JP6498097B2 - Vacuum heat insulating material, method for manufacturing vacuum heat insulating material, and heat insulation container - Google Patents

Vacuum heat insulating material, method for manufacturing vacuum heat insulating material, and heat insulation container Download PDF

Info

Publication number
JP6498097B2
JP6498097B2 JP2015207270A JP2015207270A JP6498097B2 JP 6498097 B2 JP6498097 B2 JP 6498097B2 JP 2015207270 A JP2015207270 A JP 2015207270A JP 2015207270 A JP2015207270 A JP 2015207270A JP 6498097 B2 JP6498097 B2 JP 6498097B2
Authority
JP
Japan
Prior art keywords
core material
heat insulating
partition film
core
jacket
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015207270A
Other languages
Japanese (ja)
Other versions
JP2017078479A (en
Inventor
俊雄 篠木
俊雄 篠木
慶和 矢次
慶和 矢次
俊圭 鈴木
俊圭 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2015207270A priority Critical patent/JP6498097B2/en
Publication of JP2017078479A publication Critical patent/JP2017078479A/en
Application granted granted Critical
Publication of JP6498097B2 publication Critical patent/JP6498097B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、貫通孔を設けた真空断熱材、真空断熱材の製造方法、及び真空断熱材を用いた保温容器に関する。   The present invention relates to a vacuum heat insulating material provided with a through hole, a method for manufacturing a vacuum heat insulating material, and a heat insulating container using the vacuum heat insulating material.

真空断熱材は、従来からのグラスウール断熱材などと比べて、熱伝導率が一桁以上小さくできる。そのため真空断熱材は、省エネルギー意識の向上とともに断熱材として広く使われるようになっているが、真空状態を保つために形状的な自由度が制限される。   The vacuum heat insulating material can reduce the thermal conductivity by an order of magnitude or more compared to conventional glass wool heat insulating materials. For this reason, the vacuum heat insulating material is widely used as a heat insulating material with an improvement in energy saving awareness, but the degree of freedom in shape is limited in order to maintain a vacuum state.

配管等の突起物となるものが多い冷熱機器等に使用するため、真空断熱材に貫通孔を設ける技術が提案されている。例えば特許文献1には、熱融着可能な芯材を用い、外被材の熱融着層と芯材とを加熱し、芯材の厚さ方向に連続して一体化した溶着部を形成し、この溶着部及び対面する外被材を貫通するようにして真空断熱材に貫通孔を設ける技術が提案されている。   A technique for providing a through hole in a vacuum heat insulating material has been proposed for use in a cooling / heating apparatus or the like that often has projections such as piping. For example, in Patent Document 1, a core material that can be heat-sealed is used, and the heat-sealing layer and the core material of the jacket material are heated to form a welded portion that is continuously integrated in the thickness direction of the core material. And the technique which provides a through-hole in a vacuum heat insulating material so that this welding part and the jacket material which faces may be penetrated is proposed.

特開2010−65711号公報JP 2010-65711 A

特許文献1に記載の貫通孔は、芯材を融点以上に加熱して、芯材を外被材に溶着させている。そのため、貫通孔周囲の芯材は固体物になる。固体物となった芯材部分は、他の芯材の部分とは異なって厚み方向に熱移動が大きくなるため、断熱性能自体を悪化させるなどの問題があった。   The through-hole described in Patent Document 1 heats the core material to the melting point or higher to weld the core material to the jacket material. Therefore, the core material around the through hole becomes a solid material. Unlike the other core material portions, the core material portion that has become a solid material has a problem in that the heat transfer performance is increased in the thickness direction, which deteriorates the heat insulation performance itself.

本発明は、上述のような問題点を解決するためになされたものであり、貫通孔を設けても断熱性能の悪化を抑制できるとともに、貫通孔周囲での良好なガスシール性を維持できて信頼性が高い真空断熱材、その真空断熱材の製造方法、及びその真空断熱材を用いた保温容器を提供することを目的とする。   The present invention has been made to solve the above-mentioned problems, and even if a through hole is provided, it is possible to suppress the deterioration of the heat insulating performance and maintain good gas sealability around the through hole. An object is to provide a highly reliable vacuum heat insulating material, a method for manufacturing the vacuum heat insulating material, and a heat insulating container using the vacuum heat insulating material.

本発明に係る真空断熱材は、繊維の積層体を有する芯材本体と前記芯材本体を貫通する芯材貫通部とを有する芯材と、前記芯材本体を覆う外被材と、前記芯材とともに前記外被材内に設置された仕切りフィルムと、前記芯材貫通部内で、前記仕切りフィルムと前記外被材とを貫通する外装貫通部と、前記芯材貫通部内で前記外被材と前記仕切りフィルムとがシールされた外装シール部とを備え、前記仕切りフィルムは、前記外装貫通部に対向した前記芯材の側面を覆い、その一部が前記外装シール部において前記外被材と融着し、融着していない他の一部が前記芯材貫通部を覆うように配置してある。 A vacuum heat insulating material according to the present invention includes a core material having a core material body having a laminated body of fibers and a core material penetrating portion penetrating the core material body, a jacket material covering the core material body, and the core A partition film installed in the jacket material together with a material, an exterior penetration portion that penetrates the partition film and the jacket material in the core material penetration portion, and the jacket material in the core material penetration portion An exterior seal portion sealed with the partition film, and the partition film covers a side surface of the core material facing the exterior penetration portion, and a part of the partition film melts with the jacket material in the exterior seal portion. The other part which is attached and not fused is arranged so as to cover the core material penetration part.

本発明に係る真空断熱材の製造方法は、繊維集合体で構成された芯材の平面に、前記芯材の芯材本体を貫通する芯材貫通部を設ける工程と、前記芯材貫通部内に前記芯材の側面を覆う仕切りフィルムを配設する工程と、前記芯材貫通部に前記仕切りフィルムを配設した前記芯材を外被材に挿入する工程と、前記外被材と前記仕切りフィルムとを熱融着させる工程と、熱融着させた前記外被材と前記仕切りフィルムとに、前記芯材貫通部を通る外装貫通部を打ち貫く工程と、を備える。 Manufacturing method of the vacuum heat insulating material according to the present invention, the plane of the core material made of a fiber aggregate, a step of providing the core material through portion that penetrates the core body of the core material, the core material through section A step of disposing a partition film covering a side surface of the core material, a step of inserting the core material in which the partition film is disposed in the core material penetrating portion into an outer cover material, and the outer cover material and the partition A step of thermally fusing the film, and a step of punching through the exterior penetration portion passing through the core material penetration portion in the jacket material and the partition film that have been thermally fused.

本発明に係る保温容器は、配管又は配線を有する保温体と、前記保温体を覆う上記の真空断熱材とを備え、前記配管又は前記配線は、前記芯材貫通部と前記外装貫通部とを介して前記真空断熱材を貫通する。   A heat insulating container according to the present invention includes a heat insulating body having a pipe or a wiring, and the vacuum heat insulating material that covers the heat insulating body, and the pipe or the wiring includes the core material penetrating portion and the exterior penetrating portion. Through the vacuum heat insulating material.

本発明によれば、仕切りフィルムによって、外被材と仕切りフィルムとを熱融着させた外装シール部から芯材を分離することができる。そのため、融着する際にも芯材の固体物化を抑制することができ、断熱性能の向上が図れる。また、シール層密着時に繊維由来のスローリークのパス発生が防止できる。さらに仕切りフィルム自体が薄膜で構成されることから、仕切りフィルムを経由した熱移動が抑制でき、断熱性能の更なる向上が図れる。   According to this invention, a core material can be isolate | separated from the exterior seal part which carried out the heat sealing | fusion of the jacket material and the partition film with the partition film. Therefore, the solidification of the core material can be suppressed even when fusing, and the heat insulation performance can be improved. Further, it is possible to prevent the occurrence of a slow leak path derived from the fibers when the seal layer is in close contact. Furthermore, since the partition film itself is composed of a thin film, heat transfer via the partition film can be suppressed, and the heat insulation performance can be further improved.

本発明の実施の形態1に係る真空断熱材に適用される基本構成を示す模式的な断面図である。It is typical sectional drawing which shows the basic composition applied to the vacuum heat insulating material which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る真空断熱材の構成を示す斜視図である。It is a perspective view which shows the structure of the vacuum heat insulating material which concerns on Embodiment 1 of this invention. 図2のA−A断面を示す模式的な断面図である。It is typical sectional drawing which shows the AA cross section of FIG. 本発明の実施の形態1に係わる仕切りフィルムの断面模式図である。It is a cross-sectional schematic diagram of the partition film concerning Embodiment 1 of this invention. 本発明の実施の形態1に係る真空断熱材の製造フロー図である。It is a manufacturing flowchart of the vacuum heat insulating material which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る真空断熱材の局所的な断面模式図である。It is a local cross-sectional schematic diagram of the vacuum heat insulating material which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る真空断熱材の芯材の積層構想を示す局部的な模式図である。It is a local schematic diagram which shows the lamination | stacking concept of the core material of the vacuum heat insulating material which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る真空断熱材の局所的な断面模式図である。It is a local cross-sectional schematic diagram of the vacuum heat insulating material which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係る真空断熱材の別の構造の局所的な断面模式図である。It is a local cross-sectional schematic diagram of another structure of the vacuum heat insulating material which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る真空断熱材の局所的な断面模式図である。It is a local cross-sectional schematic diagram of the vacuum heat insulating material which concerns on Embodiment 4 of this invention. 本発明の実施の形態6に係る貯湯タンクを示す断面模式図である。It is a cross-sectional schematic diagram which shows the hot water storage tank which concerns on Embodiment 6 of this invention.

以下、添付図面を参照して、本願が開示する真空断熱材の実施の形態を詳細に説明する。なお、以下に示す実施の形態は一例であり、これらの実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the vacuum heat insulating material disclosed in the present application will be described in detail with reference to the accompanying drawings. The following embodiments are merely examples, and the present invention is not limited to these embodiments.

実施の形態1.
本発明の実施の形態1に係る真空断熱材について説明する。図1は、本実施の形態に係る真空断熱材の構成を示す模式的な断面図である。本実施の形態では、長方形平板形状の真空断熱材1を例示している。図1に示すように、真空断熱材1は、芯材3と、芯材3を覆って真空密閉された外被材4と、吸着剤5とを備える。
Embodiment 1 FIG.
The vacuum heat insulating material according to Embodiment 1 of the present invention will be described. FIG. 1 is a schematic cross-sectional view showing the configuration of the vacuum heat insulating material according to the present embodiment. In the present embodiment, a vacuum heat insulating material 1 having a rectangular flat plate shape is illustrated. As shown in FIG. 1, the vacuum heat insulating material 1 includes a core material 3, a jacket material 4 that covers the core material 3 and is vacuum-sealed, and an adsorbent 5.

芯材3は、複数又は単数の繊維シート2の積層体構造となっている。体積比で繊維シート2の約90%は空間であり、残りはガラス繊維で構成されている。繊維シート2の厚み方向における断熱性能を向上させるため、ガラス繊維自体は極力、繊維シート2のシート面(厚み方向と垂直な面)と平行になるように配置されている。すなわち、繊維シート2のそれぞれは、シート面と平行に配向した繊維(本例では、ガラス繊維)が厚み方向に積層された積層体構造を有している。したがって、繊維シート2が積層された芯材3も、繊維が厚み方向に積層された積層体構造を有している。   The core material 3 has a laminated structure of a plurality or a single fiber sheet 2. About 90% of the fiber sheet 2 in the volume ratio is a space, and the rest is made of glass fibers. In order to improve the heat insulation performance in the thickness direction of the fiber sheet 2, the glass fiber itself is arranged as parallel as possible to the sheet surface (surface perpendicular to the thickness direction) of the fiber sheet 2. That is, each of the fiber sheets 2 has a laminated structure in which fibers oriented in parallel with the sheet surface (in this example, glass fibers) are laminated in the thickness direction. Therefore, the core material 3 on which the fiber sheet 2 is laminated also has a laminate structure in which the fibers are laminated in the thickness direction.

上述したように芯材3は、芯材本体として、繊維の積層体構造を有している。また芯材3は、芯材本体を貫通して打ち貫く芯材貫通部7を有する。   As described above, the core material 3 has a fiber laminate structure as a core material body. Moreover, the core material 3 has the core material penetration part 7 which penetrates and penetrates a core material main body.

外被材4は、芯材3を積層方向の両側から挟み込んだ2枚の外被材シート4a、4bで構成されて、芯材本体を覆っている。外被材シート4a、4bのそれぞれは、多層構造をなすラミネートフィルムである。外被材シート4a、4bは、それぞれ最内層にシール層4a1、4b1を有している。シール層4a1、4b1は、外被材シート4a、4b同士の接合部となる。   The jacket material 4 is composed of two jacket material sheets 4a and 4b sandwiching the core material 3 from both sides in the stacking direction, and covers the core material body. Each of the covering material sheets 4a and 4b is a laminated film having a multilayer structure. The covering material sheets 4a and 4b have seal layers 4a1 and 4b1 as innermost layers, respectively. The seal layers 4a1 and 4b1 serve as joint portions between the covering material sheets 4a and 4b.

真空断熱材1の外周部であって外被材4の外周端と芯材3の外周端との間には、外被材シート4a、4b同士(シール層4a1、4b1同士)が密着、熱融着、または溶着している。ここでは、当該真空断熱材1の厚み方向(芯材3の積層方向)において芯材3が存在していない。   Between the outer peripheral portion of the vacuum heat insulating material 1 and between the outer peripheral end of the outer cover material 4 and the outer peripheral end of the core material 3, the outer cover material sheets 4a and 4b (seal layers 4a1 and 4b1) are in close contact with each other. Fused or welded. Here, the core material 3 does not exist in the thickness direction of the vacuum heat insulating material 1 (stacking direction of the core material 3).

図2は、本実施の形態1に係る真空断熱材1の斜視図である。図3は、図2のA−A’断面を示す模式的な断面図である。図2及び図3に示すように、真空断熱材1は、平板形状のものの中央部に外装貫通部6が設けられている。また、芯材3の芯材貫通部7内には、環状の仕切りフィルム8が設けられている。つまり、芯材3とともに外被材4内に設置された仕切りフィルム8が設けられている。図3に示すように、仕切りフィルム8は芯材3の芯材本体に接触し、芯材本体と外装貫通部6とを分離するように配置される。芯材貫通部7内で外被材4と仕切りフィルム8とがシールされた外装シール部9を形成することによって、外装貫通部6を有する真空断熱材1の内部圧力が真空状態に保持される。つまり、仕切りフィルム8は、その一部が外装シール部9において外被材4と融着し、融着していない他の一部が芯材貫通部7を覆うように配置してある。   FIG. 2 is a perspective view of the vacuum heat insulating material 1 according to the first embodiment. FIG. 3 is a schematic cross-sectional view showing a cross section A-A ′ of FIG. 2. As shown in FIG.2 and FIG.3, the vacuum heat insulating material 1 is provided with the exterior penetration part 6 in the center part of the flat thing. An annular partition film 8 is provided in the core material penetrating portion 7 of the core material 3. That is, the partition film 8 installed in the jacket material 4 together with the core material 3 is provided. As shown in FIG. 3, the partition film 8 is disposed so as to contact the core material body of the core material 3 and separate the core material body and the exterior through-hole 6. By forming the exterior seal part 9 in which the jacket material 4 and the partition film 8 are sealed in the core material penetration part 7, the internal pressure of the vacuum heat insulating material 1 having the exterior penetration part 6 is maintained in a vacuum state. . That is, the partition film 8 is arranged such that a part of the partition film 8 is fused to the jacket material 4 in the exterior seal part 9 and the other part that is not fused covers the core material penetration part 7.

図4は、外装貫通部6が設けられる前の仕切りフィルムの断面模式図である。仕切りフィルム8は、2枚の素材フィルムを成形して上下反転させたものを接合させた仕切りフィルム密着部8aを備え、中央が芯材貫通部7内に位置し、芯材本体と外被材4とに接触している。   FIG. 4 is a schematic cross-sectional view of the partition film before the exterior through-hole 6 is provided. The partition film 8 is provided with a partition film adhesion portion 8a formed by joining two raw films formed by turning upside down, and the center is located in the core material penetration portion 7, and the core material body and the jacket material 4 is in contact.

仕切りフィルム8は、柔軟性のある素材フィルムを用いて形成してある。例えば、CPP(未延伸ポリプロピレン)の高分子フィルムであって厚み100μm以下のものを素材フィルムとして用いて形成してある。当素材は、外被材4で用いた素材と同一素材である。   The partition film 8 is formed using a flexible material film. For example, a polymer film of CPP (unstretched polypropylene) having a thickness of 100 μm or less is used as a material film. This material is the same material as that used in the jacket material 4.

外装貫通部6を有する真空断熱材1内で仕切りフィルム8は、芯材3と外装貫通部6とを分離し、芯材3を外装シール部9から分離している。また、仕切りフィルム8の一部は、外装シール部9にて外被材シート4a(4b)のシール層4a1(4b1)の間に挟まるように配置され、外被材シート4a(4b)のシール層4a1(4b1)と熱融着されている。つまり、外装貫通部6の周縁に位置する外被材4の部分とその外装貫通部6の周縁に位置する仕切りフィルム8の部分とが熱融着されている。そのため、外被材4が芯材3の芯材本体と仕切りフィルム8とに接触又は密着し、芯材本体を真空密閉して覆うように構成してある。   The partition film 8 separates the core material 3 from the exterior penetration portion 6 and separates the core material 3 from the exterior seal portion 9 in the vacuum heat insulating material 1 having the exterior penetration portion 6. Further, a part of the partition film 8 is disposed so as to be sandwiched between the sealing layers 4a1 (4b1) of the covering material sheet 4a (4b) by the exterior sealing portion 9, and the sealing of the covering material sheet 4a (4b). It is heat-sealed with the layer 4a1 (4b1). That is, the portion of the jacket material 4 located at the periphery of the exterior penetration portion 6 and the portion of the partition film 8 located at the periphery of the exterior penetration portion 6 are heat-sealed. For this reason, the outer cover material 4 is configured to contact or closely contact the core material body of the core material 3 and the partition film 8 so as to cover the core material body in a vacuum-sealed manner.

次に、本実施の形態1に係る真空断熱材1の製造方法について説明する。図5は、本実施の形態1に係る真空断熱材1の製造方法を示す製造フロー図である。図5では、外装貫通部6、芯材貫通部7、仕切りフィルム8、外装シール部9が示してある。なお、図5に図示された仕切りフィルム8及び外被材4の厚み等は一例であり、図中の厚み及び構成によって本発明が拘束されることはない。   Next, the manufacturing method of the vacuum heat insulating material 1 which concerns on this Embodiment 1 is demonstrated. FIG. 5 is a manufacturing flow diagram illustrating a method for manufacturing the vacuum heat insulating material 1 according to the first embodiment. In FIG. 5, the exterior penetration part 6, the core material penetration part 7, the partition film 8, and the exterior seal part 9 are shown. In addition, the thickness etc. of the partition film 8 shown in FIG. 5 and the jacket material 4 are examples, and this invention is not restrained by the thickness and structure in a figure.

まず、抄紙法を用いた繊維シート2の形成方法について説明する。始めに、連続フィラメント製法で製造された直径4〜13μmのガラス繊維を長さ2〜15mmに切断したチョップド繊維と火炎法で製造された直径1μm程度の細径繊維とを液体中に分散させる。   First, a method for forming the fiber sheet 2 using a papermaking method will be described. First, chopped fibers obtained by cutting glass fibers having a diameter of 4 to 13 μm manufactured by a continuous filament manufacturing method into lengths of 2 to 15 mm and fine fibers having a diameter of about 1 μm manufactured by a flame method are dispersed in a liquid.

チョップド繊維と細径繊維とを分散させた液体を用いて自動送り式抄紙機などで抄紙した後に乾燥させ、厚さ0.5mm程度の繊維シート原反を作製する。必要とする真空断熱材1の面積程度のサイズとなるように、作製した繊維シート原反を裁断し、複数の繊維シート2を形成する。上記の抄紙法を用いて形成された繊維シート2では、繊維の多くが繊維シート2の厚み方向と概ね垂直な方向(シート面と平行な方向)に配向している。   Using a liquid in which chopped fibers and small-diameter fibers are dispersed, paper is made with an automatic feed type paper machine or the like and then dried to produce a fiber sheet original fabric having a thickness of about 0.5 mm. The produced fiber sheet original fabric is cut so that the required size of the vacuum heat insulating material 1 is about the area of the vacuum heat insulating material 1 to form a plurality of fiber sheets 2. In the fiber sheet 2 formed by using the above papermaking method, most of the fibers are oriented in a direction substantially perpendicular to the thickness direction of the fiber sheet 2 (a direction parallel to the sheet surface).

次に、芯材3を形成する方法について説明する。所定のサイズに裁断された複数の繊維シート2を、大気圧と真空との圧力差による圧力歪を想定して所望の厚さとなるように積層し、芯材3を形成する。形成された芯材3には、厚み方向に繊維が積層された積層体構造が見られる。   Next, a method for forming the core material 3 will be described. A plurality of fiber sheets 2 cut into a predetermined size are laminated so as to have a desired thickness assuming a pressure strain due to a pressure difference between atmospheric pressure and vacuum to form a core material 3. The formed core material 3 has a laminated structure in which fibers are laminated in the thickness direction.

なお、繊維シート原反を切断せずにとぐろ状に巻き込んで積層体にしてもよい。また、繊維シート原反の作製に抄紙法を用いる場合を例に挙げたが、これに限定されることはない。例えば、遠心法を用いた乾式製造方法であってもよい。この場合、積層体構造を有する芯材3は、グラスウールを作製する過程でガラス繊維を積層することによって作製することができる。乾式製造方法を用いて作製した場合、作製された繊維シートはそもそも繊維の積層体になっており、必要な厚みに対して1枚又は数枚で構成される。このため、芯材3は、図1で示したような複数の繊維シート2の積層体構造にはならない場合がある。   In addition, you may make it a laminated body by winding the fiber sheet original fabric in the shape of a trough without cut | disconnecting. Moreover, although the case where the papermaking method was used for preparation of a fiber sheet original fabric was mentioned as an example, it is not limited to this. For example, a dry manufacturing method using a centrifugal method may be used. In this case, the core material 3 having a laminate structure can be produced by laminating glass fibers in the course of producing glass wool. When produced using a dry production method, the produced fiber sheet is originally a laminated body of fibers, and is composed of one sheet or several sheets for the required thickness. For this reason, the core material 3 may not be a laminated body structure of a plurality of fiber sheets 2 as shown in FIG.

芯材貫通部7は、図5に示したように、積層体構造となった芯材3に対して例えば型抜きカッターを用いて必要な箇所を所望のサイズで打ち貫いて成形する。成形した芯材貫通部7には、あらかじめ薄い高分子フィルムを成形して作製した仕切りフィルム8を挿入する。なお、この芯材貫通部7の成形は、後述する芯材3を乾燥させた後に実施しても良い。   As shown in FIG. 5, the core material penetrating portion 7 is formed by punching a necessary portion with a desired size into the core material 3 having a laminated structure using, for example, a die cutting cutter. A partition film 8 formed by molding a thin polymer film in advance is inserted into the molded core material penetrating portion 7. In addition, you may implement this shaping | molding of the core material penetration part 7 after drying the core material 3 mentioned later.

芯材3を外被材4に挿入して真空断熱材1を製造する方法について説明する。まず、2枚の外被材シートの3辺を接合して製袋した外被材4を予め作製しておく。作製した外被材4に、前述の方法などによって形成し乾燥させた芯材3と吸着剤5とを挿入し、真空チャンバ内に配置する。次に、真空チャンバ内を減圧して、所定の圧力、例えば0.1〜3Pa程度の真空圧にする。この状態で、外被材4の残り1辺に形成された開口部をヒートシールにより密閉する。真空チャンバ内を大気圧に戻し、真空チャンバ内から取り出すことによって、真空断熱材1が得られる。このとき、芯材貫通部7では、大気との差圧によって、2枚の外被材シート4aと4bとが接合状態になる。ここで、真空断熱材1は密閉後の大気圧によって圧縮され、芯材3の厚みが外被材4挿入前の厚み比で0.6程度以下になる。仕切りフィルム8は厚みが薄く柔軟性があるため、芯材3の変形および外被材4の変形に合わせて仕切りフィルム8の変形を容易に行うことができる。この接合部を、別途中抜き形状(ドーナッツ型や額縁型など)のヒートシーラでヒートシールを実施し、同時にもしくは後工程で、外被材4の中抜き加工を実施する。これにより、外装貫通部6を有する真空断熱材1が得られる。   A method for manufacturing the vacuum heat insulating material 1 by inserting the core material 3 into the jacket material 4 will be described. First, the envelope material 4 is manufactured in advance by bonding three sides of the two envelope material sheets. The core material 3 and the adsorbent 5 formed and dried by the above-described method or the like are inserted into the manufactured jacket material 4 and placed in a vacuum chamber. Next, the vacuum chamber is depressurized to a predetermined pressure, for example, a vacuum pressure of about 0.1 to 3 Pa. In this state, the opening formed in the remaining one side of the jacket material 4 is sealed by heat sealing. The vacuum heat insulating material 1 is obtained by returning the inside of the vacuum chamber to atmospheric pressure and taking it out of the vacuum chamber. At this time, in the core material penetrating portion 7, the two jacket material sheets 4 a and 4 b are in a joined state due to the differential pressure with the atmosphere. Here, the vacuum heat insulating material 1 is compressed by the atmospheric pressure after sealing, and the thickness of the core material 3 is about 0.6 or less in terms of the thickness ratio before the jacket material 4 is inserted. Since the partition film 8 is thin and flexible, the partition film 8 can be easily deformed in accordance with the deformation of the core material 3 and the deformation of the jacket material 4. The joint is separately heat sealed with a heat sealer having a hollow shape (such as a donut shape or a frame shape), and the outer cover material 4 is hollowed simultaneously or in a later step. Thereby, the vacuum heat insulating material 1 which has the exterior penetration part 6 is obtained.

なお、2枚の外被材シート4a、4bによって芯材3を挟み込むようにして真空チャンバ内に配置し、真空チャンバ内を減圧した後に、2枚の外被材シート4a、4bの周囲をヒートシールにより密閉するようにしてもよい。また、ガス吸着材は必要に応じた分量を挿入するが、省略しても良い。   The core material 3 is sandwiched between the two jacket material sheets 4a and 4b and placed in the vacuum chamber. After the pressure in the vacuum chamber is reduced, the surroundings of the two jacket material sheets 4a and 4b are heated. You may make it seal with a seal | sticker. The gas adsorbent is inserted in an amount as required, but may be omitted.

上記のようにして製造された真空断熱材1の内部空間は、真空に保持されている。   The internal space of the vacuum heat insulating material 1 manufactured as described above is kept in a vacuum.

例えば、特許文献1に記載された貫通孔は、熱融着可能な芯材を用い、外被材の熱融着層と芯材とを加熱することによって芯材の厚さ方向に連続して一体化した溶着部を形成したものである。この場合、芯材を融点以上に加熱して芯材を外被材に溶着させることから、貫通孔周囲の芯材が固体物になり、固体物となった部分からの厚み方向熱移動が大きくなり、断熱性能自体を悪化する虞が生じ得る。また、芯材を融点以上に加熱することから、外被材に高温の熱が付与され、外被材の長期信頼性が低下することが危惧される。   For example, the through-hole described in Patent Document 1 uses a core material that can be heat-sealed, and continuously heats the heat-sealing layer and the core material of the jacket material in the thickness direction of the core material. An integrated weld portion is formed. In this case, since the core material is heated to the melting point or higher and the core material is welded to the jacket material, the core material around the through-hole becomes a solid material, and the heat transfer in the thickness direction from the portion that becomes the solid material is large. Therefore, there is a possibility that the heat insulation performance itself is deteriorated. Further, since the core material is heated to the melting point or higher, high temperature heat is applied to the jacket material, and there is a concern that the long-term reliability of the jacket material may be reduced.

以上のように、貫通孔を設けた従来の真空断熱材では、断熱性能の悪化リスク及び外被材の信頼性低下リスクが高かった。   As described above, in the conventional vacuum heat insulating material provided with the through holes, the risk of deterioration of the heat insulating performance and the risk of lowering the reliability of the jacket material were high.

本実施の形態1に係る真空断熱材1の試作結果について説明する。真空断熱材1の芯材3としては、平均繊維直径が6μmで長さが約12mmのチョップドガラス繊維と火炎法で製造された約0.8μmのマイクロガラスファイバ繊維とを抄紙して作製した厚さ約0.5mmの繊維シート2を30枚積層したものを用いた。芯材3の平面的な寸法は500mm×500mmとした。また、外被材シート4a、4bとしては、アルミラミネートシート[25μm−ONy(延伸ナイロン)/12μm−AL蒸着PET(ポリエチレンテレフタレート)/7μm−AL箔/30μm−CPP(無延伸ポリプロピレン)]を用いた。ここで、CPPフィルムは、最内層のシール層4a1、4b1に該当する。   A prototype result of the vacuum heat insulating material 1 according to the first embodiment will be described. The core material 3 of the vacuum heat insulating material 1 has a thickness produced by papermaking a chopped glass fiber having an average fiber diameter of 6 μm and a length of about 12 mm and a micro glass fiber fiber of about 0.8 μm manufactured by a flame method. A laminate of 30 fiber sheets 2 having a thickness of about 0.5 mm was used. The planar dimension of the core material 3 was 500 mm × 500 mm. Further, as the covering material sheets 4a and 4b, an aluminum laminate sheet [25 μm-ONy (stretched nylon) / 12 μm-AL vapor-deposited PET (polyethylene terephthalate) / 7 μm-AL foil / 30 μm-CPP (unstretched polypropylene)] is used. It was. Here, the CPP film corresponds to the innermost seal layers 4a1 and 4b1.

次に、繊維シート2を積層した芯材3の平面部に直径80mmの芯材貫通部7が形成される様に打ち貫きカッターで芯材3を打ち貫き、例えば図4に示したような、材質CPP、厚み30μmで成形された外径100mmの仕切りフィルム8を組み込んだ。本試作例では、2枚の素材フィルムを成形し、上下反転させたものを芯材貫通部7の寸法より5mm程度小さいサイズでの仕切りフィルム密着部8aで接合したものを用いた。また、真空断熱材1製造前後の芯材3厚み変化に対して、仕切りフィルム8が変形し易い様に、仕切りフィルム8は、外装シール部9から芯材3厚み方向に向かって、芯材3側に傾斜する様にしている。つまり仕切りフィルム8は、芯材3の厚み方向から芯材3の幅方向へ傾斜する傾斜部位を備える。さらに、外被材シート4a、4bの3辺を予め密着させて製袋化した外被材4に、これを挿入して真空密閉した。真空密閉した後の真空断熱材1の厚みは、芯材3がある分は約10mmとなり、一方、芯材貫通部7では、外被材シート4aと4bが接合された状態になった。   Next, the core material 3 is pierced with a punching cutter so that the core material penetrating portion 7 having a diameter of 80 mm is formed in the flat portion of the core material 3 on which the fiber sheets 2 are laminated, for example, as shown in FIG. A partition film 8 having an outer diameter of 100 mm formed with a material CPP and a thickness of 30 μm was incorporated. In this prototype, a material obtained by forming two material films and turning them upside down and joining them with a partition film adhesion portion 8a having a size about 5 mm smaller than the dimension of the core material penetration portion 7 was used. Further, the partition film 8 is directed from the exterior seal portion 9 toward the core material 3 in the thickness direction so that the partition film 8 is easily deformed with respect to the thickness change of the core material 3 before and after the vacuum heat insulating material 1 is manufactured. Inclined to the side. That is, the partition film 8 includes an inclined portion that is inclined from the thickness direction of the core material 3 to the width direction of the core material 3. Furthermore, this was inserted and vacuum-sealed in the jacket material 4 which was made into a bag by bringing three sides of the jacket material sheets 4a and 4b into close contact in advance. The thickness of the vacuum heat insulating material 1 after vacuum-sealing was about 10 mm when the core material 3 was present. On the other hand, in the core material penetrating portion 7, the jacket material sheets 4a and 4b were joined.

次に、芯材貫通部7の外被材シート4aと4bが接合されている部分に、外径50mm、内径30mmの円環形状のヒートシーラにて熱融着させた。さらに、その内側部分である直径30mmの外被材シート4aと4bを打ち貫き、外装貫通部6を形成させた。つまり仕切りフィルム8は芯材貫通部7に配置してあり、外装貫通部6は芯材貫通部7を通って仕切りフィルム8と外被材と4を貫通することになり、芯材貫通部7と外装貫通部6とが重なるように構成される。   Next, the core material penetrating portion 7 was heat-sealed with a ring-shaped heat sealer having an outer diameter of 50 mm and an inner diameter of 30 mm to the portion where the jacket material sheets 4a and 4b were joined. Furthermore, the outer covering material sheets 4a and 4b having a diameter of 30 mm, which is the inner portion, were punched to form the exterior through-hole 6. That is, the partition film 8 is disposed in the core material penetration part 7, and the exterior penetration part 6 passes through the partition material 8 and the jacket material 4 through the core material penetration part 7. And the exterior through-hole 6 are configured to overlap.

仕切りフィルム8の素材として熱収縮性の高いシュリンクフィルム(熱収縮フィルム)を適用した場合、ヒートシーラによる熱融着時に伝わる熱によって仕切りフィルム8が収縮し、芯材3の圧縮変形に対して、より滑らかな仕切りフィルムの変形が実現できる。シュリンクフィルムとしては、例えばPP(ポリプロピレン)、PE(ポリエチレン)などが使用できる。   When a shrink film (heat-shrinkable film) having a high heat shrinkage is applied as the material of the partition film 8, the partition film 8 is shrunk by heat transmitted during heat-sealing by the heat sealer. Smooth partition film deformation can be realized. As a shrink film, PP (polypropylene), PE (polyethylene), etc. can be used, for example.

作製した真空断熱材1は、65℃の連続加熱試験(200日間)ならびに65℃と0℃の熱サイクル試験(8000回)を実施した。一方で、貫通部を全く設けていない構成以外は同一となるように同様の製作方法で対比用真空断熱材を製作し、本試作例真空断熱材と対比用真空断熱材とにおける熱伝導率の経時変化を比較したところ、両者に顕著な経時的な差異は認められなかった。   The manufactured vacuum heat insulating material 1 was subjected to a 65 ° C. continuous heating test (200 days) and a heat cycle test (8000 times) of 65 ° C. and 0 ° C. On the other hand, a comparative vacuum heat insulating material is manufactured by the same manufacturing method so as to be the same except for a configuration in which no through portion is provided, and the thermal conductivity of the prototype vacuum insulating material and the comparative vacuum heat insulating material is the same. When changes over time were compared, there was no significant difference over time between the two.

本実施の形態1に係る真空断熱材1では、仕切りフィルム8の外装シール部9の熱融着層をより厚くできる。そのため、芯材3の外周においてシールされた芯材シール部と比べ、外被材4の変形によってしわが発生しやすい外装シール部9においてもシール強度の向上が図れ、上記のような差異が認められない結果を得ることが出来たと考えられる。したがって本実施の形態1に係る真空断熱材1では、打ち貫き孔を設けているにもかかわず、外装シール部9からの真空封止の悪化は認められず、高い断熱性能を実現できる。   In the vacuum heat insulating material 1 which concerns on this Embodiment 1, the heat sealing | fusion layer of the exterior seal part 9 of the partition film 8 can be made thicker. Therefore, compared with the core material seal portion sealed on the outer periphery of the core material 3, the seal strength can be improved also in the exterior seal portion 9 where wrinkles are likely to occur due to deformation of the jacket material 4, and the above differences are recognized. It is thought that the result which was not able to be obtained was able to be obtained. Therefore, in the vacuum heat insulating material 1 according to the first embodiment, the deterioration of the vacuum sealing from the exterior seal portion 9 is not recognized even though the punch hole is provided, and high heat insulating performance can be realized.

実施の形態2.
複合断熱材について、本発明の実施の形態2に係る真空断熱材1を説明する。図6は、本実施の形態2に係る真空断熱材1の局所断面模式図である。図7は、芯材3の局所断面模式図である。芯材貫通部7は、積層方向で径が異なっている。その他の構成は、実施の形態1と同様である。
Embodiment 2. FIG.
The vacuum heat insulating material 1 which concerns on Embodiment 2 of this invention is demonstrated about a composite heat insulating material. FIG. 6 is a schematic local sectional view of the vacuum heat insulating material 1 according to the second embodiment. FIG. 7 is a schematic local sectional view of the core material 3. The core material penetrating portion 7 has a different diameter in the stacking direction. Other configurations are the same as those in the first embodiment.

芯材貫通部7の周囲では、芯材3が存在する部分と芯材3が存在せずに外被材シート4a(4b)が密着する部分とで外被材シート4a(4b)自体に三次元的な拘束が生じることから、芯材貫通部7内で芯材本体と外被材シート4a(4b)との間に隙間(空間)が生じる虞がある。またこのとき、外被シート4a(4b)には、芯材3による支持力が作用しないことから、大きなテンションが印加され得る。真空断熱材1の厚みが大きい程、この印加されたテンションの影響は顕著となる。芯材3の支持がない空間は、長期的に外被材シート4a(4b)のクリープ変形の加速要因にもなり、シール面を引裂く力として作用することから、外被材4の信頼性低下の要因になる。真空断熱材1を、特に温度が高い環境で使用する場合については、対策が必要になると考えられる。そこで、本実施の形態2では、図6に示したように、芯材貫通部7において、芯材3の平面方向と垂直な方向で径が異なるようにテーパ形状にしたものである。テーパ形状には、図7に示すように、径が異なる打ち貫き孔を設けた繊維シートを階段状に段差形状に積層することで実現させた。つまり、厚み方向に段差が有る段差部位を芯材3の芯材本体が芯材貫通部の周囲に備え、芯材3の段差部位と仕切りフィルム8の傾斜部位とが接触するように構成してある。なお、芯材最外層からのテーパ角度は約45°とした。   In the periphery of the core material penetrating portion 7, there is a tertiary to the jacket material sheet 4 a (4 b) itself by the portion where the core material 3 is present and the portion where the core material 3 is not present and the jacket material sheet 4 a (4 b) is in close contact. Since original restraint arises, there exists a possibility that a clearance gap (space) may arise in the core material penetration part 7 between a core material main body and the jacket material sheet | seat 4a (4b). At this time, since the supporting force by the core material 3 does not act on the covering sheet 4a (4b), a large tension can be applied. As the thickness of the vacuum heat insulating material 1 is larger, the influence of the applied tension becomes more remarkable. The space where the core material 3 is not supported also becomes an acceleration factor of creep deformation of the jacket material sheet 4a (4b) in the long term, and acts as a force to tear the seal surface. It becomes a factor of decline. When using the vacuum heat insulating material 1 in an environment where the temperature is particularly high, it is considered that measures are required. Therefore, in the second embodiment, as shown in FIG. 6, the core material penetrating portion 7 is tapered so that the diameter is different in the direction perpendicular to the planar direction of the core material 3. As shown in FIG. 7, the taper shape was realized by laminating fiber sheets provided with punched holes having different diameters in a stepped shape. That is, the core material body of the core material 3 is provided with a step portion having a step in the thickness direction around the core material penetrating portion, and the step portion of the core material 3 and the inclined portion of the partition film 8 are in contact with each other. is there. The taper angle from the outermost layer of the core material was about 45 °.

本実施の形態2に係る真空断熱材1では、実施の形態1で示した芯材貫通部7に見られた隙間を大幅に減少させることができることから、外被材4への負荷が軽減され、より長期信頼性の高い貫通部のある真空断熱材1が実現できる。   In the vacuum heat insulating material 1 according to the second embodiment, since the gap seen in the core material penetrating portion 7 shown in the first embodiment can be greatly reduced, the load on the jacket material 4 is reduced. Thus, it is possible to realize the vacuum heat insulating material 1 having a penetrating portion with higher reliability for a longer period.

実施の形態3.
複合断熱材について、本発明の実施の形態3に係る真空断熱材1を説明する。図8は、本実施の形態3に係る真空断熱材1の局所断面模式図である。芯材3は、ニードルパンチ繊維シート11の積層体構造で構成されている。その他の構成は、実施の形態1と同様である。
Embodiment 3 FIG.
The vacuum heat insulating material 1 which concerns on Embodiment 3 of this invention is demonstrated about a composite heat insulating material. FIG. 8 is a schematic local cross-sectional view of the vacuum heat insulating material 1 according to the third embodiment. The core material 3 has a laminated structure of needle punch fiber sheets 11. Other configurations are the same as those in the first embodiment.

ニードルパンチ繊維シート11は、繊維シートの製造工程で、連続フィラメント繊維を切断したチョップドストランド繊維を開繊させて、シート状にした状態で、複数のニードルを抜き差しすることによって、もともと平面方向を向いていた繊維の一部を平面方向と直角な方向にし、繊維同士をバインドさせて、繊維シート化させたものである。そのため、平面方向に垂直な繊維がない部分は結束力が弱くなる。したがって、例えば四角形の真空断熱芯材を用いた場合、端部(周囲部)が広がり易いという特性を有する。そこで、芯材3としてこのニードルパンチ繊維シート11を適用している。この構成によって、貫通部周囲のニードルパンチ繊維シート11が広がりを見せ、実施の形態2で示したようなテーパ形状加工を予め行うことなく、自然に外被材4に沿って変形できる。そのため、隙間を減少させることができる。したがって、特に繊維シートに新たに加工を施すことなく、芯材貫通部7に見られた隙間を大場に減少させることができ、外被材4への負荷が軽減され、より長期信頼性の高い貫通部のある真空断熱材1が実現できる。   In the fiber sheet manufacturing process, the needle punched fiber sheet 11 is originally oriented in the plane direction by opening and closing the chopped strand fiber obtained by cutting the continuous filament fiber into a sheet and inserting and removing a plurality of needles. A part of the fibers that are left in the direction perpendicular to the plane direction are bound to each other to form a fiber sheet. For this reason, the binding force is weak in a portion where there is no fiber perpendicular to the planar direction. Therefore, for example, when a square vacuum heat insulating core material is used, the end portion (peripheral portion) has a characteristic of easily spreading. Therefore, this needle punch fiber sheet 11 is applied as the core material 3. With this configuration, the needle punch fiber sheet 11 around the penetrating portion is expanded, and can be naturally deformed along the jacket material 4 without performing the taper shape processing as shown in the second embodiment. Therefore, the gap can be reduced. Accordingly, the gaps seen in the core material penetrating portion 7 can be reduced to a large area without particularly processing the fiber sheet in particular, the load on the jacket material 4 is reduced, and the long-term reliability is high. The vacuum heat insulating material 1 with a penetration part is realizable.

図9は、実施の形態3の変形例を示す真空断熱材1の局所断面模式図である。外装シール部9が波構造にされたものである。変形例におけるその他の構成は、実施の形態3と同様である。   FIG. 9 is a local cross-sectional schematic view of the vacuum heat insulating material 1 showing a modification of the third embodiment. The exterior seal portion 9 has a wave structure. Other configurations in the modification are the same as those in the third embodiment.

今回、外装シール部9の幅を約12mmとし、振幅を約1mm、周期を約4mmとした波形状の加工をした。つまり、波形状に成形してある波形状部位を外被材4のシール層4a1、4b1が備えるように加工した。加工法は、円環状の加熱シール板を予め波形状に加工して芯材積層方向上下で凸部と凹部が互いに一致する様にしたものである。   This time, the wave-shaped processing was performed with the width of the exterior seal portion 9 being about 12 mm, the amplitude being about 1 mm, and the period being about 4 mm. That is, it processed so that the corrugated site | part shape | molded by the corrugated shape might be provided in the sealing layers 4a1 and 4b1 of the jacket material 4. In the processing method, an annular heating seal plate is processed into a wave shape in advance so that the convex portion and the concave portion coincide with each other in the upper and lower directions in the core material stacking direction.

万が一外装シール部9に例えば繊維等が孔の半径方向に噛みこんだとしても、シール形成時に凸同士の部分で局部的に圧力が上昇し、繊維が切断される。その結果、繊維が連続体としてシール幅全域に噛み込むことを防止できる。したがって、外装シール部9のガス封止性について、信頼性が高い真空断熱材1が実現できる。   Even if, for example, fibers or the like are caught in the outer seal portion 9 in the radial direction of the hole, the pressure rises locally at the convex portions when the seal is formed, and the fibers are cut. As a result, it is possible to prevent the fibers from biting into the entire seal width as a continuous body. Therefore, the vacuum heat insulating material 1 with high reliability can be realized with respect to the gas sealing property of the exterior seal portion 9.

なお、図中、ニードルパンチ繊維シート11単層の様に記載したが、薄いシートを複数枚積層して所望の厚みになるようにしてもよい。   In the figure, the needle punch fiber sheet 11 is described as a single layer, but a plurality of thin sheets may be laminated to have a desired thickness.

実施の形態4.
複合断熱材について、本発明の実施の形態4に係る真空断熱材1を説明する。図10は、本実施の形態に係る真空断熱材1の局所断面模式図である。外装シール部9は、芯材3積層方向に対して、芯材3厚みの半分より片側に偏るようにしたものである(図では、紙面上側)。つまり、芯材3の芯材貫通部と仕切りフィルム8及び外被材4の外被貫通部とが、芯材3の厚み方向の中央よりも厚み方向の一方側にずれるように配置してある。その他の構成は、実施の形態3と同様である。
Embodiment 4 FIG.
The vacuum heat insulating material 1 which concerns on Embodiment 4 of this invention is demonstrated about a composite heat insulating material. FIG. 10 is a schematic local sectional view of the vacuum heat insulating material 1 according to the present embodiment. The exterior seal portion 9 is configured to be biased to one side with respect to the stacking direction of the core material 3 from half of the thickness of the core material 3 (upper side in the drawing). In other words, the core material penetrating portion of the core material 3 and the partition film 8 and the outer cover penetrating portion of the jacket material 4 are arranged so as to be shifted to one side in the thickness direction from the center in the thickness direction of the core material 3. . Other configurations are the same as those of the third embodiment.

一般に高分子フィルムは、環境温度が高い程、ガス透過性が上昇する傾向がある。真空断熱材1を表面温度が高い被断熱部に適用する場合、外装シール部9が低温側となるように配置することで、より信頼性の高い真空断熱材1が実現できる。この結果、例えば、表面温度が90℃の被断熱体を断熱する場合、外装シール部9の温度を低温化できることから、シール部からのガス侵入量を低減でき、経時的な真空度悪化を抑制することができる。   In general, the polymer film tends to increase in gas permeability as the environmental temperature increases. When the vacuum heat insulating material 1 is applied to a heat-insulated portion having a high surface temperature, the vacuum heat insulating material 1 with higher reliability can be realized by disposing the exterior seal portion 9 on the low temperature side. As a result, for example, when an object to be insulated with a surface temperature of 90 ° C. is insulated, the temperature of the exterior seal portion 9 can be lowered, so that the amount of gas intrusion from the seal portion can be reduced and the deterioration of the vacuum degree over time is suppressed. can do.

なお、本形状は、真空断熱材1の製造工程において、芯材全体を真空封止する時点で、芯材貫通部7を上下から高さの異なる冶具で押さえて、成形することで実現できる。   Note that this shape can be realized by pressing the core material penetrating portion 7 with jigs having different heights from above and below at the time of vacuum-sealing the entire core material in the manufacturing process of the vacuum heat insulating material 1.

実施の形態5.
複合断熱材について、本発明の実施の形態5に係る真空断熱材1を説明する。仕切りフィルム8として、厚さ100μm以下のLLDPE(リニア低密度ポリエチレン)を用いている。その他の構成は、実施の形態1〜3と同様である。
Embodiment 5. FIG.
The vacuum heat insulating material 1 which concerns on Embodiment 5 of this invention is demonstrated about a composite heat insulating material. As the partition film 8, LLDPE (linear low density polyethylene) having a thickness of 100 μm or less is used. Other configurations are the same as those in the first to third embodiments.

仕切りフィルム8は、LLDPEで構成されているので、柔軟性がある。また、この構成では、外被材4のシール層がLLDPEより融点の高いCPPで構成されている。つまり、外被材4は仕切りフィルム8よりも融点が高いシール層を有する。そのため、外被材4のシール層よりも仕切りフィルム8の融点の方が低くなる。   Since the partition film 8 is made of LLDPE, it has flexibility. Moreover, in this structure, the sealing layer of the jacket material 4 is comprised by CPP whose melting | fusing point is higher than LLDPE. That is, the jacket material 4 has a sealing layer having a melting point higher than that of the partition film 8. Therefore, the melting point of the partition film 8 is lower than that of the sealing layer of the jacket material 4.

本実施の形態5では、外装シール部9の厚み方向中心部に配置される仕切りフィルム8の融点が低いことから、材料を熱融着させるシール加熱時間の短縮が図れる。したがって、打ち貫き構造を有する真空断熱材1の生産効率の向上が図れる。   In the fifth embodiment, since the melting point of the partition film 8 disposed in the central portion in the thickness direction of the exterior seal portion 9 is low, it is possible to shorten the seal heating time for heat-sealing the material. Therefore, the production efficiency of the vacuum heat insulating material 1 having a punched structure can be improved.

実施の形態6.
図11は、本発明に係る保温容器として、本発明の実施の形態6に係る貯湯タンクを示す縦断面図である。本実施の形態6に係る貯湯タンク50は、加熱された水を貯留するタンク103と、該タンク103の外周部を覆い、タンク103と周辺空気との間を断熱する断熱材とを備えている。
Embodiment 6 FIG.
FIG. 11: is a longitudinal cross-sectional view which shows the hot water storage tank which concerns on Embodiment 6 of this invention as a heat retention container which concerns on this invention. The hot water storage tank 50 according to the sixth embodiment includes a tank 103 that stores heated water, and a heat insulating material that covers the outer periphery of the tank 103 and insulates between the tank 103 and ambient air. .

タンク103は、例えば略円柱形状をしており、複数の配管が接続されている。詳しくは、タンク103の上部には、上部配管100及び給湯配管101が接続されている。また、タンク103の下部には、底部配管105及び水供給配管104が接続されている。上部配管100及び底部配管105は、例えばヒートポンプユニット等の加熱装置(不図示)に接続される。   The tank 103 has a substantially cylindrical shape, for example, and is connected to a plurality of pipes. Specifically, an upper pipe 100 and a hot water supply pipe 101 are connected to the upper part of the tank 103. A bottom pipe 105 and a water supply pipe 104 are connected to the lower part of the tank 103. The upper pipe 100 and the lower pipe 105 are connected to a heating device (not shown) such as a heat pump unit, for example.

このように構成されたタンク103は、次のように加熱された水を内部に貯留する構成となっている。タンク103内に貯留されている水は、底部配管105を通って図示せぬ加熱装置に送られ、加熱される。加熱された水は、上部配管100を通って、タンク103内の上部に戻される。外部からタンク103に水(例えば市水)を供給する場合、水供給配管104からタンク103の下部に水を供給する。また、タンク103に水を供給することにより、タンク103内に貯められている湯(加熱された水)が押し上げられる。そして、この動作により、タンク103の上部に接続される給湯配管101から外部に湯が供給される。このとき、タンク103内には、湯と水の温度差に起因して高温部と低温部が分離された温度成層が形成される。   The tank 103 configured as described above is configured to store heated water therein as follows. The water stored in the tank 103 is sent to a heating device (not shown) through the bottom pipe 105 and heated. The heated water is returned to the upper part in the tank 103 through the upper pipe 100. When water (for example, city water) is supplied from the outside to the tank 103, water is supplied from the water supply pipe 104 to the lower portion of the tank 103. Further, by supplying water to the tank 103, hot water (heated water) stored in the tank 103 is pushed up. With this operation, hot water is supplied to the outside from the hot water supply pipe 101 connected to the upper part of the tank 103. At this time, a temperature stratification in which the high temperature portion and the low temperature portion are separated due to the temperature difference between hot water and water is formed in the tank 103.

このタンク103は、以下のような断熱部材で外周部が覆われ、周辺空気と断熱されている。タンク103の上部表面は、発泡樹脂(例えばビーズ法発泡ポリスチレン)で成形された第一の発泡断熱材102aで覆われている。この第一の発泡断熱材102aには、上部配管100及び給湯配管101が貫通できる貫通部が形成されている。また、第一の発泡断熱材102aの上面部には凹部が形成されている。   The tank 103 is covered with an insulating member as described below, and is insulated from the surrounding air. The upper surface of the tank 103 is covered with a first foam heat insulating material 102a formed of a foamed resin (for example, a beaded polystyrene foam). The first foam heat insulating material 102a is formed with a through portion through which the upper pipe 100 and the hot water supply pipe 101 can penetrate. Moreover, the recessed part is formed in the upper surface part of the 1st foam heat insulating material 102a.

また、該凹部には、実施の形態1〜実施の形態4のいずれかで示した真空断熱材1が設けられている。ここで、真空断熱材1の設置範囲には、2本の配管(上部配管100、給湯配管101)が設けられている。このため、真空断熱材1には、これらの配管と真空断熱材1との干渉を防止するため、第一の外装貫通部6a及び第二の外装貫通部6bが形成されており、給湯配管101及び上部配管100がそれぞれ貫通している。   Moreover, the vacuum heat insulating material 1 shown in any one of Embodiment 1-Embodiment 4 is provided in this recessed part. Here, in the installation range of the vacuum heat insulating material 1, two pipes (upper pipe 100 and hot water supply pipe 101) are provided. For this reason, in order to prevent interference with these piping and the vacuum heat insulating material 1, the vacuum heat insulating material 1 is formed with a first exterior through portion 6a and a second exterior through portion 6b. And the upper piping 100 has penetrated each.

なお、タンク103には加熱された水が貯留されているため、タンク103と周辺空気とを比較した場合、タンク103の方が高温となる。このため、真空断熱材1における、外装シール部は、真空断熱材1厚みの1/2よりも低温側に配置されている。本配置構成により、信頼性の高い真空断熱材1の配置構成が可能となる。   In addition, since the heated water is stored in the tank 103, when the tank 103 and ambient air are compared, the tank 103 becomes hotter. For this reason, the exterior seal part in the vacuum heat insulating material 1 is disposed on the lower temperature side than 1/2 of the vacuum heat insulating material 1 thickness. With this arrangement configuration, it is possible to arrange the vacuum heat insulating material 1 with high reliability.

タンク103の側面は、発泡樹脂(例えば発泡ポリスチレン)で成形された第二の発泡断熱材102bで覆われている。また、タンク103の下部表面は、発泡樹脂(例えば発泡ポリスチレン)で成形された第三の発泡断熱材102cで覆われている。この第三の発泡断熱材102cには、底部配管105及び水供給配管104が貫通する貫通部が形成されている。   The side surface of the tank 103 is covered with a second foam heat insulating material 102b formed of a foamed resin (for example, foamed polystyrene). Further, the lower surface of the tank 103 is covered with a third foam heat insulating material 102c formed of a foamed resin (for example, foamed polystyrene). The third foam heat insulating material 102c is formed with a through portion through which the bottom pipe 105 and the water supply pipe 104 penetrate.

なお、本実施の形態6では、タンク103の側面部及び下部を発泡断熱材のみで断熱したが、タンク103の側面部及び下部に真空断熱材1を設けてもよい。   In the sixth embodiment, the side surface portion and the lower portion of the tank 103 are insulated with only the foam heat insulating material, but the vacuum heat insulating material 1 may be provided on the side surface portion and the lower portion of the tank 103.

この結果、真空断熱材1の設置範囲に配管や計測線等の干渉物があるタンク(被断熱体)についても、実施の形態1〜実施の形態4で示した真空断熱材1を用いることによって、高い断熱性能を有する真空断熱材1が、高信頼性をもって適用され、機器の放熱低減を図ることができる。   As a result, by using the vacuum heat insulating material 1 shown in the first to fourth embodiments also for a tank (insulated body) having interferences such as piping and measurement lines in the installation range of the vacuum heat insulating material 1 The vacuum heat insulating material 1 having high heat insulating performance is applied with high reliability, and the heat radiation of the device can be reduced.

なお、本実施の形態6では、タンク103で説明したが、何もこれに限定されるものではなく、冷熱機器等の高温または低温の被断熱体であってもよい。   In the sixth embodiment, the tank 103 has been described. However, the present invention is not limited to this and may be a high-temperature or low-temperature heat-insulated body such as a cold-heating device.

本発明は、以上のように説明し且つ記述した特定の詳細内容及び代表的な実施の形態に限定されるものではない。当業者によって容易に導き出すことができる更なる変形例及び効果も本発明に含まれる。したがって、添付の特許請求の範囲及びその均等物によって定義される総括的な発明の概念の精神または範囲から逸脱することなく、様々な変更が可能である。   The invention is not limited to the specific details and exemplary embodiments described and described above. Further variations and effects that can be easily derived by those skilled in the art are also included in the present invention. Accordingly, various modifications can be made without departing from the spirit or scope of the general inventive concept as defined by the appended claims and their equivalents.

1 真空断熱材、2 繊維シート、3 芯材、4 外被材、4a、4b 外被材シート、4a1、4b1 シール層、5 吸着剤、6 外装貫通部、6a 第一の外装貫通部、6b 第二の外装貫通部、7 芯材貫通部、8 仕切りフィルム、8a 仕切りフィルム密着部、9 外装シール部、10 段差芯材、11 ニードルパンチ繊維シート、12 波形状打ち貫きシール、100 上部配管、101 給湯配管、102a、102b、102c 断熱材、103 タンク、104 水供給配管、105 底部配管。 DESCRIPTION OF SYMBOLS 1 Vacuum heat insulating material, 2 Fiber sheet, 3 Core material, 4 Outer material, 4a, 4b Outer material sheet, 4a1, 4b1 Seal layer, 5 Adsorbent, 6 Exterior penetration part, 6a First exterior penetration part, 6b 2nd exterior penetration part, 7 core material penetration part, 8 partition film, 8a partition film adhesion | attachment part, 9 exterior seal part, 10 level | step difference core material, 11 needle punch fiber sheet, 12 corrugated punching seal, 100 upper piping, 101 Hot water supply piping, 102a, 102b, 102c Thermal insulation, 103 tank, 104 Water supply piping, 105 Bottom piping.

Claims (15)

繊維の積層体を有する芯材本体と前記芯材本体を貫通する芯材貫通部とを有する芯材と、
前記芯材本体を覆う外被材と、
前記芯材とともに前記外被材内に設置された仕切りフィルムと、
前記芯材貫通部内で、前記仕切りフィルムと前記外被材とを貫通する外装貫通部と、
前記芯材貫通部内で前記外被材と前記仕切りフィルムとがシールされた外装シール部と
を備え、
前記仕切りフィルムは、
前記外装貫通部に対向した前記芯材の側面を覆い、
その一部が前記外装シール部において前記外被材と融着し、融着していない他の一部が前記芯材貫通部を覆うように配置してあることを特徴とする真空断熱材。
A core material having a core material body having a laminate of fibers and a core material penetrating portion penetrating the core material body; and
A jacket covering the core body;
A partition film installed in the jacket material together with the core material;
In the core material penetration part, an exterior penetration part that penetrates the partition film and the jacket material,
An outer seal part in which the outer cover material and the partition film are sealed in the core material penetrating part,
The partition film is
Cover the side surface of the core material facing the exterior through-hole,
A vacuum heat insulating material, characterized in that a part thereof is fused to the outer cover material in the exterior seal portion, and the other portion not fused covers the core material penetration portion.
前記外被材は、前記仕切りフィルムと同一素材のシール層を有することを特徴とする請求項1に記載の真空断熱材。   2. The vacuum heat insulating material according to claim 1, wherein the jacket material has a seal layer made of the same material as the partition film. 前記外被材は、前記仕切りフィルムよりも融点が高いシール層を有することを特徴とする請求項1に記載の真空断熱材。   The vacuum jacket according to claim 1, wherein the jacket material has a seal layer having a melting point higher than that of the partition film. 前記仕切りフィルムは、板状の板状部位と、前記芯材の厚み方向から前記芯材の幅方向へ傾斜する傾斜部位とを備え、
前記外被材と前記芯材本体とが前記傾斜部位を挟むことを特徴とする請求項1に記載の真空断熱材。
The partition film includes a plate-like plate-shaped portion and an inclined portion that is inclined in the width direction of the core material from the thickness direction of the core material,
The vacuum heat insulating material according to claim 1, wherein the outer cover material and the core material main body sandwich the inclined portion.
前記仕切りフィルムは、シュリンクフィルムであることを特徴とする請求項1〜4のいずれか1項に記載の真空断熱材。   The vacuum insulation material according to claim 1, wherein the partition film is a shrink film. 前記シール層は、波形状に成形してある波形状部位を備えることを特徴とする請求項2又は3に記載の真空断熱材。   The vacuum heat insulating material according to claim 2 or 3, wherein the seal layer includes a corrugated portion formed into a corrugated shape. 前記芯材貫通部と前記外貫通部とは、前記芯材の厚み方向の中央よりも前記厚み方向の一方側にずれた位置に配置してあることを特徴とする請求項2、3、又は6のいずれか1項に記載の真空断熱材。 Wherein A the outer instrumentation through portion and the core penetration portion, claim 2, characterized in that also the center of the thickness direction of the core material is arranged at a position shifted to one side of the thickness direction, Or the vacuum heat insulating material of any one of 6. 前記芯材本体は、厚み方向に段差が有る段差部位を前記芯材貫通部の周囲に備え、
前記段差部位と前記傾斜部位とが接触することを特徴とする請求項4に記載の真空断熱材。
The core material body includes a step portion having a step in the thickness direction around the core material penetrating portion,
The vacuum heat insulating material according to claim 4, wherein the stepped portion and the inclined portion are in contact with each other.
前記芯材本体は、チョップド繊維を結束してある繊維シートを含むことを特徴とする請求項1〜8のいずれか1項に記載の真空断熱材。   The vacuum heat insulating material according to any one of claims 1 to 8, wherein the core body includes a fiber sheet in which chopped fibers are bound. 繊維の積層体を有する芯材本体と前記芯材本体を貫通する芯材貫通部とを有する芯材と、
前記芯材本体を覆う外被材と、
前記芯材とともに前記外被材内に設置された仕切りフィルムと、
前記芯材貫通部内で、前記仕切りフィルムと前記外被材とを貫通する外装貫通部と、
前記芯材貫通部内で前記外被材と前記仕切りフィルムとがシールされた外装シール部と
を備え、
前記仕切りフィルムは、
その一部が前記外装シール部において前記外被材と融着し、融着していない他の一部が前記芯材貫通部を覆うように配置してあり、
板状の板状部位と、前記芯材の厚み方向から前記芯材の幅方向へ傾斜する傾斜部位とを備え、
前記外被材と前記芯材本体とが前記傾斜部位を挟むことを特徴とする真空断熱材。
A core material having a core material body having a laminate of fibers and a core material penetrating portion penetrating the core material body; and
A jacket covering the core body;
A partition film installed in the jacket material together with the core material;
In the core material penetration part, an exterior penetration part that penetrates the partition film and the jacket material,
An outer seal part in which the outer cover material and the partition film are sealed in the core material penetrating part,
The partition film is
It said outer and covering material and fused at a portion of the outer seal portion, Ri tear another part which is not fused is placed over the core through portion,
A plate-shaped plate-shaped portion, and an inclined portion inclined from the thickness direction of the core material to the width direction of the core material,
A vacuum heat insulating material , wherein the jacket material and the core main body sandwich the inclined portion .
繊維の積層体を有する芯材本体と前記芯材本体を貫通する芯材貫通部とを有する芯材と、
前記芯材本体を覆う外被材と、
前記芯材とともに前記外被材内に設置された仕切りフィルムと、
前記芯材貫通部内で、前記仕切りフィルムと前記外被材とを貫通する外装貫通部と、
前記芯材貫通部内で前記外被材と前記仕切りフィルムとがシールされた外装シール部と
を備え、
前記仕切りフィルムは、
シュリンクフィルムであり、その一部が前記外装シール部において前記外被材と融着し、融着していない他の一部が前記芯材貫通部を覆うように配置してあることを特徴とする真空断熱材。
A core material having a core material body having a laminate of fibers and a core material penetrating portion penetrating the core material body; and
A jacket covering the core body;
A partition film installed in the jacket material together with the core material;
In the core material penetration part, an exterior penetration part that penetrates the partition film and the jacket material,
An outer seal part in which the outer cover material and the partition film are sealed in the core material penetrating part,
The partition film is
It is a shrink film, a part of which is arranged so as to be fused with the jacket material in the exterior seal part, and another part that is not fused is arranged to cover the core material penetrating part. Vacuum insulation.
配管又は配線を有する保温体と、
前記保温体を覆う請求項1〜11のいずれか1項に記載の真空断熱材とを備え、
前記配管又は前記配線は、前記芯材貫通部と前記外装貫通部とを介して前記真空断熱材を貫通することを特徴とする保温容器。
A heat insulator with piping or wiring;
The vacuum heat insulating material according to any one of claims 1 to 11 , which covers the heat retaining body,
The heat insulating container, wherein the pipe or the wiring penetrates the vacuum heat insulating material through the core material penetration part and the exterior penetration part.
繊維集合体で構成された芯材の平面に、前記芯材の芯材本体を貫通する芯材貫通部を設ける工程と、
前記芯材貫通部内に前記芯材の側面を覆う仕切りフィルムを配設する工程と、
前記芯材貫通部に前記仕切りフィルムを配設した前記芯材を外被材に挿入する工程と、
前記外被材と前記仕切りフィルムとを熱融着させる工程と、
熱融着させた前記外被材と前記仕切りフィルムとに、前記芯材貫通部を通る外装貫通部を打ち貫く工程と、
を備えることを特徴とする真空断熱材の製造方法。
A step of providing a core material penetrating portion that penetrates the core material body of the core material on the plane of the core material composed of a fiber assembly;
A step of disposing a partition film covering a side surface of the core material to the core through section,
Inserting the core material in which the partition film is disposed in the core material penetrating portion into a jacket material;
Heat-sealing the jacket material and the partition film;
A step of punching through the exterior penetration portion passing through the core material penetration portion to the outer cover material and the partition film that are heat-sealed;
The manufacturing method of the vacuum heat insulating material characterized by comprising.
繊維集合体で構成された芯材の平面に、前記芯材の芯材本体を貫通する芯材貫通部を設ける工程と、
前記芯材貫通部に仕切りフィルムを配設する工程と、
前記芯材貫通部に前記仕切りフィルムを配設した前記芯材を外被材に挿入する工程と、
板状に形成された前記仕切りフィルムの板状部位と、前記仕切りフィルムの前記芯材の厚み方向から前記芯材の幅方向へ傾斜するように形成された傾斜部位と、を前記外被材と前記芯材本体とにより挟んで、前記外被材と前記仕切りフィルムとを熱融着させる工程と、
熱融着させた前記外被材と前記仕切りフィルムとに、前記芯材貫通部を通る外装貫通部を打ち貫く工程と、
を備えることを特徴とする真空断熱材の製造方法。
A step of providing a core material penetrating portion that penetrates the core material body of the core material on the plane of the core material composed of a fiber assembly;
A step of disposing a partition film in the core material penetrating portion;
Inserting the core material in which the partition film is disposed in the core material penetrating portion into a jacket material;
A plate-shaped portion of the partition film formed in a plate shape, and an inclined portion formed so as to be inclined from the thickness direction of the core material of the partition film in the width direction of the core material; Sandwiching between the core material body and heat-sealing the jacket material and the partition film;
A step of punching through the exterior penetration portion passing through the core material penetration portion to the outer cover material and the partition film that are heat-sealed;
The manufacturing method of the vacuum heat insulating material characterized by comprising.
繊維集合体で構成された芯材の平面に、前記芯材の芯材本体を貫通する芯材貫通部を設ける工程と、
前記芯材貫通部にシュリンクフィルムである仕切りフィルムを配設する工程と、
前記芯材貫通部に前記仕切りフィルムを配設した前記芯材を外被材に挿入する工程と、
前記外被材と前記仕切りフィルムとを熱融着させる工程と、
熱融着させた前記外被材と前記仕切りフィルムとに、前記芯材貫通部を通る外装貫通部を打ち貫く工程と、
を備えることを特徴とする真空断熱材の製造方法。
A step of providing a core material penetrating portion that penetrates the core material body of the core material on the plane of the core material composed of a fiber assembly;
A step of disposing a partition film which is a shrink film in the core material penetrating portion;
Inserting the core material in which the partition film is disposed in the core material penetrating portion into a jacket material;
Heat-sealing the jacket material and the partition film;
A step of punching through the exterior penetration portion passing through the core material penetration portion to the outer cover material and the partition film that are heat-sealed;
The manufacturing method of the vacuum heat insulating material characterized by comprising.
JP2015207270A 2015-10-21 2015-10-21 Vacuum heat insulating material, method for manufacturing vacuum heat insulating material, and heat insulation container Active JP6498097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015207270A JP6498097B2 (en) 2015-10-21 2015-10-21 Vacuum heat insulating material, method for manufacturing vacuum heat insulating material, and heat insulation container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015207270A JP6498097B2 (en) 2015-10-21 2015-10-21 Vacuum heat insulating material, method for manufacturing vacuum heat insulating material, and heat insulation container

Publications (2)

Publication Number Publication Date
JP2017078479A JP2017078479A (en) 2017-04-27
JP6498097B2 true JP6498097B2 (en) 2019-04-10

Family

ID=58666147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015207270A Active JP6498097B2 (en) 2015-10-21 2015-10-21 Vacuum heat insulating material, method for manufacturing vacuum heat insulating material, and heat insulation container

Country Status (1)

Country Link
JP (1) JP6498097B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7065437B2 (en) * 2018-05-21 2022-05-12 パナソニックIpマネジメント株式会社 Manufacturing method of vacuum heat insulating material and vacuum heat insulating material
US11549420B2 (en) 2019-02-04 2023-01-10 Honda Motor Co., Ltd. Outboard motor catalytic converter
WO2021124555A1 (en) * 2019-12-20 2021-06-24 三菱電機株式会社 Vacuum insulation material and insulation box

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58135681U (en) * 1982-03-08 1983-09-12 松下冷機株式会社 Insulated box with vacuum insulation
JP2004011861A (en) * 2002-06-11 2004-01-15 Matsushita Refrig Co Ltd Vacuum heat insulating material, refrigerator, heat/cold insulating vessel, and electric kettle
JP3559035B2 (en) * 2002-12-05 2004-08-25 松下冷機株式会社 Vacuum insulation material, method of manufacturing the same, and cold protection equipment and personal computer using vacuum insulation material
JP4717126B2 (en) * 2009-04-07 2011-07-06 シャープ株式会社 Vacuum insulation and equipment equipped with it
JP2011208762A (en) * 2010-03-30 2011-10-20 Panasonic Corp Vacuum heat insulating material
JP2013083283A (en) * 2011-10-06 2013-05-09 Npc Inc Vacuum heat insulating material, and manufacturing method and manufacturing device thereof
JP5868238B2 (en) * 2012-03-26 2016-02-24 三菱電機株式会社 Vacuum heat insulating material, heat insulating box provided with this vacuum heat insulating material, and refrigerator provided with this heat insulating box
CN103790246B (en) * 2012-10-30 2016-08-24 昆山蓝胜建材有限公司 Vacuum heat-insulating plate for building and preparation method thereof

Also Published As

Publication number Publication date
JP2017078479A (en) 2017-04-27

Similar Documents

Publication Publication Date Title
JP3942189B2 (en) Manufacturing method of vacuum insulation
JP6498097B2 (en) Vacuum heat insulating material, method for manufacturing vacuum heat insulating material, and heat insulation container
KR101905943B1 (en) Article having fluororesin joint, and method for producing such article
JP2008106532A (en) Vacuum heat insulation material
JP4974861B2 (en) Vacuum insulation
KR101353647B1 (en) Core material for vacuum insulation panel and vacuum insulation panel using the same
JP2015068484A (en) Laminate sheet for vacuum heat insulation material and vacuum heat insulation material
EP2980467B1 (en) Vacuum heat-insulating material
WO2017195329A1 (en) Vacuum heat-insulating material and manufacturing method therefor
JP2014228135A (en) Method of manufacturing vacuum heat insulation material, and the vacuum heat insulation material
JP2007155135A (en) Vacuum insulation material and manufacturing method thereof
JP2007250310A (en) Film-armored electric device, and method of manufacturing same
JP2008121757A (en) Vacuum insulation material and refrigerator
JP5907204B2 (en) Manufacturing method of vacuum insulation
JP2017187126A (en) Vacuum heat insulating device and method of manufacturing the same
JP2011089740A (en) Bag body and vacuum heat insulating material
WO2017029727A1 (en) Vacuum heat insulation material and heat insulation box
JP2007138976A (en) Vacuum heat insulating material and its manufacturing method
JP2010084813A (en) Vacuum insulating material and method of manufacturing the same
JP2012026512A (en) Bag body and vacuum heat insulating material
JP5251830B2 (en) Fiber sheet and vacuum insulation
JP6207756B2 (en) Vacuum heat insulating material, manufacturing method of vacuum heat insulating material, installation structure of vacuum heat insulating material, and hot water storage tank equipped with vacuum heat insulating material
JP4944567B2 (en) Vacuum insulation article and method for manufacturing the same
JP2013001409A (en) Liquid container
JP2011185413A (en) Method for manufacturing vacuum heat insulation material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180710

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20180821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190312

R150 Certificate of patent or registration of utility model

Ref document number: 6498097

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250