JP7057141B2 - Welding structure and welding method for ferritic stainless steel sheets - Google Patents

Welding structure and welding method for ferritic stainless steel sheets Download PDF

Info

Publication number
JP7057141B2
JP7057141B2 JP2018006554A JP2018006554A JP7057141B2 JP 7057141 B2 JP7057141 B2 JP 7057141B2 JP 2018006554 A JP2018006554 A JP 2018006554A JP 2018006554 A JP2018006554 A JP 2018006554A JP 7057141 B2 JP7057141 B2 JP 7057141B2
Authority
JP
Japan
Prior art keywords
stainless steel
weld metal
ferritic stainless
equivalent
metal portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018006554A
Other languages
Japanese (ja)
Other versions
JP2019123000A (en
Inventor
晃太郎 関向
知明 齋田
一成 今川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Stainless Steel Corp filed Critical Nippon Steel Stainless Steel Corp
Priority to JP2018006554A priority Critical patent/JP7057141B2/en
Publication of JP2019123000A publication Critical patent/JP2019123000A/en
Application granted granted Critical
Publication of JP7057141B2 publication Critical patent/JP7057141B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、フェライト系ステンレス鋼板の溶接構造体、および当該溶接構造体の溶接方法に関する。 The present invention relates to a welded structure of a ferritic stainless steel sheet and a welding method for the welded structure.

複数のフェライト系ステンレス鋼板を含む溶接構造体を溶接する方法としては、2枚のフェライト系ステンレス鋼板同士を突き合せて溶接する方法や、フェライト系ステンレス鋼の溶加材を用いて溶接する方法などが従来から知られている。あるいは、フェライト系ステンレス鋼板よりも強度・耐食性に優れたステンレス鋼の溶加材を用いて溶接する方法も、一般に採用されている。 As a method of welding a welded structure containing a plurality of ferritic stainless steel plates, a method of butt-welding two ferritic stainless steel plates, a method of welding using a filler metal of ferritic stainless steel, etc. Has been known for a long time. Alternatively, a method of welding using a filler metal of stainless steel, which is superior in strength and corrosion resistance to ferritic stainless steel sheets, is also generally adopted.

なお、ステンレス鋼板同士を溶接するとき、またはステンレス鋼板と、ステンレス鋼の鋼材とを溶接するときに溶融する部分を溶接金属部と称する。溶接時の熱履歴によって鋼板表面に酸化スケールが形成された母材の部分を熱影響部と称する。熱影響部は、母材と溶接金属部との境界付近に生じ、特にステンレス鋼材の熱影響部においては、一般に耐食性が劣化する。これら溶接金属部と熱影響部とをまとめて溶接部と称する。 The portion that melts when welding stainless steel plates or when welding a stainless steel plate and a stainless steel material is referred to as a weld metal portion. The portion of the base metal on which the oxide scale is formed on the surface of the steel sheet due to the thermal history during welding is called the heat-affected zone. The heat-affected zone is generated near the boundary between the base metal and the weld metal portion, and the corrosion resistance is generally deteriorated particularly in the heat-affected zone of the stainless steel material. These weld metal parts and heat-affected zones are collectively referred to as welded parts.

例えば、特許文献1には、TiおよびAlを複合添加することで溶接時のCrの酸化ロスを抑制し、溶接部の耐食性低下を改善したフェライト系ステンレス鋼が開示されている。また、特許文献2には、Arバックガスシールを行わずにTIG溶接を施す場合において、溶接部の耐食性低下を抑制する方法が開示されている。具体的には、21質量%を超えるCrを含有するフェライト系ステンレス鋼であって、NiおよびCuを添加することで、フェライト系ステンレス鋼同士をTIG溶接した時、当該ステンレス鋼の裏面における熱影響部の耐食性を改善したフェライト系ステンレス鋼が開示されている。 For example, Patent Document 1 discloses a ferrite-based stainless steel in which the oxidation loss of Cr during welding is suppressed by adding Ti and Al in a composite manner, and the deterioration of corrosion resistance of the welded portion is improved. Further, Patent Document 2 discloses a method of suppressing a decrease in corrosion resistance of a welded portion when TIG welding is performed without performing Ar back gas sealing. Specifically, it is a ferritic stainless steel containing Cr of more than 21% by mass, and when Ni and Cu are added to TIG weld the ferritic stainless steels to each other, the thermal effect on the back surface of the stainless steel. A ferritic stainless steel having improved corrosion resistance of the portion is disclosed.

さらに、特許文献3には、Si、Al、およびTi等の元素を添加することで、Arバックガスシールを実施しない場合においても溶接部の耐食性に優れたフェライト系ステンレス鋼が得られるとの記載がある。 Further, Patent Document 3 describes that by adding elements such as Si, Al, and Ti, a ferritic stainless steel having excellent corrosion resistance of a welded portion can be obtained even when Ar back gas sealing is not performed. There is.

特開平5-70899号公報Japanese Unexamined Patent Publication No. 5-70899 特開2007-302995号公報JP-A-2007-302995 特開2013-204128号公報Japanese Unexamined Patent Publication No. 2013-204128

しかしながら、2枚のフェライト系ステンレス鋼板同士を突き合せて溶接する方法、およびフェライト系ステンレス鋼の溶加材を用いて溶接する方法については、溶接金属部に鋭敏化が生じて耐食性が低下してしまう。また、熱影響部に深い腐食孔が発生してしまう。一方、フェライト系ステンレス鋼板よりも強度・耐食性に優れたステンレス鋼の溶加材を用いて溶接する方法を採用した場合、溶接金属部の優れた耐食性は担保できるものの、依然として熱影響部に深い腐食孔が発生していた。 However, in the method of butt-welding two ferritic stainless steel sheets and the method of welding using a filler metal of ferritic stainless steel, the weld metal part becomes sharpened and the corrosion resistance deteriorates. It ends up. In addition, deep corrosion holes are generated in the heat-affected zone. On the other hand, when a welding method using a welded material of stainless steel, which is superior in strength and corrosion resistance to ferritic stainless steel plates, is adopted, the excellent corrosion resistance of the weld metal part can be guaranteed, but the heat-affected zone is still deeply corroded. There was a hole.

さらに、特許文献1のフェライト系ステンレス鋼は、Arバックガスシールを行わずにTIG溶接を施した場合、Crの酸化ロスを十分に抑制できず、溶接部の耐食性が大幅に低下してしまう。特許文献2のフェライト系ステンレス鋼は、溶接部に隙間が形成されていたり、Cuの含有量が適正範囲(0.1質量%~1.0質量%)から外れていたりすると、十分な耐食性改善効果が得られず、深い腐食孔が発生する場合がある。また、特許文献1~3に開示された技術では、腐食が問題となるのは溶接部付近のみであるにも関わらず、溶接構造体全体をより高価な材料に替える必要があり、必要以上にコストがかかってしまう。 Further, in the ferrite-based stainless steel of Patent Document 1, when TIG welding is performed without performing Ar back gas sealing, the oxidation loss of Cr cannot be sufficiently suppressed, and the corrosion resistance of the welded portion is significantly lowered. The ferritic stainless steel of Patent Document 2 has sufficient corrosion resistance improvement when a gap is formed in the welded portion or the Cu content is out of the appropriate range (0.1% by mass to 1.0% by mass). It may not be effective and deep corrosion holes may occur. Further, in the techniques disclosed in Patent Documents 1 to 3, although corrosion is a problem only in the vicinity of the welded portion, it is necessary to replace the entire welded structure with a more expensive material, which is more than necessary. It costs money.

本発明の一態様は、上記の各問題点に鑑みてなされたものであり、その目的は、溶接金属部の耐食性を一定程度維持しつつ、母材となるフェライト系ステンレス鋼板の熱影響部における腐食孔の発生・成長を効果的に抑制することにある。 One aspect of the present invention has been made in view of each of the above problems, and an object thereof is in a heat-affected zone of a ferrite stainless steel sheet as a base material while maintaining a certain degree of corrosion resistance of a weld metal portion. The purpose is to effectively suppress the generation and growth of corroded holes.

上記の課題を解決するために、本発明の一態様に係る溶接構造体は、第1フェライト系ステンレス鋼板と第2フェライト系ステンレス鋼板とを少なくとも含む溶接構造体であって、前記第1フェライト系ステンレス鋼板と前記第2フェライト系ステンレス鋼板との間には、オーステナイト単相組織のステンレス鋼の溶接金属部が形成されている。 In order to solve the above problems, the welded structure according to one aspect of the present invention is a welded structure including at least a first ferrite-based stainless steel plate and a second ferrite-based stainless steel plate, and the first ferrite-based stainless steel plate is described above. A welded metal portion of stainless steel having an austenite single-phase structure is formed between the stainless steel plate and the second ferrite-based stainless steel plate.

上記の構成によれば、溶接金属部がオーステナイト単相組織のステンレス鋼で形成されている。したがって、本発明の一態様に係る溶接構造体が腐食環境にて使用されたとき、溶接金属部において第1・第2フェライト系ステンレス鋼板(母材)よりも早く腐食が発生し始め、発生後は腐食孔が緩やかに成長する。また、溶接金属部において腐食孔が成長している間は、第1・第2フェライト系ステンレス鋼板の熱影響部において腐食孔がほとんど発生・成長せず、溶接金属部には浅い腐食孔しか形成されない。 According to the above configuration, the weld metal portion is made of austenite single-phase structure stainless steel. Therefore, when the welded structure according to one aspect of the present invention is used in a corroded environment, corrosion begins to occur earlier in the weld metal portion than in the first and second ferritic stainless steel plates (base material), and after the occurrence, the corrosion begins to occur. Corrosion holes grow slowly. Further, while the corroded holes are growing in the weld metal part, the corroded holes are hardly generated or grown in the heat-affected zone of the first and second ferritic stainless steel plates, and only shallow corroded holes are formed in the weld metal part. Not done.

以上より、溶接金属部の耐食性を一定程度維持しつつ、第1・第2フェライト系ステンレス鋼板の熱影響部における腐食孔の発生・成長を効果的に抑制することができる。 From the above, it is possible to effectively suppress the generation and growth of corrosion holes in the heat-affected zone of the first and second ferrite stainless steel sheets while maintaining the corrosion resistance of the weld metal portion to a certain extent.

また、本発明の一態様に係る溶接方法は、オーステナイト系ステンレス鋼の溶加材を用いた、第1フェライト系ステンレス鋼板と第2フェライト系ステンレス鋼板とを少なくとも含む溶接構造体の溶接方法であって、(i)前記第1フェライト系ステンレス鋼板および前記第2フェライト系ステンレス鋼板に対する前記溶加材の溶け込み率、および(ii)前記溶加材の成分組成の少なくとも一方が、前記第1フェライト系ステンレス鋼板と前記第2フェライト系ステンレス鋼板との間にオーステナイト単相組織のステンレス鋼の溶接金属部を形成するように調整されている。 Further, the welding method according to one aspect of the present invention is a welding method of a welded structure including at least a first ferrite-based stainless steel plate and a second ferrite-based stainless steel plate using a filler metal of austenite-based stainless steel. (I) The penetration rate of the filler metal into the first ferrite stainless steel plate and the second ferrite stainless steel plate, and (ii) at least one of the component compositions of the filler metal is the first ferrite-based steel plate. It is adjusted so as to form a welded metal portion of stainless steel having an austenite single-phase structure between the stainless steel plate and the second ferrite-based stainless steel plate.

上記の構成によれば、溶接金属部の耐食性を一定程度維持しつつ、第1・第2フェライト系ステンレス鋼板の熱影響部における腐食孔の発生・成長を効果的に抑制できる溶接構造体の溶接方法を実現することができる。 According to the above configuration, welding of a welded structure capable of effectively suppressing the generation and growth of corrosion holes in the heat-affected zone of the first and second ferritic stainless steel plates while maintaining the corrosion resistance of the weld metal portion to a certain extent. The method can be realized.

また、本発明の一態様に係る溶接方法は、(i)前記溶加材の前記溶け込み率、および(ii)前記溶加材の前記成分組成の少なくとも一方が、前記溶接金属部において、Cr当量αが16以上かつNi当量βが12以上になるとともに、前記Cr当量αと前記Ni当量βとの関係がα≧1.1×β-8.2になるように調整されていることが好ましい。 Further, in the welding method according to one aspect of the present invention, (i) the penetration rate of the filler material and (ii) at least one of the component compositions of the filler metal are Cr equivalents in the weld metal portion. It is preferable that α is 16 or more and Ni equivalent β is 12 or more, and the relationship between the Cr equivalent α and the Ni equivalent β is adjusted so that α ≧ 1.1 × β-8.2. ..

上記の構成によれば、溶接構造体が腐食環境にて使用されたときに、溶接金属部にて優先的に腐食孔が発生・成長することから、第1・第2フェライト系ステンレス鋼の熱影響部における腐食孔の発生・成長を、より効果的に抑制することができる。 According to the above configuration, when the welded structure is used in a corroded environment, corrosion holes are preferentially generated and grown in the weld metal part, so that the heat of the first and second ferritic stainless steels is generated. The generation and growth of corroded holes in the affected area can be suppressed more effectively.

本発明の一態様によれば、溶接金属部の耐食性を一定程度維持しつつ、第1・第2フェライト系ステンレス鋼板の熱影響部における腐食孔の発生・成長を効果的に抑制することができる。 According to one aspect of the present invention, it is possible to effectively suppress the generation and growth of corrosion holes in the heat-affected zone of the first and second ferritic stainless steel sheets while maintaining the corrosion resistance of the weld metal portion to a certain extent. ..

(a)は、従来の溶接構造体の断面図である。(b)は、本発明の一実施形態に係る溶接構造体の断面図である。(A) is a cross-sectional view of a conventional welded structure. (B) is a cross-sectional view of a welded structure according to an embodiment of the present invention. 本発明の一実施形態に係る溶接構造体の成形材料の成分組成を示す表である。It is a table which shows the component composition of the molding material of the welded structure which concerns on one Embodiment of this invention. 腐食孔内模擬環境下に各種試験片を配置した場合アノード分極曲線であって、(a)は単独試験片単体を配置した場合のアノード分極曲線、(b)は接続試験片を配置した場合のアノード分極曲線を示すグラフである。It is an anodic polarization curve when various test pieces are arranged in a simulated environment inside a corroded hole, (a) is an anodic polarization curve when a single test piece is arranged, and (b) is a case where a connection test piece is arranged. It is a graph which shows the anodic polarization curve. 本発明の一実施形態、および比較例に係る溶加材の成形材料の成分組成を示す表である。It is a table which shows the component composition of the molding material of the filler metal which concerns on one Embodiment of this invention, and a comparative example. 本発明の一実施形態、および比較例に係る母材の成形材料の成分組成を示す表である。It is a table which shows the component composition of the molding material of the base material which concerns on one Embodiment of this invention, and a comparative example. 本発明の一実施形態、および比較例に係る溶接構造体の耐食性評価等を示す表である。It is a table which shows one Embodiment of this invention, the corrosion resistance evaluation of the welded structure which concerns on a comparative example, and the like.

〔溶接構造体の概要〕
母材と溶接部とが同一のステンレス鋼材の場合、一般的に、溶接金属部における耐食性低下の程度に比べて熱影響部における耐食性低下の程度の方が大きい。したがって、耐食性が最も低下する母材の熱影響部に大きく深い腐食孔が発生する。ここで、溶接金属部とは、溶加材などが溶融した溶接金属によって形成される部分で、隣り合う2つの母材の接合箇所に形成される。また、熱影響部とは、溶接時の熱履歴によって鋼板表面に酸化スケールが形成された母材の部分であり、当該母材と溶接金属部との境界付近の箇所に生じる。特にステンレス鋼材の熱影響部においては、一般に耐食性が劣化する。これら溶接金属部と熱影響部とをまとめて溶接部と称する。
[Overview of welded structure]
When the base metal and the welded portion are the same stainless steel material, the degree of deterioration in corrosion resistance in the heat-affected zone is generally larger than the degree of deterioration in corrosion resistance in the weld metal portion. Therefore, large and deep corrosion holes are generated in the heat-affected zone of the base metal, which has the lowest corrosion resistance. Here, the weld metal portion is a portion formed by the molten metal such as a filler metal, and is formed at a joint portion between two adjacent base materials. The heat-affected zone is a portion of the base metal in which an oxide scale is formed on the surface of the steel sheet due to the heat history at the time of welding, and is generated at a portion near the boundary between the base metal and the weld metal portion. Especially in the heat-affected zone of stainless steel, the corrosion resistance generally deteriorates. These weld metal parts and heat-affected zones are collectively referred to as welded parts.

例えば、図1の(a)に示すように2つのフェライト系ステンレス鋼板(第1フェライト系ステンレス鋼板、第2フェライト系ステンレス鋼板)2を突合せて溶接した場合、接合箇所にフェライト単相組織の溶接金属部300が形成された溶接構造体100となる。この溶接構造体100において、2つのフェライト系ステンレス鋼板2の熱影響部2b-1には、大きく深い腐食孔2a-1が発生する。 For example, when two ferritic stainless steel plates (first ferritic stainless steel plate and second ferritic stainless steel plate) 2 are butted and welded as shown in FIG. 1 (a), a ferritic single-phase structure is welded to the joint portion. The welded structure 100 in which the metal portion 300 is formed is formed. In the welded structure 100, large and deep corrosion holes 2a-1 are generated in the heat-affected zone 2b-1 of the two ferrite stainless steel plates 2.

その点、図1の(b)に示すように、本実施形態に係る溶接構造体1は、母材であるフェライト系ステンレス鋼板2と異なる組織のステンレス鋼の溶加材(不図示)を用いて溶接金属部3が形成されている。具体的には、オーステナイト系ステンレス鋼の溶加材を用いて溶接金属部3が形成されており、当該溶接金属部3はオーステナイト単相組織となっている。本実施形態に係る溶接構造体1は溶接部を含む構造体全般に採用される。 In that respect, as shown in FIG. 1B, the welded structure 1 according to the present embodiment uses a filler metal (not shown) having a structure different from that of the ferritic stainless steel plate 2 which is the base material. The weld metal portion 3 is formed. Specifically, the weld metal portion 3 is formed by using a filler metal of austenitic stainless steel, and the weld metal portion 3 has an austenite single-phase structure. The welded structure 1 according to the present embodiment is adopted for the entire structure including the welded portion.

一般的に、フェライト系ステンレス鋼よりもオーステナイト系ステンレス鋼の方が腐食孔の発生時期が早い傾向がある。そのため、溶接構造体1が腐食環境に晒される過程で、溶接金属部3の方が2つのフェライト系ステンレス鋼板2よりも早く腐食孔が発生し始める。また、溶接金属部3で腐食孔3aが発生した後は、当該腐食孔3aが緩やかに成長する。 In general, austenitic stainless steel tends to generate corrosion holes earlier than ferrite stainless steel. Therefore, in the process of exposing the welded structure 1 to the corrosive environment, the weld metal portion 3 begins to generate corrosive holes earlier than the two ferritic stainless steel plates 2. Further, after the corroded hole 3a is generated in the weld metal portion 3, the corroded hole 3a grows slowly.

さらに、腐食孔3aが成長している間は、以下の2点に起因して腐食孔2aがほとんど発生・成長しない。すなわち、(A)溶接構造体1全体としてのカソード電流の総量が変わらないところ、アノード電流が腐食孔3aの発生・成長によって余分に消費されることから、結果として腐食孔2aの発生・成長が抑制される。(B)腐食孔3aの発生によって溶接金属部3の電極電位が卑となることにより、溶接金属部3と熱影響部2bとの間に電位差が生じ、ガルバニック的に熱影響部2bにおける腐食孔2aの発生・成長が抑制される。 Further, while the corroded holes 3a are growing, the corroded holes 2a are hardly generated or grown due to the following two points. That is, (A) where the total amount of cathode current of the welded structure 1 as a whole does not change, the anode current is excessively consumed by the generation / growth of the corrosion holes 3a, and as a result, the generation / growth of the corrosion holes 2a occurs. It is suppressed. (B) Since the electrode potential of the weld metal portion 3 becomes low due to the generation of the corroded hole 3a, a potential difference is generated between the weld metal portion 3 and the heat-affected zone 2b, and the corroded hole in the heat-affected zone 2b galvanically. The generation and growth of 2a is suppressed.

以上の過程を経て、溶接構造体1が腐食環境に置かれた後には、図1の(b)に示すように熱影響部2bに腐食孔2aが、溶接金属部3に腐食孔3aがそれぞれ形成される。腐食孔2a・3aともに同程度の大きさ・深さであり、図1の(a)に示す腐食孔2a-1と比べて大きさが大幅に小さくなっている。またその深さも大幅に浅くなっている。 After the welded structure 1 is placed in a corroded environment through the above process, a corroded hole 2a is formed in the heat-affected zone 2b and a corroded hole 3a is formed in the weld metal portion 3 as shown in FIG. 1B. It is formed. Both the corroded holes 2a and 3a have the same size and depth, and the size is significantly smaller than that of the corroded holes 2a-1 shown in FIG. 1 (a). The depth is also significantly shallower.

〔溶接構造体の成形材料の成分組成〕
本実施形態に係る溶接構造体1には、母材(フェライト系ステンレス鋼板2)として図2の表におけるA鋼の鋼板が用いられており、溶接金属部3の組成としてC鋼の組成が想定されている。なお、母材としてB鋼の鋼板を用いた場合では、溶接金属部3の組成としてD鋼の組成が想定される。
[Component composition of molding material for welded structure]
In the welded structure 1 according to the present embodiment, the steel plate A in the table of FIG. 2 is used as the base material (ferritic stainless steel plate 2), and the composition of steel C is assumed as the composition of the weld metal portion 3. Has been done. When a steel plate of B steel is used as the base material, the composition of D steel is assumed as the composition of the weld metal portion 3.

ここで、A鋼はおよびB鋼はCrの量が異なるフェライト系ステンレス鋼である。また、C鋼はSUS304L相当鋼であり、D鋼はSUS316L相当鋼であり、溶接金属部の組成を予測したものである。溶接構造体1を構成する上述の母材および溶接金属部は、それぞれ以下の成分を有する。 Here, the A steel and the B steel are ferritic stainless steels having different amounts of Cr. Further, the C steel is SUS304L equivalent steel and the D steel is SUS316L equivalent steel, and the composition of the weld metal portion is predicted. The above-mentioned base metal and the weld metal portion constituting the welded structure 1 each have the following components.

Crは、耐食性を確保する上で重要なステンレス鋼の主要成分である。また、酸化皮膜中のCr酸化物の割合を増大させることは、還元されにくいSi酸化物、Ti酸化物、Al酸化物などの存在割合を減少させるためにも有効である。本実施形態における母材のCr含有量は17.96質量%であり、溶接金属部想定のC鋼のCr含有量は18.48質量%である。なお、B鋼の母材を用いた場合のCr含有量は22.09質量%であり、溶接金属部想定のD鋼を用いた場合のCr含有量は17.48質量%である。十分な耐食性を確保するためにはCr含有量は15質量%以上が好ましく、より好ましくは18質量%以上である。 Cr is a major component of stainless steel, which is important for ensuring corrosion resistance. Increasing the proportion of Cr oxide in the oxide film is also effective in reducing the proportion of Si oxide, Ti oxide, Al oxide and the like that are difficult to reduce. The Cr content of the base metal in the present embodiment is 17.96% by mass, and the Cr content of the C steel assumed to be the weld metal portion is 18.48% by mass. The Cr content when the base material of the B steel is used is 22.09% by mass, and the Cr content when the D steel assumed to be the weld metal portion is used is 17.48% by mass. In order to secure sufficient corrosion resistance, the Cr content is preferably 15% by mass or more, more preferably 18% by mass or more.

Niは、オーステナイト単相組織を得るために有効な元素である。また、腐食が進行している腐食孔内でのメタルの活性溶解速度を遅くし、腐食孔の成長を抑制する作用がある。本実施形態における母材のNi含有量は0.16質量%であり、溶接金属部想定のC鋼のNi含有量は10.48質量%である。なお、B鋼の母材を用いた場合のNi含有量は0.16質量%であり、溶接金属部想定のD鋼を用いた場合のNi含有量は12.85質量%である。 Ni is an effective element for obtaining an austenite single-phase structure. In addition, it has the effect of slowing the active dissolution rate of metal in the corroded pores where corrosion is progressing and suppressing the growth of the corroded pores. The Ni content of the base metal in the present embodiment is 0.16% by mass, and the Ni content of the C steel assumed to be the weld metal portion is 10.48% by mass. The Ni content when the base material of the B steel is used is 0.16% by mass, and the Ni content when the D steel assumed to be the weld metal part is used is 12.85% by mass.

Siは、例えばArガスシールを行ってTIG溶接する場合に溶接部の耐食性改善に有効に作用する。また、Siは、脱酸剤やその他の目的でオーステナイト系ステンレス鋼に添加されるとともに、フェライト系ステンレス鋼の硬質化にも寄与する。本実施形態における母材のSi含有量は0.09質量%であり、溶接金属部想定のC鋼のSi含有量は0.53質量%である。なお、B鋼の母材を用いた場合のSi含有量は0.25質量%であり、溶接金属部想定のD鋼を用いた場合のSi含有量は0.69質量%である。 Si effectively acts to improve the corrosion resistance of the welded portion when, for example, Ar gas sealing is performed and TIG welding is performed. In addition, Si is added to austenitic stainless steel for deoxidizing agents and other purposes, and also contributes to hardening of ferritic stainless steel. The Si content of the base metal in the present embodiment is 0.09% by mass, and the Si content of the C steel assumed to be the weld metal portion is 0.53% by mass. The Si content when the base material of the B steel is used is 0.25% by mass, and the Si content when the D steel assumed to be the weld metal portion is used is 0.69% by mass.

MoはCrと同じく、安定した耐食性を確保するための基本成分であり、主として海水や各種媒質に対する耐食性を向上させるための成分である。本実施形態における母材のMo含有量は0.95質量%であり、溶接金属部想定のC鋼のMo含有量は0.44質量%である。なお、B鋼の母材を用いた場合のMo含有量は1.17質量%であり、溶接金属部想定のD鋼を用いた場合のMo含有量は2.74質量%である。 Like Cr, Mo is a basic component for ensuring stable corrosion resistance, and is mainly a component for improving corrosion resistance to seawater and various media. The Mo content of the base metal in the present embodiment is 0.95% by mass, and the Mo content of the C steel assumed to be the weld metal portion is 0.44% by mass. The Mo content when the base material of the B steel is used is 1.17% by mass, and the Mo content when the D steel assumed to be the weld metal part is used is 2.74% by mass.

Cは、鋼中に不可避に含まれる元素である。Cの含有量を低減すると鋼は軟質化し、加工性が向上する。また、炭化物の生成が抑制され、溶接性および溶接金属部3の耐食性が向上する。そのため、Cの含有量は低いほうがよい。本実施形態における母材のC含有量は0.006質量%であり、溶接金属部想定のC鋼のC含有量は0.015質量%である。なお、B鋼の母材を用いた場合のC含有量は0.011質量%であり、溶接金属部想定のD鋼を用いた場合のC含有量は0.018質量%である。 C is an element inevitably contained in steel. When the C content is reduced, the steel becomes soft and the workability is improved. In addition, the formation of carbides is suppressed, and the weldability and the corrosion resistance of the weld metal portion 3 are improved. Therefore, the content of C should be low. The C content of the base metal in the present embodiment is 0.006% by mass, and the C content of the C steel assumed to be the weld metal portion is 0.015% by mass. The C content when the base material of the B steel is used is 0.011% by mass, and the C content when the D steel assumed to be the weld metal part is used is 0.018% by mass.

NもCと同様、鋼中に不可避に含まれる元素である。Nの含有量を低減すると鋼は軟質化し、加工性が向上する。また、窒化物の生成が抑制され、溶接性および溶接金属部3の耐食性が向上する。そのため、Nの含有量は低いほうがよい。本実施形態における母材のN含有量は0.013質量%であり、溶接金属部想定のC鋼のN含有量は0.016質量%である。なお、B鋼の母材を用いた場合のN含有量は0.012質量%であり、溶接金属部想定のD鋼を用いた場合のN含有量は0.009質量%である。 Like C, N is an element inevitably contained in steel. When the N content is reduced, the steel becomes soft and the workability is improved. In addition, the formation of nitrides is suppressed, and the weldability and the corrosion resistance of the weld metal portion 3 are improved. Therefore, the content of N should be low. The N content of the base metal in the present embodiment is 0.013% by mass, and the N content of the C steel assumed to be the weld metal portion is 0.016% by mass. The N content when the base material of the B steel is used is 0.012% by mass, and the N content when the D steel assumed to be the weld metal part is used is 0.009% by mass.

Mnは、ステンレス鋼の脱酸剤として用いられる。しかし、Mnは不動態皮膜中のCr濃度を低下させ、耐食性低下を招く要因となる。したがって、Mnの含有量は低い方がよい。本実施形態における母材のMn含有量は0.26質量%であり、溶接金属部想定のC鋼のMn含有量は1.52質量%である。なお、B鋼の母材を用いた場合のMn含有量は0.16質量%であり、溶接金属部想定のD鋼を用いた場合のMn含有量は1.02質量%である。 Mn is used as a deoxidizing agent for stainless steel. However, Mn lowers the Cr concentration in the passivation film and causes a decrease in corrosion resistance. Therefore, the Mn content should be low. The Mn content of the base metal in the present embodiment is 0.26% by mass, and the Mn content of the C steel assumed to be the weld metal portion is 1.52% by mass. The Mn content when the base material of the B steel is used is 0.16% by mass, and the Mn content when the D steel assumed to be the weld metal portion is used is 1.02% by mass.

Pは、母材および溶接金属部3の靱性を損なうので、その含有量は低い方がよい。本実施形態における母材のP含有量は0.034質量%であり、溶接金属部想定のC鋼のP含有量は0.031質量%である。なお、B鋼の母材を用いた場合のP含有量は0.030質量%であり、溶接金属部想定のD鋼を用いた場合のP含有量は0.029質量%である。 Since P impairs the toughness of the base metal and the weld metal portion 3, the content thereof should be low. The P content of the base metal in the present embodiment is 0.034% by mass, and the P content of the C steel assumed to be the weld metal portion is 0.031% by mass. The P content when the base material of the B steel is used is 0.030% by mass, and the P content when the D steel assumed to be the weld metal part is used is 0.029% by mass.

Sは、孔食の起点となり易いMnSを形成して耐食性を低下させる要因となることから、その含有量は低い方がよい。本実施形態における母材のS含有量は0.000質量%であり、溶接金属部想定のC鋼のS含有量は0.003質量%である。なお、B鋼の母材を用いた場合のS含有量は0.001質量%であり、溶接金属部想定のD鋼を用いた場合のS含有量は0.002質量%である。 Since S forms MnS, which tends to be the starting point of pitting corrosion, and causes a factor of lowering corrosion resistance, the content thereof should be low. The S content of the base metal in the present embodiment is 0.000% by mass, and the S content of the C steel assumed to be the weld metal portion is 0.003% by mass. The S content when the base material of the B steel is used is 0.001% by mass, and the S content when the D steel assumed to be the weld metal part is used is 0.002% by mass.

Tiは、例えばArバックガスシールを行う従来のTIG溶接において、溶接部の耐食性に寄与する元素である。本実施形態における母材のTi含有量は0.22質量%であり、溶接金属部想定のC鋼のTi含有量は0.001質量%である。なお、B鋼の母材を用いた場合のTi含有量は、0.19質量%である。 Ti is an element that contributes to the corrosion resistance of the welded portion in, for example, conventional TIG welding in which Ar back gas sealing is performed. The Ti content of the base metal in the present embodiment is 0.22% by mass, and the Ti content of the C steel assumed to be the weld metal portion is 0.001% by mass. The Ti content when the base material of B steel is used is 0.19% by mass.

Alは、溶接時の加熱で熱影響部2b等の表面にAl酸化物皮膜を生成することにより、Crの酸化ロスを防止する。一方、Alを必要以上に添加すると表面品質の低下や溶接性の低下を招くことから、Alの含有量はあまり高くない方がよい。本実施形態における母材のAl含有量は、0.043質量%である。なお、B鋼の母材を用いた場合のAl含有量は0.089質量%であり、溶接金属部想定のD鋼を用いた場合のAl含有量は0.006質量%である。 Al prevents the oxidation loss of Cr by forming an Al oxide film on the surface of the heat-affected zone 2b and the like by heating at the time of welding. On the other hand, if Al is added more than necessary, the surface quality is deteriorated and the weldability is deteriorated. Therefore, it is preferable that the Al content is not so high. The Al content of the base material in this embodiment is 0.043% by mass. The Al content when the base material of the B steel is used is 0.089% by mass, and the Al content when the D steel assumed to be the weld metal part is used is 0.006% by mass.

Nbは、C・Nとの親和性が強く、フェライト系ステンレス鋼で問題となる粒界腐食を防止するのに有効な元素である。一方、Nbを必要以上に添加すると溶接高温割れが生じ、溶接金属部3の靱性も低下することから、その含有量はあまり高くない方がよい。本実施形態における母材のNb含有量は0.256質量%であり、溶接金属部想定のC鋼のNb含有量は0.035質量%である。なお、B鋼の母材を用いた場合のNb含有量は0.203質量%であり、溶接金属部想定のD鋼を用いた場合のNb含有量は0.022質量%である。 Nb has a strong affinity with C and N, and is an effective element for preventing intergranular corrosion, which is a problem in ferritic stainless steel. On the other hand, if Nb is added more than necessary, high-temperature cracking in the weld occurs and the toughness of the weld metal portion 3 also decreases. Therefore, the content thereof should not be so high. The Nb content of the base metal in the present embodiment is 0.256% by mass, and the Nb content of the C steel assumed to be the weld metal portion is 0.035% by mass. The Nb content when the base material of the B steel is used is 0.203% by mass, and the Nb content when the D steel assumed to be the weld metal part is used is 0.022% by mass.

その他の成分元素については、熱影響部2bおよび溶接金属部3の耐食性の観点からは特にこだわる必要はなく、用途に応じて種々の成分組成を採用することができる。 Regarding other component elements, it is not necessary to be particular about the corrosion resistance of the heat-affected zone 2b and the weld metal part 3, and various component compositions can be adopted depending on the application.

また、上述した各元素の含有量等はあくまでも一例である。すなわち、フェライト系ステンレス鋼の母材と、オーステナイト単相組織のステンレス鋼の溶接金属部と、で構成される溶接構造体を形成できるのであれば、A・B鋼以外のフェライト系ステンレス鋼からなる母材を用いてもよい。同様に、C・D鋼以外の溶接金属部の組織となる溶加材を用いてもよい。 In addition, the content of each element described above is just an example. That is, if a welded structure composed of a base material of ferritic stainless steel and a welded metal portion of stainless steel having an austenite single-phase structure can be formed, it is made of ferritic stainless steel other than A and B steels. A base material may be used. Similarly, a filler metal material that forms the structure of the weld metal portion other than the C / D steel may be used.

本実施形態のような成分組成の母材(A鋼)を用いても、より高価な母材(B鋼)を用いた場合に形成される腐食孔2a・3aと略同一の大きさ・深さの腐食孔2a・3aが形成される(図1の(b)参照)。 Even if a base material (A steel) having a component composition as in the present embodiment is used, the size and depth are substantially the same as those of the corrosion holes 2a and 3a formed when the more expensive base material (B steel) is used. Corrosion holes 2a and 3a are formed (see (b) in FIG. 1).

したがって、本実施形態に係る溶接構造体1を採用することにより、製造コストを抑制しつつ、溶接金属部3の耐食性を一定程度維持して熱影響部2bにおける腐食孔2aの発生・成長を効果的に抑制することができる。 Therefore, by adopting the welded structure 1 according to the present embodiment, the corrosion resistance of the weld metal portion 3 is maintained to a certain extent while suppressing the manufacturing cost, and the generation and growth of the corrosion holes 2a in the heat-affected zone 2b are effective. Can be suppressed.

〔フェライト系ステンレス鋼板の溶接方法〕
本実施形態に係る溶接構造体1は、上述のようにオーステナイト系ステンレス鋼の溶加材を用いて溶接金属部3を形成し、2つのフェライト系ステンレス鋼板2を接合することによって完成する。具体的には、例えばArガスシールを行ったTIG溶接によって溶接金属部3を形成し、2つのフェライト系ステンレス鋼板2を接合する。また、TIG溶接にかぎらず、MIG溶接など、溶接時において溶接金属部3に他成分を溶融させることができるのであればどのような溶接方法を採用してもよい。
[Welding method for ferritic stainless steel sheets]
The welded structure 1 according to the present embodiment is completed by forming a weld metal portion 3 using a filler metal of austenitic stainless steel as described above and joining two ferritic stainless steel plates 2. Specifically, for example, the weld metal portion 3 is formed by TIG welding with Ar gas sealing, and the two ferritic stainless steel plates 2 are joined. Further, not limited to TIG welding, any welding method may be adopted as long as other components can be melted in the weld metal portion 3 at the time of welding, such as MIG welding.

上述のTIG溶接の際に用いられる溶加材は、溶接構造体1に形成された溶接金属部3がオーステナイト単相組織となるように工夫する必要がある。本実施形態では、溶接金属部3がオーステナイト単相組織になり易い当該溶接金属部3のCr当量αおよびNi当量βを、シェフラー組織図(不図示)を用いて求めた。そして、求めたCr当量αおよびNi当量βの溶接金属部3になるような溶加材を選定し、TIG溶接を行った。 The filler metal used in the above-mentioned TIG welding needs to be devised so that the weld metal portion 3 formed in the welded structure 1 has an austenite single-phase structure. In the present embodiment, the Cr equivalent α and Ni equivalent β of the weld metal portion 3 in which the weld metal portion 3 tends to have an austenite single-phase structure are determined by using a Scheffler organization chart (not shown). Then, a filler material was selected so as to form the weld metal portion 3 having the obtained Cr equivalent α and Ni equivalent β, and TIG welding was performed.

具体的には、溶接金属部3において、Cr当量αが16以上かつNi当量βが12以上になるとともに、Cr当量αとNi当量βとの関係がα≧1.1×β-8.2になるような溶加材を選定した。選定された溶加材は、(i)2つのフェライト系ステンレス鋼板2に対する溶加材の溶け込み率、および(ii)溶加材の成分組成の双方が、上述のようなCr当量α、Ni当量β、およびCr当量αとNi当量βとの関係になるように調整されている。 Specifically, in the weld metal portion 3, the Cr equivalent α is 16 or more and the Ni equivalent β is 12 or more, and the relationship between the Cr equivalent α and the Ni equivalent β is α ≧ 1.1 × β-8.2. The filler metal was selected so that it would be. In the selected filler metal, both (i) the penetration rate of the filler metal into the two ferrite stainless steel plates 2 and (ii) the component composition of the filler metal are both Cr equivalent α and Ni equivalent as described above. The relationship between β and Cr equivalent α and Ni equivalent β is adjusted.

ここで、シェフラー組織図を用いてCr当量αおよびNi当量βを求める場合の計算式は、下記の式1および2となる。式1および2において、xは溶加材の溶け込み率を表す。 Here, the calculation formulas for obtaining the Cr equivalent α and the Ni equivalent β using the Schaeffler organization chart are the following formulas 1 and 2. In formulas 1 and 2, x represents the penetration rate of the filler material.

(式1)
α=x×(溶加材のCr当量)+(1-x)×(母材のCr当量)
(式2)
β=x×(溶加材のNi当量)+(1-x)×(母材のNi当量)
また、溶加材および母材のそれぞれについて、Cr当量は下記の式3により算出され、Ni当量は下記の式4により算出される。
(Equation 1)
α = xx (Cr equivalent of filler metal) + (1-x) x (Cr equivalent of base metal)
(Equation 2)
β = xx (Ni equivalent of filler metal) + (1-x) x (Ni equivalent of base metal)
Further, for each of the filler metal and the base metal, the Cr equivalent is calculated by the following formula 3, and the Ni equivalent is calculated by the following formula 4.

(式3)
Cr当量=Cr質量%+Mo質量%+1.5×Si質量%+0.5×Nb質量%
(式4)
Ni当量=Ni質量%+30×C質量%+0.5×Mn質量%
なお、上述のCr当量αおよびNi当量βの計算方法はあくまで一例であり、この場合に限定されない。言い換えれば、(i)2つのフェライト系ステンレス鋼板2に対する溶加材の溶け込み率、および(ii)溶加材の成分組成の少なくとも一方を用いて、Cr当量αおよびNi当量βを算出できる計算式であればどのような計算式を用いてもよい。
(Equation 3)
Cr equivalent = Cr mass% + Mo mass% + 1.5 x Si mass% + 0.5 x Nb mass%
(Equation 4)
Ni equivalent = Ni mass% + 30 x C mass% + 0.5 x Mn mass%
The above-mentioned calculation method of Cr equivalent α and Ni equivalent β is merely an example, and is not limited to this case. In other words, a calculation formula capable of calculating Cr equivalent α and Ni equivalent β using (i) the penetration rate of the filler material into the two ferrite stainless steel plates 2 and (ii) at least one of the component compositions of the filler material. If so, any calculation formula may be used.

また、溶接金属部3において、Cr当量αが16以上かつNi当量βが12以上になるとともに、Cr当量αとNi当量βとの関係がα≧1.1×β-8.2になるような溶加材を選定することも必須ではない。言い換えれば、溶接金属部3がオーステナイト単相組織となるように、(i)上記溶け込み率、および(ii)上記成分組成の少なくとも一方が調整された溶加材であればどのような溶加材を選定してもよい。 Further, in the weld metal portion 3, the Cr equivalent α is 16 or more and the Ni equivalent β is 12 or more, and the relationship between the Cr equivalent α and the Ni equivalent β is α ≧ 1.1 × β-8.2. It is not essential to select a suitable filler material. In other words, any filler metal in which (i) the penetration rate and (ii) at least one of the above component compositions are adjusted so that the weld metal portion 3 has an austenite single-phase structure. May be selected.

〔測定例〕
<測定方法>
従来の同材溶接、および本実施形態に係る異種溶加材溶接のどちらが先に腐食孔が発生するかを確かめるべく、腐食孔内の環境を再現した腐食孔内模擬環境下に各種試験片を配置して電位を印加し、アノード分極曲線測定を行った。具体的には、電解漕(不図示)に温度が30℃の20%NaCl溶液(HClを用いてpH1となるように調整)を入れて、この溶液中に各種試験片を浸し、当該各種試験片に電位を印加した。この溶液にはAr脱気を施し、掃引速度を20mV/minとした。
[Measurement example]
<Measurement method>
In order to confirm which of the conventional welding of the same material and the welding of different filler materials according to this embodiment causes the corrosion hole first, various test pieces are placed under a simulated environment inside the corrosion hole that reproduces the environment inside the corrosion hole. The anodic polarization curve was measured by arranging and applying a potential. Specifically, a 20% NaCl solution (adjusted to pH 1 using HCl) having a temperature of 30 ° C. is placed in an electrolytic tank (not shown), and various test pieces are immersed in this solution to perform various tests. A potential was applied to the piece. This solution was degassed by Ar and the sweep rate was set to 20 mV / min.

各種試験片については、(i)フェライト系ステンレス鋼の単独試験片、(ii)オーステナイト系ステンレス鋼の単独試験片、および(iii)フェライト系ステンレス鋼の試験片とオーステナイト系ステンレス鋼の試験片とを接続した接続試験片の3種類を用いた。また、(i)および(ii)の単独試験片は、15mm×20mmに切り出した鋼板を、電極面積1cmを残してシリコンシールにより絶縁被覆したものである。(iii)の接続試験片は、(i)および(ii)の単独試験片を配線によって電気的に接続したものである。 Regarding various test pieces, (i) ferritic stainless steel single test piece, (ii) austenite stainless steel single test piece, and (iii) ferritic stainless steel test piece and austenite stainless steel test piece. Three types of connection test pieces were used. Further, the single test pieces (i) and (ii) are made by insulatingly coating a steel plate cut into a size of 15 mm × 20 mm with a silicon seal leaving an electrode area of 1 cm 2 . The connection test piece of (iii) is obtained by electrically connecting the individual test pieces of (i) and (ii) by wiring.

<測定結果>
以下、A鋼の単独試験片単体、C鋼の単独試験片単体、およびA鋼の単独試験片とC鋼の単独試験片とを接続した接続試験片のそれぞれを電解漕の溶液に浸して、電位を印加したケースを例に挙げて説明する。
<Measurement result>
Hereinafter, each of the single test piece of A steel, the single test piece of C steel, and the connection test piece in which the single test piece of A steel and the single test piece of C steel are connected is immersed in the solution of the electrolytic tank. A case in which a potential is applied will be described as an example.

図3の(a)に示すように、A鋼の単独試験片単体に電位を印加した場合、印加電位が約-0.4Vvs.Ag/AgCl以下のときには電流密度が急激に上昇した。一方、印加電位が約-0.4Vvs.Ag/AgClを超えた辺りから電流密度が急激に落ち込み、印加電位が約0.2Vvs.Ag/AgClのときに電流密度が最低値になることが判った。 As shown in FIG. 3A, when a potential is applied to a single test piece of steel A, the applied potential is about −0.4 Vvs. When it was Ag / AgCl or less, the current density increased sharply. On the other hand, the applied potential is about -0.4 Vvs. The current density drops sharply from around Ag / AgCl, and the applied potential is about 0.2 Vvs. It was found that the current density became the lowest value at the time of Ag / AgCl.

また、C鋼の単独試験片単体に電位を印加した場合、印加電位が約-0.3Vvs.Ag/AgCl以下のときには電流密度が急激に上昇した。一方、印加電位が約-0.3Vvs.Ag/AgClを超えた辺りから電流密度が急激に落ち込み、印加電位が約-0.1Vvs.Ag/AgClのときに電流密度が最低値になることが判った。 Further, when a potential is applied to a single test piece of C steel, the applied potential is about −0.3 Vvs. When it was Ag / AgCl or less, the current density increased sharply. On the other hand, the applied potential is about -0.3 Vvs. The current density drops sharply from around Ag / AgCl, and the applied potential is about -0.1 Vvs. It was found that the current density became the lowest value at the time of Ag / AgCl.

次に、A鋼の単独試験片とC鋼の単独試験片とを接続した接続試験片に電位を印加した場合、電流密度の変化は、図3の(b)に示すように、C鋼の単独試験片単体に電位を印加した場合と略同一の傾向を示すことが判った。 Next, when a potential is applied to the connection test piece in which the single test piece of A steel and the single test piece of C steel are connected, the change in the current density is as shown in FIG. 3 (b) of the C steel. It was found that the tendency was almost the same as when the potential was applied to the single test piece alone.

ここで、図3の(a)および(b)のグラフにおける、電流密度が最低値になるときの印加電位よりも若干高い値の印加電位で、各種試験片に腐食孔が発生し始める。この例では、A鋼の単独試験片単体に電位を印加した場合は、印加電位が約0.29Vvs.Ag/AgClで腐食孔が発生する。また、C鋼の単独試験片単体に電位を印加した場合は、印加電位が約-0.055Vvs.Ag/AgClで腐食孔が発生する。さらに、A鋼の単独試験片とC鋼の単独試験片とを接続した接続試験片に電位を印加した場合、印加電位が約-0.05Vvs.Ag/AgClで腐食孔が発生する。 Here, in the graphs of FIGS. 3A and 3B, corrosion holes start to occur in various test pieces at an applied potential having a value slightly higher than the applied potential when the current density becomes the minimum value. In this example, when a potential is applied to a single test piece of steel A, the applied potential is about 0.29 Vvs. Corrosion holes are generated in Ag / AgCl. Further, when a potential was applied to a single test piece of C steel, the applied potential was about −0.055 Vvs. Corrosion holes are generated in Ag / AgCl. Further, when a potential is applied to the connection test piece in which the single test piece of A steel and the single test piece of C steel are connected, the applied potential is about -0.05 Vvs. Corrosion holes are generated in Ag / AgCl.

上述のように、A鋼の単独試験片単体の構造は、従来の「同材溶接」における熱影響部と溶接金属部との接触態様と類似している。また、A鋼の単独試験片とC鋼の単独試験片との接続態様は、「異種溶加材溶接」における熱影響部2bと溶接金属部3との接触態様と類似している。したがって、溶接構造体1の溶接金属部3の腐食孔3aの発生時期は、熱影響部2bの腐食孔2aが発生し得る時期より早いものと推測される。 As described above, the structure of the single test piece of A steel is similar to the contact mode between the heat-affected zone and the weld metal portion in the conventional "welding of the same material". Further, the connection mode between the single test piece of steel A and the single test piece of steel C is similar to the contact mode between the heat-affected zone 2b and the weld metal portion 3 in "differential filler metal welding". Therefore, it is presumed that the time when the corroded hole 3a of the weld metal portion 3 of the welded structure 1 is generated is earlier than the time when the corroded hole 2a of the heat-affected zone 2b can be generated.

溶接金属部3にて腐食孔3aが発生して以降は、当該溶接金属部3で腐食孔が成長する一方、熱影響部2bでは腐食性の発生が抑制されることから、熱影響部2bにて腐食孔2aが発生・成長し難くなる。結果として、熱影響部2bには、溶接金属部3の腐食孔3aよりも小さくて浅い腐食孔2aしか形成されないものと推測される。 After the corrosion hole 3a is generated in the weld metal portion 3, the corrosion hole grows in the weld metal portion 3, while the heat-affected zone 2b suppresses the occurrence of corrosiveness. Corrosion holes 2a are generated and difficult to grow. As a result, it is presumed that only the corrosion holes 2a smaller and shallower than the corrosion holes 3a of the weld metal portion 3 are formed in the heat-affected zone 2b.

〔実施例〕
<実施方法>
図4に示すφ1.2mm径の溶加材a~gを用いて、図5に示すE鋼~G鋼のそれぞれで形成された2枚の鋼板を冶具に固定し、Arバックガスシールを施して、TIG溶接にて突合せ溶接を行った。TIG溶接の条件は、電流が40A~50A、溶接速度が100mm/min、トーチArガス流量10L/min、電極径φ1.6mmである。溶加材の溶け込み率xは、供給速度を変化させることにより調整した。
〔Example〕
<Implementation method>
Using the filler metal a to g having a diameter of 1.2 mm shown in FIG. 4, two steel plates formed of each of the E steel to the G steel shown in FIG. 5 are fixed to the jig and sealed with Ar back gas. Then, butt welding was performed by TIG welding. The conditions for TIG welding are a current of 40 A to 50 A, a welding speed of 100 mm / min, a torch Ar gas flow rate of 10 L / min, and an electrode diameter of φ1.6 mm. The penetration rate x of the filler metal was adjusted by changing the supply rate.

溶接金属部のオーステナイト相率は、フェライトスコープによるフェライト分率の測定値が1%未満の場合をオーステナイト単相と判断した。 The austenite phase ratio of the weld metal portion was determined to be austenite single phase when the measured value of the ferrite fraction by the ferrite scope was less than 1%.

また、溶接部の耐食性評価として、塩酸酸性6%塩化第二鉄溶液を用いた浸漬試験を行った。温度は30℃とし、浸漬時間は2時間とした。浸漬試験の結果、熱影響部の腐食孔が溶接金属部の腐食孔よりも浅く、かつ溶接金属部の最大侵食深さが0.1mm以下であったものを耐食性評価において合格(図6中の「○」)と判定した。 Further, as an evaluation of the corrosion resistance of the welded portion, a dipping test using a hydrochloric acid acidic 6% ferric chloride solution was conducted. The temperature was 30 ° C. and the immersion time was 2 hours. As a result of the immersion test, the corrosion hole of the heat-affected zone was shallower than the corrosion hole of the weld metal part and the maximum erosion depth of the weld metal part was 0.1 mm or less, which passed the corrosion resistance evaluation (in FIG. 6). It was judged as "○").

<実施結果>
図6に示すNo.8、9、10、11および12の溶接構造体は、溶加材a~dの溶け込み不足により、溶接金属部がオーステナイト単相組織とならず、溶接金属部において0.1mmを超える腐食孔が発生した。また、No.13の溶接構造体は、溶加材eのNi当量が低いため、溶け込み率xを増加させても溶接金属部がオーステナイト単相組織とならず、溶接金属部において0.1mmを超える腐食孔が発生した。
<Implementation result>
No. shown in FIG. In the welded structures of 8, 9, 10, 11 and 12, the weld metal portion does not have an austenite single-phase structure due to insufficient penetration of the filler metal parts a to d, and corrosion holes exceeding 0.1 mm are formed in the weld metal portion. Occurred. In addition, No. In the welded structure of No. 13, since the Ni equivalent of the filler metal e is low, the weld metal portion does not have an austenite single-phase structure even if the penetration rate x is increased, and corrosion holes exceeding 0.1 mm are formed in the weld metal portion. Occurred.

一方、No.14、および15の溶接構造体は、鋼板と同材の溶加材を用いて溶接を行ったものである。No.14および15の溶接構造体は、従来のように熱影響部において0.1mmを超える腐食孔が発生した。 On the other hand, No. The welded structures 14 and 15 are welded using a filler material of the same material as the steel plate. No. In the welded structures 14 and 15, corrosion holes exceeding 0.1 mm were generated in the heat-affected zone as in the conventional case.

〔付記事項〕
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
[Additional notes]
The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, and the embodiments obtained by appropriately combining the technical means disclosed in the different embodiments. Is also included in the technical scope of the present invention.

1 溶接構造体
2 フェライト系ステンレス鋼板(第1フェライト系ステンレス鋼板、第2フェライト系ステンレス鋼板)
3 溶接金属部
α 溶接金属部のCr当量
β 溶接金属部のNi当量
1 Welded structure 2 Ferritic stainless steel sheet (1st ferritic stainless steel sheet, 2nd ferritic stainless steel sheet)
3 Welded metal part α Cr equivalent of weld metal part β Ni equivalent of weld metal part

Claims (3)

第1フェライト系ステンレス鋼板と第2フェライト系ステンレス鋼板とを少なくとも含む溶接構造体であって、
前記第1フェライト系ステンレス鋼板および前記第2フェライト系ステンレス鋼板はともに、Crを17質量%以上含有し、かつMoを0.9質量%以上含有し、
前記第1フェライト系ステンレス鋼板と前記第2フェライト系ステンレス鋼板との間には、オーステナイト単相組織のステンレス鋼の溶接金属部が形成されており、
前記溶接金属部は、Cr当量αが17以上かつNi当量βが12以上になるとともに、前記Cr当量αと前記Ni当量βとの関係がα≧1.1×β-8.2になっており、
前記溶接金属部、ならびに前記第1フェライト系ステンレス鋼板および前記第2フェライト系ステンレス鋼板の各熱影響部を、温度30℃の塩酸酸性6%塩化第二鉄溶液に2時間浸漬する浸漬試験を行った場合に、前記各熱影響部の腐食孔が前記溶接金属部の腐食孔よりも浅く、かつ前記溶接金属部の最大侵食深さが0.1mm以下になることを特徴とする溶接構造体。
A welded structure containing at least a first ferritic stainless steel sheet and a second ferritic stainless steel sheet.
Both the first ferritic stainless steel sheet and the second ferritic stainless steel sheet contain 17% by mass or more of Cr and 0.9% by mass or more of Mo.
A weld metal portion of stainless steel having an austenite single-phase structure is formed between the first ferritic stainless steel plate and the second ferritic stainless steel plate.
In the weld metal portion, the Cr equivalent α is 17 or more and the Ni equivalent β is 12 or more, and the relationship between the Cr equivalent α and the Ni equivalent β is α ≧ 1.1 × β-8.2. Ori,
An immersion test was conducted in which the weld metal part, and the heat-affected parts of the first ferrite-based stainless steel plate and the second ferrite-based stainless steel plate were immersed in a hydrochloric acid-acidic 6% ferric chloride solution at a temperature of 30 ° C. for 2 hours. In this case, the corrosion hole of each heat-affected portion is shallower than the corrosion hole of the weld metal portion, and the maximum erosion depth of the weld metal portion is 0.1 mm or less . ..
オーステナイト系ステンレス鋼の溶加材を用いた、第1フェライト系ステンレス鋼板と第2フェライト系ステンレス鋼板とを少なくとも含む溶接構造体の溶接方法であって、
(i)前記第1フェライト系ステンレス鋼板および前記第2フェライト系ステンレス鋼板に対する前記溶加材の溶け込み率、および(ii)前記溶加材の成分組成の少なくとも一方が、前記第1フェライト系ステンレス鋼板と前記第2フェライト系ステンレス鋼板との間にオーステナイト単相組織のステンレス鋼の溶接金属部を形成するように調整されていることを特徴とする溶接方法。
A welding method for a welded structure including at least a first ferritic stainless steel plate and a second ferritic stainless steel plate using an austenitic stainless steel filler.
(I) The penetration rate of the filler metal into the first ferritic stainless steel plate and the second ferritic stainless steel plate, and (ii) at least one of the component compositions of the filler metal is the first ferritic stainless steel plate. A welding method characterized by being adjusted so as to form a welded metal portion of stainless steel having an austenite single-phase structure between and the second ferritic stainless steel plate.
(i)前記溶加材の前記溶け込み率、および(ii)前記溶加材の前記成分組成の少なくとも一方が、前記溶接金属部において、Cr当量αが17以上かつNi当量βが12以上になるとともに、前記Cr当量αと前記Ni当量βとの関係がα≧1.1×β-8.2になるように調整されていることを特徴とする請求項2に記載の溶接方法。 (I) The penetration rate of the filler material and (ii) at least one of the component compositions of the filler material have a Cr equivalent α of 17 or more and a Ni equivalent β of 12 or more in the weld metal portion. The welding method according to claim 2, wherein the relationship between the Cr equivalent α and the Ni equivalent β is adjusted so that α ≧ 1.1 × β-8.2.
JP2018006554A 2018-01-18 2018-01-18 Welding structure and welding method for ferritic stainless steel sheets Active JP7057141B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018006554A JP7057141B2 (en) 2018-01-18 2018-01-18 Welding structure and welding method for ferritic stainless steel sheets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018006554A JP7057141B2 (en) 2018-01-18 2018-01-18 Welding structure and welding method for ferritic stainless steel sheets

Publications (2)

Publication Number Publication Date
JP2019123000A JP2019123000A (en) 2019-07-25
JP7057141B2 true JP7057141B2 (en) 2022-04-19

Family

ID=67397247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018006554A Active JP7057141B2 (en) 2018-01-18 2018-01-18 Welding structure and welding method for ferritic stainless steel sheets

Country Status (1)

Country Link
JP (1) JP7057141B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010155276A (en) 2009-01-05 2010-07-15 Jfe Steel Corp Method for welding high chromium ferritic stainless steel material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06670A (en) * 1992-06-15 1994-01-11 Sumitomo Metal Ind Ltd Welding method for ferritic stainless steel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010155276A (en) 2009-01-05 2010-07-15 Jfe Steel Corp Method for welding high chromium ferritic stainless steel material

Also Published As

Publication number Publication date
JP2019123000A (en) 2019-07-25

Similar Documents

Publication Publication Date Title
JP5010323B2 (en) Ferritic stainless steel for hot water container with welded structure, hot water container and manufacturing method thereof
US8710405B2 (en) Austenitic stainless steel welding wire and welding structure
RU2421539C2 (en) Martensite stainless steel for welded structures
KR20130123463A (en) Ferrite stainless steel exhibiting excellent corrosion resistance and strength in weld zones, and tig-welded structure
WO2008111656A1 (en) Hot water container and process for production thereof
JP2008190003A (en) Ferritic stainless steel excellent in crevice corrosion resistance
JP2010202916A (en) Ferritic stainless steel excellent in corrosion resistance of welded part with austenite stainless steel
JP4699162B2 (en) Austenitic stainless steel welded structure with excellent low temperature toughness and seawater corrosion resistance
JP4784239B2 (en) Ferritic stainless steel filler rod for TIG welding
JP2011173124A (en) Welding method of ferritic stainless steel
JP2007009290A (en) Hot water container
JP2009185382A (en) Ferritic stainless steel sheet having excellent corrosion resistance in welding gap oxide film
JP3576472B2 (en) Welding material for low carbon martensitic stainless steel and arc welding method for low carbon martensitic stainless steel
JP2006241564A (en) Ferritic stainless steel for welded structure
JP4717594B2 (en) Welded structure hot water container
WO2008120409A1 (en) Ferritic stainless steel for warm-water vessel with welded structure, and warm-water vessel
JPH06279951A (en) Ferritic stainless steel for water heater
JP2011105976A (en) Drain pipe
JPH0570899A (en) Ferritic stainless steel excellent in corrosion resistance in weld zone
JP7057141B2 (en) Welding structure and welding method for ferritic stainless steel sheets
JP2008194724A (en) Flux cored wire for gas-shielded arc welding, and welding method of galvanized steel sheet and stainless steel sheet
JP3854530B2 (en) Austenitic stainless steel welding wire with excellent resistance to sulfuric acid corrosion and pitting corrosion
JP4699164B2 (en) Non-consumable electrode welding wire for austenitic stainless steel welding with excellent low temperature toughness and seawater corrosion resistance
JP5780660B2 (en) Welded structure of ferritic stainless steel can
JP3819755B2 (en) Welding method of high corrosion resistance high Mo austenitic stainless steel

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180207

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20200127

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220407

R150 Certificate of patent or registration of utility model

Ref document number: 7057141

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150