JP7055695B2 - Silica abrasive grains for polishing - Google Patents

Silica abrasive grains for polishing Download PDF

Info

Publication number
JP7055695B2
JP7055695B2 JP2018087154A JP2018087154A JP7055695B2 JP 7055695 B2 JP7055695 B2 JP 7055695B2 JP 2018087154 A JP2018087154 A JP 2018087154A JP 2018087154 A JP2018087154 A JP 2018087154A JP 7055695 B2 JP7055695 B2 JP 7055695B2
Authority
JP
Japan
Prior art keywords
polishing
abrasive grains
less
mass
liquid composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018087154A
Other languages
Japanese (ja)
Other versions
JP2019189813A (en
Inventor
俊介 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2018087154A priority Critical patent/JP7055695B2/en
Publication of JP2019189813A publication Critical patent/JP2019189813A/en
Application granted granted Critical
Publication of JP7055695B2 publication Critical patent/JP7055695B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本開示は、研磨用シリカ砥粒、並びに、これを用いた研磨液組成物、基板の製造方法、及び、基板の研磨方法に関する。 The present disclosure relates to silica abrasive grains for polishing, a polishing liquid composition using the same, a method for manufacturing a substrate, and a method for polishing a substrate.

近年、磁気ディスクドライブは小型化・大容量化が進み、高記録密度化が求められている。高記録密度化のためには、単位記録面積を縮小し、弱くなった磁気信号の検出感度を向上させる必要がある。そのため、磁気ヘッドの浮上高さをより低くするための技術開発が進められている。磁気ディスク基板には、磁気ヘッドの低浮上化と記録面積の確保に対応するため、平滑性及び平坦性の向上(表面粗さ、うねり、端面ダレの低減)や表面欠陥低減(残留砥粒、スクラッチ、突起、ピット等の低減)が厳しく要求されている。 In recent years, magnetic disk drives have become smaller and larger in capacity, and higher recording densities are required. In order to increase the recording density, it is necessary to reduce the unit recording area and improve the detection sensitivity of the weakened magnetic signal. Therefore, technological development is underway to lower the floating height of the magnetic head. For magnetic disk substrates, in order to reduce the levitation of the magnetic head and secure the recording area, improvement of smoothness and flatness (reduction of surface roughness, waviness, end face sagging) and reduction of surface defects (residual abrasive grains, Reduction of scratches, protrusions, pits, etc.) is strictly required.

このような要求に対して、より平滑で、傷が少ないといった表面品質向上と生産性の向上を両立させる観点から、磁気ディスク基板の製造方法においては、2段階以上の研磨工程を有する多段研磨方式が採用されることが多い。一般に、平滑性という要求を満たすために、コロイダルシリカ粒子を含む研磨剤が使用され、生産性向上の観点から、アルミナ粒子を砥粒として含む研磨液組成物が使用される。しかしながら、アルミナ粒子を砥粒として使用した場合、アルミナ粒子の基板への突き刺さりによって、磁気ディスク基板や、磁気ディスク基板に磁性層が施された磁気ディスクの欠陥を引き起こすことがある。 In response to such demands, from the viewpoint of achieving both improvement in surface quality such as smoother and less scratches and improvement in productivity, the method for manufacturing a magnetic disk substrate is a multi-stage polishing method having two or more stages of polishing steps. Is often adopted. Generally, an abrasive containing colloidal silica particles is used in order to satisfy the requirement of smoothness, and an abrasive liquid composition containing alumina particles as abrasive grains is used from the viewpoint of improving productivity. However, when the alumina particles are used as abrasive grains, the sticking of the alumina particles into the substrate may cause defects in the magnetic disk substrate or the magnetic disk having the magnetic layer applied to the magnetic disk substrate.

このような問題に対して、例えば、特許文献1には、コロイダルシリカ及び湿式法シリカ粒子を砥粒として含有する研磨液組成物が開示され、特許文献2には、表面の少なくとも一部がアルミニウムで覆われたシリカを砥粒として含有する研磨液組成物が開示されている。 To solve such a problem, for example, Patent Document 1 discloses a polishing liquid composition containing colloidal silica and wet silica particles as abrasive grains, and Patent Document 2 discloses at least a part of the surface of aluminum. A polishing liquid composition containing silica covered with silica as abrasive grains is disclosed.

国際公開第2015/146941号International Publication No. 2015/146941 特開2015-189898号公報Japanese Unexamined Patent Publication No. 2015-189898

アルミナ粒子に代えてシリカ粒子を砥粒とした従来の研磨液組成物では、アルミナの付着や突き刺さり等によるアルミナの残留が抑制され、研磨後の基板表面の突起欠陥を低減できる。しかし、アルミナ粒子に代えてシリカ粒子を砥粒として使用した場合、研磨速度が十分ではない。そして、研磨速度を向上させるためにシリカ粒子の粒径を大きくすることが提案されている。しかし、シリカ粒子の粒径が大きくなると、研磨後の基板表面にピットが発生するという問題が生じる。すなわち、研磨速度向上とピット抑制とはトレードオフの関係にあり、一方が改善すれば一方が悪化するという問題がある。 In the conventional polishing liquid composition in which silica particles are used as abrasive particles instead of alumina particles, residual alumina due to adhesion of alumina or piercing is suppressed, and protrusion defects on the surface of the substrate after polishing can be reduced. However, when silica particles are used as abrasive particles instead of alumina particles, the polishing speed is not sufficient. Then, it has been proposed to increase the particle size of the silica particles in order to improve the polishing rate. However, when the particle size of the silica particles becomes large, there arises a problem that pits are generated on the surface of the substrate after polishing. That is, there is a trade-off relationship between the improvement of the polishing speed and the suppression of pits, and there is a problem that if one is improved, the other is deteriorated.

そこで、本開示は、研磨速度向上とピット抑制のトレードオフを解消する研磨用シリカ砥粒、並びにこれを用いた研磨液組成物、基板の製造方法、及び基板の研磨方法を提供する。 Therefore, the present disclosure provides silica abrasive grains for polishing that eliminate the trade-off between improvement in polishing speed and suppression of pits, a polishing liquid composition using the same, a method for manufacturing a substrate, and a method for polishing a substrate.

本開示は、一態様において、pH1.5の水性媒体における表面電位が-50mV以上-6mV以下であり、pH1.5の水性媒体における平均二次粒子径が50nm以上600nm以下である、研磨用シリカ砥粒に関する。 In one aspect of the present disclosure, silica for polishing has a surface potential of -50 mV or more and -6 mV or less in an aqueous medium of pH 1.5 and an average secondary particle diameter of 50 nm or more and 600 nm or less in an aqueous medium of pH 1.5. Regarding abrasive grains.

本開示は、その他の態様において、本開示のシリカ砥粒(砥粒A)と、pH1.5の水性媒体における表面電位が-6mVを超える球状シリカ砥粒(砥粒B)とを含む、シリカスラリーに関する。 The present disclosure comprises, in other embodiments, silica abrasive grains (abrasive grain A) of the present disclosure and spherical silica abrasive grains (abrasive grain B) having a surface potential of more than -6 mV in an aqueous medium having a pH of 1.5. Regarding the slurry.

本開示は、その他の態様において、本開示のシリカ砥粒(砥粒A)を含む、研磨液組成物に関する。 The present disclosure relates to an abrasive liquid composition comprising the silica abrasive grains (abrasive grain A) of the present disclosure in another aspect.

本開示は、その他の態様において、本開示の研磨液組成物を用いて被研磨基板を研磨する研磨工程を含む、半導体基板、サファイア基板、及び磁気ディスク基板から選ばれる少なくとも1種の基板の製造方法に関する。 The present disclosure comprises, in other embodiments, the manufacture of at least one substrate selected from semiconductor substrates, sapphire substrates, and magnetic disk substrates, comprising a polishing step of polishing the substrate to be polished using the polishing liquid composition of the present disclosure. Regarding the method.

本開示によれば、一態様において、研磨速度向上とピット抑制のトレードオフを解消する研磨用シリカ砥粒を提供できるという効果が奏されうる。 According to the present disclosure, in one aspect, it is possible to achieve the effect of being able to provide polishing silica abrasive grains that eliminate the trade-off between improvement in polishing speed and suppression of pits.

本開示は、所定の表面電位及び所定の平均二次粒子径を有するシリカ砥粒を被研磨基板の研磨に用いると、研磨速度向上とピット抑制のトレードオフを解消できるという知見に基づく。 The present disclosure is based on the finding that when silica abrasive grains having a predetermined surface potential and a predetermined average secondary particle size are used for polishing a substrate to be polished, the trade-off between improvement in polishing speed and suppression of pits can be eliminated.

本開示の効果発現のメカニズムは明らかではないか、以下のように推察される。
本開示のシリカ砥粒は、所定の表面電位及び所定の平均二次粒子径を有することで、研磨液組成物中において静電反発によりシリカ砥粒の分散性が向上し、効果的にシリカ砥粒の凝集が抑制され、ピット発生の抑制につながると考えられる。また、シリカ砥粒の凝集が抑制されることで、研磨時においてシリカ砥粒の基板への切削作用が増え、研磨速度が向上すると考えられる。
但し、本開示はこれらのメカニズムに限定して解釈されなくてもよい。
The mechanism of the manifestation of the effects of the present disclosure is not clear, or is inferred as follows.
Since the silica abrasive grains of the present disclosure have a predetermined surface potential and a predetermined average secondary particle diameter, the dispersibility of the silica abrasive grains is improved by electrostatic repulsion in the polishing liquid composition, and the silica abrasive grains are effectively used. It is considered that the aggregation of particles is suppressed, which leads to the suppression of pit generation. Further, it is considered that the suppression of the aggregation of the silica abrasive grains increases the cutting action of the silica abrasive grains on the substrate during polishing and improves the polishing speed.
However, the present disclosure may not be construed as being limited to these mechanisms.

本開示において、基板表面の「ピット」とは、基板表面の凹み欠陥をいう。凹み欠陥には、孔状の凹み欠陥や筋状の凹み欠陥が含まれうる。基板表面のピットは、実施例に記載の方法により測定できる。 In the present disclosure, the "pit" on the surface of the substrate means a dent defect on the surface of the substrate. The dent defect may include a hole-like dent defect or a streak-like dent defect. The pits on the surface of the substrate can be measured by the method described in Examples.

[研磨用シリカ砥粒(砥粒A)]
本開示は、一態様において、pH1.5の水性媒体における表面電位が-50mV以上-6mV以下であり、pH1.5の水性媒体における平均二次粒子径が50nm以上600nm以下である、研磨用シリカ砥粒(以下、「本開示の砥粒A」ともいう)に関する。砥粒Aの使用形態としては、一又は複数の実施形態において、スラリー状であることが好ましい。
[Silica Abrasive Grains for Polishing (Abrasive Grains A)]
In one aspect of the present disclosure, silica for polishing has a surface potential of -50 mV or more and -6 mV or less in an aqueous medium of pH 1.5 and an average secondary particle diameter of 50 nm or more and 600 nm or less in an aqueous medium of pH 1.5. It relates to an abrasive grain (hereinafter, also referred to as "abrasive grain A of the present disclosure"). The form of use of the abrasive grains A is preferably in the form of a slurry in one or a plurality of embodiments.

本開示の砥粒Aの表面電位は、研磨速度向上とピット抑制のトレードオフを解消する観点から、-50mV以上であって、-40mV以上が好ましく、-35mV以上がより好ましく、そして、同様の観点から、-6mV以下であって、-10mV以下が好ましく、-12mV以下がより好ましく、-14mV以下が更に好ましい。より具体的には、本開示の砥粒Aの表面電位は、-50mV以上-6mV以下であって、-40mV以上-10mV以下が好ましく、-35mV以上-12mV以下がより好ましく、-35mV以上-14mV以下が更に好ましい。本開示において、シリカ砥粒の表面電位は、電気音響法(ESA法:Electorokinetic Sonic Amplitude)により求められる砥粒粒子表面における電位のことをいう。表面電位は、例えば、「ZetaProbe」(Agilent Technologies社製)を用いて測定でき、具体的には実施例に記載の方法により得ることができる。 The surface potential of the abrasive grains A of the present disclosure is preferably -50 mV or more, preferably -40 mV or more, more preferably -35 mV or more, and the same, from the viewpoint of eliminating the trade-off between the improvement of the polishing speed and the suppression of pits. From the viewpoint, it is preferably −6 mV or less, preferably −10 mV or less, more preferably −12 mV or less, and even more preferably −14 mV or less. More specifically, the surface potential of the abrasive grain A of the present disclosure is -50 mV or more and -6 mV or less, preferably -40 mV or more and -10 mV or less, more preferably -35 mV or more and -12 mV or less, and -35 mV or more-. 14 mV or less is more preferable. In the present disclosure, the surface potential of the silica abrasive grains refers to the potential on the surface of the abrasive grain particles obtained by the electroacoustic method (ESA method: Electricalokinetic Sonic Amplitude). The surface potential can be measured using, for example, "ZetaProbe" (manufactured by Agilent Technologies), and can be specifically obtained by the method described in Examples.

本開示の砥粒Aの平均一次粒子径は、研磨速度向上とピット抑制のトレードオフを解消する観点から、50nm以上が好ましく、80nm以上がより好ましく、100nm以上が更に好ましく、そして、同様の観点から、200nm以下が好ましく、180nm以下がより好ましく、160nm以下が更に好ましい。より具体的には、本開示の砥粒Aの平均一次粒子径は、50nm以上200nm以下が好ましく、80nm以上180nm以下がより好ましく、100nm以上160nm以下が更に好ましい。本開示において、シリカ砥粒の平均一次粒子径は、BET比表面積Sを用いて下記式から算出でき、実施例に記載の方法により算出できる。
平均一次粒子径(nm)=2727/S
The average primary particle diameter of the abrasive grains A of the present disclosure is preferably 50 nm or more, more preferably 80 nm or more, further preferably 100 nm or more, and the same viewpoint from the viewpoint of eliminating the trade-off between the improvement of the polishing speed and the suppression of pits. Therefore, 200 nm or less is preferable, 180 nm or less is more preferable, and 160 nm or less is further preferable. More specifically, the average primary particle diameter of the abrasive grains A of the present disclosure is preferably 50 nm or more and 200 nm or less, more preferably 80 nm or more and 180 nm or less, and further preferably 100 nm or more and 160 nm or less. In the present disclosure, the average primary particle diameter of silica abrasive grains can be calculated from the following formula using the BET specific surface area S, and can be calculated by the method described in Examples.
Average primary particle size (nm) = 2727 / S

本開示の砥粒AのpH1.5の水性媒体における平均二次粒子径は、研磨速度向上とピット抑制のトレードオフを解消する観点から、50nm以上であって、100nm以上が好ましく、200nm以上がより好ましく、300nm超が更に好ましく、そして、同様の観点から、600nm以下であって、500nm以下が好ましく、400nm以下がより好ましい。より具体的には、本開示の砥粒Aの平均二次粒子径は、50nm以上600nm以下であって、100nm以上500nm以下がより好ましく、200nm以上400nm以下が更に好ましく、300nm超400nm以下が更に好ましい。本開示において、砥粒AのpH1.5の水性媒体における平均二次粒子径は、静的光散乱法(レーザ回折/散乱法)により測定される散乱強度分布に基づく平均粒径をいう。本開示において「散乱強度分布」とは、動的光散乱法(DLS:Dynamic Light Scattering)、準弾性光散乱(QLS:Quasielastic Light Scattering)又は、静的光散乱法(レーザ回折/散乱法)により求められるサブミクロン以下の粒子の体積換算の粒径分布のことをいう。本開示における砥粒Aの平均二次粒子径は、具体的には実施例に記載の方法により得ることができる。 The average secondary particle diameter of the abrasive grains A of the present disclosure in an aqueous medium having a pH of 1.5 is 50 nm or more, preferably 100 nm or more, preferably 200 nm or more, from the viewpoint of eliminating the trade-off between the improvement of the polishing speed and the suppression of pits. More preferably, it is more preferably more than 300 nm, and from the same viewpoint, it is preferably 600 nm or less, preferably 500 nm or less, and more preferably 400 nm or less. More specifically, the average secondary particle diameter of the abrasive grains A of the present disclosure is 50 nm or more and 600 nm or less, more preferably 100 nm or more and 500 nm or less, further preferably 200 nm or more and 400 nm or less, and further preferably more than 300 nm and 400 nm or less. preferable. In the present disclosure, the average secondary particle size of the abrasive grains A in an aqueous medium having a pH of 1.5 refers to the average particle size based on the scattering intensity distribution measured by a static light scattering method (laser diffraction / scattering method). In the present disclosure, the "scattering intensity distribution" is defined by a dynamic light scattering method (DLS), a quasielastic light scattering method (QLS), or a static light scattering method (laser diffraction / scattering method). It refers to the volume-equivalent particle size distribution of the required submicron or smaller particles. Specifically, the average secondary particle diameter of the abrasive grains A in the present disclosure can be obtained by the method described in Examples.

本開示の砥粒Aの平均アスペクト比はそれぞれ、研磨速度向上とピット抑制のトレードオフを解消する観点から、1.1以上が好ましく、1.2以上が好ましく、1.2超が更に好ましく、そして、同様の観点から、2以下が好ましく、1.7以下が好ましく、1.5以下が更に好ましい。より具体的には、本開示の砥粒Aの平均アスペクト比は、1.1以上2以下が好ましく、1.2以上1.7以下がより好ましく、1.2超1.5以下が更に好ましい。本開示の砥粒Aのアスペクト比は、研磨速度向上とピット抑制のトレードオフを解消する観点から、上述した砥粒Aの平均アスペクト比と同様の範囲が好ましい。
本開示において、砥粒Aの平均アスペクト比は、少なくとも200個のシリカ砥粒のアスペクト比の平均値である。アスペクト比は、シリカ砥粒の長径と短径との比(長径/短径)である。シリカ砥粒の長径は、例えば、透過型電子顕微鏡(TEM)による観察及び画像解析ソフト等を用いて投影された砥粒粒子の画像に外接する最小の長方形を描いたときの、該長方形の長辺の長さであり、シリカ砥粒の短径は、前記長方形の短辺の長さである。
The average aspect ratio of the abrasive grains A of the present disclosure is preferably 1.1 or more, preferably 1.2 or more, and further preferably more than 1.2, from the viewpoint of eliminating the trade-off between the improvement of the polishing speed and the suppression of pits. From the same viewpoint, 2 or less is preferable, 1.7 or less is preferable, and 1.5 or less is more preferable. More specifically, the average aspect ratio of the abrasive grains A of the present disclosure is preferably 1.1 or more and 2 or less, more preferably 1.2 or more and 1.7 or less, and further preferably more than 1.2 and 1.5 or less. .. The aspect ratio of the abrasive grains A of the present disclosure is preferably in the same range as the above-mentioned average aspect ratio of the abrasive grains A from the viewpoint of eliminating the trade-off between the improvement of the polishing speed and the suppression of pits.
In the present disclosure, the average aspect ratio of the abrasive grains A is the average value of the aspect ratios of at least 200 silica abrasive grains. The aspect ratio is the ratio of the major axis to the minor axis (major axis / minor axis) of the silica abrasive grains. The major axis of the silica abrasive grains is, for example, the length of the rectangle when the smallest rectangle circumscribing the image of the abrasive grains projected by observation with a transmission electron microscope (TEM) and image analysis software is drawn. It is the length of the side, and the minor axis of the silica abrasive grains is the length of the short side of the rectangle.

本開示の砥粒Aとしては、研磨速度向上とピット抑制のトレードオフを解消する観点から、湿式法シリカ(沈降法シリカ)粒子が挙げられる。
前記湿式法シリカ(沈降法シリカ)粒子は、一又は複数の実施形態において、沈降法により得られるシリカ粒子である。湿式法シリカ(沈降法シリカ)粒子の製造方法としては、例えば、東ソー研究・技術報告 第45巻(2001)第65~69頁に記載の方法等の公知の方法が挙げられる。湿式法シリカ(沈降法シリカ)粒子の製造方法の具体例としては、例えば、珪酸ナトリウム等の珪酸塩と硫酸等の鉱酸との中和反応によりシリカ粒子を析出させる沈降法が挙げられる。前記中和反応を比較的高温でアルカリ性の条件で行うことが好ましく、これにより、シリカの一次粒子の成長が早く進行し、一次粒子がフロック状に凝集して沈降し、好ましくはこれをさらに粉砕することで、湿式法シリカ(沈降法シリカ)粒子が得られる。
Examples of the abrasive grains A of the present disclosure include wet silica (precipitation silica) particles from the viewpoint of eliminating the trade-off between improvement in polishing speed and suppression of pits.
The wet method silica (precipitation method silica) particles are silica particles obtained by the precipitation method in one or more embodiments. Examples of the method for producing wet silica (precipitation silica) particles include known methods such as those described in Tosoh Research and Technical Report Vol. 45 (2001), pp. 65-69. Specific examples of the method for producing wet silica (precipitation silica) particles include a precipitation method in which silica particles are precipitated by a neutralization reaction between a silicate such as sodium silicate and a mineral acid such as sulfuric acid. It is preferable to carry out the neutralization reaction at a relatively high temperature under alkaline conditions, whereby the growth of the primary particles of silica proceeds rapidly, and the primary particles aggregate and settle in a floc shape, preferably further pulverized. By doing so, wet method silica (precipitation method silica) particles can be obtained.

本開示の砥粒Aは、シリカ砥粒の表面電位を上述した範囲に調整する観点、及び、研磨速度向上とピット抑制のトレードオフを解消する観点から、Si及びO以外の元素であって、+2又は+3の酸化数を有する元素M(以下、単に「元素M」ともいう)を含むことが好ましい。元素Mとしては、研磨速度向上とピット抑制のトレードオフを解消する観点から、遷移金属、典型金属及び半金属から選ばれる少なくとも1種が好ましい。M元素の具体例としては、例えば、Al、Ga、Be、Fe、Mg、及びBから選ばれる少なくとも1種が挙げられる。中でも、研磨速度向上とピット抑制のトレードオフを解消する観点から、Alが好ましい。 The abrasive grains A of the present disclosure are elements other than Si and O from the viewpoint of adjusting the surface potential of the silica abrasive grains to the above-mentioned range and from the viewpoint of eliminating the trade-off between the improvement of the polishing speed and the suppression of pits. It is preferable to contain element M having an oxidation number of +2 or +3 (hereinafter, also simply referred to as "element M"). As the element M, at least one selected from transition metals, main group metals and metalloids is preferable from the viewpoint of eliminating the trade-off between improvement in polishing speed and suppression of pits. Specific examples of the M element include at least one selected from Al, Ga, Be, Fe, Mg, and B. Of these, Al is preferable from the viewpoint of eliminating the trade-off between improvement in polishing speed and suppression of pits.

本開示の砥粒Aが元素Mを含む場合、砥粒Aとしては、例えば、シリカ砥粒のSiの一部が元素Mに置換された粒子、シロキサン骨格のSiの一部が元素Mに置換されたシリケート構造を有する粒子等が挙げられる。 When the abrasive grains A of the present disclosure contain the element M, the abrasive grains A include, for example, particles in which a part of Si of the silica abrasive grains is replaced with the element M, and a part of Si of the siloxane skeleton is replaced with the element M. Examples thereof include particles having a silicate structure.

本開示の砥粒Aが元素Mを含む場合、砥粒A中の元素Mの含有量(モル%)は、研磨速度向上とピット抑制のトレードオフを解消する観点から、Siの含有量(100モル%)に対して、0.2モル%以上が好ましく、0.3モル%以上がより好ましく、0.4モル%以上が更に好ましく、そして、同様の観点から、2モル%以下が好ましく、1.8モル%以下がより好ましく、1.7モル%以下が更に好ましい。より具体的には、砥粒A中の元素Mの含有量(モル%)は、Siの含有量(100モル%)に対して、0.2モル%以上2モル%以下が好ましく、0.3モル%以上1.8モル%以下がより好ましく、0.4モル%以上1.7モル%以下が更に好ましい。 When the abrasive grains A of the present disclosure contain the element M, the content (mol%) of the element M in the abrasive grains A is the Si content (100) from the viewpoint of eliminating the trade-off between the improvement of the polishing speed and the suppression of pits. 0.2 mol% or more is preferable, 0.3 mol% or more is more preferable, 0.4 mol% or more is further preferable, and 2 mol% or less is preferable from the same viewpoint. 1.8 mol% or less is more preferable, and 1.7 mol% or less is further preferable. More specifically, the content (mol%) of the element M in the abrasive grains A is preferably 0.2 mol% or more and 2 mol% or less with respect to the Si content (100 mol%), and 0. It is more preferably 3 mol% or more and 1.8 mol% or less, and further preferably 0.4 mol% or more and 1.7 mol% or less.

本開示の砥粒Aが元素Mを含む場合、砥粒A中の元素Mの含有量(質量%)は、研磨速度向上とピット抑制のトレードオフを解消する観点から、Siの含有量(100質量%)に対して、0.1質量%以上が好ましく、0.15質量%以上がより好ましく、0.18質量%以上が更に好ましく、そして、同様の観点から、1質量%以下が好ましく、0.9質量%以下がより好ましく、0.8質量%以下が更に好ましい。より具体的には、砥粒A中の元素Mの含有量(質量%)は、Siの含有量(100質量%)に対して、0.1質量%以上1質量%以下が好ましく、0.15質量%以上0.9質量%以下がより好ましく、0.18質量%以上0.8質量%以下が更に好ましい。元素Mの含有量は、ICP発光分光分析法(ICP-AES : Inductively Coupled Plasma Atomic Emission Spectroscopy)によって測定できる。 When the abrasive grain A of the present disclosure contains the element M, the content (mass%) of the element M in the abrasive grain A is the Si content (100%) from the viewpoint of eliminating the trade-off between the improvement of the polishing speed and the suppression of pits. 0.1% by mass or more is preferable, 0.15% by mass or more is more preferable, 0.18% by mass or more is further preferable, and 1% by mass or less is preferable from the same viewpoint. 0.9% by mass or less is more preferable, and 0.8% by mass or less is further preferable. More specifically, the content (% by mass) of the element M in the abrasive grains A is preferably 0.1% by mass or more and 1% by mass or less with respect to the content of Si (100% by mass). It is more preferably 15% by mass or more and 0.9% by mass or less, and further preferably 0.18% by mass or more and 0.8% by mass or less. The content of element M can be measured by ICP-AES (Inductively Coupled Plasma Atomic Emission Spectroscopy).

本開示の砥粒Aが元素Mを含む粒子である場合、砥粒Aの製造方法としては、例えば、東ソー研究・技術報告 第45巻(2001)第65~69頁に記載の方法等の公知の方法が挙げられる。砥粒Aの製造方法の具体例としては、珪酸ナトリウム等の珪酸塩と硫酸等の鉱酸との中和反応によりシリカ粒子を析出させる沈降法が挙げられる。前記中和反応を比較的高温でアルカリ性の条件で行うことが好ましく、これにより、シリカの一次粒子の成長が早く進行し、一次粒子がフロック状に凝集して沈降し、沈降法シリカ粒子(砥粒A)が得られる。 When the abrasive grains A of the present disclosure are particles containing the element M, as a method for producing the abrasive grains A, for example, the method described in Tosoh Research and Technical Report Vol. 45 (2001), pp. 65-69 is known. Method can be mentioned. Specific examples of the method for producing the abrasive grains A include a precipitation method in which silica particles are precipitated by a neutralization reaction between a silicate such as sodium silicate and a mineral acid such as sulfuric acid. It is preferable to carry out the neutralization reaction at a relatively high temperature under alkaline conditions, whereby the growth of the primary silica particles proceeds rapidly, the primary particles aggregate in a floc shape and settle, and the settling silica particles (abrasive) Grain A) is obtained.

本開示の砥粒Aの形状は、研磨速度向上とピット抑制のトレードオフを解消する観点から、非球状が好ましい。本開示の砥粒Aが沈降法シリカ粒子である場合、その形状は、研磨速度向上とピット抑制のトレードオフを解消する観点から、複数の一次粒子が凝集した形状が好ましく、比較的粒径の大きい複数の一次粒子が凝集した形状がより好ましい。 The shape of the abrasive grains A of the present disclosure is preferably non-spherical from the viewpoint of eliminating the trade-off between the improvement of the polishing speed and the suppression of pits. When the abrasive grains A of the present disclosure are precipitated silica particles, the shape thereof is preferably a shape in which a plurality of primary particles are aggregated from the viewpoint of eliminating the trade-off between the improvement of the polishing speed and the suppression of pits, and the particle size is relatively large. A shape in which a plurality of large primary particles are aggregated is more preferable.

本開示の砥粒Aは、一又は複数の実施形態において、研磨速度向上とピット抑制のトレードオフを解消する観点から、本開示の砥粒A以外のシリカ砥粒(以下、「砥粒B」ともいう)とともに、研磨液組成物または研磨に使用するための研磨用シリカ砥粒であることが好ましい。砥粒Bとしては、一又は複数の実施形態において、研磨速度向上とピット抑制のトレードオフを解消する観点から、pH1.5の水性媒体における表面電位が-6mVを超える球状シリカ砥粒であることが好ましい。
したがって、本開示は、その他の態様において、本開示の砥粒Aと、pH1.5の水性媒体における表面電位が-6mVを超える球状シリカ砥粒(砥粒B)との組み合わせに関する。さらに、本開示は、その他の態様において、本開示の砥粒Aと、pH1.5の水性媒体における表面電位が-6mVを超える球状シリカ砥粒(砥粒B)とを含む、シリカスラリーに関する。
The abrasive grains A of the present disclosure are silica abrasive grains other than the abrasive grains A of the present disclosure (hereinafter, "abrasive grains B") from the viewpoint of eliminating the trade-off between the improvement of the polishing speed and the suppression of pits in one or a plurality of embodiments. Also referred to as), it is preferable that it is a polishing liquid composition or silica abrasive grains for polishing for use in polishing. The abrasive grain B is a spherical silica abrasive having a surface potential of more than -6 mV in an aqueous medium having a pH of 1.5 from the viewpoint of eliminating the trade-off between improvement in polishing speed and suppression of pits in one or more embodiments. Is preferable.
Therefore, in another aspect, the present disclosure relates to a combination of the abrasive grains A of the present disclosure and spherical silica abrasive grains (abrasive grains B) having a surface potential of more than -6 mV in an aqueous medium having a pH of 1.5. Further, the present disclosure relates to a silica slurry comprising the abrasive grains A of the present disclosure and spherical silica abrasive grains (abrasive grains B) having a surface potential of more than -6 mV in an aqueous medium having a pH of 1.5 in another aspect.

<砥粒A以外のシリカ砥粒(砥粒B)>
砥粒Bとしては、研磨速度向上とピット抑制のトレードオフを解消する観点から、コロイダルシリカ粒子、フュームドシリカ粒子、表面修飾したシリカ粒子等が挙げられ、コロイダルシリカ粒子が好ましい。
前記コロイダルシリカ粒子は、例えば、珪酸アルカリ水溶液を原料とした粒子成長による方法(以下、「水ガラス法」ともいう)、及び、アルコキシシランの加水分解物の縮合による方法(以下、「ゾルゲル法」)ともいう)により得たものが挙げられ、製造容易性及び経済性の観点から、好ましくは水ガラス法により得たものである。水ガラス法及びゾルゲル法により得られるシリカ粒子は、従来から公知の方法によって製造できる。
<Silica abrasive grains other than abrasive grains A (abrasive grains B)>
Examples of the abrasive grains B include colloidal silica particles, fumed silica particles, surface-modified silica particles, and the like from the viewpoint of eliminating the trade-off between improvement in polishing speed and suppression of pits, and colloidal silica particles are preferable.
The colloidal silica particles are, for example, a method by particle growth using an aqueous alkali silicate solution as a raw material (hereinafter, also referred to as “waterglass method”) and a method by condensation of a hydrolyzate of alkoxysilane (hereinafter, “sol-gel method””. ), Which is preferably obtained by the water glass method from the viewpoint of ease of manufacture and economic efficiency. The silica particles obtained by the water glass method and the sol-gel method can be produced by conventionally known methods.

砥粒Bの形状は、研磨速度向上とピット抑制のトレードオフを解消する観点から、球状が好ましい。 The shape of the abrasive grains B is preferably spherical from the viewpoint of eliminating the trade-off between the improvement of the polishing speed and the suppression of pits.

砥粒Bの平均一次粒子径は、研磨速度向上とピット抑制のトレードオフを解消する観点から、15nm以上が好ましく、30nm以上がより好ましく、40nm以上が更に好ましく、そして、同様の観点から、150nm以下が好ましく、120nm以下がより好ましく、110nm以下が更に好ましい。より具体的には、砥粒Bの平均二次粒子径は、15nm以上150nm以下が好ましく、30nm以上120nm以下がより好ましく、40nm以上110nm以下が更に好ましい。砥粒Bの平均一次粒子径は、砥粒Aと同じ方法で算出できる。 The average primary particle diameter of the abrasive grains B is preferably 15 nm or more, more preferably 30 nm or more, further preferably 40 nm or more, and 150 nm from the same viewpoint from the viewpoint of eliminating the trade-off between the improvement of the polishing speed and the suppression of pits. The following is preferable, 120 nm or less is more preferable, and 110 nm or less is further preferable. More specifically, the average secondary particle diameter of the abrasive grains B is preferably 15 nm or more and 150 nm or less, more preferably 30 nm or more and 120 nm or less, and further preferably 40 nm or more and 110 nm or less. The average primary particle diameter of the abrasive grains B can be calculated by the same method as that of the abrasive grains A.

砥粒Bの平均二次粒子径は、研磨速度向上とピット抑制のトレードオフを解消する観点から、砥粒Aの平均二次粒子径よりも小さいことが好ましい。本開示において、砥粒Bの平均二次粒子径は、pH1.5の水性媒体における平均二次粒子径であり、静的光散乱法(レーザ回折/散乱法)により測定される散乱強度分布に基づく平均粒径をいう。本開示における砥粒Bの平均二次粒子径は、具体的には実施例に記載の方法により算出できる。 The average secondary particle size of the abrasive grains B is preferably smaller than the average secondary particle size of the abrasive grains A from the viewpoint of eliminating the trade-off between the improvement of the polishing speed and the suppression of pits. In the present disclosure, the average secondary particle size of the abrasive grains B is the average secondary particle size in an aqueous medium having a pH of 1.5, and has a scattering intensity distribution measured by a static light scattering method (laser diffraction / scattering method). Based on average particle size. Specifically, the average secondary particle diameter of the abrasive grains B in the present disclosure can be calculated by the method described in the examples.

砥粒Bの平均二次粒子径は、研磨速度向上とピット抑制のトレードオフを解消する観点から、20nm以上が好ましく、40nm以上がより好ましく、80nm以上が更に好ましく、そして、同様の観点から、200nm以下が好ましく、180nm以下がより好ましく、160nm以下が更に好ましい。より具体的には、砥粒Bの平均二次粒子径は、20nm以上200nm以下が好ましく、40nm以上180nm以下がより好ましく、80nm以上160nm以下が更に好ましい。 The average secondary particle diameter of the abrasive grains B is preferably 20 nm or more, more preferably 40 nm or more, further preferably 80 nm or more, and from the same viewpoint, from the viewpoint of eliminating the trade-off between the improvement of the polishing speed and the suppression of pits. It is preferably 200 nm or less, more preferably 180 nm or less, and even more preferably 160 nm or less. More specifically, the average secondary particle diameter of the abrasive grains B is preferably 20 nm or more and 200 nm or less, more preferably 40 nm or more and 180 nm or less, and further preferably 80 nm or more and 160 nm or less.

砥粒Bの平均アスペクト比は、研磨速度向上とピット抑制のトレードオフを解消する観点から、1以上が好ましく、そして、1.15以下が好ましく、1.1以下がより好ましく、1.05以下が更に好ましい。砥粒Bのアスペクト比は、研磨速度向上とピット抑制のトレードオフを解消する観点から、上述した砥粒Bの平均アスペクト比と同じ範囲であることが好ましい。砥粒Bの平均アスペクト比は、砥粒Aと同じ方法で算出できる。 The average aspect ratio of the abrasive grains B is preferably 1 or more, preferably 1.15 or less, more preferably 1.1 or less, and 1.05 or less, from the viewpoint of eliminating the trade-off between the improvement of the polishing speed and the suppression of pits. Is more preferable. The aspect ratio of the abrasive grains B is preferably in the same range as the above-mentioned average aspect ratio of the abrasive grains B from the viewpoint of eliminating the trade-off between the improvement of the polishing speed and the suppression of pits. The average aspect ratio of the abrasive grains B can be calculated by the same method as that of the abrasive grains A.

[研磨液組成物]
本開示は、その他の態様において、本開示の砥粒A及び水を含む、研磨液組成物(以下、「本開示の研磨液組成物」ともいう)に関する。本開示の研磨液組成物は、一又は複数の実施形態において、磁気ディスク基板用研磨液組成物である。砥粒Aは、1種単独で用いてもよいし、2種以上を併用してもよい。
[Abrasive liquid composition]
The present disclosure relates to an abrasive liquid composition (hereinafter, also referred to as "abrasive liquid composition of the present disclosure") containing the abrasive grains A and water of the present disclosure in another aspect. The polishing liquid composition of the present disclosure is, in one or more embodiments, a polishing liquid composition for a magnetic disk substrate. The abrasive grains A may be used alone or in combination of two or more.

本開示の研磨液組成物中の砥粒Aの含有量は、研磨速度向上とピット抑制のトレードオフを解消する観点から、0.1質量%以上が好ましく、0.5質量%以上がより好ましく、1質量%以上が更に好ましく、そして、同様の観点から、30質量%以下が好ましく、20質量%以下がより好ましく、10質量%以下が更に好ましい。より具体的には、砥粒Aの含有量は、0.1質量%以上30質量%以下が好ましく、0.5質量%以上20質量%以下がより好ましく、1質量%以上10質量%以下が更に好ましい。砥粒Aが2種以上の組合せである場合、砥粒Aの含有量はそれらの合計含有量をいう。 The content of the abrasive grains A in the polishing liquid composition of the present disclosure is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, from the viewpoint of eliminating the trade-off between the improvement of the polishing speed and the suppression of pits. 1, 1% by mass or more is more preferable, and from the same viewpoint, 30% by mass or less is preferable, 20% by mass or less is more preferable, and 10% by mass or less is further preferable. More specifically, the content of the abrasive grains A is preferably 0.1% by mass or more and 30% by mass or less, more preferably 0.5% by mass or more and 20% by mass or less, and 1% by mass or more and 10% by mass or less. More preferred. When the abrasive grains A are a combination of two or more kinds, the content of the abrasive grains A means the total content thereof.

本開示の研磨液組成物は、一又は複数の実施形態において、研磨速度向上とピット抑制のトレードオフを解消する観点から、上述した砥粒Bをさらに含むことが好ましい。砥粒Bは、1種単独で用いてもよいし、2種以上を併用してもよい。 The polishing liquid composition of the present disclosure preferably further contains the above-mentioned abrasive grains B from the viewpoint of eliminating the trade-off between the improvement of the polishing speed and the suppression of pits in one or more embodiments. The abrasive grains B may be used alone or in combination of two or more.

本開示の研磨液組成物中の砥粒Bの含有量は、研磨速度向上とピット抑制のトレードオフを解消する観点から、0.1質量%以上が好ましく、0.5質量%以上がより好ましく、1質量%以上が更に好ましく、そして、経済性の観点から、30質量%以下が好ましく、25質量%以下がより好ましく、20質量%以下が更に好ましい。より具体的には、砥粒Bの含有量は、0.1質量%以上30質量%以下が好ましく、0.5質量%以上25質量%以下がより好ましく、1質量%以上20質量%以下が更に好ましい。砥粒Bが2種以上の組合せである場合、砥粒Bの含有量はそれらの合計含有量をいう。 The content of the abrasive grains B in the polishing liquid composition of the present disclosure is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, from the viewpoint of eliminating the trade-off between the improvement of the polishing speed and the suppression of pits. 1, 1% by mass or more is more preferable, and from the viewpoint of economic efficiency, 30% by mass or less is preferable, 25% by mass or less is more preferable, and 20% by mass or less is further preferable. More specifically, the content of the abrasive grains B is preferably 0.1% by mass or more and 30% by mass or less, more preferably 0.5% by mass or more and 25% by mass or less, and 1% by mass or more and 20% by mass or less. More preferred. When the abrasive grains B are a combination of two or more kinds, the content of the abrasive grains B means the total content thereof.

本開示の研磨液組成物において、砥粒Aと砥粒Bとの質量比A/Bは、研磨速度向上とピット抑制のトレードオフを解消する観点から、10/90以上が好ましく、20/80以上がより好ましく、30/70以上が更に好ましく、40/60以上が更に好ましく、50/50以上が更に好ましく、そして、100/0以下が好ましく、95/5以下がより好ましく、90/10以下が更に好ましく、80/20以下が更に好ましく、70/30以下が更に好ましく、60/40以下が更に好ましい。より具体的には、質量比A/Bは、10/90以上100/0以下が好ましく、20/80以上95/5以下がより好ましく、30/70以上90/10以下が更に好ましく、40/60以上90/10以下が更に好ましく、50/50以上90/10以下が更に好ましく、50/50以上80/20以下が更に好ましく、50/50以上70/30以下が更に好ましく、50/50以上60/40以下が更に好ましい。 In the polishing liquid composition of the present disclosure, the mass ratio A / B of the abrasive grains A and the abrasive grains B is preferably 10/90 or more, preferably 20/80, from the viewpoint of eliminating the trade-off between the improvement of the polishing speed and the suppression of pits. The above is more preferable, 30/70 or more is further preferable, 40/60 or more is further preferable, 50/50 or more is further preferable, 100/0 or less is preferable, 95/5 or less is more preferable, and 90/10 or less. Is more preferable, 80/20 or less is further preferable, 70/30 or less is further preferable, and 60/40 or less is further preferable. More specifically, the mass ratio A / B is preferably 10/90 or more and 100/0 or less, more preferably 20/80 or more and 95/5 or less, further preferably 30/70 or more and 90/10 or less, and 40 /. 60 or more and 90/10 or less are further preferable, 50/50 or more and 90/10 or less are further preferable, 50/50 or more and 80/20 or less are further preferable, 50/50 or more and 70/30 or less are further preferable, and 50/50 or more. 60/40 or less is more preferable.

本開示の研磨液組成物は、一又は複数の実施形態において、本開示の効果を損なわない範囲で、砥粒A及び砥粒B以外の砥粒を含んでもよい。本開示の研磨液組成物が砥粒A及び砥粒B以外の砥粒を含む場合、研磨液組成物中の砥粒全体に対する砥粒A及び砥粒Bの合計含有量は、研磨速度向上とピット抑制のトレードオフを解消する観点から、98質量%以上が好ましく、99質量%以上がより好ましく、99.5質量%以上が更に好ましく、実質的に100質量%が更に好ましい。 In one or more embodiments, the polishing liquid composition of the present disclosure may contain abrasive grains other than the abrasive grains A and the abrasive grains B as long as the effects of the present disclosure are not impaired. When the polishing liquid composition of the present disclosure contains abrasive grains other than the abrasive grains A and the abrasive grains B, the total content of the abrasive grains A and the abrasive grains B with respect to the entire abrasive grains in the polishing liquid composition is that the polishing speed is improved. From the viewpoint of eliminating the trade-off of pit suppression, 98% by mass or more is preferable, 99% by mass or more is more preferable, 99.5% by mass or more is further preferable, and substantially 100% by mass is further preferable.

<水>
本開示の研磨液組成物は、媒体として水を含有する。水としては、蒸留水、イオン交換水、純水及び超純水等が挙げられる。本開示の研磨液組成物中の水の含有量は、研磨液組成物の取扱いが容易になる観点から、61質量%以上が好ましく、70質量%以上がより好ましく、80質量%以上が更に好ましく、85質量%以上が更により好ましく、そして、同様の観点から、99質量%以下が好ましく、98質量%以下がより好ましく、97質量%以下が更に好ましい。本開示の研磨液組成物中の水の含有量は、砥粒A、並びに、必要に応じて配合される後述する任意成分の残余とすることができる。
<Water>
The polishing liquid composition of the present disclosure contains water as a medium. Examples of water include distilled water, ion-exchanged water, pure water, ultrapure water and the like. The content of water in the polishing liquid composition of the present disclosure is preferably 61% by mass or more, more preferably 70% by mass or more, still more preferably 80% by mass or more, from the viewpoint of facilitating the handling of the polishing liquid composition. , 85% by mass or more is further preferable, and from the same viewpoint, 99% by mass or less is preferable, 98% by mass or less is more preferable, and 97% by mass or less is further preferable. The content of water in the polishing liquid composition of the present disclosure can be the residue of the abrasive grains A and, if necessary, any component described later.

<酸(成分C)>
本開示の研磨液組成物は、研磨速度向上とピット抑制のトレードオフを解消する観点から、酸及びその塩から選ばれる少なくとも1種(以下、「成分C」ともいう)を含有してもよい。成分Cとしては、例えば、硝酸、硫酸、亜硫酸、過硫酸、塩酸、過塩素酸、リン酸、ホスホン酸、ホスフィン酸、ピロリン酸、ポリリン酸、アミド硫酸等の無機酸;有機リン酸、有機ホスホン酸等の有機酸;等が挙げられる。中でも、研磨速度向上とピット抑制のトレードオフを解消する観点から、成分Cとしては、リン酸、硫酸及び1-ヒドロキシエチリデン-1,1-ジホスホン酸から選ばれる少なくとも1種が好ましく、硫酸及びリン酸から選ばれる少なくとも1種がより好ましく、リン酸が更に好ましい。これらの酸の塩としては、例えば、上記の酸と、金属、アンモニア及びアルキルアミンから選ばれる少なくとも1種との塩が挙げられる。上記金属の具体例としては、周期表の1~11族に属する金属が挙げられる。これらの中でも、研磨速度向上とピット抑制のトレードオフを解消する観点から、上記の酸と、1族に属する金属又はアンモニアとの塩が好ましい。成分Cは、1種単独で用いてもよいし、2種以上を併用してもよい。
<Acid (component C)>
The polishing liquid composition of the present disclosure may contain at least one selected from an acid and a salt thereof (hereinafter, also referred to as "component C") from the viewpoint of eliminating the trade-off between the improvement of polishing speed and the suppression of pits. .. The component C includes, for example, inorganic acids such as nitrate, sulfuric acid, sulfite, persulfate, hydrochloric acid, perchloric acid, phosphoric acid, phosphonic acid, phosphinic acid, pyrophosphate, polyphosphoric acid, and amide sulfate; organic phosphoric acid and organic phosphon. Organic acids such as acids; and the like. Among them, at least one selected from phosphoric acid, sulfuric acid and 1-hydroxyethylidene-1,1-diphosphonic acid is preferable as the component C from the viewpoint of eliminating the trade-off between improvement of polishing speed and suppression of pits, and sulfuric acid and phosphorus are preferable. At least one selected from acids is more preferred, and phosphoric acid is even more preferred. Examples of the salt of these acids include salts of the above acids and at least one selected from metals, ammonia and alkylamines. Specific examples of the metal include metals belonging to groups 1 to 11 of the periodic table. Among these, salts of the above acids and metals belonging to Group 1 or ammonia are preferable from the viewpoint of eliminating the trade-off between the improvement of polishing speed and the suppression of pits. The component C may be used alone or in combination of two or more.

本開示の研磨液組成物中の成分Cの含有量は、研磨速度向上とピット抑制のトレードオフを解消する観点から、0.001質量%以上が好ましく、0.01質量%以上がより好ましく、0.05質量%以上が更に好ましく、0.1質量%以上が更により好ましく、そして、同様の観点から、5質量%以下が好ましく、4質量%以下がより好ましく、3質量%以下が更に好ましく、2.5質量%以下が更により好ましい。より具体的には、成分Cの含有量は、0.001質量%以上5質量%以下が好ましく、0.01質量%以上4質量%以下がより好ましく、0.05質量%以上3質量%以下が更に好ましく、0.1質量%以上2.5質量%以下が更により好ましい。成分Cが2種以上の組合せである場合、成分Cの含有量はそれらの合計含有量をいう。 The content of the component C in the polishing liquid composition of the present disclosure is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, from the viewpoint of eliminating the trade-off between the improvement of the polishing speed and the suppression of pits. 0.05% by mass or more is further preferable, 0.1% by mass or more is further preferable, and from the same viewpoint, 5% by mass or less is preferable, 4% by mass or less is more preferable, and 3% by mass or less is further preferable. , 2.5% by mass or less is even more preferable. More specifically, the content of the component C is preferably 0.001% by mass or more and 5% by mass or less, more preferably 0.01% by mass or more and 4% by mass or less, and 0.05% by mass or more and 3% by mass or less. Is even more preferable, and 0.1% by mass or more and 2.5% by mass or less is even more preferable. When the component C is a combination of two or more kinds, the content of the component C means the total content thereof.

<酸化剤(成分D)>
本開示の研磨液組成物は、研磨速度向上とピット抑制のトレードオフを解消する観点から、酸化剤(以下、「成分D」ともいう)を含有してもよい。成分Dとしては、同様の観点から、例えば、過酸化物、過マンガン酸又はその塩、クロム酸又はその塩、ペルオキソ酸又はその塩、酸素酸又はその塩、硝酸類、硫酸類等が挙げられる。これらの中でも、成分Dとしては、過酸化水素、硝酸鉄(III)、過酢酸、ペルオキソ二硫酸アンモニウム、硫酸鉄(III)及び硫酸アンモニウム鉄(III)から選ばれる少なくとも1種が好ましく、研磨速度向上の観点、被研磨基板の表面に金属イオンが付着しない観点及び入手容易性の観点から、過酸化水素がより好ましい。成分Dは、1種単独で用いてもよいし、2種以上を併用してもよい。
<Oxidizing agent (component D)>
The polishing liquid composition of the present disclosure may contain an oxidizing agent (hereinafter, also referred to as “component D”) from the viewpoint of eliminating the trade-off between the improvement of the polishing speed and the suppression of pits. From the same viewpoint, the component D includes, for example, peroxide, permanganic acid or a salt thereof, chromic acid or a salt thereof, peroxo acid or a salt thereof, oxygen acid or a salt thereof, nitrates, sulfuric acid and the like. .. Among these, as the component D, at least one selected from hydrogen peroxide, iron nitrate (III), peracetic acid, ammonium peroxodisulfate, iron (III) sulfate and iron (III) sulfate is preferable, and the polishing speed is improved. Hydrogen peroxide is more preferable from the viewpoint, from the viewpoint of preventing metal ions from adhering to the surface of the substrate to be polished and from the viewpoint of availability. The component D may be used alone or in combination of two or more.

本開示の研磨液組成物中の成分Dの含有量は、研磨速度向上とピット抑制のトレードオフを解消する観点から、0.01質量%以上が好ましく、0.05質量%以上がより好ましく、0.1質量%以上が更に好ましく、そして、同様の観点から、4質量%以下が好ましく、2質量%以下がより好ましく、1.5質量%以下が更に好ましい。より具体的には、成分Dの含有量は、0.01質量%以上4質量%以下が好ましく、0.05質量%以上2質量%以下がより好ましく、0.1質量%以上1.5質量%以下が更に好ましい。成分Dが2種以上の組合せである場合、成分Dの含有量はそれらの合計含有量をいう。 The content of the component D in the polishing liquid composition of the present disclosure is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, from the viewpoint of eliminating the trade-off between the improvement of the polishing speed and the suppression of pits. 0.1% by mass or more is more preferable, and from the same viewpoint, 4% by mass or less is preferable, 2% by mass or less is more preferable, and 1.5% by mass or less is further preferable. More specifically, the content of the component D is preferably 0.01% by mass or more and 4% by mass or less, more preferably 0.05% by mass or more and 2% by mass or less, and 0.1% by mass or more and 1.5% by mass. % Or less is more preferable. When the component D is a combination of two or more kinds, the content of the component D means the total content thereof.

<その他の成分>
本開示の研磨液組成物は、必要に応じてその他の成分を含有してもよい。その他の成分としては、増粘剤、分散剤、防錆剤、研磨速度向上剤、塩基性物質、界面活性剤、水溶性高分子等が挙げられる。前記その他の成分は、本開示の効果を損なわない範囲で研磨液組成物中に含有されることが好ましく、研磨液組成物中の前記その他の成分の含有量は、0質量%以上が好ましく、0質量%超がより好ましく、0.1質量%以上が更に好ましく、そして、10質量%以下が好ましく、5質量%以下がより好ましい。より具体的には、0質量%以上10質量%以下が好ましく、0質量%超10質量%以下がより好ましく、0.1質量%以上10質量%以下が更に好ましく、0.1質量%以上5質量%以下が更に好ましい。
<Other ingredients>
The polishing liquid composition of the present disclosure may contain other components, if necessary. Examples of other components include thickeners, dispersants, rust inhibitors, polishing speed improvers, basic substances, surfactants, water-soluble polymers and the like. The other components are preferably contained in the polishing liquid composition as long as the effects of the present disclosure are not impaired, and the content of the other components in the polishing liquid composition is preferably 0% by mass or more. More than 0% by mass is more preferable, 0.1% by mass or more is further preferable, 10% by mass or less is preferable, and 5% by mass or less is more preferable. More specifically, 0% by mass or more and 10% by mass or less is preferable, 0% by mass or more and 10% by mass or less is more preferable, 0.1% by mass or more and 10% by mass or less is further preferable, and 0.1% by mass or more and 5 by mass. More preferably, it is by mass or less.

<アルミナ砥粒>
本開示の研磨液組成物は、突起欠陥低減の観点から、アルミナ砥粒を実質的に含まないことが好ましい。本明細書において「アルミナ砥粒を実質的に含まない」とは、一又は複数の実施形態において、アルミナ粒子を含まないこと、砥粒として機能する量のアルミナ粒子を含まないこと、又は、研磨結果に影響を与える量のアルミナ粒子を含まないこと、を含みうる。具体的には、本開示の研磨液組成物中のアルミナ砥粒の含有量は、一又は複数の実施形態において、突起欠陥の低減の観点から、5質量%以下が好ましく、2質量%以下がより好ましく、0.1質量%以下が更に好ましく、0.05質量%以下が更に好ましく、0.02質量%以下が更に好ましく、実質的に0質量%が更に好ましい。また、本開示の研磨液組成物中のアルミナ粒子の含有量は、一又は複数の実施形態において、研磨液組成物中の砥粒全量に対し、2質量%以下が好ましく、1質量%以下がより好ましく、0.5質量%以下が更に好ましく、実質的に0質量%であることが更により好ましい。
<Alumina abrasive grains>
From the viewpoint of reducing protrusion defects, the polishing liquid composition of the present disclosure preferably contains substantially no alumina abrasive grains. In the present specification, "substantially free of alumina abrasive grains" means that, in one or more embodiments, it does not contain alumina particles, does not contain an amount of alumina particles that function as abrasive grains, or is polished. It may include the absence of an amount of alumina particles that affect the result. Specifically, the content of alumina abrasive grains in the polishing liquid composition of the present disclosure is preferably 5% by mass or less, preferably 2% by mass or less, from the viewpoint of reducing protrusion defects in one or more embodiments. More preferably, 0.1% by mass or less is further preferable, 0.05% by mass or less is further preferable, 0.02% by mass or less is further preferable, and substantially 0% by mass is further preferable. Further, the content of the alumina particles in the polishing liquid composition of the present disclosure is preferably 2% by mass or less, preferably 1% by mass or less, based on the total amount of the abrasive grains in the polishing liquid composition in one or more embodiments. It is more preferably 0.5% by mass or less, and even more preferably 0% by mass.

<pH>
本開示の研磨液組成物のpHは、研磨速度向上とピット抑制のトレードオフを解消する観点から、0.5以上が好ましく、0.7以上がより好ましく、0.9以上が更に好ましく、1以上が更により好ましく、1.2以上が更により好ましく、1.4以上が更により好ましく、そして、同様の観点から、9未満であって、6以下が好ましく、4以下がより好ましく、3以下が更に好ましく、2.5以下が更により好ましく、2以下が更により好ましい。より具体的には、本開示の研磨液組成物のpHは、0.5以上9未満が好ましく、0.5以上6以下がより好ましく、0.7以上4以下が更に好ましく、1以上3以下が更に好ましい。pHは、前述の酸(成分C)や公知のpH調整剤を用いて調整することができる。上記のpHは、25℃における研磨液組成物のpHであり、pHメータを用いて測定でき、好ましくは、pHメータの電極を研磨液組成物へ浸漬して2分後の数値である。
<pH>
The pH of the polishing liquid composition of the present disclosure is preferably 0.5 or more, more preferably 0.7 or more, still more preferably 0.9 or more, from the viewpoint of eliminating the trade-off between the improvement of the polishing speed and the suppression of pits. The above is even more preferable, 1.2 or more is even more preferable, 1.4 or more is even more preferable, and from the same viewpoint, less than 9 is preferable, 6 or less is preferable, 4 or less is more preferable, and 3 or less is more preferable. Is even more preferable, 2.5 or less is even more preferable, and 2 or less is even more preferable. More specifically, the pH of the polishing liquid composition of the present disclosure is preferably 0.5 or more and less than 9, more preferably 0.5 or more and 6 or less, further preferably 0.7 or more and 4 or less, and 1 or more and 3 or less. Is more preferable. The pH can be adjusted by using the above-mentioned acid (component C) or a known pH adjuster. The above pH is the pH of the polishing liquid composition at 25 ° C. and can be measured using a pH meter, and is preferably a numerical value 2 minutes after the electrode of the pH meter is immersed in the polishing liquid composition.

[研磨液組成物の製造方法]
本開示の研磨液組成物は、例えば、砥粒A及び水と、さらに所望により、砥粒B、成分C、成分D及びその他の成分とを公知の方法で配合することにより製造できる。したがって、本開示は、一態様において、少なくとも砥粒A及び水を配合する工程を含む、研磨液組成物の製造方法に関する。本開示において「配合する」とは、砥粒A及び水、並びに必要に応じて砥粒B、成分C、成分D及びその他の成分を同時に又は任意の順に混合することを含む。前記配合は、例えば、ホモミキサー、ホモジナイザー、超音波分散機及び湿式ボールミル等の混合器を用いて行うことができる。シリカスラリー及び研磨液組成物の製造方法における各成分の好ましい配合量は、上述した本開示に係る研磨液組成物中の各成分の好ましい含有量と同じとすることができる。
[Manufacturing method of polishing liquid composition]
The polishing liquid composition of the present disclosure can be produced, for example, by blending abrasive grains A and water, and if desired, abrasive grains B, component C, component D and other components by a known method. Therefore, the present disclosure relates to a method for producing an abrasive liquid composition, which comprises, in one embodiment, at least a step of blending abrasive grains A and water. In the present disclosure, "blending" includes mixing abrasive grains A and water, and if necessary, abrasive grains B, component C, component D and other components simultaneously or in any order. The formulation can be performed using, for example, a mixer such as a homomixer, a homogenizer, an ultrasonic disperser, and a wet ball mill. The preferable blending amount of each component in the method for producing the silica slurry and the polishing liquid composition can be the same as the preferable content of each component in the polishing liquid composition according to the present disclosure described above.

本開示において「研磨液組成物中の各成分の含有量」とは、使用時、すなわち、研磨液組成物の研磨への使用を開始する時点における前記各成分の含有量をいう。本開示の研磨液組成物は、その保存安定性が損なわれない範囲で濃縮された状態で保存及び供給されてもよい。この場合、製造及び輸送コストをさらに低くできる点で好ましい。本開示の研磨液組成物の濃縮物は、使用時に、必要に応じて前述の水で適宜希釈して使用すればよい。希釈倍率としては、例えば、5~100倍が挙げられる。 In the present disclosure, the "content of each component in the polishing liquid composition" means the content of each component at the time of use, that is, at the time when the polishing liquid composition is started to be used for polishing. The polishing liquid composition of the present disclosure may be stored and supplied in a concentrated state as long as its storage stability is not impaired. In this case, it is preferable in that the manufacturing and transportation costs can be further reduced. The concentrate of the polishing liquid composition of the present disclosure may be appropriately diluted with the above-mentioned water at the time of use, if necessary. Examples of the dilution ratio include 5 to 100 times.

[研磨液キット]
本開示は、一態様において、本開示の研磨液組成物を製造するための研磨液キットであって、本開示の砥粒Aを含む分散液が容器に収納された砥粒分散液を含む、研磨液キット(以下、「本開示の研磨液キット」ともいう)に関する。本開示の研磨液キットによれば、研磨速度向上とピット抑制のトレードオフを解消可能な研磨液組成物を得ることができる。
本開示の研磨液キットの一実施形態としては、例えば、砥粒A及び必要に応じて砥粒Bを含むシリカ分散液(シリカスラリー)と、必要に応じて成分C及び成分Dを含む添加剤水溶液とを相互に混合されない状態で含み、これらが使用時に混合され、必要に応じて水を用いて希釈される研磨液キット(2液型研磨液組成物)が挙げられる。前記シリカ分散液及び前記添加剤水溶液にはそれぞれ必要に応じて上述したその他の成分が含まれていてもよい。
[Abrasive liquid kit]
The present disclosure is, in one aspect, a polishing liquid kit for producing the polishing liquid composition of the present disclosure, which comprises an abrasive grain dispersion liquid in which a dispersion liquid containing the abrasive grains A of the present disclosure is stored in a container. The present invention relates to a polishing liquid kit (hereinafter, also referred to as “the polishing liquid kit of the present disclosure”). According to the polishing liquid kit of the present disclosure, it is possible to obtain a polishing liquid composition capable of eliminating the trade-off between the improvement of the polishing speed and the suppression of pits.
As one embodiment of the polishing liquid kit of the present disclosure, for example, a silica dispersion liquid (silica slurry) containing abrasive grains A and, if necessary, abrasive grains B, and an additive containing component C and component D, if necessary. Examples thereof include a polishing liquid kit (two-component polishing liquid composition) containing an aqueous solution in a state of not being mixed with each other, which is mixed at the time of use and diluted with water as needed. The silica dispersion and the additive aqueous solution may each contain the above-mentioned other components, if necessary.

[被研磨基板]
本開示の研磨液組成物を用いて研磨される被研磨基板としては、一又は複数の実施形態において、半導体基板、サファイア基板、及び磁気ディスク基板から選ばれる少なくとも1種の基板の製造に用いられる基板が挙げられる。サファイア基板は、例えば、LED用サファイア基板、スマートフォン等の携帯端末装置のカバーガラス用サファイア基板等に用いられる基板である。本開示の研磨液組成物は、一又は複数の実施形態において、磁気ディスク基板の製造に好適に用いられる。磁気ディスク基板としては、例えば、Ni-Pメッキされたアルミニウム合金基板が挙げられる。本開示において「Ni-Pメッキされたアルミニウム合金基板」とは、アルミニウム合金基材の表面を研削後、無電解Ni-Pメッキ処理したものをいう。被研磨基板の表面を本開示の研磨液組成物を用いて研磨する工程の後、スパッタ等でその基板表面に磁性層を形成する工程を行うことにより磁気ディスク基板を製造できる。被研磨基板の形状は、例えば、ディスク状、プレート状、スラブ状、プリズム状等の平面部を有する形状や、レンズ等の曲面部を有する形状が挙げられ、好ましくはディスク状の被研磨基板である。ディスク状の被研磨基板の場合、その外径は例えば10~120mmであり、その厚みは例えば0.5~2mmである。
[Substrate to be polished]
The substrate to be polished using the polishing liquid composition of the present disclosure is used in one or more embodiments for manufacturing at least one substrate selected from a semiconductor substrate, a sapphire substrate, and a magnetic disk substrate. The substrate can be mentioned. The sapphire substrate is, for example, a substrate used for a sapphire substrate for LEDs, a sapphire substrate for a cover glass of a mobile terminal device such as a smartphone, and the like. The polishing liquid composition of the present disclosure is suitably used for manufacturing a magnetic disk substrate in one or more embodiments. Examples of the magnetic disk substrate include a Ni-P plated aluminum alloy substrate. In the present disclosure, the "Ni-P plated aluminum alloy substrate" refers to an aluminum alloy base material that has been ground and then electroless Ni-P plated. After the step of polishing the surface of the substrate to be polished with the polishing liquid composition of the present disclosure, a magnetic disk substrate can be manufactured by performing a step of forming a magnetic layer on the surface of the substrate by sputtering or the like. Examples of the shape of the substrate to be polished include a shape having a flat portion such as a disk shape, a plate shape, a slab shape, and a prism shape, and a shape having a curved surface portion such as a lens, and a disk-shaped substrate to be polished is preferable. be. In the case of a disk-shaped substrate to be polished, the outer diameter thereof is, for example, 10 to 120 mm, and the thickness thereof is, for example, 0.5 to 2 mm.

一般に、磁気ディスクは、研削工程を経た被研磨基板が、粗研磨工程、仕上げ研磨工程を経て研磨され、磁性層形成工程を経て製造される。本開示に係る研磨液組成物は、一又は複数の実施形態において、粗研磨工程における研磨(粗研磨)に用いられることが好ましい。 Generally, a magnetic disk is manufactured by polishing a substrate to be polished that has undergone a grinding step through a rough polishing step and a finish polishing step, and then through a magnetic layer forming step. The polishing liquid composition according to the present disclosure is preferably used for polishing (rough polishing) in the rough polishing step in one or more embodiments.

[基板の製造方法]
本開示は、一態様において、本開示の研磨液組成物を用いて被研磨基板を研磨する研磨工程(以下、「本開示の研磨液組成物を用いた研磨工程」ともいう)を含む、基板の製造方法(以下、「本開示の基板製造方法」ともいう。)に関する。本開示の基板製造方法は、一又は複数の実施形態において、半導体基板、サファイア基板、及び磁気ディスク基板から選ばれる少なくとも1種の基板の製造方法である。本開示の基板製造方法における、本開示の研磨液組成物を用いた研磨工程は、例えば、粗研磨工程である。
[Manufacturing method of substrate]
The present disclosure includes, in one aspect, a polishing step of polishing a substrate to be polished using the polishing liquid composition of the present disclosure (hereinafter, also referred to as "polishing step using the polishing liquid composition of the present disclosure"). (Hereinafter, also referred to as "the substrate manufacturing method of the present disclosure"). The substrate manufacturing method of the present disclosure is, in one or more embodiments, a method of manufacturing at least one substrate selected from a semiconductor substrate, a sapphire substrate, and a magnetic disk substrate. The polishing step using the polishing liquid composition of the present disclosure in the substrate manufacturing method of the present disclosure is, for example, a rough polishing step.

本開示の研磨液組成物を用いた研磨工程では、例えば、研磨パッドを貼り付けた定盤で被研磨基板を挟み込み、本開示の研磨液組成物を研磨面に供給し、圧力を加えながら研磨パッドや被研磨基板を動かすことにより、被研磨基板を研磨することができる。 In the polishing step using the polishing liquid composition of the present disclosure, for example, the substrate to be polished is sandwiched between a platen to which a polishing pad is attached, the polishing liquid composition of the present disclosure is supplied to the polishing surface, and polishing is performed while applying pressure. The substrate to be polished can be polished by moving the pad or the substrate to be polished.

本開示の研磨液組成物を用いた研磨工程における研磨荷重は、研磨速度向上とピット抑制のトレードオフを解消する観点から、3kPa以上が好ましく、5kPa以上がより好ましく、7kPa以上が更に好ましく、そして、30kPa以下が好ましく、25kPa以下がより好ましく、20kPa以下が更に好ましい。より具体的には、研磨荷重は、3kPa以上30kPa以下が好ましく、5kPa以上25kPa以下がより好ましく、7kPa以上20kPa以下が更に好ましい。本開示において「研磨荷重」とは、研磨時に被研磨基板の被研磨面に加えられる定盤の圧力をいう。研磨荷重の調整は、定盤や基板等への空気圧や重りの負荷によって行うことができる。 The polishing load in the polishing process using the polishing liquid composition of the present disclosure is preferably 3 kPa or more, more preferably 5 kPa or more, further preferably 7 kPa or more, and further preferably 7 kPa or more, from the viewpoint of eliminating the trade-off between the improvement of the polishing speed and the suppression of pits. , 30 kPa or less is preferable, 25 kPa or less is more preferable, and 20 kPa or less is further preferable. More specifically, the polishing load is preferably 3 kPa or more and 30 kPa or less, more preferably 5 kPa or more and 25 kPa or less, and further preferably 7 kPa or more and 20 kPa or less. In the present disclosure, the "polishing load" means the pressure of the surface plate applied to the surface to be polished of the substrate to be polished during polishing. The polishing load can be adjusted by applying air pressure or a weight to a surface plate, a substrate, or the like.

本開示の研磨液組成物を用いた研磨工程における、被研磨基板1cm2あたりの研磨量は、研磨速度向上とピット抑制のトレードオフを解消する観点から、0.2mg以上が好ましく、0.3mg以上がより好ましく、0.4mg以上が更に好ましく、そして、同様の観点から、2.5mg以下が好ましく、2mg以下がより好ましく、1.6mg以下が更に好ましい。より具体的には、被研磨基板1cm2あたりの研磨量は、0.2mg以上2.5mg以下が好ましく、0.3mg以上2mg以下がより好ましく、0.4mg以上1.6mg以下が更に好ましい。 In the polishing process using the polishing liquid composition of the present disclosure, the polishing amount per 1 cm 2 of the substrate to be polished is preferably 0.2 mg or more, preferably 0.3 mg from the viewpoint of eliminating the trade-off between the improvement of the polishing speed and the suppression of pits. The above is more preferable, 0.4 mg or more is further preferable, and from the same viewpoint, 2.5 mg or less is preferable, 2 mg or less is more preferable, and 1.6 mg or less is further preferable. More specifically, the amount of polishing per 1 cm 2 of the substrate to be polished is preferably 0.2 mg or more and 2.5 mg or less, more preferably 0.3 mg or more and 2 mg or less, and further preferably 0.4 mg or more and 1.6 mg or less.

本開示の研磨液組成物を用いた研磨工程における被研磨基板1cm2あたりの研磨液組成物の供給速度は、経済性の観点から、2.5mL/分以下が好ましく、2mL/分以下がより好ましく、1.5mL/分以下が更に好ましく、そして、研磨速度向上の観点から、0.01mL/分以上が好ましく、0.03mL/分以上がより好ましく、0.04mL/分以上が更に好ましい。より具体的には、被研磨基板1cm2あたりの研磨液組成物の供給速度は、0.01mL/分以上2.5mL/分以下が好ましく、0.03mL/分以上2mL/分以下がより好ましく、0.04mL/分以上1.5mL/分以下が更に好ましい。 From the viewpoint of economy, the supply rate of the polishing liquid composition per 1 cm 2 of the substrate to be polished in the polishing process using the polishing liquid composition of the present disclosure is preferably 2.5 mL / min or less, more preferably 2 mL / min or less. It is preferably 1.5 mL / min or less, more preferably 0.01 mL / min or more, more preferably 0.03 mL / min or more, still more preferably 0.04 mL / min or more, from the viewpoint of improving the polishing rate. More specifically, the supply rate of the polishing liquid composition per 1 cm 2 of the substrate to be polished is preferably 0.01 mL / min or more and 2.5 mL / min or less, and more preferably 0.03 mL / min or more and 2 mL / min or less. , 0.04 mL / min or more and 1.5 mL / min or less is more preferable.

本開示の研磨液組成物を研磨機へ供給する方法としては、例えば、ポンプ等を用いて連続的に供給を行う方法が挙げられる。研磨液組成物を研磨機へ供給する際は、全ての成分を含んだ1液で供給する方法の他、研磨液組成物の保存安定性等を考慮して、複数の配合用成分液に分け、2液以上で供給することもできる。後者の場合、例えば供給配管中又は被研磨基板上で、前記複数の配合用成分液が混合され、本開示の研磨液組成物となる。 Examples of the method of supplying the polishing liquid composition of the present disclosure to the polishing machine include a method of continuously supplying the polishing liquid composition using a pump or the like. When supplying the polishing liquid composition to the polishing machine, in addition to the method of supplying it as one liquid containing all the components, it is divided into a plurality of compounding component liquids in consideration of the storage stability of the polishing liquid composition. It can also be supplied in two or more liquids. In the latter case, for example, in the supply pipe or on the substrate to be polished, the plurality of compounding component liquids are mixed to obtain the polishing liquid composition of the present disclosure.

本開示の基板製造方法によれば、研磨速度向上とピット抑制のトレードオフを解消できるため、基板品質が向上した基板(例えば、磁気ディスク基板)を効率よく製造できるという効果が奏されうる。 According to the substrate manufacturing method of the present disclosure, since the trade-off between the improvement of the polishing speed and the suppression of pits can be eliminated, the effect of efficiently manufacturing a substrate with improved substrate quality (for example, a magnetic disk substrate) can be achieved.

[研磨方法]
本開示は、その他の態様において、本開示の研磨液組成物を用いて被研磨基板を研磨する研磨工程を含む、基板の研磨方法(以下、本開示の研磨方法ともいう)に関する。本開示の研磨方法は、一又は複数の実施形態において、半導体基板、サファイア基板、及び磁気ディスク基板から選ばれる少なくとも1種の基板の製造に用いられる基板を研磨するための研磨方法である。本開示の研磨方法における、本開示の研磨液組成物を用いた研磨工程は、例えば、粗研磨工程である。
[Polishing method]
The present disclosure relates to a method for polishing a substrate (hereinafter, also referred to as the polishing method of the present disclosure), which comprises a polishing step of polishing the substrate to be polished using the polishing liquid composition of the present disclosure in another aspect. The polishing method of the present disclosure is a polishing method for polishing a substrate used for manufacturing at least one substrate selected from a semiconductor substrate, a sapphire substrate, and a magnetic disk substrate in one or a plurality of embodiments. The polishing step using the polishing liquid composition of the present disclosure in the polishing method of the present disclosure is, for example, a rough polishing step.

本開示の研磨方法を使用することにより、研磨速度向上とピット抑制のトレードオフを解消できるため、基板品質が向上した基板(例えば、磁気ディスク基板)の生産性を向上できるという効果が奏されうる。具体的な研磨の方法及び条件は、上述した本開示の基板製造方法と同じようにすることができる。 By using the polishing method of the present disclosure, the trade-off between the improvement of the polishing speed and the suppression of pits can be eliminated, so that the effect of improving the productivity of a substrate with improved substrate quality (for example, a magnetic disk substrate) can be achieved. .. The specific polishing method and conditions can be the same as the substrate manufacturing method of the present disclosure described above.

以下、実施例により本開示をさらに詳細に説明するが、これらは例示的なものであって、本開示はこれら実施例に制限されるものではない。 Hereinafter, the present disclosure will be described in more detail by way of examples, but these are exemplary and the present disclosure is not limited to these examples.

1.シリカ砥粒について
研磨液組成物の調製に用いるシリカ砥粒を表1に示した。表1中、砥粒A1~A10は、湿式法シリカ粒子であり、沈降法で製造された非球状のシリカ粒子である。砥粒B1は、コロイダルシリカ粒子であり、水ガラス法で製造された球状のシリカ粒子である。
1. 1. Silica Abrasive Grains Table 1 shows the silica abrasive grains used for preparing the polishing liquid composition. In Table 1, the abrasive grains A1 to A10 are wet silica particles and are non-spherical silica particles produced by the precipitation method. The abrasive grains B1 are colloidal silica particles, which are spherical silica particles produced by the water glass method.

Figure 0007055695000001
Figure 0007055695000001

2.各パラメータの測定方法
[砥粒A及びBの平均一次粒子径]
砥粒の平均一次粒子径は、BET法により算出されるBET比表面積S(m2/g)を用いて下記式から算出した。測定結果を表1に示した。
平均一次粒子径(nm)=2727/S
BET比表面積Sは、下記の[前処理]をした後、測定サンプル約0.1gを測定セルに小数点以下4桁(0.1mgの桁)まで精量し、比表面積の測定直前に110℃の雰囲気下で30分間乾燥した後、比表面積測定装置(島津製作所製 マイクロメリティック自動比表面積測定装置「フローソーブIII2305」)を用いてBET法により測定した。
<前処理>
スラリー状の砥粒をシャーレにとり150℃の熱風乾燥機内で1時間乾燥させた。乾燥後の試料をメノウ乳鉢で細かく粉砕して測定サンプルを得た。
2. 2. Measurement method for each parameter [Average primary particle diameter of abrasive grains A and B]
The average primary particle diameter of the abrasive grains was calculated from the following formula using the BET specific surface area S (m 2 / g) calculated by the BET method. The measurement results are shown in Table 1.
Average primary particle size (nm) = 2727 / S
For the BET specific surface area S, after performing the following [pretreatment], about 0.1 g of the measurement sample is concentrated in the measurement cell to 4 digits after the decimal point (0.1 mg digit), and the temperature is 110 ° C. immediately before the measurement of the specific surface area. After drying for 30 minutes in the above atmosphere, the measurement was carried out by the BET method using a specific surface area measuring device (Micromeric automatic specific surface area measuring device "Flowsorb III2305" manufactured by Shimadzu Corporation).
<Pretreatment>
The slurry-like abrasive grains were taken in a petri dish and dried in a hot air dryer at 150 ° C. for 1 hour. The dried sample was finely pulverized in an agate mortar to obtain a measurement sample.

[砥粒Aの平均二次粒子径]
砥粒をリン酸及びイオン交換水と混合して砥粒分散液を調製した。前記分散液中の各成分の含有量は、砥粒が6.0質量%、リン酸が2.0質量%であった。前記分散液のpHは1.5であった。そして、調整した砥粒分散液を下記測定装置内に投入し、その後、5分間超音波を付与した後、粒径を測定した。
測定機器 :堀場製作所製 レーザー回折/散乱式粒度分布測定装置 LA920
循環強度 :4
超音波強度:4
[Average secondary particle diameter of abrasive grains A]
The abrasive grains were mixed with phosphoric acid and ion-exchanged water to prepare an abrasive grain dispersion. The content of each component in the dispersion was 6.0% by mass for abrasive grains and 2.0% by mass for phosphoric acid. The pH of the dispersion was 1.5. Then, the adjusted abrasive grain dispersion was put into the following measuring device, and then ultrasonic waves were applied for 5 minutes, and then the particle size was measured.
Measuring equipment: Laser diffraction / scattering particle size distribution measuring device LA920 manufactured by HORIBA, Ltd.
Circulation strength: 4
Ultrasonic intensity: 4

[砥粒Bの平均二次粒子径]
砥粒をリン酸及びイオン交換水と混合して砥粒分散液を調製した。前記分散液中の各成分の含有量は、砥粒が0.2質量%、リン酸が1.0質量%であった。前記分散液のpHは1.5であった。そして、調製した砥粒分散液を下記測定装置内に投入し、下記条件で測定した。得られた体積分布粒径の累積体積頻度が50%となる粒径(D50)を、砥粒の平均二次粒子径(体積平均粒子径)とした。測定結果を表1に示した。
<測定条件>
測定機器:マルバーン ゼータサイザー ナノ「Nano S」
サンプル量:1.5mL
レーザー : He-Ne、3.0mW、633nm
散乱光検出角:173°
[Average secondary particle diameter of abrasive grains B]
The abrasive grains were mixed with phosphoric acid and ion-exchanged water to prepare an abrasive grain dispersion. The content of each component in the dispersion was 0.2% by mass for abrasive grains and 1.0% by mass for phosphoric acid. The pH of the dispersion was 1.5. Then, the prepared abrasive grain dispersion was put into the following measuring device and measured under the following conditions. The particle size (D50) at which the cumulative volume frequency of the obtained volume distribution particle size was 50% was defined as the average secondary particle size (volume average particle size) of the abrasive grains. The measurement results are shown in Table 1.
<Measurement conditions>
Measuring equipment: Malvern Zeta Sizar Nano "Nano S"
Sample amount: 1.5 mL
Laser: He-Ne, 3.0mW, 633nm
Scattered light detection angle: 173 °

[砥粒A及びBの表面電位]
砥粒をリン酸及びイオン交換水と混合して砥粒分散液を調製した。前記分散液中の各成分の含有量は、砥粒が6.0質量%、リン酸が2.0質量%であった。前記分散液のpHは1.5であった。そして、調製した砥粒分散液を下記測定装置内に投入し、表面電位を測定した。測定結果を表1に示した。
<測定条件>
測定機器:Agilent Technologies社製「ZetaProbe」
サンプル量:30mL
温度:25℃
[Surface potential of abrasive grains A and B]
The abrasive grains were mixed with phosphoric acid and ion-exchanged water to prepare an abrasive grain dispersion. The content of each component in the dispersion was 6.0% by mass for abrasive grains and 2.0% by mass for phosphoric acid. The pH of the dispersion was 1.5. Then, the prepared abrasive grain dispersion was put into the following measuring device, and the surface potential was measured. The measurement results are shown in Table 1.
<Measurement conditions>
Measuring equipment: "ZetaProbe" manufactured by Agilent Technologies
Sample volume: 30 mL
Temperature: 25 ° C

[砥粒A及びBの平均アスペクト比]
砥粒をTEM(日本電子社製「JEM-2000FX」、80kV、1~5万倍)で観察し、写真をパーソナルコンピュータに画像データとして取込み、解析ソフト(三谷商事「WinROOF(Ver.3.6)」)を用いて500個の砥粒の投影画像について下記の通り解析した。
個々の砥粒の短径及び長径を求め、長径を短径で除した値からアスペクト比の平均値(平均アスペクト比)を得た。結果を表1に示した。
[Average aspect ratio of abrasive grains A and B]
Observe the abrasive grains with TEM (JEOL-2000FX manufactured by JEOL Ltd., 80 kV, 10,000 to 50,000 times), import the photograph into a personal computer as image data, and analyze software (Mitani Shoji "WinROOF (Ver.3.6)". ) ”) Was used to analyze the projected images of 500 abrasive grains as follows.
The minor axis and the major axis of each abrasive grain were obtained, and the average value of the aspect ratio (average aspect ratio) was obtained from the value obtained by dividing the major axis by the minor axis. The results are shown in Table 1.

2.研磨液組成物の調製
表1に示す砥粒A及び砥粒B、成分C(リン酸、濃度75%、日本化学工業社製)、成分D(過酸化水素、濃度35質量%、ADEKA社製)、及び水を混合し、表2~3に示す実施例1~10及び比較例1~5の研磨液組成物を調製した。研磨液組成物中の各成分の含有量(有効分)は、砥粒A:1.8~4.8質量%(表2~3)、砥粒B:1.2~4.2質量%(表2~3)、リン酸(成分C):2質量%、過酸化水素(成分D):1質量%とした。水の含有量は、砥粒A、砥粒B、成分C及び成分Dを除いた残余である。各研磨液組成物のpHは1.5であった。pHは、pHメータ(東亜ディーケーケー社製)を用いて25℃にて測定し、電極を研磨液組成物へ浸漬して2分後の数値を採用した。
2. 2. Preparation of polishing liquid composition Abrasive grain A and abrasive grain B shown in Table 1, component C (phosphoric acid, concentration 75%, manufactured by Nippon Chemical Industrial Co., Ltd.), component D (hydrogen peroxide, concentration 35% by mass, manufactured by ADEKA). ) And water were mixed to prepare the polishing liquid compositions of Examples 1 to 10 and Comparative Examples 1 to 5 shown in Tables 2 to 3. The content (effective content) of each component in the polishing liquid composition is: Abrasive grain A: 1.8 to 4.8% by mass (Tables 2 to 3), Abrasive grain B: 1.2 to 4.2% by mass. (Tables 2 to 3), phosphoric acid (component C): 2% by mass, hydrogen peroxide (component D): 1% by mass. The water content is the residue excluding the abrasive grains A, the abrasive grains B, the component C and the component D. The pH of each polishing liquid composition was 1.5. The pH was measured at 25 ° C. using a pH meter (manufactured by DKK-TOA CORPORATION), and the value 2 minutes after the electrode was immersed in the polishing liquid composition was adopted.

3.基板の研磨
調製した実施例1~10及び比較例1~5の研磨液組成物を用いて、下記の研磨条件で被研磨基板を研磨した。
3. 3. Polishing the Substrate Using the prepared polishing liquid compositions of Examples 1 to 10 and Comparative Examples 1 to 5, the substrate to be polished was polished under the following polishing conditions.

[研磨条件]
研磨機:両面研磨機(9B型両面研磨機、スピードファム社製)
被研磨基板:Ni-Pメッキされたアルミニウム合金基板、厚さ1.27mm、直径95mm、枚数10枚
研磨液:研磨液組成物
研磨パッド:スエードタイプ(発泡層:ポリウレタンエラストマー、厚み0.86~1.26mm、平均気孔径30μm、表面層の圧縮率2.5%、Filwel社製)
定盤回転数:40rpm
研磨荷重:9.8kPa(設定値)
研磨液供給量:60mL/min(被研磨基板1cm2あたり、0.046mL/minに相当)
研磨時間:4~7分間
[Polishing conditions]
Polishing machine: Double-sided polishing machine (9B type double-sided polishing machine, manufactured by Speedfam)
Substrate to be polished: Ni-P plated aluminum alloy substrate, thickness 1.27 mm, diameter 95 mm, number of sheets 10 Polishing liquid: Polishing liquid composition Polishing pad: Suede type (foam layer: polyurethane elastomer, thickness 0.86 ~ 1.26 mm, average pore diameter 30 μm, surface layer compression rate 2.5%, manufactured by Liquid)
Surface plate rotation speed: 40 rpm
Polishing load: 9.8 kPa (set value)
Abrasive liquid supply amount: 60 mL / min (equivalent to 0.046 mL / min per 1 cm 2 of the substrate to be polished)
Polishing time: 4-7 minutes

4.評価方法
[研磨速度の評価]
実施例1~10及び比較例1~5の研磨液組成物の研磨速度は、以下のようにして評価した。まず、研磨前後の各基板の重さを計り(Sartorius社製、「BP-210S」)を用いて測定し、各基板の質量変化から質量減少量を求めた。全10枚の平均の質量減少量を研磨時間で割った値を研磨速度とし、下記式に導入することにより算出した。実施例1~6の研磨速度の結果を、比較例1の研磨速度を100とした相対値として表2に示した。また、実施例4、7~10及び比較例5の研磨速度の結果を、比較例1の研磨速度を100とした相対値として表3に示した。
質量減少量(g)={研磨前の質量(g)-研磨後の質量(g)}
研磨速度(g/min)=質量減少量(g)/研磨時間(min)
4. Evaluation method [Evaluation of polishing speed]
The polishing speeds of the polishing liquid compositions of Examples 1 to 10 and Comparative Examples 1 to 5 were evaluated as follows. First, the weight of each substrate before and after polishing was measured using a measurement (“BP-210S” manufactured by Sartorius), and the amount of mass loss was determined from the change in mass of each substrate. The value obtained by dividing the average mass reduction amount of all 10 sheets by the polishing time was defined as the polishing rate, and was calculated by introducing into the following formula. The results of the polishing speeds of Examples 1 to 6 are shown in Table 2 as relative values with the polishing speed of Comparative Example 1 as 100. Further, the results of the polishing rates of Examples 4, 7 to 10 and Comparative Example 5 are shown in Table 3 as relative values with the polishing rate of Comparative Example 1 as 100.
Mass reduction (g) = {mass before polishing (g) -mass after polishing (g)}
Polishing speed (g / min) = mass reduction (g) / polishing time (min)

[ピットの評価]
研磨後の10枚の基板の表裏面を、白色干渉顕微鏡「OptiFlat III」(KLA Tencor社製)を用いて下記条件で観察し、ピットの有無を評価した。表2及び表3において、ピットの数が0個の場合はA、ピットの数が1~100個の場合はB、ピットの数が100個を超える場合はCとした。
<測定条件>
Radius Inside/Out:14.87mm/47.83mm
Center X/Y:55.44mm/53.38mm
Low Cutoff:2.5mm
Inner Mask:18.50mm
Outer Mask:45.5mm
Long Period:2.5mm
Wa Correction:0.9
Rn Correction:1.0
No Zernike Terms:8
[Pit evaluation]
The front and back surfaces of the 10 polished substrates were observed using a white interference microscope "OptiFlat III" (manufactured by KLA Tencor) under the following conditions, and the presence or absence of pits was evaluated. In Tables 2 and 3, when the number of pits is 0, it is designated as A, when the number of pits is 1 to 100, it is designated as B, and when the number of pits exceeds 100, it is designated as C.
<Measurement conditions>
Radius Inside / Out: 14.87mm / 47.83mm
Center X / Y: 55.44mm / 53.38mm
Low Cutoff: 2.5mm
Inner Mask: 18.50mm
Outer Mask: 45.5mm
Long Period: 2.5mm
Wa Correction: 0.9
Rn Correction: 1.0
No Zernike Terms: 8

5.結果
各評価の結果を表2及び表3に示した。
5. Results The results of each evaluation are shown in Tables 2 and 3.

Figure 0007055695000002
Figure 0007055695000002

Figure 0007055695000003
Figure 0007055695000003

表2に示されるように、所定の表面電位及び平均二次粒子径を有するシリカ砥粒A1~A6を用いた実施例1~6は、所定の表面電位及び/又は平均二次粒子径を有するシリカ砥粒(砥粒A)を含まない比較例1~5に比べて、研磨速度向上とピット抑制のトレードオフが解消されていた。
また、表3に示されるように、研磨速度向上とピット抑制のトレードオフを解消する観点から、所定の表面電位及び平均二次粒子径を有するシリカ砥粒(砥粒A)は、表面電位が-6mVを超える球状シリカ砥粒(砥粒B)と組み合わせて研磨に使用することが好ましいことが分かった。
As shown in Table 2, Examples 1 to 6 using silica abrasive grains A1 to A6 having a predetermined surface potential and an average secondary particle diameter have a predetermined surface potential and / or an average secondary particle diameter. Compared with Comparative Examples 1 to 5 containing no silica abrasive grains (abrasive particles A), the trade-off between the improvement in polishing speed and the suppression of pits was eliminated.
Further, as shown in Table 3, the silica abrasive grains (abrasive particles A) having a predetermined surface potential and average secondary particle diameter have a surface potential from the viewpoint of eliminating the trade-off between the improvement of the polishing speed and the suppression of pits. It was found that it is preferable to use it for polishing in combination with spherical silica abrasive particles (abrasive particles B) exceeding -6 mV.

本開示によれば、研磨速度向上とピット抑制のトレードオフを解消できるから、磁気ディスク基板の製造の生産性を向上できる。本開示は、磁気ディスク基板の製造に好適に用いることができる。 According to the present disclosure, since the trade-off between the improvement of the polishing speed and the suppression of pits can be eliminated, the productivity of manufacturing the magnetic disk substrate can be improved. The present disclosure can be suitably used for manufacturing a magnetic disk substrate.

Claims (8)

pH1.5の水性媒体における表面電位が-50mV以上-6mV以下であり、
pH1.5の水性媒体における平均二次粒子径が50nm以上600nm以下である、研磨用シリカ砥粒であって、
Si及びO以外の元素であって、+2又は+3の酸化数を有する元素Mを含み、
元素Mの含有量は、Siの含有量に対して、0.2モル%以上2モル%以下であり、
アスペクト比が1.2超である、研磨用シリカ砥粒
ここで、シリカ砥粒の平均二次粒子径は、下記方法により測定される値である。
砥粒をリン酸及びイオン交換水と混合し、砥粒の含有量が6.0質量%、リン酸の含有量が2.0質量%、pHが1.5である砥粒分散液を調製する。そして、前記砥粒分散液をレーザー回折/散乱式粒度分布測定装置内に投入し、その後、5分間超音波を付与した後、粒径を測定する。
The surface potential in an aqueous medium having a pH of 1.5 is -50 mV or more and -6 mV or less.
Silica abrasive grains for polishing having an average secondary particle diameter of 50 nm or more and 600 nm or less in an aqueous medium having a pH of 1.5 .
An element other than Si and O, which contains an element M having an oxidation number of +2 or +3.
The content of the element M is 0.2 mol% or more and 2 mol% or less with respect to the Si content.
Silica abrasive grains for polishing with an aspect ratio of more than 1.2 .
Here, the average secondary particle diameter of the silica abrasive grains is a value measured by the following method.
Abrasive grains are mixed with phosphoric acid and ion-exchanged water to prepare an abrasive grain dispersion having an abrasive grain content of 6.0% by mass, a phosphoric acid content of 2.0% by mass, and a pH of 1.5. do. Then, the abrasive grain dispersion liquid is put into a laser diffraction / scattering type particle size distribution measuring device, and then ultrasonic waves are applied for 5 minutes, and then the particle size is measured.
請求項に記載のシリカ砥粒(砥粒A)以外のシリカ砥粒(砥粒B)とともに、研磨液組成物または研磨に使用するための、請求項に記載の研磨用シリカ砥粒。 The silica abrasive grain for polishing according to claim 1 , for use in the polishing liquid composition or polishing together with the silica abrasive grain (abrasive grain B) other than the silica abrasive grain (abrasive grain A) according to claim 1 . 請求項1又は2に記載のシリカ砥粒(砥粒A)と、pH1.5の水性媒体における表面電位が-6mVを超える球状シリカ砥粒(砥粒B)とを含む、シリカスラリー。 A silica slurry comprising the silica abrasive grains (abrasive grain A) according to claim 1 or 2 and spherical silica abrasive grains (abrasive grain B) having a surface potential of more than -6 mV in an aqueous medium having a pH of 1.5. 請求項1又は2に記載のシリカ砥粒(砥粒A)を含む、研磨液組成物。 A polishing liquid composition containing the silica abrasive grains (abrasive grain A) according to claim 1 or 2 . 砥粒A以外のシリカ砥粒(砥粒B)をさらに含む、請求項に記載の研磨液組成物。 The polishing liquid composition according to claim 4 , further comprising silica abrasive grains (abrasive grains B) other than the abrasive grains A. 砥粒Bが、pH1.5の水性媒体における表面電位が-6mVを超える球状シリカ砥粒である、請求項に記載の研磨液組成物。 The polishing liquid composition according to claim 5 , wherein the abrasive grains B are spherical silica abrasive grains having a surface potential of more than -6 mV in an aqueous medium having a pH of 1.5. 前記研磨液組成物が、磁気ディスク基板用研磨液組成物である、請求項からのいずれかに記載の研磨液組成物。 The polishing liquid composition according to any one of claims 4 to 6 , wherein the polishing liquid composition is a polishing liquid composition for a magnetic disk substrate. 請求項からのいずれかに記載の研磨液組成物を用いて被研磨基板を研磨する研磨工程を含む、半導体基板、サファイア基板、及び磁気ディスク基板から選ばれる少なくとも1種の基板の製造方法。 A method for producing at least one substrate selected from a semiconductor substrate, a sapphire substrate, and a magnetic disk substrate, which comprises a polishing step of polishing the substrate to be polished using the polishing liquid composition according to any one of claims 4 to 7 . ..
JP2018087154A 2018-04-27 2018-04-27 Silica abrasive grains for polishing Active JP7055695B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018087154A JP7055695B2 (en) 2018-04-27 2018-04-27 Silica abrasive grains for polishing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018087154A JP7055695B2 (en) 2018-04-27 2018-04-27 Silica abrasive grains for polishing

Publications (2)

Publication Number Publication Date
JP2019189813A JP2019189813A (en) 2019-10-31
JP7055695B2 true JP7055695B2 (en) 2022-04-18

Family

ID=68391263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018087154A Active JP7055695B2 (en) 2018-04-27 2018-04-27 Silica abrasive grains for polishing

Country Status (1)

Country Link
JP (1) JP7055695B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006007399A (en) 2004-06-29 2006-01-12 Kao Corp Method for increasing polishing speed
JP2007234784A (en) 2006-02-28 2007-09-13 Fujimi Inc Polishing composition
JP2007266619A (en) 2002-01-25 2007-10-11 Jsr Corp Chemical-mechanical polishing method of semiconductor substrate, and aqueous dispersion for chemical-mechanical polishing
JP2007320031A (en) 2007-07-24 2007-12-13 Kao Corp Polishing liquid composition
JP2008101132A (en) 2006-10-19 2008-05-01 Kao Corp Polishing fluid composition for memory hard disk substrate
JP2011216581A (en) 2010-03-31 2011-10-27 Fujifilm Corp Polishing liquid and polishing method
JP2017179217A (en) 2016-03-31 2017-10-05 株式会社フジミインコーポレーテッド Polishing composition, manufacturing method of substrate and polishing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266619A (en) 2002-01-25 2007-10-11 Jsr Corp Chemical-mechanical polishing method of semiconductor substrate, and aqueous dispersion for chemical-mechanical polishing
JP2006007399A (en) 2004-06-29 2006-01-12 Kao Corp Method for increasing polishing speed
JP2007234784A (en) 2006-02-28 2007-09-13 Fujimi Inc Polishing composition
JP2008101132A (en) 2006-10-19 2008-05-01 Kao Corp Polishing fluid composition for memory hard disk substrate
JP2007320031A (en) 2007-07-24 2007-12-13 Kao Corp Polishing liquid composition
JP2011216581A (en) 2010-03-31 2011-10-27 Fujifilm Corp Polishing liquid and polishing method
JP2017179217A (en) 2016-03-31 2017-10-05 株式会社フジミインコーポレーテッド Polishing composition, manufacturing method of substrate and polishing method

Also Published As

Publication number Publication date
JP2019189813A (en) 2019-10-31

Similar Documents

Publication Publication Date Title
JP6771484B2 (en) Abrasive liquid composition for magnetic disk substrate
US7780751B2 (en) Polishing composition for hard disk substrate
WO2016002613A1 (en) Polishing liquid composition for magnetic disk substrates
JP6820723B2 (en) Abrasive liquid composition for magnetic disk substrate
JP6957232B2 (en) Abrasive liquid composition
JP2011104694A (en) Inorganic oxide particulate dispersion liquid, polishing particle dispersion liquid, and polishing composition
JP4651532B2 (en) Manufacturing method of magnetic disk substrate
JP2017190363A (en) Polishing liquid composition for sapphire plate
JP6584936B2 (en) Polishing liquid composition for magnetic disk substrate
JP2009163810A (en) Method of manufacturing hard disk substrate
JP7055695B2 (en) Silica abrasive grains for polishing
JP6997083B2 (en) Manufacturing method of magnetic disk board
JP6982427B2 (en) Silica slurry
JP7096714B2 (en) Silica slurry for polishing liquid composition
JP6584945B2 (en) Polishing liquid composition for magnetic disk substrate
WO2016060113A1 (en) Polishing liquid composition for sapphire plate
JP2011136402A (en) Polishing particle dispersion liquid comprising aggregate of organic particle and silica particle, and method for manufacturing the same
JP2021175774A (en) Polishing liquid composition
JP6959857B2 (en) Abrasive liquid composition
JP6584935B2 (en) Polishing liquid composition for magnetic disk substrate
JP2003297778A (en) Composition for polishing and method for modifying the same
JP2011121151A (en) Polishing liquid composition for hard disk substrate
JP7460844B1 (en) Polishing composition for magnetic disk substrates
WO2019004161A1 (en) Silica slurry for polishing-liquid composition
JP2005001018A (en) Method of manufacturing substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220406

R151 Written notification of patent or utility model registration

Ref document number: 7055695

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151