述之載體系統,其中編碼一或多個n聚體基元之該一或多種多核苷酸插入兩個密碼子之間,該兩個密碼子對應於AAV9衣殼多肽中之胺基酸262-269、327-332、382-386、452-460、488-505、527-539、545-558、581-593、704-714或其任一組合之間的任兩個連續胺基酸,或插入AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAV rh.74、AAV rh.10衣殼多肽中之類似位置。
  58. 如請求項57所述之載體系統,其中編碼一或多個n聚體基元之該一或多種多核苷酸插入對應於該AAV9衣殼多核苷酸中之胺基酸588及589之密碼子之間,或AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAV rh.74、AAV rh.10衣殼多肽中之類似位置。
  59. 如請求項51至58中任一項所述之載體系統,其中該衣殼蛋白係經改造之AAV衣殼蛋白,其與相應野生型AAV衣殼多肽相比在非肌肉細胞中具有減少或消除的攝取。
  60. 如請求項59所述之載體系統,其中該非肌肉細胞係肝細胞。
  61. 如請求項59或60所述之載體系統,其中該野生型衣殼多肽係AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAV9、AAV rh.74或AAV rh.10衣殼多肽。
  62. 如請求項69至61中任一項所述之載體系統,其中該經改造之AAV衣殼蛋白包含使得減少或消除非肌肉細胞中之攝取之一或多個突變。
  63. 如請求項62所述之載體系統,其中該一或多個突變處於該AAV9衣殼蛋白(SEQ ID NO:1)中之
    a.位置267中,
    b.位置269中,
    c.位置504中,
    d.位置505中,
    e.位置590中,
    f.或其任一組合
    或非AAV9衣殼多肽中對應於其之一或多個位置。
  64. 如請求項63所述之載體系統,其中該非AAV9衣殼蛋白係AAV1、AAV2、AAV3、AAV4、AAV5、AV6、AAV7、AAV8、AAV rh.74或AAV rh.10衣殼多肽。
  65. 如請求項63所述之載體系統,其中該AAV9衣殼蛋白(SEQ ID NO:1)中之位置267或非AAV9衣殼多肽中對應於其之位置的突變係G或X至A突變,其中X係任一胺基酸。
  66. 如請求項63所述之載體系統,其中該AAV9衣殼蛋白(SEQ ID NO:1)中之位置269或非AAV9衣殼多肽中對應於其之位置的突變係S或X至T突變,其中X係任一胺基酸。
  67. 如請求項63所述之載體系統,其中該AAV9衣殼蛋白(SEQ ID NO:1)中之位置504或非AAV9衣殼多肽中對應於其之位置的突變係G或X至A突變,其中X係任一胺基酸。
  68. 如請求項63所述之載體系統,其中該AAV9衣殼蛋白(SEQ ID NO:1)中之位置505或非AAV9衣殼多肽中對應於其之位置的突變係P或X至A突變,其中X係任一胺基酸。
  69. 如請求項63所述之載體系統,其中該AAV9衣殼蛋白(SEQ ID NO:1)中之位置590或非AAV9衣殼多肽中對應於其之位置的突變係Q或X至A突變,其中X係任一胺基酸。
  70. 如請求項62所述之載體系統,其中該經改造之AAV衣殼蛋白係包含野生型AAV9衣殼蛋白(SEQ ID NO:1)之位置267、位置269或二者處之突變的經改造之AAV9衣殼多肽,其中該位置267處之突變係G至A突變且其中該位置269處之突變係S至T突變。
  71. 如請求項62所述之載體系統,其中該經改造之AAV衣殼蛋白係包含野生型AAV9衣殼蛋白(SEQ ID NO:1)之位置590處之突變的經改造之AAV9衣殼多肽,其中該位置509處之突變係Q至A突變。
  72. 如請求項62所述之載體系統,其中該經改造之AAV衣殼蛋白係包含野生型AAV9衣殼蛋白(SEQ ID NO:1)之位置504、位置505或二者處之突變的經改造之AAV9衣殼多肽,其中該位置504處之突變係G至A突變且其中該位置505處之突變係P至A突變。
  73. 如請求項44至72中任一項所述之載體系統,其中包含各自編碼一或多個靶向部分之全部或一部分之該一或多種多核苷酸的該載體不包含剪接調控元件。
  74. 如請求項43至73中任一項所述之載體系統,其進一步包含編碼病毒rep蛋白之多核苷酸。
  75. 如請求項74所述之載體系統,其中該編碼病毒rep蛋白之多核苷酸係編碼AAV rep蛋白之多核苷酸。
  76. 如請求項74或75所述之載體系統,其中該編碼病毒rep蛋白之多核苷酸處於與各自編碼一或多個靶向部分之全部或一部分之該一或多種多核苷酸相同之載體或不同之載體上。
  77. 如請求項74至76中任一項所述之載體系統,其中該病毒rep蛋白可操作偶聯至調控元件。
  78. 一種多肽,其係由如請求項44至47中任一項所述之載體系統編碼及/或產生。
  79. 如請求項78所述之多肽,其中該多肽係病毒多肽。
  80. 如請求項79所述之多肽,其中該病毒多肽係AAV多肽。
  81. 一種粒子,其係由如請求項43至47中任一項所述之載體系統產生及/或包括如請求項78或79所述之多肽。
  82. 如請求項81所述之粒子,其中該粒子係病毒粒子。
  83. 如請求項82所述之粒子,其中該病毒粒子係腺相關病毒(AAV)粒子、慢病毒粒子或反轉錄病毒粒子。
  84. 如請求項83所述之粒子,其中該病毒粒子具有肌肉特異性向性。
  85. 如請求項46至77中任一項所述之載體系統、如請求項78至80中任一項所述之多肽或如請求項81至84中任一項所述之粒子,其中該負荷能夠治療或預防肌肉疾病或病症。
  86. 如請求項85所述之載體系統、多肽或粒子,其中該肌肉疾病或病症係
    (a)自體免疫疾病;
    (b)癌症;
    (c)肌營養不良;
    (d)神經肌肉疾病;
    (e)糖或肝糖儲積病;
    (f)擴展重複疾病;
    (g)顯性負性疾病;
    (h)心肌病;
    (i)病毒性疾病;
    (j)類早衰症;或
    (k)其任一組合。
  87. 如請求項85至86中任一項所述之載體系統、多肽或粒子,其中該負荷係N-嗎啉基、肽連接之N-嗎啉基、反義寡核苷酸、PMO、治療性轉基因、編碼治療性多肽或肽之多核苷酸、PPMO、一或多種肽、編碼CRISPR-Cas蛋白之一或多種多核苷酸、引導RNA或二者、核糖核蛋白,其中該核糖核蛋白包含CRISPR-Cas系統分子、治療性轉基因RNA、或其他基因修飾或治療性RNA及/或蛋白質、或其任一組合。
  88. 如請求項85至87中任一項所述之載體系統、多肽或粒子,其中該負荷能夠誘導基因中之外顯子跳躍。
  89. 如請求項85至88中任一項所述之載體系統、多肽或粒子,其中該負荷能夠誘導肌營養不良蛋白基因中之外顯子跳躍。
  90. 如請求項85至89中任一項所述之載體系統、多肽或粒子,其中該負荷係微小或微肌營養不良蛋白基因。
  91. 如請求項90所述之載體系統、多肽或粒子,其中該微小或微肌營養不良蛋白基因包含血影蛋白樣重複1、2、3及24以及視情況地nNOS結構域。
  92. 如請求項86至91中任一項所述之載體系統、多肽或粒子,其中該擴展重複疾病係亨丁頓氏症、肌強直性營養不良或面肩胛臂型肌營養不良(FSHD)。
  93. 如請求項86至92中任一項所述之載體系統、多肽或粒子,其中該肌營養不良係杜興氏肌營養不良、貝克氏肌營養不良、肢帶型肌營養不良、埃德二氏肌營養不良、肌強直性營養不良或FSHD。
  94. 如請求項93所述之載體系統、多肽或粒子,其中該肌強直性營養不良為1型或2型。
  95. 如請求項85至94中任一項所述之載體系統、多肽或粒子,其中該心肌病係擴張性心肌病、肥厚性心肌病、DMD相關之心肌病或達農病。
  96. 如請求項85至95中任一項所述之載體系統、多肽或粒子,其中該糖或肝糖儲積病係III型MPS疾病或龐貝氏病。
  97. 如請求項96所述之載體系統、多肽或粒子,其中該III型MPS疾病係IIIA型、IIIB型、IIIC型或IIID型MPS。
  98. 如請求項85至97中任一項所述所述之載體系統、多肽或粒子,其中該神經肌肉疾病係夏馬杜三氏病或弗氏共濟失調。
  99. 如請求項78至98中任一項之多肽或粒子,其中該多肽、該粒子或二者具有增加之肌肉細胞功效、肌肉細胞特異性、降低之免疫原性或其任一組合。
  100. 一種細胞,其包含:
    a.如請求項1至43中任一項所述之組合物;
    b.如請求項44至77及85至98中任一項所述之載體系統;
    c.如請求項81至84及85至99中任一項所述之多肽;
    d.如請求項81至99中任一項所述之粒子;或
    e.其組合。
  101. 如請求項100所述之細胞,其中該細胞為原核細胞。
  102. 如請求項100所述之細胞,其中該細胞為真核細胞。
  103. 一種醫藥調配物,其包含:
    a.如請求項1至43中任一項所述之組合物;
    b.如請求項44至77及85至98中任一項所述之載體系統;
    c.如請求項81至84及85至99中任一項所述之多肽;
    d.如請求項81至99中任一項所述之粒子;
    e.如請求項100至102中任一項所述之細胞;或
    f.其組合;及
    醫藥學上可接受之載劑。
  104. 一種方法,其包括:
    向有需要之個體投與
    a.如請求項1至43中任一項所述之組合物;
    b.如請求項44至77及85至98中任一項所述之載體系統;
    c.如請求項81至84及85至99中任一項所述之多肽;
    d.如請求項81至99中任一項所述之粒子;
    e.如請求項100至102中任一項所述之細胞;
    f.
    g.如請求項103所述之醫藥調配物;或
    h.其組合。
  105. 如請求項104所述之方法,其中該個體患有肌肉疾病或病症。
  106. 如請求項105所述之方法,其中該肌肉疾病或病症係
    a.自體免疫疾病;
    b.癌症;
    c.肌營養不良;
    d.神經肌肉疾病;
    e.糖或肝糖儲積病;
    f.擴展重複疾病;
    g.顯性負性疾病;
    h.心肌病;
    i.病毒性疾病;
    j.類早衰症;或
    k.其任一組合。
  107. 如請求項105所述之方法,其中該擴展重複疾病係亨丁頓氏症、肌強直性營養不良或面肩胛臂型肌營養不良(FSHD)。
  108. 如請求項105或106所述之方法,其中該肌營養不良係杜興氏肌營養不良、貝克氏肌營養不良、肢帶型肌營養不良、埃德二氏肌營養不良、肌強直性營養不良或FSHD。
  109. 如請求項107所述之方法,其中該肌強直性營養不良為1型或2型。
  110. 如請求項105至109中任一項所述之方法,其中該心肌病係擴張性心肌病、肥厚性心肌病、DMD相關之心肌病或達農病。
  111. 如請求項105或106所述之方法,其中該糖或肝糖儲積病係III型MPS疾病或龐貝氏病。
  112. 如請求項111所述之方法,其中該III型MPS疾病係IIIA型、IIIB型、IIIC型或IIID型MPS。
  113. 如請求項104至112中任一項所述之方法,其中該神經肌肉疾病係夏馬杜三氏病或弗氏共濟失調。
TW110126971A 2020-07-22 2021-07-22 經改造之肌肉靶向組合物 TW202217003A (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US202063055265P 2020-07-22 2020-07-22
US63/055,265 2020-07-22
US202063107394P 2020-10-29 2020-10-29
US63/107,394 2020-10-29
US202163183038P 2021-05-02 2021-05-02
US63/183,038 2021-05-02

Publications (1)

Publication Number Publication Date
TW202217003A true TW202217003A (zh) 2022-05-01

Family

ID=79728337

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110126971A TW202217003A (zh) 2020-07-22 2021-07-22 經改造之肌肉靶向組合物

Country Status (13)

Country Link
EP (1) EP4185702A1 (zh)
JP (1) JP2023534999A (zh)
KR (1) KR20230053591A (zh)
CN (1) CN116194153A (zh)
AU (1) AU2021314256A1 (zh)
BR (1) BR112023000909A2 (zh)
CA (1) CA3183530A1 (zh)
CL (1) CL2023000204A1 (zh)
CO (1) CO2023000866A2 (zh)
IL (1) IL299431A (zh)
MX (1) MX2023000998A (zh)
TW (1) TW202217003A (zh)
WO (1) WO2022020616A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3216419A1 (en) * 2021-04-23 2022-10-27 Greg NACHTRAB Tissue-targeted modified aav capsids and methods of use thereof
CA3230479A1 (en) * 2021-08-05 2023-02-09 Pardis SABETI Engineered muscle targeting compositions
WO2023060113A1 (en) 2021-10-05 2023-04-13 Regenxbio Inc. Compositions and methods for recombinant aav production
WO2023178220A1 (en) 2022-03-16 2023-09-21 Regenxbio Inc. Compositions and methods for recombinant aav production
WO2023196967A1 (en) * 2022-04-07 2023-10-12 Kate Therapeutics, Inc. Compositions and methods for muscle disorders
WO2023198828A1 (en) * 2022-04-13 2023-10-19 Universitat Autònoma De Barcelona Treatment of neuromuscular diseases via gene therapy that expresses klotho protein
WO2023237748A1 (en) * 2022-06-10 2023-12-14 Genethon Peptide-modified aav capsid with enhanced muscle transduction efficiency

Also Published As

Publication number Publication date
EP4185702A1 (en) 2023-05-31
BR112023000909A2 (pt) 2023-03-28
CN116194153A (zh) 2023-05-30
MX2023000998A (es) 2023-03-01
CO2023000866A2 (es) 2023-02-16
CA3183530A1 (en) 2022-01-27
JP2023534999A (ja) 2023-08-15
WO2022020616A1 (en) 2022-01-27
KR20230053591A (ko) 2023-04-21
AU2021314256A1 (en) 2023-02-16
CL2023000204A1 (es) 2023-08-11
IL299431A (en) 2023-02-01

Similar Documents

Publication Publication Date Title
TW202217003A (zh) 經改造之肌肉靶向組合物
JP2022551986A (ja) 修飾筋肉標的化組成物
EP3237615B2 (en) Crispr having or associated with destabilization domains
US20210222164A1 (en) Crispr-cas systems having destabilization domain
US20200340012A1 (en) Crispr-cas genome engineering via a modular aav delivery system
US20170349894A1 (en) Escorted and functionalized guides for crispr-cas systems
CA3026112A1 (en) Cpf1 complexes with reduced indel activity
EP3230451A1 (en) Protected guide rnas (pgrnas)
JP2022547570A (ja) 操作済みのアデノ随伴ウイルスキャプシド
US20230193316A1 (en) Engineered central nervous system compositions
US20240084330A1 (en) Compositions and methods for delivering cargo to a target cell
WO2019010091A1 (en) METHODS AND COMPOSITIONS FOR FACILITATING HOMOLOGOUS RECOMBINATION
WO2023004367A9 (en) Engineered targeting compositions for endothelial cells of the central nervous system vasculature and methods of use thereof
AU2022324116A1 (en) Engineered muscle targeting compositions
CN118076743A (zh) 工程化肌肉靶向组合物
WO2020041380A1 (en) Methods and compositions for optochemical control of crispr-cas9
WO2024035900A2 (en) Methods and compositions for transducing hematopoietic cells
WO2023133425A1 (en) Compositions and methods for delivering cargo to a target cell
WO2024006988A2 (en) Engineered delivery vesicles and uses thereof
WO2023039480A2 (en) Engineered central nervous system compositions
WO2024016003A2 (en) Aav capsids that enable cns-wide gene delivery through interactions with the transferrin receptor
WO2023039476A1 (en) Engineered muscle and central nervous system compositions
AU2022360985A1 (en) Engineered cardiac muscle compositions