JP7067293B2 - Hydrogen supply system - Google Patents

Hydrogen supply system Download PDF

Info

Publication number
JP7067293B2
JP7067293B2 JP2018111629A JP2018111629A JP7067293B2 JP 7067293 B2 JP7067293 B2 JP 7067293B2 JP 2018111629 A JP2018111629 A JP 2018111629A JP 2018111629 A JP2018111629 A JP 2018111629A JP 7067293 B2 JP7067293 B2 JP 7067293B2
Authority
JP
Japan
Prior art keywords
hydrogen
flow path
abnormality
branch
supply system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018111629A
Other languages
Japanese (ja)
Other versions
JP2019214487A (en
Inventor
俊行 近藤
正之介 周布
健太郎 音窪
慎治 佐々
広樹 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018111629A priority Critical patent/JP7067293B2/en
Publication of JP2019214487A publication Critical patent/JP2019214487A/en
Application granted granted Critical
Publication of JP7067293B2 publication Critical patent/JP7067293B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Description

本発明は、水素供給システムに関する。 The present invention relates to a hydrogen supply system.

燃料電池等の発電に用いられる燃料や、工業用原料として、水素の需要が高まっている。水素製造装置等で製造された水素は、燃料電池車両等の水素消費装置へと供給される。特許文献1では、水素供給用の配管ネットワークに、水素製造装置や水素消費装置等がそれぞれ分岐管を介して連通している。 Demand for hydrogen is increasing as a fuel used for power generation such as fuel cells and as an industrial raw material. Hydrogen produced by a hydrogen production device or the like is supplied to a hydrogen consumption device such as a fuel cell vehicle. In Patent Document 1, a hydrogen production device, a hydrogen consumption device, and the like are communicated to a piping network for hydrogen supply via branch pipes, respectively.

特開2002-372199号公報Japanese Patent Application Laid-Open No. 2002-372199

配管ネットワークを流通する水素には、水素製造装置の不具合等に起因して、不純物が含まれるおそれがある。このような場合、特許文献1に記載の技術では、配管ネットワークの全域において水素供給を遮断する必要があり、水素の供給が停止するという問題があった。このような問題は、不純物が含まれた場合に限らず、水素濃度が低下した場合等、水素供給システムを構成する流路において任意の異常が発生した場合に共通する問題であった。このため、水素供給システムを構成する流路において異常が発生した場合に、水素供給システムにおける水素の流路の全域における水素の供給停止を抑制できる技術が求められていた。 Hydrogen circulating in the piping network may contain impurities due to a malfunction of the hydrogen production device or the like. In such a case, in the technique described in Patent Document 1, it is necessary to cut off the hydrogen supply in the entire area of the piping network, and there is a problem that the hydrogen supply is stopped. Such a problem is not limited to the case where impurities are contained, but is a common problem when an arbitrary abnormality occurs in the flow path constituting the hydrogen supply system, such as when the hydrogen concentration decreases. For this reason, there has been a demand for a technique capable of suppressing the stoppage of hydrogen supply in the entire hydrogen flow path in the hydrogen supply system when an abnormality occurs in the flow path constituting the hydrogen supply system.

本発明は、以下の形態として実現することが可能である。
[形態1]
複数の水素供給装置から供給される水素を1又は複数の水素消費装置へと流通させる水素供給システムであって、環状に配置され、水素を流通させる水素流路と、前記水素流路と連通し、前記水素流路に設けられた複数の分岐点から分岐して前記複数の水素供給装置および前記1または複数の水素消費装置のうちの互いに異なる少なくとも1つの装置とそれぞれ接続される複数の分岐流路と、前記水素流路において、互いに隣り合う2つの前記分岐点の間に配置され、前記水素の異常を検出する水素異常検出装置と、前記水素流路において前記分岐点を挟んで配置された複数の遮断部であって、それぞれ独立して前記水素流路を遮断可能に構成された遮断部と、を備える、水素供給システム。
The present invention can be realized as the following forms.
[Form 1]
It is a hydrogen supply system that distributes hydrogen supplied from a plurality of hydrogen supply devices to one or a plurality of hydrogen consumption devices, and is arranged in a ring shape and communicates with a hydrogen flow path for circulating hydrogen and the hydrogen flow path. , A plurality of branch streams branched from a plurality of branch points provided in the hydrogen flow path and connected to at least one of the plurality of hydrogen supply devices and the one or the plurality of hydrogen consuming devices which are different from each other. A hydrogen abnormality detecting device, which is arranged between two branch points adjacent to each other in the path and the hydrogen flow path and detects the hydrogen abnormality, and the hydrogen flow path sandwiching the branch point are arranged. A hydrogen supply system including a plurality of blocking portions, each of which is configured to be capable of blocking the hydrogen flow path independently.

本発明の一形態によれば、水素供給システムが提供される。この水素供給システムは、環状に配置され、水素を流通させる水素流路と;前記水素流路と連通し、前記水素流路に設けられた複数の分岐点から分岐する複数の分岐流路と;前記水素流路において、互いに隣り合う2つの前記分岐点の間に配置され、前記水素の異常を検出する水素異常検出装置と;前記水素流路において前記分岐点を挟んで配置された複数の遮断部であって、それぞれ独立して前記水素流路を遮断可能に構成された遮断部と;を備える。この形態の水素供給システムによれば、複数の分岐流路が分岐する環状の水素流路において、互いに隣り合う2つの分岐点の間に配置された水素異常検出装置と、分岐点を挟んで配置された複数の遮断部であってそれぞれ独立して水素流路を遮断可能に構成された遮断部とを備えるので、水素異常検出装置により異常が検出された場合に、異常を検出した水素異常検出装置の近傍の一部の遮断部のみに水素流路の遮断を実行させることができる。このため、水素流路のうち遮断を実行していない遮断部を含む流路部分において、水素の流通を継続できる。したがって、水素供給システムを構成する流路としての水素流路において異常が発生した場合に、水素供給システムにおける水素の流路の全域における水素の供給停止を抑制できる。
本発明は、水素供給システム以外の種々の形態で実現することも可能である。例えば、水素供給方法、水素供給システムを備える水素ステーション等の形態で実現することができる。
According to one embodiment of the invention, a hydrogen supply system is provided. This hydrogen supply system is arranged in a ring shape and has a hydrogen flow path through which hydrogen flows; and a plurality of branch flow paths that communicate with the hydrogen flow path and branch from a plurality of branch points provided in the hydrogen flow path; A hydrogen abnormality detection device arranged between two branch points adjacent to each other in the hydrogen flow path to detect the hydrogen abnormality; and a plurality of cutoffs arranged across the branch point in the hydrogen flow path. It is provided with a blocking unit, which is configured to be capable of blocking the hydrogen flow path independently of each other. According to this form of hydrogen supply system, in an annular hydrogen flow path in which a plurality of branch flow paths branch, a hydrogen anomaly detection device arranged between two branch points adjacent to each other and a branch point are arranged across the branch point. Since it is provided with a plurality of cut-off parts that are configured to be able to cut off the hydrogen flow path independently, when an abnormality is detected by the hydrogen abnormality detection device, the hydrogen abnormality detection that detects the abnormality is provided. It is possible to cut off the hydrogen flow path only in a part of the cutoffs in the vicinity of the device. Therefore, it is possible to continue the flow of hydrogen in the channel portion of the hydrogen channel including the blocking portion that has not been interrupted. Therefore, when an abnormality occurs in the hydrogen flow path as the flow path constituting the hydrogen supply system, it is possible to suppress the stoppage of hydrogen supply in the entire hydrogen flow path in the hydrogen supply system.
The present invention can also be realized in various forms other than the hydrogen supply system. For example, it can be realized in the form of a hydrogen supply method, a hydrogen station provided with a hydrogen supply system, or the like.

水素供給システムの概要を模式的に示す模式図である。It is a schematic diagram which shows the outline of a hydrogen supply system schematically. 異常が検出された状況の一例を説明する説明図である。It is explanatory drawing explaining an example of the situation where an abnormality was detected. 第2実施形態の水素供給システムの概要を模式的に示す模式図である。It is a schematic diagram which shows the outline of the hydrogen supply system of 2nd Embodiment schematically. 第3実施形態の水素供給システムの概要を模式的に示す模式図である。It is a schematic diagram which shows the outline of the hydrogen supply system of 3rd Embodiment schematically.

A.第1実施形態:
図1は、本発明の一実施形態としての水素供給システムの概要を模式的に示す模式図である。水素供給システム10は、水素供給装置61、62から供給される水素を、水素消費装置70へと流通させるネットワークとして構成されている。水素供給システム10は、水素供給システム10における水素の流路としての水素流路20および分岐流路30と、水素異常検出装置40と、遮断部50と、制御装置80とを備える。
A. First Embodiment:
FIG. 1 is a schematic diagram schematically showing an outline of a hydrogen supply system as an embodiment of the present invention. The hydrogen supply system 10 is configured as a network for distributing hydrogen supplied from the hydrogen supply devices 61 and 62 to the hydrogen consumption device 70. The hydrogen supply system 10 includes a hydrogen flow path 20 and a branch flow path 30 as hydrogen flow paths in the hydrogen supply system 10, a hydrogen abnormality detection device 40, a cutoff unit 50, and a control device 80.

水素流路20は、環状に配置されたパイプで構成され、水素を流通させる。水素流路20には、複数の分岐点25が設けられている。分岐流路30は、複数設けられており、分岐点25からそれぞれ分岐している。各分岐流路30は、パイプで構成され、水素流路20と連通するとともに、水素供給装置61、62または水素消費装置70と連通している。水素供給装置61、62には、水素を製造する水素製造装置と、製造された水素を貯蔵する水素貯蔵装置とが該当する。なお、水素供給装置61、62は、互いに同じ構成であってもよく、互いに異なる構成であってもよい。水素消費装置70には、工場や家庭に配置される燃料電池等の装置が該当する。水素消費装置70には、水素ステーション等に配置されて燃料電池車両等に水素を充填する水素充填装置が含まれていてもよい。 The hydrogen flow path 20 is composed of pipes arranged in an annular shape to circulate hydrogen. The hydrogen flow path 20 is provided with a plurality of branch points 25. A plurality of branch flow paths 30 are provided, and each branch is branched from the branch point 25. Each branch flow path 30 is composed of a pipe and communicates with the hydrogen flow path 20 and also communicates with the hydrogen supply devices 61 and 62 or the hydrogen consumption device 70. The hydrogen supply devices 61 and 62 correspond to a hydrogen production device for producing hydrogen and a hydrogen storage device for storing the produced hydrogen. The hydrogen supply devices 61 and 62 may have the same configuration or different configurations from each other. The hydrogen consuming device 70 corresponds to a device such as a fuel cell arranged in a factory or a home. The hydrogen consuming device 70 may include a hydrogen filling device arranged in a hydrogen station or the like to fill a fuel cell vehicle or the like with hydrogen.

図1では、図示の便宜上、水素流路20から分岐する6つの分岐流路30を代表して示しているが、分岐流路30の数は、6つに限らず任意の数であってもよい。また、図1では、図示の便宜上、各分岐流路30に連通する2つの水素供給装置61、62と4つの水素消費装置70とを示しているが、これらの数は、それぞれ2つや4つに限らず任意の数であってもよい。また、分岐流路30からさらに流路が分岐していてもよく、かかる分岐先に、他の水素供給装置61、62および水素消費装置70が接続されていてもよい。 In FIG. 1, for convenience of illustration, six branch flow paths 30 that branch from the hydrogen flow path 20 are represented, but the number of branch flow paths 30 is not limited to six and may be any number. good. Further, in FIG. 1, for convenience of illustration, two hydrogen supply devices 61 and 62 and four hydrogen consumption devices 70 communicating with each branch flow path 30 are shown, but the numbers thereof are two or four, respectively. The number is not limited to and may be any number. Further, the flow path may be further branched from the branch flow path 30, and other hydrogen supply devices 61, 62 and a hydrogen consumption device 70 may be connected to the branch destination.

水素異常検出装置40は、水素流路20上に複数配置され、水素流路20を流通する水素の異常を検出する。水素の異常としては、水素製造装置で水素を製造する際における空気、微粒子および水分等の不純物の混入や、水素製造装置の精製ユニットの不具合による水素の純度低下、水素流路20上に配置されて微粒子等を除去する図示しないフィルターの詰まり、水素流路20を構成するパイプの亀裂等に起因する水素の漏洩等が該当する。本実施形態では、互いに隣り合う2つの分岐点25の間に、それぞれ1つの水素異常検出装置40が配置されている。本実施形態において、水素異常検出装置40は、水素濃度センサで構成されている。なお、水素濃度センサに代えて圧力センサ等の、水素の異常を検出可能な任意のセンサにより構成されていてもよい。水素異常検出装置40は、センサの検出結果を示す出力信号を、制御装置80に送信する。 A plurality of hydrogen abnormality detecting devices 40 are arranged on the hydrogen flow path 20, and detect an abnormality of hydrogen flowing through the hydrogen flow path 20. As hydrogen abnormalities, impurities such as air, fine particles, and water are mixed in when hydrogen is produced by the hydrogen production apparatus, the purity of hydrogen is lowered due to a malfunction of the purification unit of the hydrogen production apparatus, and the hydrogen is arranged on the hydrogen flow path 20. This includes clogging of a filter (not shown) for removing fine particles and the like, leakage of hydrogen due to cracks in the pipe constituting the hydrogen flow path 20, and the like. In the present embodiment, one hydrogen anomaly detection device 40 is arranged between two branch points 25 adjacent to each other. In the present embodiment, the hydrogen abnormality detection device 40 is composed of a hydrogen concentration sensor. In addition, instead of the hydrogen concentration sensor, it may be configured by any sensor capable of detecting an abnormality in hydrogen, such as a pressure sensor. The hydrogen abnormality detection device 40 transmits an output signal indicating the detection result of the sensor to the control device 80.

遮断部50は、水素流路20上に複数配置され、それぞれ独立して水素流路20を遮断可能に構成されている。本実施形態では、各分岐点25と各水素異常検出装置40との間に、それぞれ1つの遮断部50が配置されている。このため、各分岐点25を挟んで複数の遮断部50が配置されている。本実施形態において、遮断部50は、電磁式のシャットオフバルブにより構成されているが、電磁式に代えて電動式等、水素流路20を遮断可能な任意の種類の遮断装置により構成されていてもよい。遮断部50は、水素の異常が検出されていない通常状態において開かれており、制御装置80からの閉指令に応じて閉じられる。 A plurality of blocking portions 50 are arranged on the hydrogen flow path 20, and each of them is configured to be able to cut off the hydrogen flow path 20 independently. In the present embodiment, one blocking unit 50 is arranged between each branch point 25 and each hydrogen abnormality detecting device 40. Therefore, a plurality of blocking portions 50 are arranged with each branch point 25 interposed therebetween. In the present embodiment, the blocking unit 50 is configured by an electromagnetic shut-off valve, but is configured by any kind of blocking device capable of blocking the hydrogen flow path 20, such as an electric type, instead of the electromagnetic type. You may. The blocking unit 50 is opened in a normal state in which an abnormality in hydrogen is not detected, and is closed in response to a closing command from the control device 80.

制御装置80は、CPUと記憶装置とを備えるコンピュータであり、電子制御ユニットとして構成されている。制御装置80は、各水素異常検出装置40からの出力信号を受信するとともに、遮断部50に閉指令の信号を送信する。これにより、制御装置80は、水素流路20の遮断を制御する。なお、制御装置80は、水素供給装置61、62および水素消費装置70と、それぞれ互いに通信できる構成であってもよい。また、制御装置80は、水素供給装置61、62としての水素製造装置における水素製造量の制御や、水素貯蔵装置における水素貯蔵量の制御等、水素供給システム10における水素の供給に関連する任意の制御を実行可能に構成されていてもよい。 The control device 80 is a computer including a CPU and a storage device, and is configured as an electronic control unit. The control device 80 receives the output signal from each hydrogen abnormality detection device 40 and transmits a closing command signal to the cutoff unit 50. As a result, the control device 80 controls the interruption of the hydrogen flow path 20. The control device 80 may be configured to be able to communicate with the hydrogen supply devices 61 and 62 and the hydrogen consumption device 70, respectively. Further, the control device 80 is arbitrary related to the supply of hydrogen in the hydrogen supply system 10, such as control of the hydrogen production amount in the hydrogen production device as the hydrogen supply devices 61 and 62, control of the hydrogen storage amount in the hydrogen storage device, and the like. It may be configured to be controllable.

図2は、異常が検出された状況の一例を説明する説明図である。図2に示す状況では、複数の水素異常検出装置40のうち、『異常検出』と記載された、互いに隣り合う2つの水素異常検出装置40において異常が検出されている。異常が検出された水素異常検出装置40は、水素の異常を示す信号を制御装置80に送信する。制御装置80は、水素の異常を示す信号を受信すると、かかる異常を示す信号が送信された水素異常検出装置40を挟んで隣り合う2つの遮断部50に対して、閉指令を示す信号を送信する。図2の例では、『閉』と記載された4つの遮断部50に対して閉指令を示す信号が送信され、かかる遮断部50が閉じられる。したがって、環状に配置された水素流路20のうち4つの遮断部50を含む領域における水素の流通が遮断されるとともに、かかる領域に含まれる分岐点25から分岐する分岐流路30における水素の流通が遮断される。また、環状に配置された水素流路20のうち、かかる4つの遮断部50の間を除く領域と、そこから分岐する全ての分岐流路30とにおいて、水素の流通が継続される。すなわち、図2において水素供給装置61に連通する分岐流路30と、かかる分岐流路30に隣接する水素流路20の一部とにおける水素の流通は、水素供給システム10のネットワークにおいて遮断されることとなるのに対し、水素流路20のうち遮断を実行していない遮断部50を含む流路部分において、水素の流通が継続される。図2に示す状況において、水素供給装置61は、例えば水素製造時に不純物が混入する等の不具合が発生することにより、異常の発生源となっている可能性がある。制御装置80と水素供給装置61とが通信可能な構成において、制御装置80は、水素供給装置61の点検を実施させる旨の指示を水素供給装置61に送信してもよい。 FIG. 2 is an explanatory diagram illustrating an example of a situation in which an abnormality is detected. In the situation shown in FIG. 2, among the plurality of hydrogen abnormality detecting devices 40, an abnormality is detected in two hydrogen abnormality detecting devices 40 adjacent to each other, which are described as “abnormality detection”. The hydrogen abnormality detection device 40 in which the abnormality is detected transmits a signal indicating the hydrogen abnormality to the control device 80. When the control device 80 receives the signal indicating the abnormality of hydrogen, the control device 80 transmits a signal indicating a closing command to two blocking units 50 adjacent to each other across the hydrogen abnormality detecting device 40 to which the signal indicating the abnormality is transmitted. do. In the example of FIG. 2, a signal indicating a closing command is transmitted to the four blocking units 50 described as “closed”, and the blocking unit 50 is closed. Therefore, the hydrogen flow in the region including the four blocking portions 50 of the annularly arranged hydrogen flow paths 20 is blocked, and the hydrogen flow in the branch flow path 30 branching from the branch point 25 included in the region. Is blocked. Further, in the hydrogen flow path 20 arranged in a ring shape, the hydrogen flow is continued in the region other than between the four blocking portions 50 and in all the branch flow paths 30 branched from the region. That is, in FIG. 2, the flow of hydrogen in the branch flow path 30 communicating with the hydrogen supply device 61 and a part of the hydrogen flow path 20 adjacent to the branch flow path 30 is cut off in the network of the hydrogen supply system 10. On the other hand, hydrogen flow is continued in the flow path portion of the hydrogen flow path 20 including the cutoff portion 50 that has not been cut off. In the situation shown in FIG. 2, the hydrogen supply device 61 may be a source of an abnormality due to a problem such as contamination of impurities during hydrogen production. In a configuration in which the control device 80 and the hydrogen supply device 61 can communicate with each other, the control device 80 may send an instruction to the hydrogen supply device 61 to carry out an inspection of the hydrogen supply device 61.

以上説明した本実施形態の水素供給システム10によれば、複数の分岐流路30が分岐する環状の水素流路20において、互いに隣り合う2つの分岐点25の間に配置された水素異常検出装置40と、分岐点25を挟んで配置された複数の遮断部50であってそれぞれ独立して水素流路20を遮断可能に構成された遮断部50とを備えるので、水素異常検出装置40により異常が検出された場合に、異常を検出した水素異常検出装置40の近傍の一部の遮断部50のみに水素流路20の遮断を実行させることができる。このため、水素流路20のうち遮断を実行していない遮断部50を含む流路部分において、水素の流通を継続できる。したがって、水素供給システム10を構成する流路としての水素流路20において異常が発生した場合に、水素供給システム10における水素の流路の全域における水素の供給停止を抑制できる。このため、水素の供給が完全に停止して水素を利用できなくなることを抑制でき、利用者の利便性の低下を抑制できる。また、異常が発生している流路における水素の流通を遮断するので、異常の発生範囲が拡大することを抑制できる。 According to the hydrogen supply system 10 of the present embodiment described above, the hydrogen abnormality detection device is arranged between two branch points 25 adjacent to each other in the annular hydrogen flow path 20 in which a plurality of branch flow paths 30 branch. Since the 40 is provided with a plurality of blocking portions 50 arranged so as to sandwich the branch point 25 and each of which is configured to be capable of blocking the hydrogen flow path 20 independently, an abnormality is caused by the hydrogen abnormality detecting device 40. When is detected, only a part of the blocking portions 50 in the vicinity of the hydrogen abnormality detecting device 40 that has detected the abnormality can be made to shut off the hydrogen flow path 20. Therefore, the hydrogen flow can be continued in the flow path portion of the hydrogen flow path 20 including the cutoff portion 50 that has not been cut off. Therefore, when an abnormality occurs in the hydrogen flow path 20 as the flow path constituting the hydrogen supply system 10, it is possible to suppress the stoppage of hydrogen supply in the entire hydrogen flow path in the hydrogen supply system 10. Therefore, it is possible to suppress that the supply of hydrogen is completely stopped and the hydrogen cannot be used, and it is possible to suppress the deterioration of the convenience of the user. In addition, since the flow of hydrogen in the flow path where the abnormality has occurred is blocked, it is possible to suppress the expansion of the range of occurrence of the abnormality.

また、分岐点25を挟んで複数の遮断部50が配置されているので、異常の発生源となる可能性のある水素供給装置61、62と連通する分岐流路30を含む流路を遮断できる。このため、水素供給を停止する領域を限定して、異常の発生範囲が拡大することをより抑制できる。また、各分岐点25と各水素異常検出装置40との間に、それぞれ1つの遮断部50が配置されているので、異常が検出された範囲のみにおいて水素流路20を遮断できる。このため、水素の流通を遮断する領域を限定でき、異常が検出されていない箇所において水素の流通が遮断されることを抑制でき、過度に広い範囲で水素の流通が遮断されることを抑制できる。 Further, since a plurality of blocking portions 50 are arranged with the branch point 25 interposed therebetween, it is possible to block the flow path including the branch flow path 30 communicating with the hydrogen supply devices 61 and 62 which may be a source of abnormality. .. Therefore, it is possible to limit the region where the hydrogen supply is stopped and further suppress the expansion of the range of occurrence of the abnormality. Further, since one blocking unit 50 is arranged between each branch point 25 and each hydrogen abnormality detecting device 40, the hydrogen flow path 20 can be blocked only in the range where the abnormality is detected. Therefore, the region where the hydrogen flow is blocked can be limited, the hydrogen flow can be suppressed from being blocked at a place where no abnormality is detected, and the hydrogen flow can be suppressed from being blocked in an excessively wide range. ..

また、水素流路20上の1つの水素異常検出装置40において水素の異常が検出された状況においては、かかる水素異常検出装置40の両側に配置された遮断部50を閉じることにより、異常が検出された範囲のみにおいて水素流路20を遮断できる。このため、水素の流通を遮断する領域を限定でき、分岐流路30における水素の流通が遮断されることを抑制できる。 Further, in a situation where a hydrogen abnormality is detected in one hydrogen abnormality detecting device 40 on the hydrogen flow path 20, the abnormality is detected by closing the blocking portions 50 arranged on both sides of the hydrogen abnormality detecting device 40. The hydrogen flow path 20 can be blocked only in the specified range. Therefore, the region where the flow of hydrogen is blocked can be limited, and the flow of hydrogen in the branch flow path 30 can be suppressed from being blocked.

また、複数の水素異常検出装置40と複数の遮断部50とが配置されているので、水素流路20における水素の漏洩検査の際に、検査箇所の両側に位置する遮断部50を閉じることによって、検査を実施する比較的狭い領域において水素流路20を遮断でき、検査を実施しない領域における水素の流通を継続できる。また、水素流路20上に配置されて微粒子等を除去するフィルターや、水素流路20を構成するパイプの一部を交換する際に、フィルターやパイプの両側に位置する遮断部50を閉じることによって、交換を実施する比較的狭い領域において水素流路20を遮断でき、交換を実施しない領域における水素の流通を継続できる。したがって、水素流路20の検査や保守を実施する場合においても、水素供給システム10を構成する流路の全域における水素の供給停止を抑制できる。 Further, since a plurality of hydrogen abnormality detecting devices 40 and a plurality of blocking units 50 are arranged, the blocking units 50 located on both sides of the inspection site are closed during the hydrogen leakage inspection in the hydrogen flow path 20. , The hydrogen flow path 20 can be blocked in a relatively narrow region where the inspection is carried out, and the hydrogen flow can be continued in the region where the inspection is not carried out. Further, when the filter arranged on the hydrogen flow path 20 to remove fine particles and the like and a part of the pipe constituting the hydrogen flow path 20 are replaced, the blocking portions 50 located on both sides of the filter and the pipe are closed. As a result, the hydrogen flow path 20 can be blocked in a relatively narrow region where the exchange is performed, and the hydrogen flow can be continued in the region where the exchange is not performed. Therefore, even when the hydrogen flow path 20 is inspected and maintained, it is possible to suppress the stoppage of hydrogen supply in the entire flow path constituting the hydrogen supply system 10.

B.第2実施形態:
図3は、第2実施形態の水素供給システム10aの概要を模式的に示す模式図である。第2実施形態の水素供給システム10aは、水素流路20において、互いに隣り合う2つの分岐点25の間に、それぞれ遮断部50が1つずつ配置されている点において、第1実施形態の水素供給システム10と異なる。その他の構成は第1実施形態と同じであるので、同一の構成には同一の符号を付し、それらの詳細な説明を省略する。
B. Second embodiment:
FIG. 3 is a schematic diagram schematically showing an outline of the hydrogen supply system 10a of the second embodiment. The hydrogen supply system 10a of the second embodiment is the hydrogen of the first embodiment in that in the hydrogen flow path 20, one cutoff portion 50 is arranged between two branch points 25 adjacent to each other. Different from the supply system 10. Since other configurations are the same as those of the first embodiment, the same configurations are designated by the same reference numerals, and detailed description thereof will be omitted.

図3に示す状況では、複数の水素異常検出装置40のうち、『異常検出』と記載された1つの水素異常検出装置40において異常が検出されている。異常が検出された水素異常検出装置40は、水素の異常を示す信号を制御装置80に送信する。制御装置80は、水素の異常を示す信号を受信すると、かかる異常を示す信号が送信された水素異常検出装置40を挟んで互いに隣り合う遮断部50に対して、閉指令を示す信号を送信する。図3の例では、『閉』と記載された2つの遮断部50に対して閉指令を示す信号が送信され、かかる遮断部50が閉じられる。したがって、環状に配置された水素流路20のうち2つの遮断部50を含む領域における水素の流通が遮断されるとともに、かかる領域に含まれる分岐点25から分岐する分岐流路30における水素の流通が遮断される。また、環状に配置された水素流路20のうち、かかる2つの遮断部50の間を除く領域と、そこから分岐する全ての分岐流路30とにおいて、水素の流通が継続される。すなわち、図3において水素供給装置61に連通する分岐流路30と、かかる分岐流路30に隣接する水素流路20の一部とにおける水素の流通は、水素供給システム10のネットワークにおいて遮断されることとなるのに対し、遮断を実行していない遮断部50を含む流路部分において、水素の流通が継続される。 In the situation shown in FIG. 3, among the plurality of hydrogen abnormality detecting devices 40, an abnormality is detected in one hydrogen abnormality detecting device 40 described as “abnormality detection”. The hydrogen abnormality detection device 40 in which the abnormality is detected transmits a signal indicating the hydrogen abnormality to the control device 80. When the control device 80 receives the signal indicating the abnormality of hydrogen, the control device 80 transmits a signal indicating a closing command to the blocking units 50 adjacent to each other across the hydrogen abnormality detecting device 40 to which the signal indicating the abnormality is transmitted. .. In the example of FIG. 3, a signal indicating a closing command is transmitted to the two blocking units 50 described as “closed”, and the blocking unit 50 is closed. Therefore, the hydrogen flow in the region including the two blocking portions 50 of the annularly arranged hydrogen flow paths 20 is blocked, and the hydrogen flow in the branch flow path 30 branching from the branch point 25 included in the region. Is blocked. Further, in the hydrogen flow path 20 arranged in a ring shape, the hydrogen flow is continued in the region other than between the two blocking portions 50 and in all the branch flow paths 30 branched from the region. That is, in FIG. 3, the flow of hydrogen in the branch flow path 30 communicating with the hydrogen supply device 61 and a part of the hydrogen flow path 20 adjacent to the branch flow path 30 is cut off in the network of the hydrogen supply system 10. On the other hand, the hydrogen flow is continued in the flow path portion including the blocking portion 50 in which the blocking is not executed.

以上説明した第2実施形態の水素供給システム10aによれば、第1実施形態の水素供給システム10と同様な効果を奏する。加えて、互いに隣り合う2つの分岐点25の間に、それぞれ遮断部50が1つずつ配置されているので、遮断部50の設置数を抑制できる。 According to the hydrogen supply system 10a of the second embodiment described above, the same effect as that of the hydrogen supply system 10 of the first embodiment is obtained. In addition, since one blocking section 50 is arranged between the two branch points 25 adjacent to each other, the number of blocking sections 50 installed can be suppressed.

C.第3実施形態:
図4は、第3実施形態の水素供給システム10bの概要を模式的に示す模式図である。第3実施形態の水素供給システム10bは、環状の水素流路20を囲むようにして、環状の水素流路21bがさらに配置されている点において、第1実施形態の水素供給システム10と異なる。その他の構成は第1実施形態と同じであるので、同一の構成には同一の符号を付し、それらの詳細な説明を省略する。
C. Third embodiment:
FIG. 4 is a schematic diagram schematically showing an outline of the hydrogen supply system 10b of the third embodiment. The hydrogen supply system 10b of the third embodiment is different from the hydrogen supply system 10 of the first embodiment in that the annular hydrogen flow path 21b is further arranged so as to surround the annular hydrogen flow path 20. Since other configurations are the same as those of the first embodiment, the same configurations are designated by the same reference numerals, and detailed description thereof will be omitted.

図4に示すように、水素供給システム10bは、2つの環状の水素流路20、21bによって、二重の環状のネットワークを備えている。複数の分岐流路30bは、水素流路20と水素流路21bとを連通させている。このため、各分岐流路30bの、分岐点25とは反対側の端部は、水素流路21bから水素流路20側に分岐する分岐点22bに位置している。また、水素流路21bには、分岐点22bとは異なる複数の分岐点23bが設けられており、複数の分岐点22bからは、分岐流路31bがそれぞれ分岐している。各分岐流路31bは、水素流路21bと連通するとともに、水素供給装置61、62または水素消費装置70と連通している。本実施形態において、水素流路21bには、互いに隣り合う2つの分岐点23bの間にそれぞれ1つの水素異常検出装置40が配置され、分岐点22bと分岐点23bとの間にそれぞれ1つの遮断部50が配置されている。 As shown in FIG. 4, the hydrogen supply system 10b includes a double annular network with two annular hydrogen channels 20, 21b. The plurality of branch flow paths 30b communicate the hydrogen flow path 20 and the hydrogen flow path 21b. Therefore, the end of each branch flow path 30b on the opposite side of the branch point 25 is located at the branch point 22b that branches from the hydrogen flow path 21b to the hydrogen flow path 20 side. Further, the hydrogen flow path 21b is provided with a plurality of branch points 23b different from the branch points 22b, and the branch flow paths 31b are branched from the plurality of branch points 22b. Each branch flow path 31b communicates with the hydrogen flow path 21b and also communicates with the hydrogen supply devices 61, 62 or the hydrogen consumption device 70. In the present embodiment, in the hydrogen flow path 21b, one hydrogen abnormality detection device 40 is arranged between two branch points 23b adjacent to each other, and one cutoff is provided between the branch point 22b and the branch point 23b. The unit 50 is arranged.

以上説明した第3実施形態の水素供給システム10bによれば、第1実施形態の水素供給システム10と同様な効果を奏する。加えて、2つの環状の水素流路20、21bによる二重の環状のネットワークを備えるので、異常を検出した水素異常検出装置40の近傍の一部の遮断部50のみに水素流路20または水素流路21bの遮断を実行させることができる。このため、遮断を実行していない遮断部50を含む流路部分において、水素の流通を継続できる。したがって、水素供給システム10を構成する流路の全域における水素の供給停止をより抑制できる。また、2つの環状の水素流路20、21bによる二重の環状のネットワークを備えるので、水素流路20、21bを、例えば、低圧水素用と高圧水素用等、流通させる水素の種類に応じて使い分けることができる。 According to the hydrogen supply system 10b of the third embodiment described above, the same effect as that of the hydrogen supply system 10 of the first embodiment is obtained. In addition, since it is provided with a double annular network consisting of two annular hydrogen channels 20 and 21b, the hydrogen channel 20 or hydrogen is provided only in a part of the cutoff portion 50 in the vicinity of the hydrogen anomaly detection device 40 that has detected an abnormality. The flow path 21b can be shut off. Therefore, the flow of hydrogen can be continued in the flow path portion including the cutoff portion 50 that has not been cut off. Therefore, it is possible to further suppress the stoppage of hydrogen supply in the entire flow path constituting the hydrogen supply system 10. Further, since a double annular network consisting of two annular hydrogen channels 20 and 21b is provided, the hydrogen channels 20 and 21b are distributed according to the type of hydrogen to be circulated, for example, for low-pressure hydrogen and high-pressure hydrogen. You can use it properly.

D.他の実施形態:
(1)上記実施形態の水素供給システム10、10a、10bにおいて、各分岐流路30、31bは、水素供給装置61、62と水素消費装置70とのうちのいずれか一方と接続されていたが、水素供給装置61、62と水素消費装置70との両方と接続された態様であってもよい。かかる態様によれば、例えば、水素供給装置61、62から供給される水素を、同じ分岐流路30、31bに接続された水素消費装置70に供給できるとともに、分岐流路30、31bおよび水素流路20、21bを介して他の分岐流路30、31bに接続された水素消費装置70に供給できる。かかる構成によっても、上記実施形態と同様な効果を奏する。
D. Other embodiments:
(1) In the hydrogen supply systems 10, 10a and 10b of the above embodiment, the branch flow paths 30 and 31b are connected to either one of the hydrogen supply devices 61 and 62 and the hydrogen consumption device 70. , The mode may be connected to both the hydrogen supply devices 61 and 62 and the hydrogen consumption device 70. According to such an embodiment, for example, hydrogen supplied from the hydrogen supply devices 61 and 62 can be supplied to the hydrogen consumption device 70 connected to the same branch flow paths 30 and 31b, and the branch flow paths 30 and 31b and the hydrogen flow can be supplied. It can be supplied to the hydrogen consuming device 70 connected to the other branch flow paths 30 and 31b via the paths 20 and 21b. Even with such a configuration, the same effect as that of the above embodiment can be obtained.

(2)上記実施形態の水素供給システム10、10a、10bにおける、水素異常検出装置40および遮断部50の配置位置は、あくまで一例であり、種々変更可能である。例えば、分岐点22b、23b、25上にさらに水素異常検出装置40が配置されていてもよい。また、例えば、分岐流路30、31b上にさらに水素異常検出装置40が配置されていてもよい。また、例えば、分岐流路30、31b上にさらに遮断部50が配置されていてもよい。このような構成によっても、上記実施形態と同様な効果を奏する。 (2) The arrangement positions of the hydrogen abnormality detecting device 40 and the blocking unit 50 in the hydrogen supply systems 10, 10a and 10b of the above embodiment are merely examples and can be changed in various ways. For example, the hydrogen abnormality detection device 40 may be further arranged on the branch points 22b, 23b, 25. Further, for example, the hydrogen abnormality detecting device 40 may be further arranged on the branch flow paths 30 and 31b. Further, for example, the blocking portion 50 may be further arranged on the branch flow paths 30 and 31b. Even with such a configuration, the same effect as that of the above embodiment can be obtained.

(3)上記実施形態の水素供給システム10、10a、10bに配置された遮断部50は、電磁式のシャットオフバルブにより構成されて制御装置80からの閉指令に応じて閉じられていたが、本発明はこれに限定されるものではない。例えば、手動式のシャットオフバルブにより構成されるとともに制御装置80が省略されて、作業者による手動操作により遮断部50が閉じられる構成であってもよい。かかる構成によっても、上記実施形態と同様な効果を奏する。 (3) The blocking unit 50 arranged in the hydrogen supply systems 10, 10a, and 10b of the above embodiment is composed of an electromagnetic shut-off valve and is closed in response to a closing command from the control device 80. The present invention is not limited to this. For example, it may be configured by a manual shut-off valve, the control device 80 may be omitted, and the shutoff unit 50 may be closed by a manual operation by an operator. Even with such a configuration, the same effect as that of the above embodiment can be obtained.

(4)第3実施形態の水素供給システム10bは、二重の環状のネットワークを備えていたが、二重に限らず三重等、任意の数の環状のネットワークを備えていてもよい。かかる構成によっても、上記実施形態と同様な効果を奏する。 (4) The hydrogen supply system 10b of the third embodiment is provided with a double annular network, but may be provided with an arbitrary number of annular networks such as not only double but also triple. Even with such a configuration, the same effect as that of the above embodiment can be obtained.

本発明は、上述の実施形態に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態中の技術的特徴は、上述の課題の一部又は全部を解決するために、あるいは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行なうことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。 The present invention is not limited to the above-described embodiment, and can be realized with various configurations within a range not deviating from the gist thereof. For example, the technical features in the embodiments corresponding to the technical features in each embodiment described in the column of the outline of the invention are for solving a part or all of the above-mentioned problems, or one of the above-mentioned effects. It is possible to replace or combine as appropriate to achieve the part or all. Further, if the technical feature is not described as essential in the present specification, it can be appropriately deleted.

10、10a、10b…水素供給システム、20、21b…水素流路、22b、23b、25…分岐点、30、30b、31b…分岐流路、40…水素異常検出装置、50…遮断部、61、62…水素供給装置、70…水素消費装置、80…制御装置 10, 10a, 10b ... Hydrogen supply system, 20, 21b ... Hydrogen flow path, 22b, 23b, 25 ... Branch point, 30, 30b, 31b ... Branch flow path, 40 ... Hydrogen abnormality detector, 50 ... Blocker, 61 , 62 ... Hydrogen supply device, 70 ... Hydrogen consumption device, 80 ... Control device

Claims (1)

複数の水素供給装置から供給される水素を1又は複数の水素消費装置へと流通させる水素供給システムであって、
環状に配置され、水素を流通させる水素流路と、
前記水素流路と連通し、前記水素流路に設けられた複数の分岐点から分岐して前記複数の水素供給装置および前記1または複数の水素消費装置のうちの互いに異なる少なくとも1つの装置とそれぞれ接続される複数の分岐流路と、
前記水素流路において、互いに隣り合う2つの前記分岐点の間に配置され、前記水素の異常を検出する水素異常検出装置と、
前記水素流路において前記分岐点を挟んで配置された複数の遮断部であって、それぞれ独立して前記水素流路を遮断可能に構成された遮断部と、
を備える、水素供給システム。
A hydrogen supply system that distributes hydrogen supplied from multiple hydrogen supply devices to one or more hydrogen consumption devices .
A hydrogen flow path that is arranged in a ring and distributes hydrogen,
Communicating with the hydrogen flow path, branching from a plurality of branch points provided in the hydrogen flow path, and at least one device different from each other among the plurality of hydrogen supply devices and the one or the plurality of hydrogen consumption devices, respectively. With multiple branch channels connected
In the hydrogen flow path, a hydrogen abnormality detecting device arranged between two branching points adjacent to each other and detecting the hydrogen abnormality, and a hydrogen abnormality detecting device.
A plurality of blocking portions arranged across the branch point in the hydrogen flow path, each of which is configured to be able to cut off the hydrogen flow path independently.
A hydrogen supply system.
JP2018111629A 2018-06-12 2018-06-12 Hydrogen supply system Active JP7067293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018111629A JP7067293B2 (en) 2018-06-12 2018-06-12 Hydrogen supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018111629A JP7067293B2 (en) 2018-06-12 2018-06-12 Hydrogen supply system

Publications (2)

Publication Number Publication Date
JP2019214487A JP2019214487A (en) 2019-12-19
JP7067293B2 true JP7067293B2 (en) 2022-05-16

Family

ID=68919406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018111629A Active JP7067293B2 (en) 2018-06-12 2018-06-12 Hydrogen supply system

Country Status (1)

Country Link
JP (1) JP7067293B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006147308A (en) 2004-11-18 2006-06-08 Kobe Steel Ltd Localized hydrogen supply/control system
US20070020173A1 (en) 2005-07-25 2007-01-25 Repasky John M Hydrogen distribution networks and related methods

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57137800A (en) * 1981-02-19 1982-08-25 Toshiba Corp Fluid supplying pipe network system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006147308A (en) 2004-11-18 2006-06-08 Kobe Steel Ltd Localized hydrogen supply/control system
US20070020173A1 (en) 2005-07-25 2007-01-25 Repasky John M Hydrogen distribution networks and related methods

Also Published As

Publication number Publication date
JP2019214487A (en) 2019-12-19

Similar Documents

Publication Publication Date Title
US9556966B2 (en) Gas supplying apparatus
JP5868219B2 (en) Fluid control device
JP2017002919A (en) Fluid Equipment
JP4235076B2 (en) Semiconductor manufacturing apparatus and semiconductor manufacturing method
JP6183971B2 (en) Apparatus for monitoring a valve and method of operating the same
JP7067293B2 (en) Hydrogen supply system
JP2023503783A (en) Manifold system for fluid delivery
JP6872608B2 (en) How to operate tank equipment
JP2016500139A (en) Shutoff rotary valve especially for gas turbine
JP4426491B2 (en) Method and apparatus for supplying seal gas or instrument air
US6021677A (en) Pipeline system for the controlled distribution of a flowing medium and method for operating such a pipeline system
JP4355724B2 (en) Gas integrated unit
CN113981162A (en) Leakage detection device for hot blast valve of closed soft water system
JP2000081200A (en) Gas feeding system
US20080173353A1 (en) Gas supply piping system and method for replacing purifier
JP2014152874A (en) Process gas diversion supply device
CN204611044U (en) A kind of redundancy solenoid valve system
KR20150081934A (en) Gas interface box for semiconductor and display manufacturing facilities
TWI710728B (en) Fluid supply system
CN220303439U (en) Tail gas treatment pipeline structure and treatment system with same
JP4437752B2 (en) Sealing oil supply device for rotating electrical machines
JP2017194070A (en) Pharmaceutical water supply device and method
JP7068197B2 (en) Gate valve for continuous toe processing
TW442632B (en) Device and method for preventing any gas supply system interruption
US10731569B2 (en) Systems and methods for injection of bio-diesel into a gas turbine combustor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220411

R151 Written notification of patent or utility model registration

Ref document number: 7067293

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151