JP7065437B2 - Manufacturing method of vacuum heat insulating material and vacuum heat insulating material - Google Patents

Manufacturing method of vacuum heat insulating material and vacuum heat insulating material Download PDF

Info

Publication number
JP7065437B2
JP7065437B2 JP2020521246A JP2020521246A JP7065437B2 JP 7065437 B2 JP7065437 B2 JP 7065437B2 JP 2020521246 A JP2020521246 A JP 2020521246A JP 2020521246 A JP2020521246 A JP 2020521246A JP 7065437 B2 JP7065437 B2 JP 7065437B2
Authority
JP
Japan
Prior art keywords
core material
heat insulating
vacuum heat
insulating material
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020521246A
Other languages
Japanese (ja)
Other versions
JPWO2019225592A1 (en
Inventor
洸紀 前嶋
謙次 井手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Publication of JPWO2019225592A1 publication Critical patent/JPWO2019225592A1/en
Application granted granted Critical
Publication of JP7065437B2 publication Critical patent/JP7065437B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/065Arrangements using an air layer or vacuum using vacuum

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Insulation (AREA)

Description

本発明は、芯材および真空断熱材に係り、特に、外被材により真空包装されて真空断熱材を形成するための芯材および真空断熱材に関する。 The present invention relates to the core material and the vacuum heat insulating material, and more particularly to the core material and the vacuum heat insulating material for vacuum packaging with the outer cover material to form the vacuum heat insulating material.

一般に、冷蔵庫や調理機器などの家電製品には、省エネルギ化が求められ、このような省エネルギ化に応えるため、家電製品の内部には、高性能な真空断熱材が使用されている。
このような真空断熱材として、従来、例えば、グラスウールからなる芯材2と、外被体としてのバリア材4とからなり、芯材2の一部を取り除いてこの芯材2に線状の薄肉部13を形成し、これにより、薄肉部13を利用して完成した真空断熱材1を容易に折曲げることができるようにした技術が開示されている(例えば、特許文献1参照)。
In general, home appliances such as refrigerators and cooking appliances are required to save energy, and in order to meet such energy saving, a high-performance vacuum heat insulating material is used inside the home appliances.
As such a vacuum heat insulating material, conventionally, for example, a core material 2 made of glass wool and a barrier material 4 as an outer cover are formed, and a part of the core material 2 is removed to form a linear thin wall on the core material 2. A technique is disclosed in which the portion 13 is formed so that the completed vacuum heat insulating material 1 can be easily bent by using the thin-walled portion 13 (see, for example, Patent Document 1).

特開2007-092776号公報JP-A-2007-092776

このような従来の技術においては、芯材に薄肉部を形成し、真空断熱材を折曲することができるようにしている。
しかしながら、真空断熱材の折曲とは別に、真空断熱材を凹凸形状を有する異形の筐体に配置する際、筐体形状に合わせて真空断熱材の一部に厚みが異なる部位を加工する必要がある場合がある。
In such a conventional technique, a thin wall portion is formed in the core material so that the vacuum heat insulating material can be bent.
However, apart from the bending of the vacuum heat insulating material, when arranging the vacuum heat insulating material in a deformed housing having an uneven shape, it is necessary to process a part of the vacuum heat insulating material having a different thickness according to the housing shape. There may be.

この場合に、芯材の一部に厚みが異なる部位を形成する際、真空包装前に芯材を形成した後に真空包装を施すが、図8に示すように、真空包装後の真空断熱材100は大気圧により応力を受けるため、厚みの薄い薄肉部201および段差部202の芯材101が変形してしまい、図8に破線で示す本来の設計形状と、芯材101の形状とが異なってしまうおそれがあるという問題がある。 In this case, when forming a portion having a different thickness in a part of the core material, vacuum packaging is performed after the core material is formed before vacuum packaging. As shown in FIG. 8, the vacuum heat insulating material 100 after vacuum packaging is performed. Is subjected to stress due to atmospheric pressure, so that the core material 101 of the thin-walled portion 201 and the stepped portion 202, which are thin in thickness, is deformed, and the original design shape shown by the broken line in FIG. 8 and the shape of the core material 101 are different. There is a problem that it may end up.

また、真空断熱材100を形成した後、プレス加工などにより薄肉部201を形成しようとすると、プレス加工により圧縮された箇所の芯材密度が、プレス加工を行わない箇所の芯材密度より高くなってしまう。このように芯材密度が均一でないと、密度の高い箇所の熱伝導率が上昇してしまい、真空断熱材100の断熱効果が低減してしまう。
さらに、真空包装後に圧縮加工をした場合、真空断熱材の体積が小さくなるため、内部圧力が上昇し、真空断熱材100全体の熱伝導率が上昇してしまう。
Further, when the thin wall portion 201 is to be formed by press working after forming the vacuum heat insulating material 100, the core material density of the portion compressed by the press working becomes higher than the core material density of the portion not pressed. It will end up. If the core material density is not uniform as described above, the thermal conductivity of the high-density portion increases, and the heat insulating effect of the vacuum heat insulating material 100 is reduced.
Further, when the vacuum heat insulating material is subjected to compression processing after vacuum packaging, the volume of the vacuum heat insulating material becomes small, so that the internal pressure rises and the thermal conductivity of the entire vacuum heat insulating material 100 increases.

本発明は、前記した事情に鑑みてなされたものであり、真空包装時おける芯材の変形を防止することができ、真空包装前の芯材形状を保持したまま真空包装することのできる芯材および真空断熱材を提供することを目的とするものである。 The present invention has been made in view of the above circumstances, and it is possible to prevent the core material from being deformed during vacuum packaging, and the core material can be vacuum-packed while maintaining the shape of the core material before vacuum packaging. And is intended to provide vacuum heat insulating materials.

前記目的を達成するため、本発明は、真空包装後の芯材における1つの面は第1の面と、前記第1の面と高さの異なる第2の面と、前記第1の面と前記第2の面とを傾斜して結ぶように形成された第3の面と、を備え、前記芯材における前記第1の面かつ前記第2の面と反対側の面は1つの平面からなり、前記第1の面、前記第2の面および前記第3の面における前記芯材の密度が均一であることを特徴とする。
In order to achieve the above object, in the present invention, one surface of the core material after vacuum packaging is a first surface, a second surface having a height different from that of the first surface, and the first surface. A third surface formed so as to slop and connect the second surface and the second surface, and the first surface and the surface opposite to the second surface of the core material are one. It is composed of a flat surface, and is characterized in that the density of the core material on the first surface, the second surface, and the third surface is uniform .

これによれば、芯材の少なくとも1つの面に、第1の面と第2の面を傾斜した結ぶ第3の面を形成しているので、真空包装を行う際における大気圧による応力が、第3の面により分散されることになり、応力が厚み方向に集中的に働くことによる変形を防止することができる。
なお、この明細書には、2018年5月21日付けで日本国に出願された日本国特許出願・特願2018-096943のすべての内容が含まれる。
According to this, since the third surface connecting the first surface and the second surface in an inclined manner is formed on at least one surface of the core material, the stress due to the atmospheric pressure during vacuum packaging is increased. It will be dispersed by the third surface, and it is possible to prevent deformation due to the stress acting intensively in the thickness direction.
This specification includes all the contents of the Japanese patent application and Japanese Patent Application No. 2018-096943 filed in Japan on May 21, 2018.

本発明によれば、芯材に対して真空包装を行う際における大気圧による応力が、第3の面により分散されることになり、応力が厚み方向に集中的に働くことによる変形を防止することが可能となる。その結果、設計当初の形状を維持した状態の真空断熱材を得ることができる。 According to the present invention, the stress due to atmospheric pressure when vacuum-packing the core material is dispersed by the third surface, and deformation due to the stress acting intensively in the thickness direction is prevented. It becomes possible. As a result, it is possible to obtain the vacuum heat insulating material in a state where the original shape of the design is maintained.

図1は、本発明の実施の形態に係る芯材を適用した真空断熱材を示す概略斜視図。FIG. 1 is a schematic perspective view showing a vacuum heat insulating material to which the core material according to the embodiment of the present invention is applied. 図2は、本実施の形態の芯材を示す概略斜視図。FIG. 2 is a schematic perspective view showing the core material of the present embodiment. 図3は、本実施の形態の芯材の形成手段を示す説明図。FIG. 3 is an explanatory diagram showing a means for forming a core material according to the present embodiment. 図4は、本実施の形態の芯材の他の形成手段を示す説明図。FIG. 4 is an explanatory diagram showing another means for forming the core material of the present embodiment. 図5は、本実施の形態の芯材の他の形成手段を示す説明図。FIG. 5 is an explanatory diagram showing another means for forming the core material of the present embodiment. 図6は、本実施の形態の芯材の他の形成手段を示す説明図。FIG. 6 is an explanatory diagram showing another means for forming the core material of the present embodiment. 図7は、本実施の形態の真空断熱材の製造方法を示す説明図。FIG. 7 is an explanatory diagram showing a method of manufacturing the vacuum heat insulating material according to the present embodiment. 図8は、従来の真空断熱材の一部に傾斜部を設けずに薄肉部を形成し、真空包装を行った場合の例を示す概略斜視図。FIG. 8 is a schematic perspective view showing an example in which a thin-walled portion is formed without providing an inclined portion in a part of the conventional vacuum heat insulating material and vacuum packaging is performed.

第1の発明は、真空断熱材用の芯材であって、真空包装前の前記芯材の少なくとも1つの面は、第1の面と、前記第1の面と高さの異なる第2の面と、前記第1の面と前記第2の面とを傾斜して結ぶように形成された第3の面と、を備えている。
これによれば、芯材の少なくとも1つの面に、第1の面と第2の面を傾斜した結ぶ第3の面を形成しているので、真空包装を行う際における大気圧による応力が、第3の面により分散されることになり、応力が厚み方向に集中的に働くことによる変形を防止することが可能となる。これにより、設計当初の形状を維持した状態の真空断熱材を得ることができる。
The first invention is a core material for a vacuum heat insulating material, wherein at least one surface of the core material before vacuum packaging has a first surface and a second surface having a height different from that of the first surface. It includes a surface and a third surface formed so as to connect the first surface and the second surface in an inclined manner.
According to this, since the third surface connecting the first surface and the second surface in an inclined manner is formed on at least one surface of the core material, the stress due to the atmospheric pressure during vacuum packaging is increased. It will be dispersed by the third surface, and it will be possible to prevent deformation due to the stress acting intensively in the thickness direction. This makes it possible to obtain the vacuum heat insulating material in a state where the original shape of the design is maintained.

第2の発明は、前記芯材の前記第3の面は、平面状に傾斜している。
これによれば、平面状に傾斜した第3の面を形成することにより、真空包装を行う際における大気圧による応力が、第3の面により分散されることになり、応力が厚み方向に集中的に働くことによる変形を防止することが可能となる。
In the second invention, the third surface of the core material is inclined in a plane.
According to this, by forming the third surface inclined in a plane, the stress due to the atmospheric pressure in vacuum packaging is dispersed by the third surface, and the stress is concentrated in the thickness direction. It is possible to prevent deformation due to working in a positive manner.

第3の発明は、前記芯材の前記第3の面は、階段状に傾斜して形成されている。
これによれば、階段状に傾斜した第3の面を形成することにより、真空包装を行う際における大気圧による応力が、第3の面により分散されることになり、応力が厚み方向に集中的に働くことによる変形を防止することが可能となる。
In the third invention, the third surface of the core material is formed so as to be inclined stepwise.
According to this, by forming the third surface inclined in a stepped manner, the stress due to the atmospheric pressure in vacuum packaging is dispersed by the third surface, and the stress is concentrated in the thickness direction. It is possible to prevent deformation due to working on the surface.

第4の発明は、請求項1から請求項3のいずれか一項に記載の芯材を用いた真空断熱材である。
これによれば、芯材の少なくとも1つの面に、第1の面と第2の面を傾斜した結ぶ第3の面を形成しているので、真空包装を行う際における大気圧による応力が、第3の面により分散されることになり、応力が厚み方向に集中的に働くことによる変形を防止することが可能となる。これにより、設計当初の形状を維持した状態の真空断熱材を得ることができる。
The fourth invention is a vacuum heat insulating material using the core material according to any one of claims 1 to 3.
According to this, since the third surface connecting the first surface and the second surface in an inclined manner is formed on at least one surface of the core material, the stress due to the atmospheric pressure during vacuum packaging is increased. It will be dispersed by the third surface, and it will be possible to prevent deformation due to the stress acting intensively in the thickness direction. This makes it possible to obtain the vacuum heat insulating material in a state where the original shape of the design is maintained.

第5の発明は、真空包装後の芯材の少なくとも1つの面は、第1の面と、前記第1の面と高さの異なる第2の面と、前記第1の面と前記第2の面とを傾斜して結ぶように形成された第3の面と、を備え、前記第1の面、前記第2の面、前記第3の面における前記芯材の密度が均一である。
これによれば、従来のように、真空断熱材を製造した後、プレス加工を行って薄肉部を形成する場合と比較して、芯材の密度を均一にすることができ、設計通りの熱伝導率を確保することができ、真空断熱材の断熱効果を確保することができる。
In the fifth aspect of the invention, at least one surface of the core material after vacuum packaging is a first surface, a second surface having a height different from that of the first surface, the first surface and the second surface. A third surface formed so as to connect the surfaces with an inclination thereof is provided, and the density of the core material on the first surface, the second surface, and the third surface is uniform.
According to this, the density of the core material can be made uniform as compared with the case where the vacuum heat insulating material is manufactured and then pressed to form a thin wall portion as in the conventional case, and the heat as designed can be obtained. The conductivity can be secured, and the heat insulating effect of the vacuum heat insulating material can be secured.

以下、図面を参照して本発明の一実施の形態を説明する。
図1は、本実施の形態に係る芯材を適用した真空断熱材の概略斜視図である。図2は、芯材の概略斜視図である。
本実施の形態における真空断熱材1は、例えば、冷蔵庫や調理機器などに配設されるほぼ平板状の真空断熱材1である。
図1に示すように、真空断熱材1は、芯材10と、芯材10の外側を被覆する外被材20とを備えている。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic perspective view of the vacuum heat insulating material to which the core material according to the present embodiment is applied. FIG. 2 is a schematic perspective view of the core material.
The vacuum heat insulating material 1 in the present embodiment is, for example, a substantially flat vacuum heat insulating material 1 arranged in a refrigerator, a cooking device, or the like.
As shown in FIG. 1, the vacuum heat insulating material 1 includes a core material 10 and an outer cover material 20 that covers the outside of the core material 10.

芯材10は、例えば、弾性を有するグラスウールを積層してなる断熱体により構成されている。なお、芯材10に水分ならびに気体を吸着するデバイスを混入するようにしてもよい。
芯材10は、一面が平面状に形成されており、他面には、途中段差が形成される形状を有している。すなわち、芯材10の他面は、第1の面11と、第1の面11より高さが低く形成された第2の面12と、第1の面11と第2の面12とを傾斜して結ぶように形成された第3の面13と、を備えている。
本実施の形態においては、第3の面13は、平面状に形成されているが、平面状に限定されるものではなく、例えば、曲面状に形成するようにしてもよい。
なお、第3の面13は、第2の面12に対して小さい傾斜角で形成されているが、これに限定されるものではなく、90°以下であれば一定の効果が期待できる。
The core material 10 is composed of, for example, a heat insulating body made by laminating elastic glass wool. A device that adsorbs water and gas may be mixed in the core material 10.
The core material 10 has a shape in which one surface is formed in a planar shape and the other surface is formed with a step on the way. That is, the other surface of the core material 10 includes the first surface 11, the second surface 12 formed to be lower in height than the first surface 11, and the first surface 11 and the second surface 12. A third surface 13 formed so as to be inclined and connected is provided.
In the present embodiment, the third surface 13 is formed in a planar shape, but is not limited to a planar shape, and may be formed in a curved surface shape, for example.
The third surface 13 is formed with a small inclination angle with respect to the second surface 12, but the present invention is not limited to this, and a certain effect can be expected if the temperature is 90 ° or less.

次に、芯材10の形成方法について説明する。
図3から図6は、芯材10を形成する手段を示す説明図である。
第1の芯材形成手段としては、図3に示すように、芯材10は、直方体形状の第1の芯材10aと、第1の芯材10aより長さ寸法が短く形成され、一端部に第3の面13を形成してなる第2の芯材10bとを重ね合わせることで形成することができる。
Next, a method of forming the core material 10 will be described.
3 to 6 are explanatory views showing means for forming the core material 10.
As a first core material forming means, as shown in FIG. 3, the core material 10 is formed to have a rectangular parallelepiped shape of the first core material 10a and a length dimension shorter than that of the first core material 10a, and one end portion thereof. It can be formed by superimposing the second core material 10b formed on the third surface 13 on the surface.

第2の芯材形成手段としては、図4に示すように、芯材10は、直方体形状の第1の芯材10cと、第1の芯材10cより高さ寸法が低く形成された第2の芯材10dと、第1の芯材10cと第2の芯材10dとの間に、上面に第3の面13が形成された第3の芯材10eとを組み合わせることにより、形成することができる。 As a second core material forming means, as shown in FIG. 4, the core material 10 is formed with a rectangular parallelepiped first core material 10c and a second core material 10c having a height dimension lower than that of the first core material 10c. A third core material 10e having a third surface 13 formed on the upper surface thereof is combined between the core material 10d of No. 1 and the first core material 10c and the second core material 10d. Can be done.

また、第3の芯材形成手段としては、図5に示すように、芯材10は、直方体形状の芯材10の一部(図中破線部分)を切り取ることで、第1の面11、第2の面12および第3の面13を備えた芯材10を形成することができる。 Further, as a third core material forming means, as shown in FIG. 5, the core material 10 is formed by cutting a part of the rectangular parallelepiped core material 10 (broken line portion in the figure) to form the first surface 11. A core material 10 having a second surface 12 and a third surface 13 can be formed.

第4の芯材形成手段としては、図6に示すように、芯材10は、薄板状の芯材10を積層することにより、形成することができる。
なお、これらの芯材形成手段は、単に一例を示したものに過ぎず、他のいずれの手段により芯材10を形成するようにしてもよい。
As the fourth core material forming means, as shown in FIG. 6, the core material 10 can be formed by laminating the thin plate-shaped core material 10.
It should be noted that these core material forming means are merely examples, and the core material 10 may be formed by any other means.

芯材10の外周側には、外被材20が設けられている。外被材20としては、ガスバリア性を有し、かつ芯材10を収納して内部を真空に維持できれば、いずれの材料を用いてもよい。 An outer cover material 20 is provided on the outer peripheral side of the core material 10. As the outer cover material 20, any material may be used as long as it has a gas barrier property and can accommodate the core material 10 and maintain the inside in a vacuum.

図7は、真空断熱材1を製造する工程を示す説明図である。
真空断熱材1を製造する場合は、図7(a)に示すように、前述のように第1の面11、第2の面12および第3の面13が形成された芯材10を形成する。そして、図7(b)に示すように、芯材10の上下面を外被材20で被覆し、各外被材20を密着させた状態で、図7(c)に示すように、真空引きをして真空包装することにより、真空断熱材1を、製造することができる。
FIG. 7 is an explanatory diagram showing a process of manufacturing the vacuum heat insulating material 1.
When the vacuum heat insulating material 1 is manufactured, as shown in FIG. 7A, the core material 10 on which the first surface 11, the second surface 12 and the third surface 13 are formed is formed as described above. do. Then, as shown in FIG. 7 (b), the upper and lower surfaces of the core material 10 are covered with the outer cover material 20, and the outer cover materials 20 are in close contact with each other, and as shown in FIG. 7 (c), a vacuum is applied. The vacuum heat insulating material 1 can be manufactured by pulling and vacuum packaging.

次に、本実施の形態の作用について説明する。
芯材10の表面に外被材20を被覆して真空引きを行う際に、芯材10は、大気圧により応力を受ける。芯材10に段差部分が形成されている場合、大気圧による応力が、芯材10の段差付近に対して厚み方向すなわち第2の面12に対して90°をなす方向に集中的に働くと、芯材10の下面が大気圧および外被材20の張力により引っ張られて、芯材10の形状が変形することがある。
Next, the operation of this embodiment will be described.
When the surface of the core material 10 is coated with the outer cover material 20 and evacuated, the core material 10 is stressed by atmospheric pressure. When a stepped portion is formed in the core material 10, the stress due to atmospheric pressure works intensively in the thickness direction with respect to the vicinity of the stepped portion of the core material 10, that is, in the direction forming 90 ° with respect to the second surface 12. The lower surface of the core material 10 may be pulled by the atmospheric pressure and the tension of the outer cover material 20, and the shape of the core material 10 may be deformed.

本実施の形態においては、真空包装前に、芯材10の一面に、第1の面11と第2の面12を結ぶ傾斜した第3の面13をあらかじめ設けている。
そのため、真空包装を行う際に、大気圧により段差部分に応力が加わった場合、第3の面13に傾斜を形成することにより、大気圧による応力と、外被材20による張力が水平方向に向かうように分散されることになり、第2の面12に対して90°方向に働く応力を集中しにくくすることができる。
In the present embodiment, before vacuum packaging, an inclined third surface 13 connecting the first surface 11 and the second surface 12 is provided in advance on one surface of the core material 10.
Therefore, when stress is applied to the stepped portion due to atmospheric pressure during vacuum packaging, the stress due to atmospheric pressure and the tension due to the outer cover material 20 are horizontally formed by forming an inclination on the third surface 13. It will be dispersed so as to face, and it is possible to make it difficult to concentrate the stress acting in the 90 ° direction with respect to the second surface 12.

これにより、外被材20を芯材10に被覆して真空包装を行う際に、大気圧による応力が、第3の面13により段差付近に集中せずに、分散されることになり、応力が厚み方向に集中的に働くことによる変形を防止することが可能となる。これにより、設計当初の形状を維持した状態の真空断熱材1を得ることができる。
そのため、芯材10の密度が変化してしまうことがなく、設計通りの熱伝導率を確保することができ、真空断熱材1の断熱効果を確保することができる。
As a result, when the outer cover material 20 is covered with the core material 10 and vacuum packaging is performed, the stress due to the atmospheric pressure is dispersed by the third surface 13 without being concentrated in the vicinity of the step, and the stress. It is possible to prevent deformation due to concentrated work in the thickness direction. As a result, the vacuum heat insulating material 1 can be obtained in a state where the original shape of the design is maintained.
Therefore, the density of the core material 10 does not change, the thermal conductivity as designed can be ensured, and the heat insulating effect of the vacuum heat insulating material 1 can be ensured.

以上説明したように、本実施の形態においては、真空包装前の芯材10の少なくとも1つの面は、第1の面11と、第1の面11と高さの異なる第2の面12と、第1の面11と第2の面12とを傾斜して結ぶように形成された第3の面13と、を備えている。
これによれば、芯材10の少なくとも1つの面に、第1の面11と第2の面12を傾斜して結ぶ第3の面13を形成しているので、真空包装を行う際における大気圧による応力が、第3の面13により分散されることになり、応力が厚み方向に集中的に働くことによる変形を防止することが可能となる。これにより、設計当初の形状を維持した状態の真空断熱材1を得ることができる。
As described above, in the present embodiment, at least one surface of the core material 10 before vacuum packaging includes a first surface 11 and a second surface 12 having a height different from that of the first surface 11. , A third surface 13 formed so as to connect the first surface 11 and the second surface 12 in an inclined manner is provided.
According to this, since the third surface 13 that connects the first surface 11 and the second surface 12 in an inclined manner is formed on at least one surface of the core material 10, it is large in vacuum packaging. The stress due to atmospheric pressure is dispersed by the third surface 13, and it is possible to prevent deformation due to the stress acting intensively in the thickness direction. As a result, the vacuum heat insulating material 1 can be obtained in a state where the original shape of the design is maintained.

また、本実施の形態においては、芯材10の第3の面13は、平面状で傾斜している。
これによれば、平面状に傾斜した第3の面13を形成することにより、真空包装を行う際における大気圧による応力が、第3の面13により分散されることになり、応力が厚み方向に集中的に働くことによる変形を防止することが可能となる。
Further, in the present embodiment, the third surface 13 of the core material 10 is flat and inclined.
According to this, by forming the third surface 13 inclined in a plane shape, the stress due to the atmospheric pressure at the time of vacuum packaging is dispersed by the third surface 13, and the stress is distributed in the thickness direction. It is possible to prevent deformation due to intensive work.

また、本実施の形態においては、真空包装後の芯材10の少なくとも1つの面は、第1の面11と、第1の面11と高さの異なる第2の面12と、第1の面11と第2の面12とを傾斜して結ぶように形成された第3の面13と、を備え、第1の面11、第2の面12、第3の面13における芯材10の密度が均一である。
これによれば、従来のように、真空断熱材1を製造した後、プレス加工を行って薄肉部を形成する場合と比較して、芯材の密度を均一にすることができ、設計通りの熱伝導率を確保することができ、真空断熱材1の断熱効果を確保することができる。
Further, in the present embodiment, at least one surface of the core material 10 after vacuum packaging is a first surface 11, a second surface 12 having a height different from that of the first surface 11, and a first surface. A third surface 13 formed so as to connect the surface 11 and the second surface 12 in an inclined manner is provided, and the core material 10 on the first surface 11, the second surface 12, and the third surface 13 is provided. The density of is uniform.
According to this, the density of the core material can be made uniform as compared with the case where the vacuum heat insulating material 1 is manufactured and then pressed to form a thin wall portion as in the conventional case, as designed. The thermal conductivity can be secured, and the heat insulating effect of the vacuum heat insulating material 1 can be secured.

なお、本実施の形態は本発明を適用した一態様を示すものであって、本発明は前記実施の形態に限定されない。
例えば、本実施の形態では、第3の面13が、平面状の傾斜面である場合について説明したが、本発明はこれに限定されない。例えば、第3の面13は、階段状に傾斜して形成するようにしてもよい。
また、前記実施の形態においては、芯材10の一面に1つの第3の面13を形成した場合の例について説明したが、本発明は、これに限定されない。例えば、芯材10の一面に複数の第3の面13を形成するようにしてもよいし、芯材10の両面に1つまたは複数の第3の面13を形成するようにしてもよい。
It should be noted that the present embodiment shows one aspect to which the present invention is applied, and the present invention is not limited to the above-described embodiment.
For example, in the present embodiment, the case where the third surface 13 is a planar inclined surface has been described, but the present invention is not limited thereto. For example, the third surface 13 may be formed so as to be inclined in a stepped manner.
Further, in the above-described embodiment, an example in which one third surface 13 is formed on one surface of the core material 10 has been described, but the present invention is not limited thereto. For example, a plurality of third surfaces 13 may be formed on one surface of the core material 10, or one or a plurality of third surfaces 13 may be formed on both surfaces of the core material 10.

以上のように、本発明に係る芯材は、真空包装を行う際における大気圧による応力を第3の面により分散することができ、応力が厚み方向に集中的に働くことによる変形を防止することができる芯材として好適に利用可能である。 As described above, the core material according to the present invention can disperse the stress due to atmospheric pressure during vacuum packaging on the third surface, and prevents deformation due to the stress acting intensively in the thickness direction. It can be suitably used as a core material that can be used.

1 真空断熱材
10 芯材
11 第1の面
12 第2の面
13 第3の面
20 外被材
1 Vacuum heat insulating material 10 Core material 11 First surface 12 Second surface 13 Third surface 20 Outer cover material

Claims (2)

真空包装後の芯材における1つの面は第1の面と、前記第1の面と高さの異なる第2の面と、前記第1の面と前記第2の面とを傾斜して結ぶように形成された第3の面と、を備え、
前記芯材における前記第1の面かつ前記第2の面と反対側の面は1つの平面からなり、
前記第1の面、前記第2の面および前記第3の面における前記芯材の密度が均一であることを特徴とする真空断熱材
One surface of the core material after vacuum packaging is such that the first surface, the second surface having a height different from that of the first surface, and the first surface and the second surface are inclined. With a third surface formed to tie ,
The first surface of the core material and the surface opposite to the second surface are formed of one plane.
A vacuum heat insulating material characterized in that the density of the core material on the first surface, the second surface and the third surface is uniform .
芯材の少なくとも1つの面に、第1の面と、前記第1の面と高さが異なる第2の面と、前記第1の面と前記第2の面とを傾斜して結ぶように形成された第3の面と、を形成し、
前記第1の面および前記第2の面と反対側に1つの平面を形成する第1の工程と、
前記芯材を外被材で被覆する第2の工程と、
真空引きをして真空包装する第3の工程と、
を有することを特徴とする真空断熱材の製造方法。
The first surface, the second surface having a height different from that of the first surface, and the first surface and the second surface are connected to at least one surface of the core material in an inclined manner. With the formed third surface,
The first step of forming one plane on the first surface and the side opposite to the second surface,
The second step of covering the core material with the outer cover material and
The third process of evacuation and vacuum packaging,
A method for manufacturing a vacuum heat insulating material.
JP2020521246A 2018-05-21 2019-05-21 Manufacturing method of vacuum heat insulating material and vacuum heat insulating material Active JP7065437B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018096943 2018-05-21
JP2018096943 2018-05-21
PCT/JP2019/020072 WO2019225592A1 (en) 2018-05-21 2019-05-21 Core material and vacuum heat-insulating material

Publications (2)

Publication Number Publication Date
JPWO2019225592A1 JPWO2019225592A1 (en) 2021-05-27
JP7065437B2 true JP7065437B2 (en) 2022-05-12

Family

ID=68616977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020521246A Active JP7065437B2 (en) 2018-05-21 2019-05-21 Manufacturing method of vacuum heat insulating material and vacuum heat insulating material

Country Status (2)

Country Link
JP (1) JP7065437B2 (en)
WO (1) WO2019225592A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006189207A (en) 2005-01-07 2006-07-20 Hitachi Home & Life Solutions Inc Refrigerator
JP2012163138A (en) 2011-02-04 2012-08-30 Mitsubishi Electric Corp Vacuum thermal insulation material, and thermal insulation box
JP6123550B2 (en) 2013-07-30 2017-05-10 株式会社デンソー Drainage equipment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06123550A (en) * 1992-10-13 1994-05-06 Matsushita Refrig Co Ltd Pack of vacuum insulation material
JP5856091B2 (en) * 2013-01-30 2016-02-09 三菱電機株式会社 Heat insulation wall, refrigerator, equipment
JP6498097B2 (en) * 2015-10-21 2019-04-10 三菱電機株式会社 Vacuum heat insulating material, method for manufacturing vacuum heat insulating material, and heat insulation container

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006189207A (en) 2005-01-07 2006-07-20 Hitachi Home & Life Solutions Inc Refrigerator
JP2012163138A (en) 2011-02-04 2012-08-30 Mitsubishi Electric Corp Vacuum thermal insulation material, and thermal insulation box
JP6123550B2 (en) 2013-07-30 2017-05-10 株式会社デンソー Drainage equipment

Also Published As

Publication number Publication date
WO2019225592A1 (en) 2019-11-28
JPWO2019225592A1 (en) 2021-05-27

Similar Documents

Publication Publication Date Title
JP4861715B2 (en) Manufacturing method of vacuum insulation
JP6070269B2 (en) Insulation
US20110315351A1 (en) Vapor chamber having composite supporting structure
JP6594634B2 (en) Insulated container
JP7065437B2 (en) Manufacturing method of vacuum heat insulating material and vacuum heat insulating material
US20130092353A1 (en) Vapor chamber structure and method of manufacturing same
JP4829172B2 (en) Vacuum insulation panel
JP4415392B2 (en) Insulation manufacturing method
WO2019235448A1 (en) Vacuum heat-insulating material and heat-insulating box body using same
KR101450438B1 (en) A manufacturing methods of vacuum insulating panel
JP5969359B2 (en) Manufacturing method of vacuum insulation panel
JP2007092776A (en) Heat insulating material and its manufacturing method
JP4728845B2 (en) Pressure welded heat pipe and method for manufacturing the same
JP4742605B2 (en) Vacuum insulation material and manufacturing method thereof
JP2015148251A5 (en)
JP6917870B2 (en) Manufacturing method of vacuum heat insulating material and vacuum heat insulating material
JP4807334B2 (en) Vacuum insulation
JP5838629B2 (en) Vacuum heat insulating panel, vacuum heat insulating structure and heat insulating device
JP2004232735A (en) Evacuated heat insulating panel
CN220354841U (en) Heat insulation device for vacuum equipment
JP2014009723A (en) Heat insulating material and heating device including the same
JP5222218B2 (en) CORE MATERIAL, CORE MATERIAL MANUFACTURING METHOD, AND VACUUM DOUBLE STRUCTURE USING CORE MATERIAL
JP6109004B2 (en) Manufacturing method of vacuum insulation
JP2022040991A5 (en)
JP2006138336A (en) Vacuum heat insulation material

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE

Effective date: 20201124

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201124

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE

Effective date: 20201124

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220407

R151 Written notification of patent or utility model registration

Ref document number: 7065437

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151