WO2019004161A1 - Silica slurry for polishing-liquid composition - Google Patents

Silica slurry for polishing-liquid composition Download PDF

Info

Publication number
WO2019004161A1
WO2019004161A1 PCT/JP2018/024104 JP2018024104W WO2019004161A1 WO 2019004161 A1 WO2019004161 A1 WO 2019004161A1 JP 2018024104 W JP2018024104 W JP 2018024104W WO 2019004161 A1 WO2019004161 A1 WO 2019004161A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
less
preferable
silica
particles
Prior art date
Application number
PCT/JP2018/024104
Other languages
French (fr)
Japanese (ja)
Inventor
木村陽介
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018119536A external-priority patent/JP7096714B2/en
Application filed by 花王株式会社 filed Critical 花王株式会社
Publication of WO2019004161A1 publication Critical patent/WO2019004161A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers

Definitions

  • the present invention relates to a silica slurry for a polishing composition, a polishing kit including the same, and a method for producing a polishing composition.
  • the present invention also relates to a method of manufacturing a magnetic disk substrate and a method of polishing a substrate.
  • the magnetic disk substrate is improved in smoothness and flatness (reduction of surface roughness, waviness, edge drop) and surface defect reduction (residual abrasive grains, in order to correspond to the low floating of the magnetic head and securement of the recording area.
  • the reduction of scratches, protrusions, pits, etc. is strictly required.
  • a multistage polishing method having two or more polishing steps is used. It is often adopted.
  • polishing liquid composition for finishing containing colloidal silica particles In the polishing process (also referred to as a rough polishing process) prior to the final polishing process, a polishing composition containing alumina particles is used from the viewpoint of improving productivity.
  • alumina particles are used as abrasives, penetration of the alumina particles into the substrate can cause defects in the media drive.
  • Patent Documents 1 and 2 a method of manufacturing a magnetic disk substrate is proposed that enables reduction of particle sticking to the substrate by using a polishing liquid composition that does not contain alumina particles and contains silica particles as abrasive grains in the rough polishing step.
  • polishing composition for polishing coated surfaces such as automobile coatings and architectural coatings, which comprises ⁇ -alumina having an average particle diameter of 0.3 to 3 ⁇ m as polishing particles and an alkali as a thickener
  • a polishing liquid composition containing a thickening type acrylic polymer is disclosed (Patent Document 3).
  • polishing liquid composition for CMP which contains cerium oxide particles as polishing particles, and contains as a dispersing agent a polymer dispersing agent containing a polyacrylic acid ammonium salt as a copolymerization component. It is disclosed (patent document 4).
  • the rough polishing process and the finish polishing process without using alumina particles are employed in the polishing process of the magnetic disk substrate, the remaining of the alumina due to adhesion of alumina, sticking and the like can be suppressed, and protrusion defects on the substrate surface after polishing can be reduced.
  • the rough polishing process is performed using silica particles having a large particle size instead of alumina particles, the problem of poor redispersion of precipitated silica particles in the silica slurry newly occurs.
  • the invention provides a silica slurry for a polishing composition, which is excellent in redispersibility of silica particles after long-term storage.
  • the present invention also provides a polishing composition capable of securing a high polishing rate and securing a favorable substrate quality even when using a silica slurry for a polishing composition after long-term storage.
  • One embodiment of the present invention comprises a silica particle, a redispersibility improver, and water, and the redispersibility improver is an alkali-thickening polymer emulsion, and the pH at 25 ° C. is 8.0 or more and 12.0 or less. It is a silica slurry for polishing composition.
  • Another aspect of the present invention is an acidic aqueous solution (second liquid) contained in a separate container from the silica slurry for polishing liquid composition of the present invention (first liquid) and the silica slurry for polishing liquid composition. And a pH of 0.5 or more and 6.0 or less at 25 ° C. when the first liquid and the second liquid are mixed.
  • Yet another aspect of the present invention is a polishing composition
  • a polishing composition comprising the step of mixing the silica slurry for a polishing composition of the present invention with an acid to set the pH at 25 ° C. to 0.5 or more and 6.0 or less. Manufacturing method.
  • Yet another aspect of the present invention is a magnetic disk substrate comprising the step of polishing a substrate to be polished using the polishing composition for a magnetic disk substrate prepared using the silica slurry for a polishing composition of the present invention. It is a manufacturing method.
  • Yet another aspect of the present invention includes the step of polishing a substrate to be polished using a polishing composition prepared using the silica slurry for a polishing composition of the present invention, wherein the substrate to be polished is a magnetic disk It is a grinding method of a substrate which is a substrate used for manufacture of a substrate.
  • the present invention it is possible to provide a silica slurry for a polishing composition, which is excellent in redispersibility of silica particles after long-term storage. Therefore, if the silica slurry for polishing composition of the present invention is used for preparation of the polishing composition, high polishing rate can be secured and good substrate quality even when using the silica slurry for polishing composition after long-term storage The effect is that collateral can be provided.
  • the silica slurry for a polishing composition according to the present invention (hereinafter sometimes referred to as "silica slurry" in some cases) contains silica particles as abrasive grains, and contains an alkali-thickening polymer emulsion as a redispersibility improver. Based on the finding that redispersibility of silica particles after long-term storage is excellent. In addition, since the silica slurry of the present invention is used to prepare the polishing composition of the present invention, high polishing speed can be ensured even if the polishing composition prepared using the silica slurry after long-term storage is used for rough polishing Based on the finding that good substrate quality can be secured.
  • the dispersibility of the silica particles in the polishing composition used for manufacturing the magnetic disk substrate is good, not only long-period defects but also other substrate qualities such as long-wavelength waviness are improved.
  • the high polishing rate is secured, and the adverse effect on the substrate quality due to the use of the silica slurry after long-term storage is suppressed, and improvement in productivity of the magnetic disk substrate can be expected.
  • the redispersibility of the silica particles is excellent, and as a result, the details of the mechanism capable of securing a high polishing rate and securing a good substrate quality are not clear, but are presumed as follows.
  • silica particles having a relatively large particle size precipitate during storage due to their own weight to form a hard caking layer.
  • other components such as acid for preparation of the polishing composition
  • primary particles of the silica particles are strongly aggregated with respect to the uneven surface of the substrate to be polished.
  • the polishing rate is reduced, and the particle diameter of the silica particles is increased, so that deterioration such as waviness or deterioration of long period defect removal occurs.
  • the present invention hydrates (is water-soluble) under alkaline conditions and thickens by forming a three-dimensional network structure, thereby suppressing aggregation of silica particles by the three-dimensional network structure, which is acidic
  • an alkali-thickening polymer emulsion having pH-dependent viscosity switching properties is contained in the silica slurry, and the pH of the silica slurry at 25 ° C. is 8: .0 or more and 12.0 or less. Therefore, the redispersibility of the silica particles in the silica slurry is good even after long-term storage. And when adding an acid etc.
  • the redispersion property of the silica particle in a silica slurry is favorable.
  • the polishing composition it is possible to secure a high polishing rate and secure a good substrate quality. Since the alkali-thickened polymer emulsion has the above-mentioned viscosity switching property, the adverse effect of the thickening due to the inclusion of the alkali-thickened polymer emulsion on the polishing rate in an acidic polishing composition is small.
  • the silica slurry of the present invention is contained as one solution, it is possible to ensure both a high polishing rate and a good substrate quality.
  • the present invention is not interpreted as being limited to these mechanisms.
  • the degree of "securement of high polishing rate” can be evaluated by the polishing rate when using a polishing composition prepared using a silica slurry immediately after production, and the rate reduction rate.
  • the rate of decrease in speed can be calculated, for example, by the method described in the examples below.
  • the silica slurry of the present invention comprises a silica particle (component a), a redispersibility improver (component b), and water, and the redispersibility improver (component b) is an alkali-thickened polymer emulsion , A silica slurry having a pH of 8.0 or more and 12.0 or less at 25.degree.
  • waviness of a substrate refers to unevenness on the surface of the substrate whose wavelength is longer than the roughness.
  • long wavelength waviness refers to a waviness observed with a wavelength of 500 to 5000 ⁇ m.
  • PED polish enhanced defect
  • annealing step in the step of forming a film by plating on an aluminum alloy substrate, it refers to a portion of insufficient annealing due to water or foreign matter attached to the substrate surface, and occurs as a shallow dent on the substrate surface during polishing.
  • grinding scratch refers to the shavings of the grindstone generated in the process of grinding the aluminum alloy substrate prior to plating.
  • PEDs and grind flaws are also collectively referred to as "long-period defects".
  • the incidence rate of long period defects is an index for evaluating the removal rate of long period defects and can be measured using the measuring device described in the examples.
  • the silica slurry of the present invention contains silica particles (component a) as abrasive grains.
  • the silica particles preferably contain non-spherical silica particles A (hereinafter also referred to as “particles A”) from the viewpoint of securing a high polishing rate, and from the viewpoint of achieving both long cycle defect reduction and securing a high polishing rate.
  • particles A non-spherical silica particles A
  • particles B spherical silica particles B
  • examples of the silica particles include colloidal silica, fumed silica, precipitated silica, surface-modified silica and the like.
  • the particle A colloidal silica or precipitated silica is preferable.
  • the particles A are preferably colloidal silica from the viewpoint of reduction of long period defects, and when the silica particles contain both particles A and particles B, the particles A ensure high polishing rate Precipitated silica is preferred from the viewpoint of
  • the particles A may be one type of non-spherical silica particles, or may be a combination of two or more types of non-spherical silica particles.
  • colloidal silica is preferable from the viewpoints of securing a high polishing rate and reducing long-period defects, and from the viewpoint of reducing projection defects.
  • the particles B may be one type of spherical silica particles, or may be a combination of two or more types of spherical silica particles.
  • Examples of the method for producing the particle A include known methods such as the method described in Tosoh Research and Technology Report, Volume 45 (2001), pages 65 to 69.
  • a precipitation method in which silica particles are precipitated by the neutralization reaction of a silicate such as sodium silicate and a mineral acid such as sulfuric acid. It is preferable to carry out the neutralization reaction at relatively high temperature under alkaline conditions, whereby the growth of primary particles of silica proceeds rapidly, and the primary particles are flocculated and precipitated to obtain the precipitated silica.
  • Be Colloidal silica is preferably obtained from a hydrolyzate of water glass or alkoxysilane, and more preferably obtained from water glass. Silica particles obtained from water glass can be produced by a conventionally known method.
  • the particles B may be produced by a flame melting method, a sol gel method, and a grinding method, but in view of securing a high polishing rate and reducing long period defects, and reducing protrusion defects after rough and finish polishing. From the viewpoint, it is preferable to use a silica particle produced by a particle growth method (hereinafter also referred to as “water glass method”) using an aqueous solution of alkali silicate as a starting material.
  • the use form of the particles B is preferably in the form of a slurry.
  • the content of the silica particles (component a) in the silica slurry of the present invention is preferably 10% by mass or more, more preferably 20% by mass or more, and 30% by mass or more from the viewpoint of improving redispersibility of the silica particles. From the viewpoint of production suitability, 70% by mass or less is preferable, 60% by mass or less is more preferable, and 50% by mass or less is still more preferable.
  • the BET specific surface area of the silica particles (component a) is preferably 5 m 2 / g or more, more preferably 10 m 2 / g or more, from the viewpoint of achieving both high polishing rate and reduction of long period defects, and the same From the viewpoint, 50 m 2 / g or less is preferable, and 45 m 2 / g or less is more preferable.
  • the BET specific surface area of the silica particles (component a) in the case where the silica particles (component a) contain both particles A and particles B can be calculated from the BET specific surface area and the compounding ratio (mass ratio) of both particles.
  • the average primary particle diameter D1 of the silica particles (component a) in terms of BET conversion is preferably 50 nm or more, more preferably 70 nm or more, still more preferably 90 nm or more, from the viewpoint of securing high polishing rate and reduction of long period defects. Or 300 nm or less is preferable, 250 nm or less is more preferable, and 200 nm or less is more preferable, from the viewpoint of reduction of long period defects.
  • grains B can be calculated from D1 of both particle
  • the average secondary particle diameter D2 of the silica particles (component a) is preferably 150 nm or more from the viewpoint of securing a high polishing rate and reduction of long period defects, and 580 nm or less from the viewpoint of reduction of long period defects , 500 nm or less is more preferable, 400 nm or less is more preferable, and 350 nm or less is still more preferable.
  • grains B can be calculated from D2 of both particle
  • Non-spherical silica particles The silica slurry of the present invention preferably contains non-spherical silica particles A from the viewpoint of securing a high polishing rate.
  • the particles A may be one type of non-spherical silica particles, or may be a combination of two or more types of non-spherical silica particles.
  • the average sphericity of the particles A is preferably 0.60 or more, more preferably 0.70 or more, from the viewpoint of reduction of long period defects, and from the same viewpoint, 0.85 or less is preferable, 0.80 or less Is more preferable, and 0.75 or less is more preferable.
  • the average sphericity of particle A is the average value of the sphericity of at least 200 particles A.
  • the sphericity of the particle A can be calculated from the following equation by determining the projection area S and the projection perimeter L of the particle A using, for example, TEM observation and image analysis software.
  • Sphericity 4 ⁇ ⁇ S / L 2
  • the sphericity of each particle A is preferably 0.60 or more, more preferably 0.70 or more, and from the same viewpoint, preferably 0.85 or less, 0.80 or less More preferably, 0.75 or less is more preferable.
  • the average minor diameter of the particles A is preferably 100 nm or more, more preferably 150 nm or more, still more preferably 180 nm or more, and 500 nm or less from the same viewpoint, from the viewpoint of securing high polishing speed and reduction of long period defects.
  • 450 nm or less is more preferable.
  • the average minor diameter of the particles A is preferably 100 nm or more from the viewpoint of securing high polishing rate and reduction of long period defects, 150 nm or more is more preferable, 180 nm or more is more preferable, and from the same viewpoint, 500 nm or less is preferable, 450 nm or less is more preferable, 400 nm or less is more preferable, and 300 nm or less is still more preferable.
  • the average short diameter of the particles A is from the viewpoint of securing a high polishing rate and reducing long-period defects, 150 nm or more is preferable, 180 nm or more is more preferable, and from the same viewpoint, 500 nm or less is preferable, and 450 nm or less is more preferable.
  • the average minor axis of the particles A is an average value of minor axes of at least 200 particles A contained in the silica slurry of the present invention.
  • the minor axis of the particle A is the length of the short side of the rectangular when drawing the smallest rectangle circumscribing the projected image of the particle A using, for example, TEM observation and image analysis software.
  • the major axis of the particle A is the length of the major side of the rectangle.
  • the BET specific surface area of the particles A is preferably 5 m 2 / g or more, more preferably 10 m 2 / g or more, and 50 m from the same viewpoint, from the viewpoint of achieving both high polishing rate and reduction of long period defects. 2 / g or less is preferable, 40 m 2 / g or less is more preferable, and 30 m 2 / g or less is more preferable.
  • the BET specific surface area of the particles A is 5 m 2 / g or more from the viewpoint of securing a high polishing rate and reducing long period defects. Is preferable, 10 m 2 / g or more is more preferable, 20 m 2 / g or more is further preferable, and from the same viewpoint, 50 m 2 / g or less is preferable, 40 m 2 / g or less is more preferable, 30 m 2 / g or less Is more preferred.
  • the BET specific surface area of the particles A is from the viewpoint of securing a high polishing rate and reducing long-period defects, 5 m 2 / g or more is preferable, 10 m 2 / g or more is more preferable, and from the same viewpoint, 50 m 2 / g or less is preferable, 40 m 2 / g or less is more preferable, 30 m 2 / g or less is more preferable, 20 m ⁇ 2 > / g or less is still more preferable.
  • the average primary particle diameter D1 of the particles A in terms of BET is preferably 50 nm or more, more preferably 70 nm or more, still more preferably 90 nm or more, from the viewpoint of securing a high polishing rate and reducing long period defects, and long period defects From the viewpoint of reduction of the above, 300 nm or less is preferable, 250 nm or less is more preferable, and 200 nm or less is more preferable.
  • D1 of the particles A is preferably 50 nm or more, 70 nm or more from the viewpoint of securing a high polishing rate and reduction of long period defects. Is more preferably 90 nm or more, and 300 nm or less is preferable, 250 nm or less is more preferable, 200 nm or less is more preferable, 150 nm or less is still more preferable, and 120 nm or less is more preferable from the viewpoint of reduction of long period defects. preferable.
  • D1 of particle A is 90 nm or more from the viewpoint of securing a high polishing rate and reducing long period defects. Is more preferably 120 nm or more, and 300 nm or less is preferable, 250 nm or less is more preferable, and 200 nm or less is more preferable from the viewpoint of reduction of long period defects.
  • the average secondary particle diameter D2 of particles A is preferably 150 nm or more from the viewpoint of securing a high polishing rate and reduction of long period defects, and from the viewpoint of reduction of long period defects, preferably 580 nm or less, 500 nm or less More preferably, 400 nm or less is more preferable, and 350 nm or less is even more preferable.
  • D2 of the particles A is preferably 150 nm or more from the viewpoint of securing a high polishing rate and reduction of long period defects, From the viewpoint of reduction of long period defects, 400 nm or less is preferable, 350 nm or less is more preferable, 300 nm or less is more preferable, and 250 nm or less is still more preferable.
  • D2 of particle A is 150 nm or more from the viewpoint of securing a high polishing rate and reducing long-period defects.
  • the average secondary particle diameter D2 of the particles A refers to a volume-based average particle diameter based on the scattering intensity distribution measured by the light scattering method.
  • “scattered intensity distribution” is determined by dynamic light scattering (DLS), quasi-elastic light scattering (QLS), or static light scattering (laser diffraction / scattering method). , Submicron particle size distribution of particle size conversion.
  • the average secondary particle diameter D2 of the particles A in the present application can be obtained specifically by the method described in the examples.
  • the particle diameter ratio (D2 / D1) between the average secondary particle diameter D2 of the particles A and the average primary particle diameter D1 is preferably 1.4 or more, from the viewpoint of securing a high polishing rate and reducing long period defects. .7 or more is more preferable, 4.0 or less is preferable, 3.0 or less is more preferable, and 2.8 or less is more preferable.
  • the particle size ratio (D2 / D1) can mean the degree of deformation of the particle A.
  • the average secondary particle diameter D2 measured by the light scattering method takes into consideration the length in the long direction and the short direction because the light scattering in the long direction is detected and processed when the particles are irregular shaped particles. The greater the degree of anomaly, the larger the value.
  • the average primary particle diameter D1 converted from the specific surface area value measured by the BET method is expressed as spheres based on the volume of the particles to be obtained, and therefore becomes smaller than the average secondary particle diameter D2. From the viewpoint of securing a high polishing rate, it is preferable that the particle diameter ratio (D2 / D1) is also large in the above range.
  • the shape of the particles A is preferably a shape in which a plurality of primary particles are aggregated from the viewpoint of securing a high polishing rate and reducing long-period defects.
  • the content of particles A in the silica slurry of the present invention is preferably 10% by mass or more, more preferably 20% by mass or more, and further preferably 25% by mass or more from the viewpoint of securing a high polishing rate and reducing long cycle defects. From the viewpoint of economy, 70% by mass or less is preferable, 60% by mass or less is more preferable, 50% by mass or less is more preferable, and 35% by mass or less is even more preferable.
  • the polishing composition of the present invention is preferably spherical silica particles B (hereinafter also referred to as "particles B") as the component a from the viewpoint of reduction of long period defects and securing of high polishing rate.
  • particle A when particle A is precipitated silica, it preferably contains particle B from the viewpoint of securing a high polishing rate.
  • the average sphericity of the particles B is preferably greater than 0.85 from the viewpoints of securing a high polishing rate and reduction of long period defects, and reduction of projection defects after rough polishing and finish polishing, 0.87 or more is more preferable, and from the same viewpoint, 1.00 or less is preferable, and 0.95 or less is more preferable.
  • the sphericity of the individual particles B is preferably greater than 0.85, more preferably 0.87 or more, and preferably 1.00 or less, more preferably 0.95 or less.
  • the average sphericity and sphericity of particle B can be calculated in the same manner as particle A.
  • the average sphericity of the particles B is preferably larger than the average sphericity of the particles A from the viewpoint of reduction of long-period defects.
  • the difference between the average sphericity of the particles A and the particles B is preferably 0.02 or more, more preferably 0.05 or more, still more preferably 0.08 or more, and still more preferably 0.1 or more from the viewpoint of reducing waviness. From the same viewpoint, 0.50 or less is preferable, 0.40 or less is more preferable, and 0.30 or less is more preferable.
  • the average minor axis of particle B is smaller than the average minor axis of particle A.
  • the average minor diameter of the particles B is preferably 20 nm or more, more preferably 30 nm or more, and still more preferably 40 nm or more, from the viewpoint of securing a high polishing rate, and preferably 200 nm or less from the viewpoint of reduction of long period defects, 150 nm or less is more preferable, and 110 nm or less is more preferable.
  • the average minor axis of the particles B can be calculated by the same method as the particles A.
  • the ratio of the average minor axis of particles A and particles B in the polishing composition of the present invention is the high polishing rate and long period defects. From the viewpoint of reduction, 1.3 or more is preferable, 1.5 or more is more preferable, 2.0 or more is further preferable, and 2.5 or more is further preferable, and from the viewpoint of securing a high polishing rate, 13.0 The following is preferable, 10.0 or less is more preferable, 8.0 or less is more preferable, 6.0 or less is still more preferable.
  • the BET specific surface area of the particles B is preferably 5 m 2 / g or more, more preferably 10 m 2 / g or more, still more preferably 20 m 2 / g or more, from the viewpoint of securing a high polishing rate and reducing long-period defects. From the same viewpoint, 55 m 2 / g or less is more preferable, 45 m 2 / g or less is more preferable, and 35 m 2 / g or less is still more preferable.
  • the average primary particle diameter D1 of the particles B in terms of BET is preferably 20 nm or more, more preferably 30 nm or more, still more preferably 40 nm or more, from the viewpoint of securing a high polishing rate and reducing long period defects. Therefore, 150 nm or less is preferable, 120 nm or less is more preferable, and 100 nm or less is more preferable.
  • the average primary particle diameter of the particles B in BET conversion can be calculated by the same method as the particles A.
  • the average secondary particle diameter D2 of particle B by dynamic scattering method is preferably 20 nm or more, more preferably 30 nm or more, and still more preferably 40 nm or more, from the viewpoint of securing a high polishing rate and reducing long-period defects. From the same viewpoint, 200 nm or less is preferable, 150 nm or less is more preferable, and 120 nm or less is more preferable.
  • the average secondary particle diameter of the particles B can be calculated by the same measurement method as the particles A.
  • the content of the particles B in the silica slurry of the present invention is preferably 5% by mass or more, more preferably 10% by mass or more, from the viewpoint of securing a high polishing rate and reducing long-period defects, and economical aspect Therefore, 35 mass% or less is preferable, 30 mass% or less is more preferable, and 25 mass% or less is still more preferable.
  • the mass ratio A / B of the particles A to the particles B in the silica slurry of the present invention is preferably 10/90 or more, more preferably 15/85 or more, from the viewpoint of securing a high polishing rate and reducing long period defects. 25/75 or more is more preferable, 40/60 or more is further more preferable, and from the same viewpoint, 99/1 or less is preferable, 90/10 or less is more preferable, and 75/25 or less is still more preferable.
  • the content of particle B refers to the total content thereof.
  • the content of particles A is also the same.
  • the silica slurry of the present invention contains silica particles other than the particle A and the particle B, the total content of the particle A and the particle B with respect to the whole silica particle in the silica slurry ensures high polishing rate and long period defects.
  • 98.0% by mass or more is preferable, 98.5% by mass or more is more preferable, 99.0% by mass or more is more preferable, 99.5% by mass or more is still more preferable, 99.8% by mass
  • the above is even more preferable, and substantially 100% by mass is even more preferable.
  • the silica slurry of the present invention contains an alkali-thickening polymer emulsion as a redispersibility improver (component b). Under alkaline conditions, alkali-thickened polymer emulsions are hydrated (water-soluble) and adsorbed by silica particles to form a three-dimensional network structure and thickened, and under acidic conditions, they exist as spheres in water And pH-dependent viscosity switching properties.
  • water-soluble means having a solubility of 2 g / 100 mL or more in water (20 ° C.).
  • the silica slurry of the present invention contains the redispersibility improver (component b), an acid or the like is added to the silica slurry of the present invention, and the pH at 25 ° C. is, for example, 0.5 or more.
  • the viscosity is 0 or less, preferably 1.0 or more and 3.0 or less, the viscosity of the silica slurry at 25 ° C.
  • mPa ⁇ s or less is preferably 10 mPa ⁇ s or less, more preferably 7.0 mPa ⁇ s or less, still more preferably 5.0 mPas ⁇ S or less, and preferably 0.5 mPa ⁇ s or more, more preferably 1.0 mPa ⁇ s or more, still more preferably 1.5 mPa ⁇ s or more, still more preferably 2.0 mPa ⁇ s or more it can.
  • an alkali-thickening type polymer emulsion it is granular in water at pH 1.0 or more and 3.0 or less from the viewpoint of improvement of redispersibility of silica particles, and the acid group is neutralized at pH 8.0 or more and 12.0 or less
  • Polymer which is solubilized and diffused in water is preferable, an alkali-thickened carboxylic acid polymer having an acid group of carboxyl group is more preferable, a carboxylic acid copolymer is more preferable, and the carboxylic acid copolymer is more preferable.
  • the acid-based copolymer is a carboxylic acid-based copolymer containing two or more of the following first monomer units, and a carboxylic acid-based copolymer containing the following first monomer units and the following second monomer units At least one polymer selected from coalescing is preferable, and a carboxylic acid copolymer containing the following first monomer unit and the following second monomer unit is more preferable.
  • the alkali-thickening polymer emulsion is the carboxylic acid copolymer
  • the alkali-thickening polymer emulsion contains only the first monomer unit and the second monomer unit as monomer units. Although it is preferable, it is preferable to further contain the following third monomer unit in addition to the first monomer unit and the second monomer unit.
  • a cross-linking agent etc. are mentioned as a 3rd single unit, As a cross-linking agent, the diallyl phthalate with a high thickening effect is preferable.
  • the sum of the mole% of the first monomer unit and the mole% of the second monomer unit with respect to all the monomer units contained in the carboxylic acid polymer ensures a high polishing rate and reduces long-period defects.
  • 90% by mass or more is preferable, 94% by mass or more is more preferable, 98% by mass or more is more preferable, and 100% by mass or less is preferable, and 99.9% by mass or less is more preferable from the same viewpoint. 8 mass% or less is further preferable, 99.5 mass% or less is further preferable, and 99.0 mass% or less is still more preferable.
  • Examples of the method for producing the alkali-thickening type polymer emulsion include methods such as emulsion polymerization, suspension polymerization and solution polymerization.
  • the alkali-thickened polymer emulsion is in a state of being neutralized by alkali in water.
  • Examples of the salt include ammonium salts; alkanolamine salts such as triethanolamine; and alkali metal salts such as sodium and potassium. These can be used alone or in combination of two or more.
  • the first monomer is preferably at least one selected from unsaturated carboxylic acids such as acrylic acid, methacrylic acid, maleic acid and itaconic acid, and salts thereof, from the viewpoint of improving the redispersibility of silica particles. And more preferably at least one selected from acrylic acid, methacrylic acid and salts thereof.
  • unsaturated carboxylic acids such as acrylic acid, methacrylic acid, maleic acid and itaconic acid, and salts thereof, from the viewpoint of improving the redispersibility of silica particles.
  • acrylic acid, methacrylic acid and salts thereof As the salt, ammonium salts or alkali metal salts such as sodium and potassium are preferable.
  • the second monomer monomers other than the aforementioned unsaturated carboxylic acids and salts thereof are preferable, and (meth) acrylics such as methyl (meth) acrylate, ethyl (meth) acrylate and butyl (meth) acrylate Among these, alkyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, acrylamide and the like can be mentioned, among them, methyl (meth) acrylate and ethyl (meth) acrylate from the viewpoint of improving redispersibility of silica particles. And at least one selected from
  • the molar ratio of the first monomer unit to the second monomer unit (mol% of the first monomer unit / mol% of the second monomer unit) in the carboxylic acid copolymer is silica particles From the viewpoint of improving the redispersibility of the polymer, it is preferably 10/90 or more, more preferably 20/80 or more, still more preferably 30/70 or more, still more preferably 35/65 or more, and from the same viewpoint Preferably it is 90/10 or less, More preferably, it is 80/20 or less, More preferably, it is 70/30 or less, More preferably, it is 60/40 or less, More preferably, it is 50/50 or less.
  • the first monomer is at least one selected from acrylic acid, methacrylic acid and salts thereof
  • the second monomer which forms a carboxylic acid polymer with one monomer is preferably at least one selected from alkyl acrylate and alkyl (meth) acrylate, and the third monomer is diallyl phthalate. Is preferable.
  • the number average molecular weight of the carboxylic acid copolymer is preferably 500,000 or more from the viewpoint of improving the redispersibility of the silica particles, and preferably 5,000,000 or less, more preferably 400 from the same viewpoint. It is at most 10,000, more preferably at most 3,000,000.
  • the number average molecular weight can be measured, for example, as follows.
  • the said number average molecular weight can be measured by the gel permeation chromatography (GPC) method of the following conditions.
  • GPC gel permeation chromatography
  • Reference material polystyrene
  • alkali-thickened carboxylic acid copolymers include Aron series A-7075, A-7055, B-300K, B-500, manufactured by Toagosei Co., Ltd. Primal TT-615 and TT-935 (both of which are copoly methacrylic acid aqueous emulsions) manufactured by Haas Co., Ltd., and the like.
  • the mass ratio of the silica particles to the redispersibility improver in the silica slurry of the present invention is preferably 0.1 parts by mass or more with respect to 100 parts by mass of the silica particles from the viewpoint of improving the redispersibility of the silica particles. 2 parts by mass or more is more preferable, 0.3 parts by mass or more is further preferable, and from the same viewpoint, 5 parts by mass or less is preferable, 3 parts by mass or less is more preferable, and 1 part by mass or less is more preferable.
  • the content of the redispersibility improver in the silica slurry of the present invention is preferably 0.05% by mass or more, more preferably 0.1% by mass or more, in terms of solid content, from the viewpoint of improving the redispersibility of the silica particles.
  • the content is preferably 0.15% by mass or more, and from the viewpoint of economy, 1.0% by mass or less is preferable, 0.5% by mass or less is more preferable, and 0.3% by mass or less is more preferable.
  • the silica slurry of the present invention contains water as a medium.
  • water examples include distilled water, ion-exchanged water, pure water and ultrapure water.
  • the content of water in the silica slurry is preferably 45% by mass or more, more preferably 50% by mass or more, still more preferably 55% by mass or more, from the viewpoint of facilitating the handling of the silica slurry, and from the same viewpoint 85 mass% or less is preferable, 80 mass% or less is more preferable, and 75 mass% or less is still more preferable. 70 mass% or less is still more preferable, and 65 mass% or less is still more preferable.
  • the silica slurry of the present invention may contain other components as needed.
  • Other components include pH adjusters, thickeners, dispersants, rust inhibitors, basic substances, polishing rate improvers, surfactants, polymer compounds and the like.
  • the other components are preferably contained in the silica slurry as long as the effects of the present invention are not impaired, and the content of the other components in the silica slurry is preferably 0% by mass or more, and more than 0% by mass Is more preferably 0.01% by mass or more, still more preferably 0.1% by mass or more, and 10% by mass or less is preferable, and 5% by mass or less is more preferable.
  • the pH of the silica slurry of the present invention is alkaline from the viewpoint of improving the redispersibility of silica particles, and is 8.0 or more and 12.0 or less.
  • a pH adjuster may be used when necessary in the preparation of the silica slurry of the present invention.
  • the pH adjuster is, for example, an alkali compound, and examples thereof include ammonia, and inorganic alkali compounds such as potassium hydroxide and sodium hydroxide; and organic alkali compounds such as alkylamines and alkanolamines. Among them, at least one selected from ammonia, sodium hydroxide and alkylamine is preferable, and at least one selected from ammonia and sodium hydroxide is more preferable, from the viewpoint of improving the redispersibility of the silica particles.
  • the content of the alumina particles is preferably 0.1% by mass or less, more preferably 0.05% by mass or less, and still more preferably 0.02% by mass or less from the viewpoint of reducing projection defects.
  • substantially free of alumina particles means that the particles do not contain alumina particles, does not contain an amount of alumina particles that functions as an abrasive, or an amount of alumina particles that affects the polishing result. It may include not including.
  • the content of the alumina particles in the silica slurry is preferably 2% by mass or less, more preferably 1% by mass or less, still more preferably 0.5% by mass or less, based on the total amount of abrasive particles in the silica slurry. It is even more preferable that it is mass%.
  • the pH of the silica slurry of the present invention is 8.0 or more, preferably 8.2 or more, more preferably 8.5 or more, and still more preferably 9.0 or more, from the viewpoint of improving the redispersibility of the silica particles. And from the same viewpoint, it is 12.0 or less, preferably 11.0 or less, more preferably 10.8 or less, still more preferably 10.5 or less, and still more preferably 10.0 or less.
  • the adjustment of pH is preferably performed using the above-mentioned pH adjuster.
  • the above pH is the pH of the silica slurry at 25 ° C. and can be measured using a pH meter, and preferably the value after 30 seconds of immersing the electrode of the pH meter in the polishing composition.
  • the viscosity of the silica slurry of the present invention is preferably 20 mPa ⁇ s or more, more preferably 50 mPa ⁇ s or more, still more preferably 100 mPa ⁇ s or more, from the viewpoint of improving the redispersibility of the silica particles, and similar viewpoints Therefore, the viscosity is preferably 10,000 mPa ⁇ s or less, more preferably 5,000 mPa ⁇ s or less, still more preferably 1,000 mPa ⁇ s or less, and still more preferably 800 mPa ⁇ s or less.
  • the viscosity is the value at 25 ° C. silica slurry.
  • the polishing composition of the present invention comprises, for example, the silica slurry of the present invention, an acid, and, if desired, an oxidizing agent and other components according to a known method, and has a pH at 25.degree. It can manufacture by setting it as 6.0 or less, preferably 1.0 or more and 3.0 or less. Accordingly, the present invention relates to a method for producing a silica slurry used for producing a polishing composition, which comprises the steps of blending at least a silica particle, a redispersibility improver, and water.
  • the present invention includes a step of blending at least a silica particle, a redispersibility improver and water, and the pH at 25 ° C. is 0.5 to 6.0, preferably 1.0 to 3 if necessary.
  • the present invention relates to a method for producing a polishing composition, which comprises the step of adjusting to 0 or less.
  • blending means mixing silica particles, redispersion improver and water simultaneously or in any order, silica slurry, acid, if necessary, oxidizing agent and other components simultaneously or optional Mixing in the order of
  • the mixing can be performed, for example, using a propeller stirrer, a homomixer, a homogenizer, a mixer such as an ultrasonic disperser, a wet ball mill, or the like.
  • the preferred compounding amounts of the respective components in the method for producing a polishing composition are the same as the preferred contents of the respective components in the polishing composition.
  • An example of the method for producing the polishing composition of the present invention preferably includes the following steps from the viewpoint of the dispersibility of the silica particles.
  • Step 1 A process of mixing water, an acid and optionally an oxidizing agent and other components, and adjusting an acidic aqueous solution having a pH of 6.0 or less at 25 ° C.
  • Step 2 The above acidic aqueous solution and the silica slurry of the present invention And mixing the pH of the resulting acidic aqueous solution in step 1 so that the pH of the polishing composition becomes a desired value, preferably 3.0 or less, and 0. Five or more are preferable.
  • An example of the method for producing a polishing composition of the present invention may include the step of adding water before or after mixing the acidic aqueous solution with the silica slurry of the present invention.
  • water may be added to the silica slurry of the present invention, for example.
  • the water may be water contained in the silica slurry.
  • the method of producing a polishing composition of the present invention includes the step of adding the water. .
  • the content of the silica particles in the polishing composition of the present invention is preferably 0.5% by mass or more, more preferably 2% by mass or more, from the viewpoint of securing a high polishing rate and reducing long-period defects. % Or more is more preferable, and from the viewpoint of economy, 10% by mass or less is preferable, 8% by mass or less is more preferable, and 6% by mass or less is still more preferable.
  • the content of the redispersibility improver in the polishing composition of the present invention is preferably 0.005% by mass or more, and 0.01% by mass or more, from the viewpoint of securing a high polishing rate and reducing long cycle defects. More preferably, it is 0.02 mass% or more, and from the viewpoint of economy, 1.0 mass% or less is preferable, 0.5 mass% or less is more preferable, and 0.1 mass% or less is still more preferable.
  • the pH of the polishing composition of the present invention at 25 ° C. is preferably 0.5 or more, more preferably 0.7 or more, and still more preferably 0.9 or more from the viewpoint of securing a high polishing rate and reducing long cycle defects.
  • 1.0 or more is more preferable, 1.2 or more is still more preferable, 1.4 or more is even more preferable, and from the same viewpoint, 6.0 or less is preferable and 4.0 or less is more preferable 3.0 or less is more preferable, 2.5 or less is still more preferable, and 2.0 or less is even more preferable.
  • the adjustment of pH is preferably performed using an acid described later, if necessary, an oxidizing agent.
  • the above pH is the pH of the polishing composition at 25 ° C., and the measurement method is the same as the measurement method of the pH of the silica slurry.
  • the acid examples include inorganic acids such as nitric acid, sulfuric acid, sulfurous acid, persulfuric acid, hydrochloric acid, perchloric acid, amidosulfuric acid, phosphoric acid, polyphosphoric acid and phosphonic acid; organic acids such as organic phosphoric acid and organic phosphonic acid; Can be mentioned.
  • inorganic acids such as nitric acid, sulfuric acid, sulfurous acid, persulfuric acid, hydrochloric acid, perchloric acid, amidosulfuric acid, phosphoric acid, polyphosphoric acid and phosphonic acid
  • organic acids such as organic phosphoric acid and organic phosphonic acid
  • at least one selected from phosphoric acid, sulfuric acid and 1-hydroxyethylidene-1,1-diphosphonic acid is preferable from the viewpoint of securing a high polishing rate and reducing long-cycle defects, and is selected from sulfuric acid and phosphoric acid. At least one is more preferable, and phosphoric acid is more preferable.
  • the content of the acid in the polishing composition is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, from the viewpoint of securing a high polishing rate and reducing long-cycle defects. % Or more is more preferable, 0.1% by mass or more is still more preferable, and from the same viewpoint, 5.0% by mass or less is preferable, 4.0% by mass or less is more preferable, and 3.0% by mass or less More preferably, 2.5% by mass or less is even more preferable.
  • the polishing composition of the present invention may contain an oxidizing agent from the viewpoint of securing a high polishing rate and reducing long cycle defects.
  • the oxidizing agent include, from the same viewpoint, peroxides, permanganic acid or salts thereof, chromic acid or salts thereof, peroxy acids or salts thereof, oxygen acids or salts thereof, and the like.
  • At least one selected from hydrogen peroxide, iron (III) nitrate, peracetic acid, ammonium peroxodisulfate, iron (III) sulfate and ammonium iron (III) sulfate is preferable, from the viewpoint of securing a high polishing rate, Hydrogen peroxide is more preferable from the viewpoint that metal ions are not attached to the surface of the polishing substrate and from the viewpoint of availability. You may use these oxidizing agents individually or in mixture of 2 or more types.
  • the content of the oxidizing agent in the polishing composition is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, and further preferably 0.1% by mass or more from the viewpoint of securing a high polishing rate. From the viewpoint of securing a high polishing rate and reducing long-period defects, the content is preferably 4.0% by mass or less, more preferably 2.0% by mass or less, and still more preferably 1.5% by mass or less.
  • the polishing composition of the present invention contains water as a medium.
  • water examples include distilled water, ion-exchanged water, pure water and ultrapure water.
  • the content of water in the polishing composition is preferably 61% by mass or more, more preferably 70% by mass or more, and still more preferably 80% by mass or more. % Or more is further more preferable, and from the same viewpoint, 99% by mass or less is preferable, 98% by mass or less is more preferable, and 97% by mass or less is more preferable.
  • the polishing composition of the present invention may contain other components as required.
  • Other components include thickeners, dispersants, rust inhibitors, basic substances, polishing rate improvers, surfactants, polymer compounds and the like.
  • the other components are preferably contained in the polishing composition as long as the effects of the present invention are not impaired, and the content of the other components in the polishing composition is preferably 0% by mass or more. More than 0 mass% is more preferable, 0.1 mass% or more is further more preferable, and 10 mass% or less is preferable, and 5 mass% or less is more preferable.
  • the "content of each component in the polishing composition” refers to the content of each component at the time of using the polishing composition for polishing. Therefore, when the polishing composition of the present invention is prepared as a concentrate, the content of each component may be increased by the concentration.
  • the viscosity of the polishing composition of the present invention is preferably 10 mPa ⁇ s or less, more preferably 7.0 mPa ⁇ s or less, and 5.0 mPa ⁇ s or less from the viewpoint of securing a high polishing rate and reducing long-period defects. From the same viewpoint, 0.5 mPa ⁇ s or more is preferable, 1.0 mPa ⁇ s or more is more preferable, 1.5 mPa ⁇ s or more is more preferable, and 2.0 mPa ⁇ s or more is still more preferable.
  • the viscosity is the viscosity of the polishing composition at 25 ° C., and the measuring method is the same as the measuring method of the viscosity of the silica slurry.
  • the polishing liquid kit of the present invention relates to a kit for producing a polishing liquid composition, which comprises a container-enclosed silica slurry in which a silica slurry containing the silica particles is housed in a container.
  • the polishing liquid kit of the present invention may further include an acidic aqueous solution having a pH of 6.0 or less stored in a separate container from the container-containing silica slurry. According to the present invention, it is possible to provide a polishing solution kit capable of obtaining a polishing composition capable of securing a high polishing rate and reducing long cycle defects even when silica particles are used as the abrasive.
  • the polishing solution kit of the present invention includes, for example, a silica slurry (first solution) containing the above-mentioned silica particles, and an acidic aqueous solution (second solution) containing other components that can be blended in the polishing composition used for polishing a workpiece. And a polishing solution kit (two-component polishing solution composition) in which the solutions are stored in a state where they are not mixed with each other and these are mixed at the time of use.
  • blended with acidic aqueous solution an acid, an oxidizing agent, etc. are mentioned, for example.
  • the first liquid and the second liquid may contain optional components as required. Examples of the optional components include thickeners, dispersants, rust inhibitors, basic substances, polishing rate improvers, surfactants, polymer compounds and the like.
  • the polishing composition of the present invention is a substrate to be used in the production of a substrate to be polished and a magnetic disk substrate, for example, an Ni-P plated aluminum alloy substrate, silica glass, aluminosilicate glass, crystals And glass substrates such as tempered glass and tempered glass, and from the viewpoint of cost and ease of handling, Ni-P plated aluminum alloy substrates are preferable.
  • the "Ni-P plated aluminum alloy substrate” refers to one that has been subjected to electroless Ni-P plating treatment after grinding the surface of the aluminum alloy substrate.
  • a magnetic disk can be manufactured by performing the step of forming a magnetic layer on the surface of the substrate by sputtering or the like.
  • the shape of the substrate to be polished includes, for example, a shape having a flat portion such as a disk, plate, slab, or prism, or a shape having a curved portion such as a lens, preferably a disk to be polished It is.
  • its outer diameter is, for example, 10 to 120 mm
  • its thickness is, for example, 0.5 to 2 mm.
  • a substrate to be polished which has been subjected to a grinding process is polished through a rough polishing process and a finish polishing process, and is manufactured through a magnetic layer forming process.
  • the polishing composition of the present invention is preferably used for polishing in a rough polishing process.
  • the present invention comprises a step of polishing a substrate to be polished using the polishing composition of the present invention (hereinafter, also referred to as “polishing step using the polishing composition of the present invention”). (Hereafter, it is also called “the board
  • the substrate to be polished is sandwiched by a platen to which a polishing pad is attached, the polishing composition of the present invention is supplied to the polishing surface, and polishing is performed while applying pressure.
  • the substrate to be polished is polished by moving either or both of the pad and the substrate to be polished.
  • the polishing load in the polishing step using the polishing composition of the present invention is preferably 30 kPa or less, more preferably 25 kPa or less, and still more preferably 20 kPa or less, from the viewpoint of reducing long cycle defects without significantly reducing the polishing rate. And 3 kPa or more is preferable, 5 kPa or more is more preferable, and 7 kPa or more is still more preferable.
  • the term "polishing load” refers to the pressure of a platen applied to the surface to be polished of a substrate to be polished during polishing. The adjustment of the polishing load can be performed by the load of air pressure or weight on the platen, substrate or the like.
  • the amount of polishing per 1 cm 2 of the substrate to be polished in the polishing step using the polishing composition of the present invention is preferably 0.20 mg or more, from the viewpoint of reducing long cycle defects without significantly reducing the polishing rate. .30 mg or more is more preferable, 0.40 mg or more is further preferable, and from the same viewpoint, 2.50 mg or less is preferable, 2.00 mg or less is more preferable, and 1.60 mg or less is still more preferable.
  • the supply rate of the polishing composition per 1 cm 2 of the substrate to be polished in the polishing step using the polishing composition of the present invention is preferably 2.5 mL / min or less, and 2.0 mL / min or less from the economical viewpoint. Is more preferably 1.5 mL / min or less, and from the viewpoint of securing a high polishing rate, 0.01 mL / min or more is preferable per 1 cm 2 of the substrate to be polished, and 0.03 mL / min or more is more preferable. 0.05 mL / min or more is more preferable.
  • the polishing liquid composition of the present invention As a method of supplying the polishing liquid composition of the present invention to a polishing machine, for example, a method of continuously supplying using a pump or the like can be mentioned.
  • the polishing composition When the polishing composition is supplied to the polishing machine, it is divided into a plurality of component liquids in consideration of the storage stability of the polishing composition, etc., in addition to the method of supplying one solution containing all the components. , Can also be supplied in two or more solutions. In the latter case, the plurality of blending component liquids are mixed, for example, in a supply pipe or on a substrate to be polished, to form the polishing composition of the present invention.
  • the substrate manufacturing method of the present invention since it is possible to reduce long period defects without largely deteriorating the polishing rate in rough polishing, there is an effect that it is possible to efficiently produce a magnetic disk substrate with reduced projection defects. It can be played.
  • the present invention relates to a method of polishing a magnetic disk substrate (hereinafter, also referred to as a polishing method of the present invention) including a polishing step using the polishing composition of the present invention.
  • polishing method of the present invention it is possible to reduce long period defects without largely reducing the polishing rate in rough polishing, thereby improving the productivity of a magnetic disk substrate in which protrusion defects are reduced. An effect can be achieved.
  • Specific polishing methods and conditions can be the same as those of the substrate manufacturing method of the present invention described above.
  • each component in the abrasive grain slurry is 30-50% by mass of abrasive grains (A1: 40% by weight, A2: 40% by weight, A3: 30% by weight, A4: 45% by weight, B1: 50% by weight
  • the pH of the abrasive slurry of Examples 1 to 14 and Comparative Examples 1 to 7 at 25 ° C. is 10.
  • the details of the particles A and the particles B are as described in Table 1.
  • the non-spherical silica particles A1 and A2 are colloidal silica
  • the non-spherical silica particles A3 are precipitated silicas
  • the particles B are colloidal silica produced by the water glass method.
  • the pH of the abrasive grain slurry was measured using a pH meter (manufactured by Toa DK Co., Ltd.), and the electrode was immersed in the polishing composition and the value after 30 seconds was adopted (the same applies hereinafter).
  • Each of A-7075, A-7055, B-500, and B-300K in Table 3 is an alkali-thickening polymer emulsion, and is a carboxylic acid copolymer, and all of them are the first monomer unit and It contains a second monomer unit.
  • each component in the polishing composition 1 to 21 was 5.0 wt% of abrasive grains, the redispersibility improver (component b) or the comparative object thereof: the amount described in Table 3, phosphoric acid: 1.5 mass%, hydrogen peroxide: 0.8 mass%. The remaining amount is water.
  • the pH of the polishing composition 1 to 21 at 25 ° C. is 1.6.
  • polishing composition C Used for Finishing Polishing
  • colloidal silica particles abrasive grain a
  • sulfuric acid sulfuric acid
  • hydrogen peroxide water
  • a polishing composition C to be used for final polishing was prepared.
  • the content of each component in the polishing composition C was 5.0 mass% of colloidal silica particles, 0.5 mass% of sulfuric acid, and 0.5 mass% of hydrogen peroxide.
  • the pH of the polishing composition C was 1.4.
  • This polishing composition C was used in the below-mentioned finish polishing process.
  • the details of the abrasive grains a are as described in Table 2.
  • the average primary particle size (nm) of the abrasive grains was calculated by the following equation using the specific surface area S (m 2 / g) calculated by the BET (nitrogen adsorption) method.
  • Average primary particle size of alumina particles (nm) 1508 / S
  • silica particles A3 Water is introduced as a dispersion medium into the following measuring apparatus, and then a sample (silica particles A3) is introduced so that the transmittance is 75 to 95%, and then ultrasonic waves are applied for 5 minutes, and then the particle size is obtained.
  • a sample sica particles A3
  • Alumina particles A4 An aqueous solution containing 0.5% by mass of Poise 530 (manufactured by Kao Corporation, polycarboxylic acid type polymer surfactant) as a dispersion medium is introduced into the following measuring apparatus, and then the transmittance becomes 75 to 95%.
  • Poise 530 manufactured by Kao Corporation, polycarboxylic acid type polymer surfactant
  • the sample (alumina particles 4A) was charged as described above, and then ultrasonic waves were applied for 5 minutes, and then the particle size was measured.
  • Measuring equipment Horiba, Ltd.
  • the sphericity of each abrasive grain was calculated from the area S and the circumferential length L of each abrasive grain according to the following equation, and the average value of the sphericity (average sphericity) was obtained.
  • Sphericity 4 ⁇ ⁇ S / L 2
  • the redispersibility of the silica particles in the silica slurry was evaluated by the sedimentation rate (%).
  • the sedimentation rate is the ratio of the amount of sedimentation (g) to the total solid content, assuming that the total solid content is 100.
  • the silica slurry which has been allowed to stand for 3 months after preparation, is shaken with a shaker ("MW-YS" manufactured by Miyamoto Riken Kogyo Co., Ltd.) for 30 seconds at a rotational speed of 100 rpm, and the supernatant liquid removed is sedimented Amount.
  • the smaller the sedimentation rate the better the redispersibility of the silica slurry.
  • B Settability 1% or more and less than 3%
  • C Settability 3% or more
  • polishing conditions Polishing of the substrate to be polished was performed according to the following steps (1) to (3). The conditions of each process are shown below. Step (3) was carried out using a polishing machine separate from the polishing machine used in step (1).
  • Rough polishing step a step of polishing the surface to be polished of the substrate to be polished using the polishing composition 1 to 21.
  • Washing step a step of washing the substrate obtained in step (1).
  • Finishing polishing step a step of polishing the surface to be polished of the substrate obtained in step (2) using the polishing composition C.
  • substrate to be polished As a substrate to be polished, a Ni-P plated aluminum alloy substrate was used. The substrate to be polished had a thickness of 1.27 mm and a diameter of 95 mm.
  • Polishing machine Double-sided polishing machine (9B type double-sided polishing machine, made by Speed Liste) Number of substrates to be polished: 10 sheets Abrasive liquid: Abrasive liquid composition 1 to 21 Polishing pad: suede type (foamed layer: polyurethane elastomer), thickness: 1.0 mm, average pore diameter: 30 ⁇ m, surface layer compression ratio: 2.5% (manufactured by Filwel) Plate rotation speed: 35 rpm Polishing load: 9.8 kPa (set value) Polishing fluid supply amount: 100 mL / min (0.076 mL / min per 1 cm 2 of the substrate to be polished) Equivalent to Polishing time: 6 minutes
  • Step (2) Cleaning
  • the substrate obtained in step (1) was washed under the following conditions. First, the substrate obtained in step (1) is immersed for 5 minutes in a bath containing an alkaline cleaner composition of pH 12 consisting of a 0.1% by mass KOH aqueous solution. Next, the substrate after immersion is rinsed with ion exchange water for 20 seconds. Then, the substrate after the rinse is transferred to the scrub cleaning unit in which the cleaning brush is set and cleaned.
  • Polishing machine Double-sided polishing machine (type 9B double-sided polishing machine, manufactured by Speed Fam Co., Ltd.), the number of polishing substrates to be polished separately from the polishing machine used in step (1): 10 sheets
  • Polishing solution Polishing solution composition
  • Polishing pad suede type (foamed layer: polyurethane elastomer), thickness: 0.9 mm, average pore diameter: 5 ⁇ m, compression ratio of surface layer: 10.2% (manufactured by Fujibo)
  • Plate rotation speed 40 rpm
  • Polishing load 9.8 kPa Polishing liquid supply amount: 100 mL / min (corresponding to 0.076 mL / min per 1 cm 2 of the substrate to be polished)
  • Polishing time Washing was performed after the step (3) for 2 minutes. The washing conditions were the same as in the step (2).
  • Step (2) was carried out on both sides (total 20 points) of the ten substrates after polishing of step (1), and then the occurrence rate (%) was determined by measurement under the following conditions.
  • the small spot which can be checked with the naked eye on the substrate surface is PED and it could be confirmed even at one point on the substrate surface, the surface was regarded as having a long period defect.
  • Long cycle defect rate (%) (Number of substrate surfaces with long-period defects / 20) x 100
  • the long cycle defect incidence rate was evaluated in five levels based on the following criteria. That is, the larger the evaluation value, the lower the incidence of long-period defects. The results are shown in Table 3.
  • Example 2 and Comparative Example 2 are compared, as shown in Table 3, the sedimentation rate of the silica slurry of Example 2 is significantly smaller than that of the silica slurry of Comparative Example 2, The redispersibility of the silica particles is improved by the inclusion of the redispersibility improver. The same applies to the comparison between Example 1 and Comparative Example 1 and Example 6 and Comparative Example 3.
  • the polyacrylic acid used to prepare the silica slurry of Comparative Example 7 is a carboxylic acid-based polymer but is not affected by the alkali-thickening polymer emulsion.
  • the silica slurries of Examples 1 to 14 which contain an alkali-thickening polymer emulsion as a redispersibility improver are the silicas of Comparative Examples 1 to 4 which do not contain the alkali-thickening polymer emulsion.
  • the redispersibility of silica particles after long-term storage is superior to that of a slurry.
  • polishing compositions 1 to 14 prepared using the silica slurry of Examples 1 to 14 stored for a long period of time have high polishing speed and long period defects compared with polishing compositions 15 to 21. It is possible to reduce.
  • the present invention even after long-term storage, it is possible to ensure both high polishing speed and suppression of deterioration of the substrate quality such as long period defects, so the productivity of manufacturing the magnetic disk substrate with good substrate quality is improved. it can.
  • the present invention can be suitably used for manufacturing a magnetic disk substrate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

One embodiment of the present invention is a silica slurry for a polishing-liquid composition, said slurry comprising silica particles, a redispersion aid and water, the redispersion aid being an alkali thickening polymer emulsion, and the pH of said silica slurry being 8.0–12.0, inclusive, at 25°C. The average secondary particle size of the silica particles is preferably 150–580nm, inclusive. The silica slurry for a polishing-liquid composition preferably has a viscosity of no less than 20mPa·s at 25°C. When an acid or an oxidising agent is added to adjust the pH to 0.5–6.0, inclusive, the viscosity is preferably no more than 10mPa·s at 25°C.

Description

研磨液組成物用シリカスラリーSilica slurry for polishing composition
 本発明は、研磨液組成物用シリカスラリー、これを含む研磨液キット、及び研磨液組成物の製造方法に関する。また、本発明は、磁気ディスク基板の製造方法及び基板の研磨方法に関する。 The present invention relates to a silica slurry for a polishing composition, a polishing kit including the same, and a method for producing a polishing composition. The present invention also relates to a method of manufacturing a magnetic disk substrate and a method of polishing a substrate.
 近年、磁気ディスクドライブは小型化・大容量化が進み、高記録密度化が求められている。高記録密度化のためには、磁気信号の検出感度を向上させる必要がある。そこで、磁気ヘッドの浮上高さをより低下させ、単位記録面積を縮小する技術開発が進められている。磁気ディスク基板には、磁気ヘッドの低浮上化と記録面積の確保に対応するため、平滑性及び平坦性の向上(表面粗さ、うねり、端面ダレの低減)や表面欠陥低減(残留砥粒、スクラッチ、突起、ピット等の低減)が厳しく要求されている。このような要求に対して、より平滑で、傷が少ないといった表面品質向上と生産性の向上を両立させる観点から、ハードディスク基板の製造方法においては、2段階以上の研磨工程を有する多段研磨方式が採用されることが多い。一般に、多段研磨方式の最終研磨工程、即ち、仕上げ研磨工程では、表面粗さの低減、スクラッチ、突起、ピット等の傷の低減という要求を満たすために、コロイダルシリカ粒子を含む仕上げ用研磨液組成物が使用され、仕上げ研磨工程より前の研磨工程(粗研磨工程ともいう)では、生産性向上の観点から、アルミナ粒子を含む研磨液組成物が使用される。しかしながら、アルミナ粒子を砥粒として使用した場合、アルミナ粒子の基板への突き刺さりによって、メディア・ドライブの欠陥を引き起こすことがある。 In recent years, the size and capacity of magnetic disk drives have been reduced, and higher recording density has been required. In order to increase the recording density, it is necessary to improve the detection sensitivity of the magnetic signal. Therefore, technology development has been advanced to further reduce the flying height of the magnetic head and to reduce the unit recording area. The magnetic disk substrate is improved in smoothness and flatness (reduction of surface roughness, waviness, edge drop) and surface defect reduction (residual abrasive grains, in order to correspond to the low floating of the magnetic head and securement of the recording area. The reduction of scratches, protrusions, pits, etc. is strictly required. From the viewpoint of achieving both surface quality improvement such as smoother and less flawed and productivity improvement in response to such a requirement, in the hard disk substrate manufacturing method, a multistage polishing method having two or more polishing steps is used. It is often adopted. Generally, in the final polishing step of the multistage polishing method, that is, in the finish polishing step, in order to meet the requirements of reduction of surface roughness and reduction of scratches such as scratches, protrusions and pits, polishing liquid composition for finishing containing colloidal silica particles In the polishing process (also referred to as a rough polishing process) prior to the final polishing process, a polishing composition containing alumina particles is used from the viewpoint of improving productivity. However, when alumina particles are used as abrasives, penetration of the alumina particles into the substrate can cause defects in the media drive.
 そこで、アルミナ粒子を含まず、シリカ粒子を砥粒として含有する研磨液組成物を粗研磨工程に用いることで、基板への粒子の突き刺さりの低減を可能とする磁気ディスク基板の製造方法が提案されている(特許文献1~2)。 Therefore, a method of manufacturing a magnetic disk substrate is proposed that enables reduction of particle sticking to the substrate by using a polishing liquid composition that does not contain alumina particles and contains silica particles as abrasive grains in the rough polishing step. (Patent Documents 1 and 2).
 一方で、自動車塗装や建築物塗装等の塗装面を研磨するための研磨液組成物であって、研磨粒子として平均粒子径が0.3~3μmのα―アルミナを含み、増粘剤としてアルカリ増粘型アクリルポリマーを含む研磨液組成物が開示されている(特許文献3)。 On the other hand, it is a polishing composition for polishing coated surfaces such as automobile coatings and architectural coatings, which comprises α-alumina having an average particle diameter of 0.3 to 3 μm as polishing particles and an alkali as a thickener A polishing liquid composition containing a thickening type acrylic polymer is disclosed (Patent Document 3).
 さらに、CMP用の研磨液組成物であって、研磨粒子として酸化セリウム粒子を含み、分散剤として、共重合成分としてのポリアクリル酸アンモニウム塩を含む高分子分散剤を含む、研磨液組成物が開示されている(特許文献4)。 Furthermore, it is a polishing liquid composition for CMP, which contains cerium oxide particles as polishing particles, and contains as a dispersing agent a polymer dispersing agent containing a polyacrylic acid ammonium salt as a copolymerization component. It is disclosed (patent document 4).
特開2014-29755号公報JP, 2014-29755, A 特開2014-116057号公報JP, 2014-116057, A 特開2010-163553号公報JP, 2010-163553, A 特開2003-059868号公報JP 2003-059868 A
 磁気ディスク基板の研磨工程においてアルミナ粒子を使用しない粗研磨工程及び仕上げ研磨工程を採用すれば、アルミナの付着や突き刺さり等によるアルミナの残留が抑制され、研磨後の基板表面の突起欠陥を低減できる。しかし、アルミナ粒子に代えて粒径の大きいシリカ粒子で粗研磨工程を行う場合、シリカスラリー中の沈降したシリカ粒子の再分散性が悪いという問題が新たに発生することが見出された。再分散性の悪化は、研磨速度の低下をもたらし、長周期欠陥等の基板品質を悪化させるため、長期保存後のシリカスラリーにおけるシリカ粒子の再分散性を向上させることが望まれる。 If the rough polishing process and the finish polishing process without using alumina particles are employed in the polishing process of the magnetic disk substrate, the remaining of the alumina due to adhesion of alumina, sticking and the like can be suppressed, and protrusion defects on the substrate surface after polishing can be reduced. However, it has been found that when the rough polishing process is performed using silica particles having a large particle size instead of alumina particles, the problem of poor redispersion of precipitated silica particles in the silica slurry newly occurs. Since the deterioration of the redispersibility leads to the decrease of the polishing rate and the deterioration of the substrate quality such as long cycle defects, it is desirable to improve the redispersion of the silica particles in the silica slurry after long-term storage.
 そこで発明は、長期保存後のシリカ粒子の再分散性が優れた研磨液組成物用シリカスラリーを提供する。また、本発明は、長期保存後の研磨液組成物用シリカスラリーを用いても、高研磨速度の確保と良好な基板品質の担保とが可能な研磨液組成物を提供する。 Therefore, the invention provides a silica slurry for a polishing composition, which is excellent in redispersibility of silica particles after long-term storage. The present invention also provides a polishing composition capable of securing a high polishing rate and securing a favorable substrate quality even when using a silica slurry for a polishing composition after long-term storage.
 本発明の一態様は、シリカ粒子、再分散性向上剤、及び水を含み、再分散性向上剤が、アルカリ増粘型ポリマーエマルジョンであり、25℃におけるpHが8.0以上12.0以下の、研磨液組成物用シリカスラリーである。 One embodiment of the present invention comprises a silica particle, a redispersibility improver, and water, and the redispersibility improver is an alkali-thickening polymer emulsion, and the pH at 25 ° C. is 8.0 or more and 12.0 or less. It is a silica slurry for polishing composition.
 本発明の別の態様は、本発明の研磨液組成物用シリカスラリー(第1液)と、前記研磨液組成物用シリカスラリーとは別の容器内に収容された酸性水溶液(第2液)とを含み、前記第1液と前記第2液とを混合したときの25℃におけるpHが0.5以上6.0以下である、研磨液キットである。 Another aspect of the present invention is an acidic aqueous solution (second liquid) contained in a separate container from the silica slurry for polishing liquid composition of the present invention (first liquid) and the silica slurry for polishing liquid composition. And a pH of 0.5 or more and 6.0 or less at 25 ° C. when the first liquid and the second liquid are mixed.
 本発明の更に別の態様は、本発明の研磨液組成物用シリカスラリーと酸とを混合して、25℃におけるpHを0.5以上6.0以下とする工程を含む、研磨液組成物の製造方法である。 Yet another aspect of the present invention is a polishing composition comprising the step of mixing the silica slurry for a polishing composition of the present invention with an acid to set the pH at 25 ° C. to 0.5 or more and 6.0 or less. Manufacturing method.
 本発明の更に別の態様は、本発明の研磨液組成物用シリカスラリーを用いて調製された磁気ディスク基板用研磨液組成物を用いて被研磨基板を研磨する工程を含む、磁気ディスク基板の製造方法である。 Yet another aspect of the present invention is a magnetic disk substrate comprising the step of polishing a substrate to be polished using the polishing composition for a magnetic disk substrate prepared using the silica slurry for a polishing composition of the present invention. It is a manufacturing method.
 本発明の更に別の態様は、本発明の研磨液組成物用シリカスラリーを用いて調製された研磨液組成物を用いて被研磨基板を研磨する工程を含み、前記被研磨基板は、磁気ディスク基板の製造に用いられる基板である、基板の研磨方法である。 Yet another aspect of the present invention includes the step of polishing a substrate to be polished using a polishing composition prepared using the silica slurry for a polishing composition of the present invention, wherein the substrate to be polished is a magnetic disk It is a grinding method of a substrate which is a substrate used for manufacture of a substrate.
 本発明によれば、長期保存後のシリカ粒子の再分散性が優れた研磨液組成物用シリカスラリーを提供できる。そのため、本発明の研磨液組成物用シリカスラリーを研磨液組成物の調製に用いれば、長期保存後の研磨液組成物用シリカスラリーを用いても、高研磨速度の確保と良好な基板品質の担保が行える、という効果が奏される。 According to the present invention, it is possible to provide a silica slurry for a polishing composition, which is excellent in redispersibility of silica particles after long-term storage. Therefore, if the silica slurry for polishing composition of the present invention is used for preparation of the polishing composition, high polishing rate can be secured and good substrate quality even when using the silica slurry for polishing composition after long-term storage The effect is that collateral can be provided.
 本発明の研磨液組成物用シリカスラリー(以下「シリカスラリー」と略称する場合もある。)は、砥粒としてシリカ粒子を含み、再分散性向上剤としてアルカリ増粘型ポリマーエマルジョンを含有することにより、長期保存後のシリカ粒子の再分散性が優れるという知見に基づく。また、本発明の研磨液組成物の調製に本発明のシリカスラリーを用いるので、長期保存後のシリカスラリーを用いて調製された研磨液組成物を粗研磨に用いても、高研磨速度の確保と良好な基板品質の担保とが行える、という知見に基づく。 The silica slurry for a polishing composition according to the present invention (hereinafter sometimes referred to as "silica slurry" in some cases) contains silica particles as abrasive grains, and contains an alkali-thickening polymer emulsion as a redispersibility improver. Based on the finding that redispersibility of silica particles after long-term storage is excellent. In addition, since the silica slurry of the present invention is used to prepare the polishing composition of the present invention, high polishing speed can be ensured even if the polishing composition prepared using the silica slurry after long-term storage is used for rough polishing Based on the finding that good substrate quality can be secured.
 一般に、磁気ディスク基板の製造に用いる研磨液組成物においてシリカ粒子の分散性が良好であれば、長周期欠陥のみならず、長波長うねり等の他の基板品質も向上する。本発明では、高研磨速度が担保され、且つ、長期保存後のシリカスラリーの使用による基板品質への悪影響が抑制されることが相まって、磁気ディスク基板の生産性の向上が期待できる。 In general, if the dispersibility of the silica particles in the polishing composition used for manufacturing the magnetic disk substrate is good, not only long-period defects but also other substrate qualities such as long-wavelength waviness are improved. In the present invention, the high polishing rate is secured, and the adverse effect on the substrate quality due to the use of the silica slurry after long-term storage is suppressed, and improvement in productivity of the magnetic disk substrate can be expected.
 本発明において、シリカ粒子の再分散性が優れ、その結果、高研磨速度の確保と良好な基板品質の担保が行えるメカニズムの詳細については明らかではないが、以下のように推察される。 In the present invention, the redispersibility of the silica particles is excellent, and as a result, the details of the mechanism capable of securing a high polishing rate and securing a good substrate quality are not clear, but are presumed as follows.
 シリカスラリーにおいて、粒径が比較的大きいシリカ粒子は自重により保存中に沈降し、固いケーキング層を形成する。研磨液組成物の調製のために、シリカスラリーを攪拌し酸等の他の成分と混合する際、シリカ粒子の一次粒子同士が強固に凝集したままであると、被研磨基板の凹凸表面に対してシリカ粒子の物理力が作用し辛くなるため研磨速度が低下し、シリカ粒子の粒径が大きくなることによりうねり等の悪化や長周期欠陥の除去性の悪化が発生する。 In the silica slurry, silica particles having a relatively large particle size precipitate during storage due to their own weight to form a hard caking layer. When the silica slurry is stirred and mixed with other components such as acid for preparation of the polishing composition, primary particles of the silica particles are strongly aggregated with respect to the uneven surface of the substrate to be polished. As the physical force of the silica particles becomes hard to act, the polishing rate is reduced, and the particle diameter of the silica particles is increased, so that deterioration such as waviness or deterioration of long period defect removal occurs.
 これに対して、本発明では、アルカリ性下では水和し(水溶性であり)、3次元網目構造を形成することにより増粘し、当該3次元網目構造によってシリカ粒子の凝集を抑制し、酸性下では水中に球体で存在して減粘させるという、pH依存の粘度スイッチング特性を有したアルカリ増粘型ポリマーエマルジョンが、シリカスラリーに含まれており、且つ、シリカスラリーの25℃におけるpHが8.0以上12.0以下である。そのため、長期保存後においても、シリカスラリーにおけるシリカ粒子の再分散性は良好である。そして、本発明のシリカスラリーに酸等を添加して、酸性の研磨液組成物を調製する場合、長期保存後のシリカスラリーを用いた場合でも、シリカスラリー中のシリカ粒子の再分散性が良好であるので、研磨液組成物において、高研磨速度の確保と良好な基板品質の担保とが行える。アルカリ増粘型ポリマーエマルジョンは、前記粘度スイッチング特性を有するため、アルカリ増粘型ポリマーエマルジョンを含有することによる前記増粘が、酸性の研磨液組成物において、研磨速度へ与える悪影響は小さい。本発明の研磨液キットにおいても、本発明のシリカスラリーを1液として含むので、高研磨速度の確保と良好な基板品質の担保とを両立できる。ただし、本発明はこれらのメカニズムに限定して解釈されない。 On the other hand, in the present invention, it hydrates (is water-soluble) under alkaline conditions and thickens by forming a three-dimensional network structure, thereby suppressing aggregation of silica particles by the three-dimensional network structure, which is acidic Below, an alkali-thickening polymer emulsion having pH-dependent viscosity switching properties is contained in the silica slurry, and the pH of the silica slurry at 25 ° C. is 8: .0 or more and 12.0 or less. Therefore, the redispersibility of the silica particles in the silica slurry is good even after long-term storage. And when adding an acid etc. to the silica slurry of this invention and preparing an acidic polishing liquid composition, even when using the silica slurry after long-term storage, the redispersion property of the silica particle in a silica slurry is favorable. Thus, in the polishing composition, it is possible to secure a high polishing rate and secure a good substrate quality. Since the alkali-thickened polymer emulsion has the above-mentioned viscosity switching property, the adverse effect of the thickening due to the inclusion of the alkali-thickened polymer emulsion on the polishing rate in an acidic polishing composition is small. Also in the polishing liquid kit of the present invention, since the silica slurry of the present invention is contained as one solution, it is possible to ensure both a high polishing rate and a good substrate quality. However, the present invention is not interpreted as being limited to these mechanisms.
 本発明では、「高研磨速度の確保」の程度は、製造直後のシリカスラリーを用いて調製される研磨液組成物を用いた場合の研磨速度と、速度低下率によって評価できる。速度低下率は、例えば、後述の実施例に記載の方法により算出できる。 In the present invention, the degree of "securement of high polishing rate" can be evaluated by the polishing rate when using a polishing composition prepared using a silica slurry immediately after production, and the rate reduction rate. The rate of decrease in speed can be calculated, for example, by the method described in the examples below.
 すなわち、本発明のシリカスラリーは、シリカ粒子(成分a)、再分散性向上剤(成分b)、及び水を含み、再分散性向上剤(成分b)が、アルカリ増粘型ポリマーエマルジョンであり、25℃におけるpHが8.0以上12.0以下である、シリカスラリーに関する。 That is, the silica slurry of the present invention comprises a silica particle (component a), a redispersibility improver (component b), and water, and the redispersibility improver (component b) is an alkali-thickened polymer emulsion , A silica slurry having a pH of 8.0 or more and 12.0 or less at 25.degree.
 本願において、基板の「うねり」とは、粗さよりも波長の長い基板表面の凹凸をいう。本願において「長波長うねり」とは、500~5000μmの波長により観測されるうねりをいう。研磨後の基板表面の長波長うねりが低減されることにより、磁気ディスクドライブにおいて磁気ヘッドの浮上量を低くすることができ、磁気ディスクの記録密度の向上が可能となる。 In the present application, “waviness” of a substrate refers to unevenness on the surface of the substrate whose wavelength is longer than the roughness. In the present application, "long wavelength waviness" refers to a waviness observed with a wavelength of 500 to 5000 μm. By reducing the long wavelength waviness of the substrate surface after polishing, the flying height of the magnetic head can be reduced in the magnetic disk drive, and the recording density of the magnetic disk can be improved.
 本願において、「PED(polish enhanced defect)」とは、研磨仕上げ後に基板表面に出現する浅い凹み状の欠陥のことをいう。このPEDは、例えば、Ni-Pメッキされたアルミニウム合金基板の製造工程で発生する。アルミニウム合金基板にめっき成膜する工程におけるアニール工程で、基板表面に付着した水や異物に起因するアニール不足の部分をいい、研磨時に基板表面の浅い凹み状の欠陥として発生する。「グラインド傷」とは、メッキ前のアルミニウム合金基板をグラインドする工程において発生する砥石の削り痕のことをいう。PEDやグラインド傷はまとめて「長周期欠陥」とも呼ばれている。長周期欠陥の発生率は、長周期欠陥の除去率を評価するための指標であり、実施例に記載の測定器を用いて測定できる。 In the present application, “PED (polish enhanced defect)” refers to a shallow concave defect that appears on the substrate surface after polishing. This PED occurs, for example, in the manufacturing process of a Ni-P plated aluminum alloy substrate. In the annealing step in the step of forming a film by plating on an aluminum alloy substrate, it refers to a portion of insufficient annealing due to water or foreign matter attached to the substrate surface, and occurs as a shallow dent on the substrate surface during polishing. The term "grind scratch" refers to the shavings of the grindstone generated in the process of grinding the aluminum alloy substrate prior to plating. PEDs and grind flaws are also collectively referred to as "long-period defects". The incidence rate of long period defects is an index for evaluating the removal rate of long period defects and can be measured using the measuring device described in the examples.
 [シリカ粒子]
 本発明のシリカスラリーは、砥粒としてシリカ粒子(成分a)を含有する。シリカ粒子は、高研磨速度の確保の観点から、好ましくは非球状シリカ粒子A(以下、「粒子A」とも言う。)を含み、長周期欠陥の低減と高研磨速度の確保の両立の観点から、好ましくは粒子Aと球状シリカ粒子B(以下、「粒子B」とも言う。)の両方を含む。シリカ粒子としては、例えば、コロイダルシリカ、フュームドシリカ、沈降法シリカ、表面修飾したシリカ等が挙げられる。
[Silica particles]
The silica slurry of the present invention contains silica particles (component a) as abrasive grains. The silica particles preferably contain non-spherical silica particles A (hereinafter also referred to as “particles A”) from the viewpoint of securing a high polishing rate, and from the viewpoint of achieving both long cycle defect reduction and securing a high polishing rate. , And preferably includes both particles A and spherical silica particles B (hereinafter also referred to as "particles B"). Examples of the silica particles include colloidal silica, fumed silica, precipitated silica, surface-modified silica and the like.
 高研磨速度の確保の観点から、粒子Aとしては、コロイダルシリカ又は沈降法シリカが好ましい。シリカ粒子が粒子Aのみからなる場合、粒子Aは、長周期欠陥の低減の観点からコロイダルシリカが好ましく、シリカ粒子が粒子Aと粒子Bの両方を含む場合、粒子Aは、高研磨速度の確保の観点から沈降シリカが好ましい。粒子Aは、1種類の非球状シリカ粒子であってもよく、2種類又はそれ以上の非球状シリカ粒子の組み合わせであってもよい。粒子Bとしては、高研磨速度の確保と長周期欠陥の低減の観点、並びに突起欠陥の低減の観点から、コロイダルシリカが好ましい。粒子Bは、1種類の球状シリカ粒子であってもよく、2種類又はそれ以上の球状シリカ粒子の組み合わせであってもよい。 From the viewpoint of securing a high polishing rate, as the particle A, colloidal silica or precipitated silica is preferable. When the silica particles consist only of particles A, the particles A are preferably colloidal silica from the viewpoint of reduction of long period defects, and when the silica particles contain both particles A and particles B, the particles A ensure high polishing rate Precipitated silica is preferred from the viewpoint of The particles A may be one type of non-spherical silica particles, or may be a combination of two or more types of non-spherical silica particles. As the particle B, colloidal silica is preferable from the viewpoints of securing a high polishing rate and reducing long-period defects, and from the viewpoint of reducing projection defects. The particles B may be one type of spherical silica particles, or may be a combination of two or more types of spherical silica particles.
 粒子Aの製造方法としては、例えば、東ソー研究・技術報告 第45巻(2001)第65~69頁に記載の方法等の公知の方法が挙げられる。粒子Aの製造方法の具体例としては、珪酸ナトリウム等の珪酸塩と硫酸等の鉱酸との中和反応によりシリカ粒子を析出させる沈降法が挙げられる。前記中和反応を比較的高温でアルカリ性の条件で行うことが好ましく、これにより、シリカの一次粒子の成長が早く進行し、一次粒子がフロック状に凝集して沈降し、前記沈降法シリカが得られる。コロイダルシリカは、水ガラスやアルコキシシランの加水分解物から得たものであることが好ましく、水ガラスから得たものであることがより好ましい。水ガラスから得られるシリカ粒子は、従来から公知の方法によって作製できる。 Examples of the method for producing the particle A include known methods such as the method described in Tosoh Research and Technology Report, Volume 45 (2001), pages 65 to 69. As a specific example of the method for producing the particles A, there is mentioned a precipitation method in which silica particles are precipitated by the neutralization reaction of a silicate such as sodium silicate and a mineral acid such as sulfuric acid. It is preferable to carry out the neutralization reaction at relatively high temperature under alkaline conditions, whereby the growth of primary particles of silica proceeds rapidly, and the primary particles are flocculated and precipitated to obtain the precipitated silica. Be Colloidal silica is preferably obtained from a hydrolyzate of water glass or alkoxysilane, and more preferably obtained from water glass. Silica particles obtained from water glass can be produced by a conventionally known method.
 粒子Bは、火炎溶融法、ゾルゲル法、及び粉砕法で製造されたものでもよいが、高研磨速度の確保と長周期欠陥の低減の観点、並びに粗研磨及び仕上げ研磨後の突起欠陥の低減の観点から、珪酸アルカリ水溶液を出発原料とする粒子成長法(以下、「水ガラス法」ともいう)により製造されたシリカ粒子であることが好ましい。粒子Bの使用形態としては、スラリー状であることが好ましい。 The particles B may be produced by a flame melting method, a sol gel method, and a grinding method, but in view of securing a high polishing rate and reducing long period defects, and reducing protrusion defects after rough and finish polishing. From the viewpoint, it is preferable to use a silica particle produced by a particle growth method (hereinafter also referred to as “water glass method”) using an aqueous solution of alkali silicate as a starting material. The use form of the particles B is preferably in the form of a slurry.
 本発明のシリカスラリー中のシリカ粒子(成分a)の含有量は、シリカ粒子の再分散性の向上の観点から、10質量%以上が好ましく、20質量%以上がより好ましく、30質量%以上が更に好ましく、そして、製造適正の観点から、70質量%以下が好ましく、60質量%以下がより好ましく、50質量%以下が更に好ましい。 The content of the silica particles (component a) in the silica slurry of the present invention is preferably 10% by mass or more, more preferably 20% by mass or more, and 30% by mass or more from the viewpoint of improving redispersibility of the silica particles. From the viewpoint of production suitability, 70% by mass or less is preferable, 60% by mass or less is more preferable, and 50% by mass or less is still more preferable.
 シリカ粒子(成分a)のBET比表面積は、高研磨速度の確保と長周期欠陥の低減の両立の観点から、5m2/g以上が好ましく、10m2/g以上がより好ましく、そして、同様の観点から、50m2/g以下が好ましく、45m2/g以下がより好ましい。なお、シリカ粒子(成分a)が粒子Aと粒子Bの両方を含む場合のシリカ粒子(成分a)のBET比表面積は、両粒子のBET比表面積と配合比率(質量比)とから算出できる。 The BET specific surface area of the silica particles (component a) is preferably 5 m 2 / g or more, more preferably 10 m 2 / g or more, from the viewpoint of achieving both high polishing rate and reduction of long period defects, and the same From the viewpoint, 50 m 2 / g or less is preferable, and 45 m 2 / g or less is more preferable. The BET specific surface area of the silica particles (component a) in the case where the silica particles (component a) contain both particles A and particles B can be calculated from the BET specific surface area and the compounding ratio (mass ratio) of both particles.
 シリカ粒子(成分a)のBET換算による平均一次粒子径D1は、高研磨速度の確保及び長周期欠陥の低減の観点から、50nm以上が好ましく、70nm以上がより好ましく、90nm以上が更に好ましく、そして、長周期欠陥の低減の観点から、300nm以下が好ましく、250nm以下がより好ましく、200nm以下が更に好ましい。なお、シリカ粒子(成分a)が粒子Aと粒子Bの両方を含む場合のシリカ粒子(成分a)のD1は、両粒子のD1と、配合比率(質量比)とから算出できる。 The average primary particle diameter D1 of the silica particles (component a) in terms of BET conversion is preferably 50 nm or more, more preferably 70 nm or more, still more preferably 90 nm or more, from the viewpoint of securing high polishing rate and reduction of long period defects. Or 300 nm or less is preferable, 250 nm or less is more preferable, and 200 nm or less is more preferable, from the viewpoint of reduction of long period defects. In addition, D1 of a silica particle (component a) in case a silica particle (component a) contains both particle | grains A and particle | grains B can be calculated from D1 of both particle | grains, and a compounding ratio (mass ratio).
 シリカ粒子(成分a)の平均二次粒子径D2は、高研磨速度の確保及び長周期欠陥の低減の観点から、150nm以上が好ましく、そして、長周期欠陥の低減の観点から、580nm以下が好ましく、500nm以下がより好ましく、400nm以下が更に好ましく、350nm以下が更により好ましい。なお、シリカ粒子(成分a)が粒子Aと粒子Bの両方を含む場合のシリカ粒子(成分a)のD2は、両粒子のD2と、配合比率(質量比)とから算出できる。 The average secondary particle diameter D2 of the silica particles (component a) is preferably 150 nm or more from the viewpoint of securing a high polishing rate and reduction of long period defects, and 580 nm or less from the viewpoint of reduction of long period defects , 500 nm or less is more preferable, 400 nm or less is more preferable, and 350 nm or less is still more preferable. In addition, D2 of a silica particle (component a) in case a silica particle (component a) contains both particle | grains A and particle | grains B can be calculated from D2 of both particle | grains, and a compounding ratio (mass ratio).
 (非球状シリカ粒子)
 本発明のシリカスラリーは、高研磨速度の確保の観点から、好ましくは非球状シリカ粒子Aを含有する。粒子Aは、1種類の非球状シリカ粒子であってもよく、2種類又はそれ以上の非球状シリカ粒子の組み合わせであってもよい。
(Non-spherical silica particles)
The silica slurry of the present invention preferably contains non-spherical silica particles A from the viewpoint of securing a high polishing rate. The particles A may be one type of non-spherical silica particles, or may be a combination of two or more types of non-spherical silica particles.
 粒子Aの平均球形度は、長周期欠陥の低減の観点から、0.60以上が好ましく、0.70以上がより好ましく、そして、同様の観点から、0.85以下が好ましく、0.80以下がより好ましく、0.75以下が更に好ましい。 The average sphericity of the particles A is preferably 0.60 or more, more preferably 0.70 or more, from the viewpoint of reduction of long period defects, and from the same viewpoint, 0.85 or less is preferable, 0.80 or less Is more preferable, and 0.75 or less is more preferable.
 本願において、粒子Aの平均球形度は、少なくとも200個の粒子Aの球形度の平均値である。粒子Aの球形度は、例えばTEMによる観察及び画像解析ソフト等を用いて、粒子Aの投影面積Sと投影周囲長Lとを求め、以下の式から算出できる。
 球形度=4π×S/L2
 個々の粒子Aの球形度は、前記平均球形度と同様、0.60以上が好ましく、0.70以上がより好ましく、そして、同様の観点から、0.85以下が好ましく、0.80以下がより好ましく、0.75以下が更に好ましい。
As used herein, the average sphericity of particle A is the average value of the sphericity of at least 200 particles A. The sphericity of the particle A can be calculated from the following equation by determining the projection area S and the projection perimeter L of the particle A using, for example, TEM observation and image analysis software.
Sphericity = 4π × S / L 2
Similar to the average sphericity, the sphericity of each particle A is preferably 0.60 or more, more preferably 0.70 or more, and from the same viewpoint, preferably 0.85 or less, 0.80 or less More preferably, 0.75 or less is more preferable.
 粒子Aの平均短径は、高研磨速度の確保と長周期欠陥の低減の観点から、100nm以上が好ましく、150nm以上がより好ましく、180nm以上が更に好ましく、そして、同様の観点から、500nm以下が好ましく、450nm以下がより好ましい。 The average minor diameter of the particles A is preferably 100 nm or more, more preferably 150 nm or more, still more preferably 180 nm or more, and 500 nm or less from the same viewpoint, from the viewpoint of securing high polishing speed and reduction of long period defects. Preferably, 450 nm or less is more preferable.
 シリカ粒子(成分a)が粒子Aのみからなり、粒子Aがコロイダルシリカである場合、粒子Aの平均短径は、高研磨速度の確保と長周期欠陥の低減の観点から、100nm以上が好ましく、150nm以上がより好ましく、180nm以上が更に好ましく、そして、同様の観点から、500nm以下が好ましく、450nm以下がより好ましく、400nm以下が更に好ましく、300nm以下が更により好ましい。 In the case where the silica particles (component a) consist only of the particles A and the particles A are colloidal silica, the average minor diameter of the particles A is preferably 100 nm or more from the viewpoint of securing high polishing rate and reduction of long period defects, 150 nm or more is more preferable, 180 nm or more is more preferable, and from the same viewpoint, 500 nm or less is preferable, 450 nm or less is more preferable, 400 nm or less is more preferable, and 300 nm or less is still more preferable.
 シリカ粒子(成分a)が粒子Aと粒子Bの両方を含み、粒子Aが沈降法シリカである場合、粒子Aの平均短径は、高研磨速度の確保と長周期欠陥の低減の観点から、150nm以上が好ましく、180nm以上がより好ましく、そして、同様の観点から、500nm以下が好ましく、450nm以下がより好ましい。 When the silica particles (component a) contain both particles A and particles B and the particles A are precipitated silica, the average short diameter of the particles A is from the viewpoint of securing a high polishing rate and reducing long-period defects, 150 nm or more is preferable, 180 nm or more is more preferable, and from the same viewpoint, 500 nm or less is preferable, and 450 nm or less is more preferable.
 本願において、粒子Aの平均短径は、本発明のシリカスラリーが含有する少なくとも200個の粒子Aの短径の平均値である。粒子Aの短径は、例えばTEMによる観察及び画像解析ソフト等を用いて、投影された粒子Aの画像に外接する最小の長方形を描いたときの、前記長方形の短辺の長さである。同様に、粒子Aの長径は、前記長方形の長辺の長さである。 In the present application, the average minor axis of the particles A is an average value of minor axes of at least 200 particles A contained in the silica slurry of the present invention. The minor axis of the particle A is the length of the short side of the rectangular when drawing the smallest rectangle circumscribing the projected image of the particle A using, for example, TEM observation and image analysis software. Similarly, the major axis of the particle A is the length of the major side of the rectangle.
 粒子AのBET比表面積は、高研磨速度の確保と長周期欠陥の低減の両立の観点から、5m2/g以上が好ましく、10m2/g以上がより好ましく、そして、同様の観点から、50m2/g以下が好ましく、40m2/g以下がより好ましく、30m2/g以下が更に好ましい。 The BET specific surface area of the particles A is preferably 5 m 2 / g or more, more preferably 10 m 2 / g or more, and 50 m from the same viewpoint, from the viewpoint of achieving both high polishing rate and reduction of long period defects. 2 / g or less is preferable, 40 m 2 / g or less is more preferable, and 30 m 2 / g or less is more preferable.
 シリカ粒子(成分a)が粒子Aのみからなり、粒子Aがコロイダルシリカである場合、粒子AのBET比表面積は、高研磨速度の確保及び長周期欠陥の低減の観点から、5m2/g以上が好ましく、10m2/g以上がより好ましく、20m2/g以上が更に好ましく、そして、同様の観点から、50m2/g以下が好ましく、40m2/g以下がより好ましく、30m2/g以下が更に好ましい。 When the silica particles (component a) consist only of particles A and the particles A are colloidal silica, the BET specific surface area of the particles A is 5 m 2 / g or more from the viewpoint of securing a high polishing rate and reducing long period defects. Is preferable, 10 m 2 / g or more is more preferable, 20 m 2 / g or more is further preferable, and from the same viewpoint, 50 m 2 / g or less is preferable, 40 m 2 / g or less is more preferable, 30 m 2 / g or less Is more preferred.
 シリカ粒子(成分a)が粒子Aと粒子Bの両方を含み、粒子Aが沈降法シリカである場合、粒子AのBET比表面積は、高研磨速度の確保及び長周期欠陥の低減の観点から、5m2/g以上が好ましく、10m2/g以上がより好ましく、そして、同様の観点から、50m2/g以下が好ましく、40m2/g以下がより好ましく、30m2/g以下が更に好ましく、20m2/g以下が更により好ましい。 When the silica particles (component a) contain both particles A and particles B and the particles A are precipitated silica, the BET specific surface area of the particles A is from the viewpoint of securing a high polishing rate and reducing long-period defects, 5 m 2 / g or more is preferable, 10 m 2 / g or more is more preferable, and from the same viewpoint, 50 m 2 / g or less is preferable, 40 m 2 / g or less is more preferable, 30 m 2 / g or less is more preferable, 20 m < 2 > / g or less is still more preferable.
 本願において、粒子Aの平均一次粒子径D1は、BET比表面積S(m2/g)を用いて、下記式から算出できる。具体的には、実施例に記載の測定方法により算出できる。
平均一次粒子径(nm)=2727/S
In the present application, the average primary particle diameter D1 of the particles A can be calculated from the following equation using the BET specific surface area S (m 2 / g). Specifically, it can be calculated by the measurement method described in the examples.
Average primary particle size (nm) = 2727 / S
 粒子AのBET換算による平均一次粒子径D1は、高研磨速度の確保及び長周期欠陥の低減の観点から、50nm以上が好ましく、70nm以上がより好ましく、90nm以上が更に好ましく、そして、長周期欠陥の低減の観点から、300nm以下が好ましく、250nm以下がより好ましく、200nm以下が更に好ましい。 The average primary particle diameter D1 of the particles A in terms of BET is preferably 50 nm or more, more preferably 70 nm or more, still more preferably 90 nm or more, from the viewpoint of securing a high polishing rate and reducing long period defects, and long period defects From the viewpoint of reduction of the above, 300 nm or less is preferable, 250 nm or less is more preferable, and 200 nm or less is more preferable.
 シリカ粒子(成分a)が粒子Aのみからなり、粒子Aがコロイダルシリカである場合、粒子AのD1は、高研磨速度の確保及び長周期欠陥の低減の観点から、50nm以上が好ましく、70nm以上がより好ましく、90nm以上が更に好ましく、そして、長周期欠陥の低減の観点から、300nm以下が好ましく、250nm以下がより好ましく、200nm以下が更に好ましく、150nm以下が更により好ましく、120nm以下が更により好ましい。 When the silica particles (component a) consist only of the particles A and the particles A are colloidal silica, D1 of the particles A is preferably 50 nm or more, 70 nm or more from the viewpoint of securing a high polishing rate and reduction of long period defects. Is more preferably 90 nm or more, and 300 nm or less is preferable, 250 nm or less is more preferable, 200 nm or less is more preferable, 150 nm or less is still more preferable, and 120 nm or less is more preferable from the viewpoint of reduction of long period defects. preferable.
 シリカ粒子(成分a)が粒子Aと粒子Bの両方を含み、粒子Aが沈降法シリカである場合、粒子AのD1は、高研磨速度の確保及び長周期欠陥の低減の観点から、90nm以上が好ましく、120nm以上がより好ましく、そして、長周期欠陥の低減の観点から300nm以下が好ましく、250nm以下がより好ましく、200nm以下が更に好ましい。 When the silica particle (component a) contains both particle A and particle B and particle A is precipitated silica, D1 of particle A is 90 nm or more from the viewpoint of securing a high polishing rate and reducing long period defects. Is more preferably 120 nm or more, and 300 nm or less is preferable, 250 nm or less is more preferable, and 200 nm or less is more preferable from the viewpoint of reduction of long period defects.
 粒子Aの平均二次粒子径D2は、高研磨速度の確保及び長周期欠陥の低減の観点から、150nm以上が好ましく、そして、長周期欠陥の低減の観点から、580nm以下が好ましく、500nm以下がより好ましく、400nm以下が更に好ましく、350nm以下が更により好ましい。 The average secondary particle diameter D2 of particles A is preferably 150 nm or more from the viewpoint of securing a high polishing rate and reduction of long period defects, and from the viewpoint of reduction of long period defects, preferably 580 nm or less, 500 nm or less More preferably, 400 nm or less is more preferable, and 350 nm or less is even more preferable.
 シリカ粒子(成分a)が粒子Aのみからなり、粒子Aがコロイダルシリカである場合、粒子AのD2は、高研磨速度の確保及び長周期欠陥の低減の観点から、150nm以上が好ましく、そして、長周期欠陥の低減の観点から、400nm以下が好ましく、350nm以下がより好ましく、300nm以下が更に好ましく、250nm以下が更により好ましい。 When the silica particles (component a) consist only of the particles A and the particles A are colloidal silica, D2 of the particles A is preferably 150 nm or more from the viewpoint of securing a high polishing rate and reduction of long period defects, From the viewpoint of reduction of long period defects, 400 nm or less is preferable, 350 nm or less is more preferable, 300 nm or less is more preferable, and 250 nm or less is still more preferable.
 シリカ粒子(成分a)が粒子Aと粒子Bの両方を含み、粒子Aが沈降法シリカである場合、粒子AのD2は、高研磨速度の確保及び長周期欠陥の低減の観点から、150nm以上が好ましく、200nm以上がより好ましく、220nm以上が更に好ましく、250nm以上が更により好ましく、300nm以上が更により好ましく、そして、長周期欠陥の低減の観点から、580nm以下が好ましく、500nm以下がより好ましく、400nm以下が更に好ましく、350nm以下が更により好ましい。 When the silica particle (component a) contains both particle A and particle B and particle A is precipitated silica, D2 of particle A is 150 nm or more from the viewpoint of securing a high polishing rate and reducing long-period defects. Is preferably 200 nm or more, more preferably 220 nm or more, still more preferably 250 nm or more, still more preferably 300 nm or more, and from the viewpoint of reduction of long period defects, preferably 580 nm or less, more preferably 500 nm or less And 400 nm or less is more preferable, and 350 nm or less is still more preferable.
 本願において、粒子Aの平均二次粒子径D2とは、光散乱法により測定される散乱強度分布に基づく体積基準の平均粒子径をいう。本願において「散乱強度分布」とは、動的光散乱法(DLS:DynamicLight Scattering)又は準弾性光散乱(QLS:Quasielastic Light Scattering)又は、静的光散乱法(レーザ回折/散乱法)により求められる、サブミクロン以下の粒子の体積換算の粒径分布のことをいう。本願における粒子Aの平均二次粒子径D2は、具体的には実施例に記載の方法により得ることができる。 In the present application, the average secondary particle diameter D2 of the particles A refers to a volume-based average particle diameter based on the scattering intensity distribution measured by the light scattering method. In the present application, “scattered intensity distribution” is determined by dynamic light scattering (DLS), quasi-elastic light scattering (QLS), or static light scattering (laser diffraction / scattering method). , Submicron particle size distribution of particle size conversion. The average secondary particle diameter D2 of the particles A in the present application can be obtained specifically by the method described in the examples.
 粒子Aの平均二次粒子径D2と平均一次粒子径D1との粒径比(D2/D1)は、高研磨速度の確保及び長周期欠陥の低減の観点から、1.4以上が好ましく、1.7以上がより好ましく、そして、4.0以下が好ましく、3.0以下がより好ましく、2.8以下が更に好ましい。 The particle diameter ratio (D2 / D1) between the average secondary particle diameter D2 of the particles A and the average primary particle diameter D1 is preferably 1.4 or more, from the viewpoint of securing a high polishing rate and reducing long period defects. .7 or more is more preferable, 4.0 or less is preferable, 3.0 or less is more preferable, and 2.8 or less is more preferable.
 本願において、粒径比(D2/D1)は、粒子Aの異形度合いを意味し得る。一般的に光散乱法によって測定される平均二次粒子径D2は、粒子が異形粒子の場合、長方向での光散乱を検出して処理を行うため、長方向と短方向の長さを考慮して異形度合いが大きいほど大きな数値となる。BET法によって測定される比表面積値から換算される平均一次粒子径D1は、求まる粒子の体積をベースとして球換算で表されるため、平均二次粒子径D2に比べると小さな数値となる。高研磨速度の確保の観点から、粒径比(D2/D1)は、上述の範囲のなかでも大きいことが好ましい。 In the present application, the particle size ratio (D2 / D1) can mean the degree of deformation of the particle A. In general, the average secondary particle diameter D2 measured by the light scattering method takes into consideration the length in the long direction and the short direction because the light scattering in the long direction is detected and processed when the particles are irregular shaped particles. The greater the degree of anomaly, the larger the value. The average primary particle diameter D1 converted from the specific surface area value measured by the BET method is expressed as spheres based on the volume of the particles to be obtained, and therefore becomes smaller than the average secondary particle diameter D2. From the viewpoint of securing a high polishing rate, it is preferable that the particle diameter ratio (D2 / D1) is also large in the above range.
 粒子Aの形状は、高研磨速度の確保と長周期欠陥の低減の観点から、好ましくは、複数の一次粒子が凝集した形状である。 The shape of the particles A is preferably a shape in which a plurality of primary particles are aggregated from the viewpoint of securing a high polishing rate and reducing long-period defects.
 本発明のシリカスラリー中の粒子Aの含有量は、高研磨速度の確保と長周期欠陥の低減の観点から、10質量%以上が好ましく、20質量%以上がより好ましく、25質量%以上が更に好ましく、そして、経済性の観点から、70質量%以下が好ましく、60質量%以下がより好ましく、50質量%以下が更に好ましく、35質量%以下が更により好ましい。 The content of particles A in the silica slurry of the present invention is preferably 10% by mass or more, more preferably 20% by mass or more, and further preferably 25% by mass or more from the viewpoint of securing a high polishing rate and reducing long cycle defects. From the viewpoint of economy, 70% by mass or less is preferable, 60% by mass or less is more preferable, 50% by mass or less is more preferable, and 35% by mass or less is even more preferable.
 (球状シリカ粒子B)
 本発明の研磨液組成物は、上述したように、長周期欠陥の低減と高研磨速度の確保の観点から、成分aとして、好ましくは、球状シリカ粒子B(以下、「粒子B」ともいう)を更に含有し、特に、粒子Aが沈降法シリカある場合、高研磨速度の確保の観点から、好ましくは、粒子Bを含有する。
(Spherical silica particles B)
As described above, the polishing composition of the present invention is preferably spherical silica particles B (hereinafter also referred to as "particles B") as the component a from the viewpoint of reduction of long period defects and securing of high polishing rate. In particular, when particle A is precipitated silica, it preferably contains particle B from the viewpoint of securing a high polishing rate.
 本願において、粒子Bの平均球形度は、高研磨速度の確保と長周期欠陥の低減の観点、及び粗研磨並びに仕上げ研磨後の突起欠陥の低減の観点から、0.85よりも大きいと好ましく、0.87以上がより好ましく、そして、同様の観点から、1.00以下が好ましく、0.95以下がより好ましい。個々の粒子Bの球形度は、0.85よりも大きいと好ましく、0.87以上がより好ましく、そして、1.00以下が好ましく、0.95以下がより好ましい。粒子Bの平均球形度及び球形度は、粒子Aと同じ方法で算出できる。 In the present application, the average sphericity of the particles B is preferably greater than 0.85 from the viewpoints of securing a high polishing rate and reduction of long period defects, and reduction of projection defects after rough polishing and finish polishing, 0.87 or more is more preferable, and from the same viewpoint, 1.00 or less is preferable, and 0.95 or less is more preferable. The sphericity of the individual particles B is preferably greater than 0.85, more preferably 0.87 or more, and preferably 1.00 or less, more preferably 0.95 or less. The average sphericity and sphericity of particle B can be calculated in the same manner as particle A.
 粒子Bの平均球形度は、長周期欠陥の低減の観点から、粒子Aの平均球形度よりも大きいことが好ましい。粒子Aと粒子Bとの平均球形度の差は、うねり低減の観点から、0.02以上が好ましく、0.05以上がより好ましく、0.08以上が更に好ましく、0.1以上が更により好ましく、そして、同様の観点から、0.50以下が好ましく、0.40以下がより好ましく、0.30以下が更に好ましい。 The average sphericity of the particles B is preferably larger than the average sphericity of the particles A from the viewpoint of reduction of long-period defects. The difference between the average sphericity of the particles A and the particles B is preferably 0.02 or more, more preferably 0.05 or more, still more preferably 0.08 or more, and still more preferably 0.1 or more from the viewpoint of reducing waviness. From the same viewpoint, 0.50 or less is preferable, 0.40 or less is more preferable, and 0.30 or less is more preferable.
 粒子Bの平均短径は、粒子Aの平均短径よりも小さい。粒子Bの平均短径は、高研磨速度の確保の観点から、20nm以上が好ましく、30nm以上がより好ましく、40nm以上が更に好ましく、そして、長周期欠陥の低減の観点から、200nm以下が好ましく、150nm以下がより好ましく、110nm以下が更に好ましい。粒子Bの平均短径は、粒子Aと同じ方法で算出できる。 The average minor axis of particle B is smaller than the average minor axis of particle A. The average minor diameter of the particles B is preferably 20 nm or more, more preferably 30 nm or more, and still more preferably 40 nm or more, from the viewpoint of securing a high polishing rate, and preferably 200 nm or less from the viewpoint of reduction of long period defects, 150 nm or less is more preferable, and 110 nm or less is more preferable. The average minor axis of the particles B can be calculated by the same method as the particles A.
 本発明の研磨液組成物中の粒子Aと粒子Bとの平均短径の比(粒子Aの平均短径)/(粒子Bの平均短径)は、高研磨速度の確保と長周期欠陥の低減の観点から、1.3以上が好ましく、1.5以上がより好ましく、2.0以上が更に好ましく、2.5以上が更に好ましく、そして、高研磨速度の確保の観点から、13.0以下が好ましく、10.0以下がより好ましく、8.0以下が更に好ましく、6.0以下が更により好ましい。 The ratio of the average minor axis of particles A and particles B in the polishing composition of the present invention (average minor axis of particles A) / (average minor axis of particles B) is the high polishing rate and long period defects. From the viewpoint of reduction, 1.3 or more is preferable, 1.5 or more is more preferable, 2.0 or more is further preferable, and 2.5 or more is further preferable, and from the viewpoint of securing a high polishing rate, 13.0 The following is preferable, 10.0 or less is more preferable, 8.0 or less is more preferable, 6.0 or less is still more preferable.
 粒子BのBET比表面積は、高研磨速度の確保と長周期欠陥の低減の観点から、5m2/g以上が好ましく、10m2/g以上がより好ましく、20m2/g以上が更に好ましく、そして、同様の観点から、55m2/g以下がより好ましく、45m2/g以下が更に好ましく、35m2/g以下が更により好ましい。 The BET specific surface area of the particles B is preferably 5 m 2 / g or more, more preferably 10 m 2 / g or more, still more preferably 20 m 2 / g or more, from the viewpoint of securing a high polishing rate and reducing long-period defects. From the same viewpoint, 55 m 2 / g or less is more preferable, 45 m 2 / g or less is more preferable, and 35 m 2 / g or less is still more preferable.
 粒子BのBET換算による平均一次粒子径D1は、高研磨速度の確保と長周期欠陥の低減の観点から、20nm以上が好ましく、30nm以上がより好ましく、40nm以上が更に好ましく、そして、同様の観点から、150nm以下が好ましく、120nm以下がより好ましく、100nm以下が更に好ましい。粒子BのBET換算による平均一次粒子径は、粒子Aと同じ方法で算出できる。 The average primary particle diameter D1 of the particles B in terms of BET is preferably 20 nm or more, more preferably 30 nm or more, still more preferably 40 nm or more, from the viewpoint of securing a high polishing rate and reducing long period defects. Therefore, 150 nm or less is preferable, 120 nm or less is more preferable, and 100 nm or less is more preferable. The average primary particle diameter of the particles B in BET conversion can be calculated by the same method as the particles A.
 粒子Bの動的散乱法による平均二次粒子径D2は、高研磨速度の確保と長周期欠陥の低減の観点から、20nm以上が好ましく、30nm以上がより好ましく、40nm以上が更に好ましく、そして、同様の観点から、200nm以下が好ましく、150nm以下がより好ましく、120nm以下が更に好ましい。粒子Bの平均二次粒子径は、粒子Aと同じ測定方法により算出できる。 The average secondary particle diameter D2 of particle B by dynamic scattering method is preferably 20 nm or more, more preferably 30 nm or more, and still more preferably 40 nm or more, from the viewpoint of securing a high polishing rate and reducing long-period defects. From the same viewpoint, 200 nm or less is preferable, 150 nm or less is more preferable, and 120 nm or less is more preferable. The average secondary particle diameter of the particles B can be calculated by the same measurement method as the particles A.
 本発明のシリカスラリー中の粒子Bの含有量は、高研磨速度の確保と長周期欠陥の低減の観点から、5質量%以上が好ましく、10質量%以上がより好ましく、そして、経済性の観点から、35質量%以下が好ましく、30質量%以下がより好ましく、25質量%以下が更に好ましい。 The content of the particles B in the silica slurry of the present invention is preferably 5% by mass or more, more preferably 10% by mass or more, from the viewpoint of securing a high polishing rate and reducing long-period defects, and economical aspect Therefore, 35 mass% or less is preferable, 30 mass% or less is more preferable, and 25 mass% or less is still more preferable.
 本発明のシリカスラリー中の粒子Aと粒子Bの質量比A/Bは、高研磨速度の確保と長周期欠陥の低減の観点から、10/90以上が好ましく、15/85以上がより好ましく、25/75以上が更に好ましく、40/60以上が更により好ましく、そして、同様の観点から、99/1以下が好ましく、90/10以下がより好ましく、75/25以下が更に好ましい。粒子Bが2種類又はそれ以上の球状シリカ粒子の組み合わせの場合、粒子Bの含有量はそれらの合計の含有量をいう。粒子Aの含有量も同様である。 The mass ratio A / B of the particles A to the particles B in the silica slurry of the present invention is preferably 10/90 or more, more preferably 15/85 or more, from the viewpoint of securing a high polishing rate and reducing long period defects. 25/75 or more is more preferable, 40/60 or more is further more preferable, and from the same viewpoint, 99/1 or less is preferable, 90/10 or less is more preferable, and 75/25 or less is still more preferable. In the case where particle B is a combination of two or more types of spherical silica particles, the content of particle B refers to the total content thereof. The content of particles A is also the same.
 本発明のシリカスラリーが粒子A及び粒子B以外のシリカ粒子を含有する場合、シリカスラリー中のシリカ粒子全体に対する粒子Aと粒子Bの合計の含有量は、高研磨速度の確保と長周期欠陥の低減の観点から、98.0質量%以上が好ましく、98.5質量%以上がより好ましく、99.0質量%以上が更に好ましく、99.5質量%以上が更により好ましく、99.8質量%以上が更により好ましく、実質的に100質量%が更により好ましい。 When the silica slurry of the present invention contains silica particles other than the particle A and the particle B, the total content of the particle A and the particle B with respect to the whole silica particle in the silica slurry ensures high polishing rate and long period defects. From the viewpoint of reduction, 98.0% by mass or more is preferable, 98.5% by mass or more is more preferable, 99.0% by mass or more is more preferable, 99.5% by mass or more is still more preferable, 99.8% by mass The above is even more preferable, and substantially 100% by mass is even more preferable.
 [再分散性向上剤]
 本発明のシリカスラリーは、再分散性向上剤(成分b)としてアルカリ増粘型ポリマーエマルジョンを含有する。アルカリ増粘型ポリマーエマルジョンは、アルカリ性下では、水和し(水溶性であり)且つシリカ粒子に吸着して3次元網目構造の形成することにより増粘し、酸性下では、水中に球体で存在して減粘させるという、pH依存の粘度スイッチング特性を有する。ここで、「水溶性」とは、水(20℃)に対して2g/100mL以上の溶解度を有することをいう。
[Redispersibility improver]
The silica slurry of the present invention contains an alkali-thickening polymer emulsion as a redispersibility improver (component b). Under alkaline conditions, alkali-thickened polymer emulsions are hydrated (water-soluble) and adsorbed by silica particles to form a three-dimensional network structure and thickened, and under acidic conditions, they exist as spheres in water And pH-dependent viscosity switching properties. Here, "water-soluble" means having a solubility of 2 g / 100 mL or more in water (20 ° C.).
 本発明のシリカスラリーは、前記再分散性向上剤(成分b)を含んでいるので、本発明のシリカスラリーに酸等を添加して、例えば、25℃におけるpHを、0.5以上6.0以下、好ましくは1.0以上3.0以下とした場合に、シリカスラリーの25℃の粘度を、好ましくは10mPa・s以下、より好ましくは7.0mPa・s以下、更に好ましくは5.0mPa・s以下とし、そして、好ましくは0.5mPa・s以上、より好ましくは1.0mPa・s以上、更に好ましくは1.5mPa・s以上、更により好ましくは2.0mPa・s以上とすることができる。 Since the silica slurry of the present invention contains the redispersibility improver (component b), an acid or the like is added to the silica slurry of the present invention, and the pH at 25 ° C. is, for example, 0.5 or more. When the viscosity is 0 or less, preferably 1.0 or more and 3.0 or less, the viscosity of the silica slurry at 25 ° C. is preferably 10 mPa · s or less, more preferably 7.0 mPa · s or less, still more preferably 5.0 mPas · S or less, and preferably 0.5 mPa · s or more, more preferably 1.0 mPa · s or more, still more preferably 1.5 mPa · s or more, still more preferably 2.0 mPa · s or more it can.
 アルカリ増粘型ポリマーエマルジョンとしては、シリカ粒子の再分散性の向上の観点から、pH1.0以上3.0以下では水中で粒状であり、pH8.0以上12.0以下では酸基が中和されることで可溶化し、水中に拡散する重合体が好ましく、酸基がカルボキシル基であるアルカリ増粘型のカルボン酸系重合体がより好ましく、カルボン酸系共重合体が更に好ましく、当該カルボン酸系共重合体は、下記第一単量体単位を2種以上含むカルボン酸系共重合体、及び下記第一単量体単位と下記第二単量体単位とを含むカルボン酸系共重合体から選ばれる少なくとも1種の重合体が好ましく、下記第一単量体単位と下記第二単量体単位とを含むカルボン酸系共重合体がより好ましい。 As an alkali-thickening type polymer emulsion, it is granular in water at pH 1.0 or more and 3.0 or less from the viewpoint of improvement of redispersibility of silica particles, and the acid group is neutralized at pH 8.0 or more and 12.0 or less Polymer which is solubilized and diffused in water is preferable, an alkali-thickened carboxylic acid polymer having an acid group of carboxyl group is more preferable, a carboxylic acid copolymer is more preferable, and the carboxylic acid copolymer is more preferable. The acid-based copolymer is a carboxylic acid-based copolymer containing two or more of the following first monomer units, and a carboxylic acid-based copolymer containing the following first monomer units and the following second monomer units At least one polymer selected from coalescing is preferable, and a carboxylic acid copolymer containing the following first monomer unit and the following second monomer unit is more preferable.
 アルカリ増粘型ポリマーエマルジョンが前記カルボン酸系共重合体である場合、アルカリ増粘型ポリマーエマルジョンは、単量体単位として、第一単量体単位と第二単量体単位のみを含んでいてもよいが、第一単量体単位と第二単量体単位に加えて更に下記第三単量単位を含んでいると好ましい。第三単量単位としては、架橋剤等が挙げられ、架橋剤としては、増粘効果が高いジアリルフタレートが好ましい。 When the alkali-thickening polymer emulsion is the carboxylic acid copolymer, the alkali-thickening polymer emulsion contains only the first monomer unit and the second monomer unit as monomer units. Although it is preferable, it is preferable to further contain the following third monomer unit in addition to the first monomer unit and the second monomer unit. A cross-linking agent etc. are mentioned as a 3rd single unit, As a cross-linking agent, the diallyl phthalate with a high thickening effect is preferable.
 前記カルボン酸系重合体に含まれる、全単量体単位に対する、第一単量体単位のモル%と第二単量体単位モル%の合計は、高研磨速度の確保と長周期欠陥の低減の観点から、90質量%以上が好ましく、94質量%以上がより好ましく、98質量%以上が更に好ましく、同様の観点から、100質量%以下好ましく、99.9質量%以下がより好ましく、99.8質量%以下が更に好ましく、99.5質量%以下が更に好ましく、99.0質量%以下が更により好ましい。 The sum of the mole% of the first monomer unit and the mole% of the second monomer unit with respect to all the monomer units contained in the carboxylic acid polymer ensures a high polishing rate and reduces long-period defects. 90% by mass or more is preferable, 94% by mass or more is more preferable, 98% by mass or more is more preferable, and 100% by mass or less is preferable, and 99.9% by mass or less is more preferable from the same viewpoint. 8 mass% or less is further preferable, 99.5 mass% or less is further preferable, and 99.0 mass% or less is still more preferable.
 アルカリ増粘型ポリマーエマルジョンの製造方法としては、乳化重合、懸濁重合、溶液重合等の方法が挙げられる。アルカリ増粘型ポリマーエマルジョンは、水中において、アルカリにより中和された状態にある。塩としては、アンモニウム塩;トリエタノールアミン等のアルカノールアミン塩;ナトリウム、カリウム等のアルカリ金属塩が挙げられ、これらは単独で又は2種以上を組み合わせて用いることができる。 Examples of the method for producing the alkali-thickening type polymer emulsion include methods such as emulsion polymerization, suspension polymerization and solution polymerization. The alkali-thickened polymer emulsion is in a state of being neutralized by alkali in water. Examples of the salt include ammonium salts; alkanolamine salts such as triethanolamine; and alkali metal salts such as sodium and potassium. These can be used alone or in combination of two or more.
 第一単量体としては、シリカ粒子の再分散性の向上の観点から、好ましくは、アクリル酸、メタクリル酸、マレイン酸、イタコン酸等の不飽和カルボン酸およびこれらの塩から選ばれる少なくとも1種であり、より好ましくはアクリル酸、メタクリル酸およびこれらの塩から選ばれる少なくとも1種である。塩としては、アンモニウム塩又はナトリウム、カリウム等のアルカリ金属塩が好ましい。 The first monomer is preferably at least one selected from unsaturated carboxylic acids such as acrylic acid, methacrylic acid, maleic acid and itaconic acid, and salts thereof, from the viewpoint of improving the redispersibility of silica particles. And more preferably at least one selected from acrylic acid, methacrylic acid and salts thereof. As the salt, ammonium salts or alkali metal salts such as sodium and potassium are preferable.
 第二単量体としては、前記不飽和カルボン酸およびその塩以外の単量体が好ましく、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル及び(メタ)アクリル酸ブチル等の(メタ)アクリル酸アルキル、(メタ)アクリル酸2-ヒドロキシエチル、アクリルアミド等が挙げられるが、これらのなかでも、シリカ粒子の再分散性の向上の観点から、(メタ)アクリル酸メチル及び(メタ)アクリル酸エチルから選ばれる少なくとも1種が好ましい。 As the second monomer, monomers other than the aforementioned unsaturated carboxylic acids and salts thereof are preferable, and (meth) acrylics such as methyl (meth) acrylate, ethyl (meth) acrylate and butyl (meth) acrylate Among these, alkyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, acrylamide and the like can be mentioned, among them, methyl (meth) acrylate and ethyl (meth) acrylate from the viewpoint of improving redispersibility of silica particles. And at least one selected from
 前記カルボン酸系共重合体における、第一単量体単位と第二単量体単位のモル比(第一単量体単位のモル%/第二単量体単位のモル%)は、シリカ粒子の再分散性の向上の観点から、好ましくは10/90以上、より好ましくは20/80以上、更に好ましくは30/70以上、更により好ましくは35/65以上であり、そして、同様の観点から、好ましくは90/10以下、より好ましくは80/20以下、更に好ましくは70/30以下、更に好ましくは60/40以下、更に好ましくは50/50以下である。 The molar ratio of the first monomer unit to the second monomer unit (mol% of the first monomer unit / mol% of the second monomer unit) in the carboxylic acid copolymer is silica particles From the viewpoint of improving the redispersibility of the polymer, it is preferably 10/90 or more, more preferably 20/80 or more, still more preferably 30/70 or more, still more preferably 35/65 or more, and from the same viewpoint Preferably it is 90/10 or less, More preferably, it is 80/20 or less, More preferably, it is 70/30 or less, More preferably, it is 60/40 or less, More preferably, it is 50/50 or less.
 前記カルボン酸系重合体において、シリカ粒子の再分散性の向上の観点から、好ましくは、第一単量体が、アクリル酸、メタクリル酸およびそれらの塩から選ばれる少なくとも1種であり、当該第一単量体と共にカルボン酸系重合体を形成する第二単量体が、好ましくはアクリル酸アルキル及び(メタ)アクリル酸アルキルから選ばれる少なくとも1種であり、第三単量体がジアリルフタレートであると好ましい。 In the carboxylic acid polymer, from the viewpoint of improving redispersibility of silica particles, preferably, the first monomer is at least one selected from acrylic acid, methacrylic acid and salts thereof, The second monomer which forms a carboxylic acid polymer with one monomer is preferably at least one selected from alkyl acrylate and alkyl (meth) acrylate, and the third monomer is diallyl phthalate. Is preferable.
 前記カルボン酸系共重合体の数平均分子量は、シリカ粒子の再分散性の向上の観点から、好ましくは50万以上であり、そして、同様の観点から、好ましくは500万以下、より好ましくは400万以下であり、更に好ましくは300万以下である。数平均分子量は、例えば以下のようにして測定できる。 The number average molecular weight of the carboxylic acid copolymer is preferably 500,000 or more from the viewpoint of improving the redispersibility of the silica particles, and preferably 5,000,000 or less, more preferably 400 from the same viewpoint. It is at most 10,000, more preferably at most 3,000,000. The number average molecular weight can be measured, for example, as follows.
 前記数平均分子量は、以下の条件のゲルパーミエーションクロマトグラフィー(GPC)法で測定できる。
 <GPC条件>
カラム:ガードカラムα ,  分析カラム α-M 2本 直列
溶離液:60mmol/L  H3PO4、50mmol/L  LiBr/DMF
流量:1.0mL/min
カラム温度:40℃
検出:RI
標準物質:ポリスチレン
The said number average molecular weight can be measured by the gel permeation chromatography (GPC) method of the following conditions.
<GPC conditions>
Column: Guard column α, analytical column α-M 2 series Eluent: 60 mmol / L H3PO4, 50 mmol / L LiBr / DMF
Flow rate: 1.0 mL / min
Column temperature: 40 ° C
Detection: RI
Reference material: polystyrene
 アルカリ増粘型のカルボン酸系共重合体の好ましい市販品の具体例としては、東亜合成(株)製のアロンシリーズA-7075、A-7055、B-300K、B-500、ローム・アンド・ハース社製のプライマルTT-615、TT-935(いずれもコポリメタクリル酸系の水性エマルジョン)等が挙げられる。 Specific examples of preferable commercially available products of alkali-thickened carboxylic acid copolymers include Aron series A-7075, A-7055, B-300K, B-500, manufactured by Toagosei Co., Ltd. Primal TT-615 and TT-935 (both of which are copoly methacrylic acid aqueous emulsions) manufactured by Haas Co., Ltd., and the like.
 本発明のシリカスラリー中のシリカ粒子と再分散性向上剤の質量比は、シリカ粒子の再分散性向上の観点から、シリカ粒子100質量部に対して0.1質量部以上が好ましく、0.2質量部以上がより好ましく、0.3質量部以上が更に好ましく、そして、同様の観点から、5質量部以下が好ましく、3質量部以下がより好ましく、1質量部以下が更に好ましい。 The mass ratio of the silica particles to the redispersibility improver in the silica slurry of the present invention is preferably 0.1 parts by mass or more with respect to 100 parts by mass of the silica particles from the viewpoint of improving the redispersibility of the silica particles. 2 parts by mass or more is more preferable, 0.3 parts by mass or more is further preferable, and from the same viewpoint, 5 parts by mass or less is preferable, 3 parts by mass or less is more preferable, and 1 part by mass or less is more preferable.
 本発明のシリカスラリー中の再分散性向上剤の含有量は、シリカ粒子の再分散性向上の観点から、固形分換算で、0.05質量%以上が好ましく、0.1質量%以上がより好ましく、0.15質量%以上が更に好ましく、そして、経済性の観点から、1.0質量%以下が好ましく、0.5質量%以下がより好ましく、0.3質量%以下が更に好ましい。 The content of the redispersibility improver in the silica slurry of the present invention is preferably 0.05% by mass or more, more preferably 0.1% by mass or more, in terms of solid content, from the viewpoint of improving the redispersibility of the silica particles. The content is preferably 0.15% by mass or more, and from the viewpoint of economy, 1.0% by mass or less is preferable, 0.5% by mass or less is more preferable, and 0.3% by mass or less is more preferable.
 [水]
 本発明のシリカスラリーは、媒体として水を含有する。水としては、蒸留水、イオン交換水、純水及び超純水等が挙げられる。シリカスラリー中の水の含有量は、シリカスラリーの取扱いが容易になる観点から、45質量%以上が好ましく、50質量%以上がより好ましく、55質量%以上が更に好ましく、そして、同様の観点から、85質量%以下が好ましく、80質量%以下がより好ましく、75質量%以下が更に好ましい。70質量%以下が更により好ましく、65質量%以下が更により好ましい。
[water]
The silica slurry of the present invention contains water as a medium. Examples of water include distilled water, ion-exchanged water, pure water and ultrapure water. The content of water in the silica slurry is preferably 45% by mass or more, more preferably 50% by mass or more, still more preferably 55% by mass or more, from the viewpoint of facilitating the handling of the silica slurry, and from the same viewpoint 85 mass% or less is preferable, 80 mass% or less is more preferable, and 75 mass% or less is still more preferable. 70 mass% or less is still more preferable, and 65 mass% or less is still more preferable.
 [その他の成分]
 本発明のシリカスラリーは、必要に応じてその他の成分を含有してもよい。他の成分としては、pH調整剤、増粘剤、分散剤、防錆剤、塩基性物質、研磨速度向上剤、界面活性剤、高分子化合物等が挙げられる。前記その他の成分は、本発明の効果を損なわない範囲でシリカスラリー中に含有されることが好ましく、シリカスラリー中の前記その他の成分の含有量は、0質量%以上が好ましく、0質量%超がより好ましく、0.01質量%以上が更に好ましく、0.1質量%以上が更により好ましく、そして、10質量%以下が好ましく、5質量%以下がより好ましい。
[Other ingredients]
The silica slurry of the present invention may contain other components as needed. Other components include pH adjusters, thickeners, dispersants, rust inhibitors, basic substances, polishing rate improvers, surfactants, polymer compounds and the like. The other components are preferably contained in the silica slurry as long as the effects of the present invention are not impaired, and the content of the other components in the silica slurry is preferably 0% by mass or more, and more than 0% by mass Is more preferably 0.01% by mass or more, still more preferably 0.1% by mass or more, and 10% by mass or less is preferable, and 5% by mass or less is more preferable.
 [pH調整剤]
 本発明のシリカスラリーのpHは、シリカ粒子の再分散性向上の観点からアルカリ性であり、8.0以上12.0以下である。本発明のシリカスラリーの調製の際、必要に応じて、pH調整剤が用いられてもよい。pH調整剤としては、例えば、アルカリ化合物であり、例えば、アンモニア、及び水酸化カリウム,水酸化ナトリウム等の無機アルカリ化合物;アルキルアミン、及びアルカノールアミン等の有機アルカリ化合物;等が挙げられる。なかでも、シリカ粒子の再分散性向上の観点から、アンモニア、水酸化ナトリウム及びアルキルアミンから選ばれる少なくとも1種が好ましく、アンモニア及び水酸化ナトリウムから選ばれる少なくとも1種がより好ましい。
[PH adjuster]
The pH of the silica slurry of the present invention is alkaline from the viewpoint of improving the redispersibility of silica particles, and is 8.0 or more and 12.0 or less. A pH adjuster may be used when necessary in the preparation of the silica slurry of the present invention. The pH adjuster is, for example, an alkali compound, and examples thereof include ammonia, and inorganic alkali compounds such as potassium hydroxide and sodium hydroxide; and organic alkali compounds such as alkylamines and alkanolamines. Among them, at least one selected from ammonia, sodium hydroxide and alkylamine is preferable, and at least one selected from ammonia and sodium hydroxide is more preferable, from the viewpoint of improving the redispersibility of the silica particles.
 [アルミナ粒子]
 本発明のシリカスラリーは、突起欠陥の低減化の観点から、アルミナ粒子の含有量が、0.1質量%以下が好ましく、0.05質量%以下がより好ましく、0.02質量%以下が更に好ましく、アルミナ粒子を実質的に含まないことが更に好ましい。本発明において「アルミナ粒子を実質的に含まない」とは、アルミナ粒子を含まないこと、砥粒として機能する量のアルミナ粒子を含まないこと、又は、研磨結果に影響を与える量のアルミナ粒子を含まないこと、を含みうる。アルミナ粒子のシリカスラリー中の含有量は、シリカスラリー中の砥粒全量に対し、2質量%以下が好ましく、1質量%以下がより好ましく、0.5質量%以下が更に好ましく、実質的に0質量%であることが更により好ましい。
[Alumina particles]
The content of the alumina particles is preferably 0.1% by mass or less, more preferably 0.05% by mass or less, and still more preferably 0.02% by mass or less from the viewpoint of reducing projection defects. Preferably, it is further preferable to be substantially free of alumina particles. In the present invention, "substantially free of alumina particles" means that the particles do not contain alumina particles, does not contain an amount of alumina particles that functions as an abrasive, or an amount of alumina particles that affects the polishing result. It may include not including. The content of the alumina particles in the silica slurry is preferably 2% by mass or less, more preferably 1% by mass or less, still more preferably 0.5% by mass or less, based on the total amount of abrasive particles in the silica slurry. It is even more preferable that it is mass%.
 [pH]
 本発明のシリカスラリーのpHは、シリカ粒子の再分散性向上の観点から、8.0以上であり、8.2以上が好ましく、8.5以上がより好ましく、9.0以上が更に好ましく、そして、同様の観点から、12.0以下であり、11.0以下が好ましく、10.8以下がより好ましく、10.5以下が更に好ましく、10.0以下が更により好ましい。pHの調整は、前述のpH調整剤を用いて、調整することが好ましい。上記のpHは、25℃におけるシリカスラリーのpHであり、pHメータを用いて測定でき、好ましくは、pHメータの電極を研磨液組成物へ浸漬して30秒後の数値である。
[PH]
The pH of the silica slurry of the present invention is 8.0 or more, preferably 8.2 or more, more preferably 8.5 or more, and still more preferably 9.0 or more, from the viewpoint of improving the redispersibility of the silica particles. And from the same viewpoint, it is 12.0 or less, preferably 11.0 or less, more preferably 10.8 or less, still more preferably 10.5 or less, and still more preferably 10.0 or less. The adjustment of pH is preferably performed using the above-mentioned pH adjuster. The above pH is the pH of the silica slurry at 25 ° C. and can be measured using a pH meter, and preferably the value after 30 seconds of immersing the electrode of the pH meter in the polishing composition.
 本発明のシリカスラリーの粘度は、シリカ粒子の再分散性向上の観点から、好ましくは20mPa・s以上であり、50mPa・s以上がより好ましく、100mPa・s以上が更に好ましく、そして、同様の観点から、10,000mPa・s以下が好ましく、5,000mPa・s以下がより好ましく、1,000mPa・s以下が更に好ましく、800mPa・s以下が更により好ましい。粘度は、25℃のシリカスラリーにおける値である。 The viscosity of the silica slurry of the present invention is preferably 20 mPa · s or more, more preferably 50 mPa · s or more, still more preferably 100 mPa · s or more, from the viewpoint of improving the redispersibility of the silica particles, and similar viewpoints Therefore, the viscosity is preferably 10,000 mPa · s or less, more preferably 5,000 mPa · s or less, still more preferably 1,000 mPa · s or less, and still more preferably 800 mPa · s or less. The viscosity is the value at 25 ° C. silica slurry.
 [研磨液組成物の製造方法]
 本発明の研磨液組成物は、例えば、本発明のシリカスラリーと、酸と、更に所望により、酸化剤及びその他の成分とを公知の方法で配合し、25℃におけるpHを、0.5以上6.0以下、好ましくは1.0以上3.0以下とすることにより製造できる。したがって、本発明は、少なくともシリカ粒子、再分散性向上剤、及び水を配合する工程を含む、研磨液組成物の製造に用いられるシリカスラリーの製造方法に関する。さらに、本発明は、少なくともシリカ粒子、再分散性向上剤及び水を配合する工程を含み、必要に応じて25℃におけるpHを、0.5以上6.0以下、好ましくは1.0以上3.0以下に調整する工程を含む、研磨液組成物の製造方法に関する。
[Method of producing polishing composition]
The polishing composition of the present invention comprises, for example, the silica slurry of the present invention, an acid, and, if desired, an oxidizing agent and other components according to a known method, and has a pH at 25.degree. It can manufacture by setting it as 6.0 or less, preferably 1.0 or more and 3.0 or less. Accordingly, the present invention relates to a method for producing a silica slurry used for producing a polishing composition, which comprises the steps of blending at least a silica particle, a redispersibility improver, and water. Furthermore, the present invention includes a step of blending at least a silica particle, a redispersibility improver and water, and the pH at 25 ° C. is 0.5 to 6.0, preferably 1.0 to 3 if necessary. The present invention relates to a method for producing a polishing composition, which comprises the step of adjusting to 0 or less.
 本発明において「配合する」とは、シリカ粒子、再分散性向上剤及び水を同時に又は任意の順に混合すること、シリカスラリー、酸、更に必要に応じて酸化剤及びその他の成分を同時に又は任意の順に混合することを含む。前記配合は、例えば、プロペラ攪拌機、ホモミキサー、ホモジナイザー、超音波分散機及び湿式ボールミル等の混合器等を用いて行うことができる。研磨液組成物の製造方法における各成分の好ましい配合量は、研磨液組成物中の各成分の好ましい含有量と同じである。 In the present invention, "blending" means mixing silica particles, redispersion improver and water simultaneously or in any order, silica slurry, acid, if necessary, oxidizing agent and other components simultaneously or optional Mixing in the order of The mixing can be performed, for example, using a propeller stirrer, a homomixer, a homogenizer, a mixer such as an ultrasonic disperser, a wet ball mill, or the like. The preferred compounding amounts of the respective components in the method for producing a polishing composition are the same as the preferred contents of the respective components in the polishing composition.
 本発明の研磨液組成物の製造方法の一例は、シリカ粒子の分散性の観点から、好ましくは以下の工程を有する。
工程1:水と、酸と、任意で酸化剤及びその他の成分を混合し、25℃におけるpHが6.0以下の酸性水溶液を調整する工程
工程2:前記酸性水溶液と、本発明のシリカスラリーとを、混合する工程
工程1において、得られる酸性水溶液のpHは、研磨液組成物のpHが所望の値となるように調整されることが好ましく、3.0以下が好ましく、そして、0.5以上が好ましい。
An example of the method for producing the polishing composition of the present invention preferably includes the following steps from the viewpoint of the dispersibility of the silica particles.
Step 1: A process of mixing water, an acid and optionally an oxidizing agent and other components, and adjusting an acidic aqueous solution having a pH of 6.0 or less at 25 ° C. Step 2: The above acidic aqueous solution and the silica slurry of the present invention And mixing the pH of the resulting acidic aqueous solution in step 1 so that the pH of the polishing composition becomes a desired value, preferably 3.0 or less, and 0. Five or more are preferable.
 本発明の研磨液組成物の製造方法の一例は、前記酸性水溶液と本発明のシリカスラリーとを混合する前又は後に、水を添加する工程を含んでいてもよい。前記酸性水溶液と本発明のシリカスラリーとを混合する前に水を添加する場合は、水は、例えば、本発明のシリカスラリーに添加すればよい。当該水は、シリカスラリーに含まれる水でよい。特に、本発明のシリカスラリー中のシリカ粒子の含有量が、10質量%以上70質量%以下である場合、本発明の研磨液組成物の製造方法は、前記水を添加する工程を含むと好ましい。 An example of the method for producing a polishing composition of the present invention may include the step of adding water before or after mixing the acidic aqueous solution with the silica slurry of the present invention. When water is added prior to mixing the acidic aqueous solution with the silica slurry of the present invention, water may be added to the silica slurry of the present invention, for example. The water may be water contained in the silica slurry. In particular, when the content of silica particles in the silica slurry of the present invention is 10% by mass to 70% by mass, it is preferable that the method of producing a polishing composition of the present invention includes the step of adding the water. .
 [研磨液組成物]
 本発明の研磨液組成物中のシリカ粒子の含有量は、高研磨速度の確保と長周期欠陥の低減の観点から、0.5質量%以上が好ましく、2質量%以上がより好ましく、3質量%以上が更に好ましく、そして、経済性の観点から、10質量%以下が好ましく、8質量%以下がより好ましく、6質量%以下が更に好ましい。
[Abrasive liquid composition]
The content of the silica particles in the polishing composition of the present invention is preferably 0.5% by mass or more, more preferably 2% by mass or more, from the viewpoint of securing a high polishing rate and reducing long-period defects. % Or more is more preferable, and from the viewpoint of economy, 10% by mass or less is preferable, 8% by mass or less is more preferable, and 6% by mass or less is still more preferable.
 本発明の研磨液組成物中の再分散性向上剤の含有量は、高研磨速度の確保と長周期欠陥の低減の観点から、0.005質量%以上が好ましく、0.01質量%以上がより好ましく、0.02質量%以上が更に好ましく、そして、経済性の観点から、1.0質量%以下が好ましく、0.5質量%以下がより好ましく、0.1質量%以下が更に好ましい。 The content of the redispersibility improver in the polishing composition of the present invention is preferably 0.005% by mass or more, and 0.01% by mass or more, from the viewpoint of securing a high polishing rate and reducing long cycle defects. More preferably, it is 0.02 mass% or more, and from the viewpoint of economy, 1.0 mass% or less is preferable, 0.5 mass% or less is more preferable, and 0.1 mass% or less is still more preferable.
 [pH]
 本発明の研磨液組成物の25℃におけるpHは、高研磨速度の確保と長周期欠陥の低減の観点から、0.5以上が好ましく、0.7以上がより好ましく、0.9以上が更に好ましく、1.0以上が更により好ましく、1.2以上が更により好ましく、1.4以上が更により好ましく、そして、同様の観点から、6.0以下が好ましく、4.0以下がより好ましく、3.0以下が更に好ましく、2.5以下が更により好ましく、2.0以下が更により好ましい。pHの調整は、後述の酸、必要に応じて酸化剤を用いて調整することが好ましい。上記のpHは、25℃における研磨液組成物のpHであり、測定方法は、シリカスラリーのpHの測定方法と同じである。
[PH]
The pH of the polishing composition of the present invention at 25 ° C. is preferably 0.5 or more, more preferably 0.7 or more, and still more preferably 0.9 or more from the viewpoint of securing a high polishing rate and reducing long cycle defects. Preferably, 1.0 or more is more preferable, 1.2 or more is still more preferable, 1.4 or more is even more preferable, and from the same viewpoint, 6.0 or less is preferable and 4.0 or less is more preferable 3.0 or less is more preferable, 2.5 or less is still more preferable, and 2.0 or less is even more preferable. The adjustment of pH is preferably performed using an acid described later, if necessary, an oxidizing agent. The above pH is the pH of the polishing composition at 25 ° C., and the measurement method is the same as the measurement method of the pH of the silica slurry.
 [酸]
 酸としては、例えば、硝酸、硫酸、亜硫酸、過硫酸、塩酸、過塩素酸、アミド硫酸、リン酸、ポリリン酸、ホスホン酸等の無機酸;有機リン酸、有機ホスホン酸等の有機酸;等が挙げられる。中でも、高研磨速度の確保と長周期欠陥の低減の観点から、リン酸、硫酸、及び1-ヒドロキシエチリデン-1,1-ジホスホン酸から選ばれる少なくとも1種が好ましく、硫酸及びリン酸から選ばれる少なくとも1種がより好ましく、リン酸が更に好ましい。
[acid]
Examples of the acid include inorganic acids such as nitric acid, sulfuric acid, sulfurous acid, persulfuric acid, hydrochloric acid, perchloric acid, amidosulfuric acid, phosphoric acid, polyphosphoric acid and phosphonic acid; organic acids such as organic phosphoric acid and organic phosphonic acid; Can be mentioned. Among them, at least one selected from phosphoric acid, sulfuric acid and 1-hydroxyethylidene-1,1-diphosphonic acid is preferable from the viewpoint of securing a high polishing rate and reducing long-cycle defects, and is selected from sulfuric acid and phosphoric acid. At least one is more preferable, and phosphoric acid is more preferable.
 研磨液組成物中の酸の含有量は、高研磨速度の確保と長周期欠陥の低減の観点から、0.001質量%以上が好ましく、0.01質量%以上がより好ましく、0.05質量%以上が更に好ましく、0.1質量%以上が更により好ましく、そして、同様の観点から、5.0質量%以下が好ましく、4.0質量%以下がより好ましく、3.0質量%以下が更に好ましく、2.5質量%以下が更により好ましい。 The content of the acid in the polishing composition is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, from the viewpoint of securing a high polishing rate and reducing long-cycle defects. % Or more is more preferable, 0.1% by mass or more is still more preferable, and from the same viewpoint, 5.0% by mass or less is preferable, 4.0% by mass or less is more preferable, and 3.0% by mass or less More preferably, 2.5% by mass or less is even more preferable.
 [酸化剤]
 本発明の研磨液組成物は、高研磨速度の確保と長周期欠陥の低減の観点から、酸化剤を含有してもよい。酸化剤としては、例えば、同様の観点から、過酸化物、過マンガン酸又はその塩、クロム酸又はその塩、ペルオキソ酸又はその塩、酸素酸又はその塩等が挙げられる。これらの中でも、過酸化水素、硝酸鉄(III)、過酢酸、ペルオキソ二硫酸アンモニウム、硫酸鉄(III)及び硫酸アンモニウム鉄(III)から選ばれる少なくとも1種が好ましく、高研磨速度の確保の観点、被研磨基板の表面に金属イオンが付着しない観点、及び入手容易性の観点から、過酸化水素がより好ましい。これらの酸化剤は、単独で又は2種以上を混合して使用してもよい。
[Oxidant]
The polishing composition of the present invention may contain an oxidizing agent from the viewpoint of securing a high polishing rate and reducing long cycle defects. Examples of the oxidizing agent include, from the same viewpoint, peroxides, permanganic acid or salts thereof, chromic acid or salts thereof, peroxy acids or salts thereof, oxygen acids or salts thereof, and the like. Among these, at least one selected from hydrogen peroxide, iron (III) nitrate, peracetic acid, ammonium peroxodisulfate, iron (III) sulfate and ammonium iron (III) sulfate is preferable, from the viewpoint of securing a high polishing rate, Hydrogen peroxide is more preferable from the viewpoint that metal ions are not attached to the surface of the polishing substrate and from the viewpoint of availability. You may use these oxidizing agents individually or in mixture of 2 or more types.
 研磨液組成物中の前記酸化剤の含有量は、高研磨速度の確保の観点から、0.01質量%以上が好ましく、0.05質量%以上がより好ましく、0.1質量%以上が更に好ましく、そして、高研磨速度の確保と長周期欠陥の低減の観点から、4.0質量%以下が好ましく、2.0質量%以下がより好ましく、1.5質量%以下が更に好ましい。 The content of the oxidizing agent in the polishing composition is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, and further preferably 0.1% by mass or more from the viewpoint of securing a high polishing rate. From the viewpoint of securing a high polishing rate and reducing long-period defects, the content is preferably 4.0% by mass or less, more preferably 2.0% by mass or less, and still more preferably 1.5% by mass or less.
 [水]
 本発明の研磨液組成物は、媒体として水を含有する。水としては、蒸留水、イオン交換水、純水及び超純水等が挙げられる。研磨液組成物中の水の含有量は、研磨液組成物の取扱いが容易になる観点から、61質量%以上が好ましく、70質量%以上がより好ましく、80質量%以上が更に好ましく、85質量%以上が更により好ましく、そして、同様の観点から、99質量%以下が好ましく、98質量%以下がより好ましく、97質量%以下が更に好ましい。
[water]
The polishing composition of the present invention contains water as a medium. Examples of water include distilled water, ion-exchanged water, pure water and ultrapure water. From the viewpoint of facilitating the handling of the polishing composition, the content of water in the polishing composition is preferably 61% by mass or more, more preferably 70% by mass or more, and still more preferably 80% by mass or more. % Or more is further more preferable, and from the same viewpoint, 99% by mass or less is preferable, 98% by mass or less is more preferable, and 97% by mass or less is more preferable.
 [その他の成分]
 本発明の研磨液組成物は、必要に応じてその他の成分を含有してもよい。他の成分としては、増粘剤、分散剤、防錆剤、塩基性物質、研磨速度向上剤、界面活性剤、高分子化合物等が挙げられる。前記その他の成分は、本発明の効果を損なわない範囲で研磨液組成物中に含有されることが好ましく、研磨液組成物中の前記その他の成分の含有量は、0質量%以上が好ましく、0質量%超がより好ましく、0.1質量%以上が更に好ましく、そして、10質量%以下が好ましく、5質量%以下がより好ましい。
[Other ingredients]
The polishing composition of the present invention may contain other components as required. Other components include thickeners, dispersants, rust inhibitors, basic substances, polishing rate improvers, surfactants, polymer compounds and the like. The other components are preferably contained in the polishing composition as long as the effects of the present invention are not impaired, and the content of the other components in the polishing composition is preferably 0% by mass or more. More than 0 mass% is more preferable, 0.1 mass% or more is further more preferable, and 10 mass% or less is preferable, and 5 mass% or less is more preferable.
 本発明において「研磨液組成物中の各成分の含有量」とは、研磨液組成物を研磨に使用する時点での前記各成分の含有量をいう。したがって、本発明の研磨液組成物が濃縮物として作製された場合には、前記各成分の含有量はその濃縮分だけ高くなりうる。 In the present invention, the "content of each component in the polishing composition" refers to the content of each component at the time of using the polishing composition for polishing. Therefore, when the polishing composition of the present invention is prepared as a concentrate, the content of each component may be increased by the concentration.
 [粘度]
 本発明の研磨液組成物の粘度は、高研磨速度の確保と長周期欠陥の低減の観点から、10mPa・s以下が好ましく、7.0mPa・s以下がより好ましく、5.0mPa・s以下が更に好ましく、そして、同様の観点から、0.5mPa・s以上が好ましく、1.0mPa・s以上がより好ましく、1.5mPa・s以上が更に好ましく、2.0mPa・s以上が更により好ましい。上記粘度は、25℃における研磨液組成物の粘度であり、測定方法は、シリカスラリーの粘度の測定方法と同じである。
[viscosity]
The viscosity of the polishing composition of the present invention is preferably 10 mPa · s or less, more preferably 7.0 mPa · s or less, and 5.0 mPa · s or less from the viewpoint of securing a high polishing rate and reducing long-period defects. From the same viewpoint, 0.5 mPa · s or more is preferable, 1.0 mPa · s or more is more preferable, 1.5 mPa · s or more is more preferable, and 2.0 mPa · s or more is still more preferable. The viscosity is the viscosity of the polishing composition at 25 ° C., and the measuring method is the same as the measuring method of the viscosity of the silica slurry.
 [研磨液キット]
 本発明の研磨液キットは、研磨液組成物を製造するためのキットであって、前記シリカ粒子を含むシリカスラリーが容器に収納された容器入りシリカスラリーを含む、研磨液キットに関する。本発明の研磨液キットは、前記容器入りシリカスラリーとは別の容器に収納されたpH6.0以下の酸性水溶液を更に含むことができる。本発明によれば、砥粒としてシリカ粒子を使用した場合でも、高研磨速度の確保と長周期欠陥の低減が行える研磨液組成物が得られうる研磨液キットを提供できる。
[Abrasive fluid kit]
The polishing liquid kit of the present invention relates to a kit for producing a polishing liquid composition, which comprises a container-enclosed silica slurry in which a silica slurry containing the silica particles is housed in a container. The polishing liquid kit of the present invention may further include an acidic aqueous solution having a pH of 6.0 or less stored in a separate container from the container-containing silica slurry. According to the present invention, it is possible to provide a polishing solution kit capable of obtaining a polishing composition capable of securing a high polishing rate and reducing long cycle defects even when silica particles are used as the abrasive.
 本発明の研磨液キットとしては、例えば、前記シリカ粒子を含むシリカスラリー(第1液)と、被研磨物の研磨に用いる研磨液組成物に配合され得る他の成分を含む酸性水溶液(第2液)とが、相互に混合されていない状態で保存されており、これらが使用時に混合される研磨液キット(2液型研磨液組成物)が挙げられる。酸性水溶液に配合され得る成分としては、例えば、酸、酸化剤等が挙げられる。前記第1液及び第2液には、各々必要に応じて任意成分が含まれていても良い。該任意成分としては、例えば、増粘剤、分散剤、防錆剤、塩基性物質、研磨速度向上剤、界面活性剤、高分子化合物等が挙げられる。 The polishing solution kit of the present invention includes, for example, a silica slurry (first solution) containing the above-mentioned silica particles, and an acidic aqueous solution (second solution) containing other components that can be blended in the polishing composition used for polishing a workpiece. And a polishing solution kit (two-component polishing solution composition) in which the solutions are stored in a state where they are not mixed with each other and these are mixed at the time of use. As a component which may be mix | blended with acidic aqueous solution, an acid, an oxidizing agent, etc. are mentioned, for example. The first liquid and the second liquid may contain optional components as required. Examples of the optional components include thickeners, dispersants, rust inhibitors, basic substances, polishing rate improvers, surfactants, polymer compounds and the like.
 [被研磨基板]
 本発明の研磨液組成物が研磨の対象とする被研磨基板、磁気ディスク基板の製造に用いられる基板であり、例えば、Ni-Pメッキされたアルミニウム合金基板や、珪酸ガラス、アルミノ珪酸ガラス、結晶化ガラス、強化ガラス等のガラス基板が挙げられ、コストと扱いやすさの観点からNi-Pメッキされたアルミニウム合金基板が好ましい。本発明において「Ni-Pメッキされたアルミニウム合金基板」とは、アルミニウム合金基材の表面を研削後、無電解Ni-Pメッキ処理したものをいう。被研磨基板の表面を本開示にかかる研磨液組成物を用いて研磨する工程の後、スパッタ等でその基板表面に磁性層を形成する工程を行うことにより、磁気ディスクを製造できうる。被研磨基板の形状には、例えば、ディスク状、プレート状、スラブ状、プリズム状等の平面部を有する形状や、レンズ等の曲面部を有する形状が挙げられ、好ましくはディスク状の被研磨基板である。ディスク状の被研磨基板の場合、その外径は、例えば10~120mmであり、その厚みは、例えば0.5~2mmである。
[Substrate to be polished]
The polishing composition of the present invention is a substrate to be used in the production of a substrate to be polished and a magnetic disk substrate, for example, an Ni-P plated aluminum alloy substrate, silica glass, aluminosilicate glass, crystals And glass substrates such as tempered glass and tempered glass, and from the viewpoint of cost and ease of handling, Ni-P plated aluminum alloy substrates are preferable. In the present invention, the "Ni-P plated aluminum alloy substrate" refers to one that has been subjected to electroless Ni-P plating treatment after grinding the surface of the aluminum alloy substrate. After the step of polishing the surface of the substrate to be polished using the polishing composition according to the present disclosure, a magnetic disk can be manufactured by performing the step of forming a magnetic layer on the surface of the substrate by sputtering or the like. The shape of the substrate to be polished includes, for example, a shape having a flat portion such as a disk, plate, slab, or prism, or a shape having a curved portion such as a lens, preferably a disk to be polished It is. In the case of a disk-shaped substrate to be polished, its outer diameter is, for example, 10 to 120 mm, and its thickness is, for example, 0.5 to 2 mm.
 一般に、磁気ディスクは、研削工程を経た被研磨基板が、粗研磨工程、仕上げ研磨工程を経て研磨され、磁性層形成工程を経て製造される。本発明の研磨液組成物は、粗研磨工程における研磨に使用されることが好ましい。 Generally, in a magnetic disk, a substrate to be polished which has been subjected to a grinding process is polished through a rough polishing process and a finish polishing process, and is manufactured through a magnetic layer forming process. The polishing composition of the present invention is preferably used for polishing in a rough polishing process.
 [磁気ディスク基板の製造方法]
 本発明は、本発明の研磨液組成物を用いて被研磨基板を研磨する工程(以下、「本発明の研磨液組成物を用いた研磨工程」ともいう)を含む、磁気ディスク基板の製造方法(以下、「本発明の基板製造方法」ともいう。)に関する。
[Method of manufacturing magnetic disk substrate]
The present invention comprises a step of polishing a substrate to be polished using the polishing composition of the present invention (hereinafter, also referred to as "polishing step using the polishing composition of the present invention"). (Hereafter, it is also called "the board | substrate manufacturing method of this invention.").
 本発明の研磨液組成物を用いた研磨工程では、例えば、研磨パッドを貼り付けた定盤で被研磨基板を挟み込み、本発明の研磨液組成物を研磨面に供給し、圧力を加えながら研磨パッド及び被研磨基板のうちの何れか一方又は双方を動かすことにより、被研磨基板を研磨する。 In the polishing step using the polishing composition of the present invention, for example, the substrate to be polished is sandwiched by a platen to which a polishing pad is attached, the polishing composition of the present invention is supplied to the polishing surface, and polishing is performed while applying pressure. The substrate to be polished is polished by moving either or both of the pad and the substrate to be polished.
 本発明の研磨液組成物を用いた研磨工程における研磨荷重は、研磨速度を大幅に損なうことなく長周期欠陥を低減する観点から、30kPa以下が好ましく、25kPa以下がより好ましく、20kPa以下が更に好ましく、そして、3kPa以上が好ましく、5kPa以上がより好ましく、7kPa以上が更に好ましい。本発明において「研磨荷重」とは、研磨時に被研磨基板の被研磨面に加えられる定盤の圧力をいう。研磨荷重の調整は、定盤や基板等への空気圧や重りの負荷によって行うことができる。 The polishing load in the polishing step using the polishing composition of the present invention is preferably 30 kPa or less, more preferably 25 kPa or less, and still more preferably 20 kPa or less, from the viewpoint of reducing long cycle defects without significantly reducing the polishing rate. And 3 kPa or more is preferable, 5 kPa or more is more preferable, and 7 kPa or more is still more preferable. In the present invention, the term "polishing load" refers to the pressure of a platen applied to the surface to be polished of a substrate to be polished during polishing. The adjustment of the polishing load can be performed by the load of air pressure or weight on the platen, substrate or the like.
 本発明の研磨液組成物を用いた研磨工程における、被研磨基板1cm2あたりの研磨量は、研磨速度を大幅に損なうことなく長周期欠陥を低減する観点から、0.20mg以上が好ましく、0.30mg以上がより好ましく、0.40mg以上が更に好ましく、そして、同様の観点から、2.50mg以下が好ましく、2.00mg以下がより好ましく、1.60mg以下が更に好ましい。 The amount of polishing per 1 cm 2 of the substrate to be polished in the polishing step using the polishing composition of the present invention is preferably 0.20 mg or more, from the viewpoint of reducing long cycle defects without significantly reducing the polishing rate. .30 mg or more is more preferable, 0.40 mg or more is further preferable, and from the same viewpoint, 2.50 mg or less is preferable, 2.00 mg or less is more preferable, and 1.60 mg or less is still more preferable.
 本発明の研磨液組成物を用いた研磨工程における被研磨基板1cm2あたりの研磨液組成物の供給速度は、経済性の観点から、2.5mL/分以下が好ましく、2.0mL/分以下がより好ましく、1.5mL/分以下が更に好ましく、そして、高研磨速度の確保の観点から、被研磨基板1cm2あたり0.01mL/分以上が好ましく、0.03mL/分以上がより好ましく、0.05mL/分以上が更に好ましい。 The supply rate of the polishing composition per 1 cm 2 of the substrate to be polished in the polishing step using the polishing composition of the present invention is preferably 2.5 mL / min or less, and 2.0 mL / min or less from the economical viewpoint. Is more preferably 1.5 mL / min or less, and from the viewpoint of securing a high polishing rate, 0.01 mL / min or more is preferable per 1 cm 2 of the substrate to be polished, and 0.03 mL / min or more is more preferable. 0.05 mL / min or more is more preferable.
 本発明の研磨液組成物を研磨機へ供給する方法としては、例えば、ポンプ等を用いて連続的に供給を行う方法が挙げられる。研磨液組成物を研磨機へ供給する際は、全ての成分を含んだ1液で供給する方法の他、研磨液組成物の保存安定性等を考慮して、複数の配合用成分液に分け、2液以上で供給することもできる。後者の場合、例えば供給配管中又は被研磨基板上で、上記複数の配合用成分液が混合され、本発明の研磨液組成物となる。 As a method of supplying the polishing liquid composition of the present invention to a polishing machine, for example, a method of continuously supplying using a pump or the like can be mentioned. When the polishing composition is supplied to the polishing machine, it is divided into a plurality of component liquids in consideration of the storage stability of the polishing composition, etc., in addition to the method of supplying one solution containing all the components. , Can also be supplied in two or more solutions. In the latter case, the plurality of blending component liquids are mixed, for example, in a supply pipe or on a substrate to be polished, to form the polishing composition of the present invention.
 本発明の基板製造方法によれば、粗研磨において研磨速度を大幅に損なうことなく長周期欠陥の低減が可能であることから、突起欠陥が低減された磁気ディスク基板を効率よく製造できるという効果が奏されうる。 According to the substrate manufacturing method of the present invention, since it is possible to reduce long period defects without largely deteriorating the polishing rate in rough polishing, there is an effect that it is possible to efficiently produce a magnetic disk substrate with reduced projection defects. It can be played.
 [研磨方法]
 本発明は、本発明の研磨液組成物を用いた研磨工程を含む、磁気ディスク基板の研磨方法(以下、本発明の研磨方法ともいう)に関する。
[Polishing method]
The present invention relates to a method of polishing a magnetic disk substrate (hereinafter, also referred to as a polishing method of the present invention) including a polishing step using the polishing composition of the present invention.
 本発明の研磨方法を使用することにより、粗研磨において研磨速度を大幅に損なうことなく長周期欠陥の低減が可能であることから、突起欠陥が低減された磁気ディスク基板の生産性を向上できるという効果が奏されうる。具体的な研磨の方法及び条件は、上述した本発明の基板製造方法と同じようにすることができる。 By using the polishing method of the present invention, it is possible to reduce long period defects without largely reducing the polishing rate in rough polishing, thereby improving the productivity of a magnetic disk substrate in which protrusion defects are reduced. An effect can be achieved. Specific polishing methods and conditions can be the same as those of the substrate manufacturing method of the present invention described above.
 以下、実施例により本発明をさらに詳細に説明するが、これらは例示的なものであって、本開示はこれら実施例に制限されるものではない。 Hereinafter, the present invention will be described in more detail by way of examples, but these are illustrative and the present disclosure is not limited to these examples.
 1.砥粒スラリーの調製
 表1の砥粒(非球状シリカ粒子A1~A3、非球状アルミナ粒子A4、球状シリカ粒子B1)、表3の再分散性向上剤(成分b)又はその比較対象物、及び水を用い、実施例1~14及び比較例1~7の砥粒スラリーを調製した。砥粒スラリー中の各成分の含有量は、砥粒:30-50質量%(A1:40重量%、A2:40重量%、A3:30重量%、A4:45重量%、B1:50重量%)、再分散性向上剤(成分b)又はその比較対象物:表3に記載の量、残余は水である。実施例1~14及び比較例1~7の砥粒スラリーの25℃におけるpHは10である。尚、粒子A及び粒子Bの詳細は、表1に記載の通りである。
1. Preparation of Abrasive Particle Slurry The abrasive particles (non-spherical silica particles A1 to A3, non-spherical alumina particles A4 and spherical silica particles B1) of Table 1, the redispersibility improver of Table 3 (component b) or the comparative object thereof, Abrasive grain slurries of Examples 1 to 14 and Comparative Examples 1 to 7 were prepared using water. The content of each component in the abrasive grain slurry is 30-50% by mass of abrasive grains (A1: 40% by weight, A2: 40% by weight, A3: 30% by weight, A4: 45% by weight, B1: 50% by weight A redispersibility improver (component b) or its comparison target: the amount described in Table 3, the balance is water. The pH of the abrasive slurry of Examples 1 to 14 and Comparative Examples 1 to 7 at 25 ° C. is 10. The details of the particles A and the particles B are as described in Table 1.
 非球状シリカ粒子A1,A2はコロイダルシリカであり、非球状シリカ粒子A3は沈降法シリカであり、粒子Bは水ガラス法により製造されたコロイダルシリカである。砥粒スラリーのpHは、pHメータ(東亜ディーケーケー社製)を用いて測定し、電極を研磨液組成物へ浸漬して30秒後の数値を採用した(以下、同様)。 The non-spherical silica particles A1 and A2 are colloidal silica, the non-spherical silica particles A3 are precipitated silicas, and the particles B are colloidal silica produced by the water glass method. The pH of the abrasive grain slurry was measured using a pH meter (manufactured by Toa DK Co., Ltd.), and the electrode was immersed in the polishing composition and the value after 30 seconds was adopted (the same applies hereinafter).
 表3中のA-7075、A-7055、B-500、B-300Kは、いずれもアルカリ増粘性ポリマーエマルジョンであり、カルボン酸系共重合体であり、いずれも、第一単量体単位と第二単量体単位を含む。 Each of A-7075, A-7055, B-500, and B-300K in Table 3 is an alkali-thickening polymer emulsion, and is a carboxylic acid copolymer, and all of them are the first monomer unit and It contains a second monomer unit.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 2.研磨液組成物の調製
 [粗研磨に用いる研磨液組成物の調製]
 酸(リン酸)と酸化剤(過酸化水素)と水とを混合して酸性水溶液(pH=1.5)を調整した。「1.砥粒スラリーの調製」に記載の方法で調製された砥粒スラリーの調製後直ちに又は3カ月間静置後に、実施例1~14及び比較例1~7の砥粒スラリーと酸性水溶液と混合して、研磨液組成物1~21を調製した。研磨液組成物1~21中の各成分の含有量は、砥粒:5.0質量%、再分散性向上剤(成分b)又はその比較対象物:表3に記載の量、リン酸:1.5質量%、過酸化水素:0.8質量%とした。残量は水である。研磨液組成物1~21の25℃におけるpHは1.6である。
2. Preparation of Polishing Composition [Preparation of Polishing Composition Used for Rough Polishing]
An acidic aqueous solution (pH = 1.5) was adjusted by mixing an acid (phosphoric acid), an oxidizing agent (hydrogen peroxide) and water. Immediately after preparation of the abrasive slurry prepared by the method described in “1. Preparation of abrasive slurry” or after standing for 3 months, the abrasive slurry and acidic aqueous solution of Examples 1 to 14 and Comparative Examples 1 to 7 The mixture was mixed with the above to prepare polishing composition 1 to 21. The content of each component in the polishing composition 1 to 21 was 5.0 wt% of abrasive grains, the redispersibility improver (component b) or the comparative object thereof: the amount described in Table 3, phosphoric acid: 1.5 mass%, hydrogen peroxide: 0.8 mass%. The remaining amount is water. The pH of the polishing composition 1 to 21 at 25 ° C. is 1.6.
 [仕上げ研磨に用いる研磨液組成物Cの調製]
 表2のコロイダルシリカ粒子(砥粒a)、硫酸、過酸化水素、及び水を用い、仕上げ研磨に用いる研磨液組成物Cを調製した。研磨液組成物C中の各成分の含有量は、コロイダルシリカ粒子:5.0質量%、硫酸:0.5質量%、過酸化水素:0.5質量%とした。研磨液組成物CのpHは1.4であった。この研磨液組成物Cを、後述の仕上げ研磨工程で使用した。砥粒aの詳細は、表2に記載のとおりである。
[Preparation of Polishing Composition C Used for Finishing Polishing]
Using the colloidal silica particles (abrasive grain a) of Table 2, sulfuric acid, hydrogen peroxide and water, a polishing composition C to be used for final polishing was prepared. The content of each component in the polishing composition C was 5.0 mass% of colloidal silica particles, 0.5 mass% of sulfuric acid, and 0.5 mass% of hydrogen peroxide. The pH of the polishing composition C was 1.4. This polishing composition C was used in the below-mentioned finish polishing process. The details of the abrasive grains a are as described in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 3.各パラメータの測定方法
 [砥粒のBET比表面積の測定方法]
 BET比表面積Sは、下記の[前処理]をした後、測定サンプル約0.1gを測定セルに小数点以下4桁(0.1mgの桁)まで精量し、比表面積の測定直前に110℃の雰囲気下で30分間乾燥した後、比表面積測定装置(島津製作所製 マイクロメリティック自動比表面積測定装置「フローソーブIII2305」)を用いてBET法により測定した。
[前処理]
 スラリー状の粒子をシャーレにとり150℃の熱風乾燥機内で1時間乾燥させた。乾燥後の試料をメノウ乳鉢で細かく粉砕して測定サンプルを得た。
3. Measuring method of each parameter [Method of measuring BET specific surface area of abrasive grains]
The BET specific surface area S is subjected to the following [pre-treatment], and then about 0.1 g of the measurement sample is refined to 4 digits after the decimal point (0.1 mg digit) in the measurement cell, and 110 ° C. After drying for 30 minutes in an atmosphere of the above, it was measured by the BET method using a specific surface area measuring apparatus (Micromeritic automatic specific surface area measuring apparatus "Flowsorb III 2305" manufactured by Shimadzu Corporation).
[Preprocessing]
The slurry-like particles were placed in a petri dish and dried in a hot air dryer at 150 ° C. for 1 hour. The dried sample was finely ground in an agate mortar to obtain a measurement sample.
 [砥粒のBET比表面積及び平均一次粒子径D1の測定方法]
 砥粒の平均一次粒径(nm)は、BET(窒素吸着)法によって算出される比表面積S(m2/g)を用いて下記式で算出した。
(1)シリカ粒子の平均一次粒径(nm)=2727/S=6/(ρ×S)
ρ:物質の密度(kg/m3
(2)アルミナ粒子の平均一次粒径(nm)=1508/S
[Method of measuring BET specific surface area of abrasive grains and average primary particle diameter D1]
The average primary particle size (nm) of the abrasive grains was calculated by the following equation using the specific surface area S (m 2 / g) calculated by the BET (nitrogen adsorption) method.
(1) Average Primary Particle Size of Silica Particles (nm) = 2727 / S = 6 / (ρ × S)
ρ: density of substance (kg / m 3 )
(2) Average primary particle size of alumina particles (nm) = 1508 / S
 [砥粒の平均二次粒子径の測定方法]
(1)シリカ粒子A1,A2,B1の平均二次粒子径の測定方法
 シリカ粒子をイオン交換水で希釈し、シリカ粒子を1質量%含有する分散液を作製した。そして、該分散液を下記測定装置内に投入し、シリカ粒子の体積粒度分布を得た。得られた体積粒度分布の累積体積頻度が50%となる粒径(Z-average値)を二次粒子径とした。
測定機器 :マルバーン  ゼータサイザー ナノ「Nano S」
測定条件 :サンプル量  1.5mL
     :レーザー   He-Ne、3.0mW、633nm
     :散乱光検出角 173°
[Method of measuring average secondary particle size of abrasive grains]
(1) Method of Measuring Average Secondary Particle Size of Silica Particles A1, A2 and B1 The silica particles were diluted with ion exchanged water to prepare a dispersion containing 1 mass% of silica particles. Then, the dispersion was charged into the following measuring device to obtain a volume particle size distribution of silica particles. The particle size (Z-average value) at which the cumulative volume frequency of the obtained volume particle size distribution is 50% was defined as the secondary particle size.
Measurement equipment: Malvern Zetasizer Nano "Nano S"
Measurement conditions: Sample volume 1.5 mL
: Laser He-Ne, 3.0 mW, 633 nm
: Scattered light detection angle 173 °
(2)シリカ粒子A3の平均二次粒子径の測定方法
(2-1)シリカ粒子A3
 水を分散媒として、下記測定装置内に投入し、続いて透過率が75~95%になるようにサンプル(シリカ粒子A3)を投入し、その後、5分間超音波を付与した後、粒径を測定した。
(2-2)アルミナ粒子A4
 ポイズ530(花王社製、ポリカルボン酸型高分子界面活性剤)を0.5質量%含有する水溶液を分散媒として、下記測定装置内に投入し、続いて透過率が75~95%になるようにサンプル(アルミナ粒子4A)を投入し、その後、5分間超音波を付与した後、粒径を測定した。
測定機器 :堀場製作所製 レーザー回折/散乱式粒度分布測定装置 LA920
循環強度 :4
超音波強度:4
(2) Method of measuring average secondary particle diameter of silica particles A3 (2-1) Silica particles A3
Water is introduced as a dispersion medium into the following measuring apparatus, and then a sample (silica particles A3) is introduced so that the transmittance is 75 to 95%, and then ultrasonic waves are applied for 5 minutes, and then the particle size is obtained. Was measured.
(2-2) Alumina particles A4
An aqueous solution containing 0.5% by mass of Poise 530 (manufactured by Kao Corporation, polycarboxylic acid type polymer surfactant) as a dispersion medium is introduced into the following measuring apparatus, and then the transmittance becomes 75 to 95%. The sample (alumina particles 4A) was charged as described above, and then ultrasonic waves were applied for 5 minutes, and then the particle size was measured.
Measuring equipment: Horiba, Ltd. Laser diffraction / scattering type particle size distribution analyzer LA920
Circulation strength: 4
Ultrasonic intensity: 4
 [砥粒の平均短径及び平均球形度の測定方法]
 砥粒をTEM(日本電子社製「JEM-2000FX」、80kV、1~5万倍)で観察した写真をパーソナルコンピュータにスキャナで画像データとして取込み、解析ソフト(三谷商事「WinROOF(Ver.3.6)」)を用いて500個の砥粒の投影画像について下記の通り解析した。
 個々の砥粒の短径を求め、短径の平均値(平均短径)を得た。さらに、個々の砥粒の面積Sと周囲長Lとから、下記式により個々の砥粒の球形度を算出し、球形度の平均値(平均球形度)を得た。
球形度=4π×S/L2
[Method of measuring average minor diameter and average sphericity of abrasive grains]
A photograph of the abrasive grains observed by TEM (“JEM-2000FX”, 80 kV, 1 to 50,000 times by Nippon Denshi Co., Ltd.) is captured as image data by a scanner into a personal computer, and analysis software (Mitani Shoji “WinROOF (Ver. 6) “) was used to analyze the projected images of 500 abrasive grains as follows.
The minor diameter of each abrasive grain was determined, and the average value of the minor diameter (average minor diameter) was obtained. Furthermore, the sphericity of each abrasive grain was calculated from the area S and the circumferential length L of each abrasive grain according to the following equation, and the average value of the sphericity (average sphericity) was obtained.
Sphericity = 4π × S / L 2
 [砥粒aのD10、D50、及びD90]
 砥粒aをイオン交換水で希釈して得られる1質量%分散液を、下記測定装置内に投入し、シリカ砥粒の体積粒度分布を得た。
測定機器 :マルバーン  ゼータサイザー ナノ「Nano S」
測定条件 :サンプル量  1.5mL
     :レーザー   He―Ne、3.0mW、633nm
     :散乱光検出角 173°
 そして、得られた体積粒度分布の累積体積頻度が10%、50%及び90%となる粒径を、それぞれ、D10、D50(体積平均粒子径)、及びD90とした。
[D10, D50, and D90 of abrasive grain a]
A 1% by mass dispersion obtained by diluting the abrasive grains a with ion-exchanged water was introduced into the following measuring apparatus to obtain a volume particle size distribution of the silica abrasive grains.
Measurement equipment: Malvern Zetasizer Nano "Nano S"
Measurement conditions: Sample volume 1.5 mL
: Laser He-Ne, 3.0 mW, 633 nm
: Scattered light detection angle 173 °
Then, the particle sizes at which the cumulative volume frequency of the obtained volume particle size distribution is 10%, 50% and 90% are respectively designated D10, D50 (volume average particle size), and D90.
 4.再分散性
 シリカ粒子のシリカスラリーにおける再分散性は、沈降率(%)で評価した。沈降率は、全固形分を100としたときの全固形分に対する沈降量(g)の割合である。調製後3か月静置したシリカスラリーを、振とう機(宮本理研工業社製「MW-YS」)にて、30秒間、回転速度100rpmにて振とうし、上澄み液を除去した残余を沈降量とした。沈降率が小さいほど、シリカスラリーの再分散性が良好であることを意味する。
[評価基準]
 A:沈降率0%以上1%未満
 B:沈降率1%以上3%未満
 C:沈降率3%以上
4. Redispersibility The redispersibility of the silica particles in the silica slurry was evaluated by the sedimentation rate (%). The sedimentation rate is the ratio of the amount of sedimentation (g) to the total solid content, assuming that the total solid content is 100. The silica slurry, which has been allowed to stand for 3 months after preparation, is shaken with a shaker ("MW-YS" manufactured by Miyamoto Riken Kogyo Co., Ltd.) for 30 seconds at a rotational speed of 100 rpm, and the supernatant liquid removed is sedimented Amount. The smaller the sedimentation rate, the better the redispersibility of the silica slurry.
[Evaluation criteria]
A: Settability 0% or more and less than 1% B: Settability 1% or more and less than 3% C: Settability 3% or more
 5.研磨条件
 被研磨基板の研磨を下記工程(1)~(3)に従い行った。各工程の条件を以下に示す。工程(3)は、工程(1)で使用した研磨機とは別個の研磨機で行った。
(1)粗研磨工程:研磨液組成物1~21を用いて被研磨基板の研磨対象面を研磨する工程。
(2)洗浄工程:工程(1)で得られた基板を洗浄する工程。
(3)仕上げ研磨工程:研磨液組成物Cを用いて工程(2)で得られた基板の研磨対象面を研磨する工程。
5. Polishing conditions Polishing of the substrate to be polished was performed according to the following steps (1) to (3). The conditions of each process are shown below. Step (3) was carried out using a polishing machine separate from the polishing machine used in step (1).
(1) Rough polishing step: a step of polishing the surface to be polished of the substrate to be polished using the polishing composition 1 to 21.
(2) Washing step: a step of washing the substrate obtained in step (1).
(3) Finishing polishing step: a step of polishing the surface to be polished of the substrate obtained in step (2) using the polishing composition C.
 [被研磨基板]
 被研磨基板は、Ni-Pメッキされたアルミニウム合金基板を用いた。この被研磨基板は、厚み1.27mm、直径95mmであった。
[Substrate to be polished]
As a substrate to be polished, a Ni-P plated aluminum alloy substrate was used. The substrate to be polished had a thickness of 1.27 mm and a diameter of 95 mm.
 [工程(1):粗研磨]
研磨機:両面研磨機(9B型両面研磨機、スピードファム社製)
被研磨基板枚数:10枚
研磨液:研磨液組成物1~21
研磨パッド:スエードタイプ(発泡層:ポリウレタンエラストマー)、厚み:1.0mm、平均気孔径:30μm、表面層の圧縮率:2.5%(Filwel社製)
定盤回転数:35rpm
研磨荷重:9.8kPa(設定値)
研磨液供給量:100mL/分(被研磨基板面1cm2あたり、0.076mL/min
に相当)
研磨時間:6分
[Step (1): rough polishing]
Polishing machine: Double-sided polishing machine (9B type double-sided polishing machine, made by Speed Femme)
Number of substrates to be polished: 10 sheets Abrasive liquid: Abrasive liquid composition 1 to 21
Polishing pad: suede type (foamed layer: polyurethane elastomer), thickness: 1.0 mm, average pore diameter: 30 μm, surface layer compression ratio: 2.5% (manufactured by Filwel)
Plate rotation speed: 35 rpm
Polishing load: 9.8 kPa (set value)
Polishing fluid supply amount: 100 mL / min (0.076 mL / min per 1 cm 2 of the substrate to be polished)
Equivalent to
Polishing time: 6 minutes
 [工程(2):洗浄]
 工程(1)で得られた基板を、下記条件で洗浄した。
 まず、0.1質量%のKOH水溶液からなるpH12のアルカリ性洗浄剤組成物の入った槽内に、工程(1)で得られた基板を5分間浸漬する。次に、浸漬後の基板を、イオン交換水で20秒間すすぎを行う。そして、すすぎ後の基板を洗浄ブラシがセットされたスクラブ洗浄ユニットに移送し洗浄する。
[Step (2): Cleaning]
The substrate obtained in step (1) was washed under the following conditions.
First, the substrate obtained in step (1) is immersed for 5 minutes in a bath containing an alkaline cleaner composition of pH 12 consisting of a 0.1% by mass KOH aqueous solution. Next, the substrate after immersion is rinsed with ion exchange water for 20 seconds. Then, the substrate after the rinse is transferred to the scrub cleaning unit in which the cleaning brush is set and cleaned.
 [工程(3):仕上げ研磨]
研磨機:両面研磨機(9B型両面研磨機、スピードファム社製)、工程(1)で使用した研磨機とは別個の研磨機
被研磨基板枚数:10枚
研磨液:研磨液組成物C
研磨パッド:スエードタイプ(発泡層:ポリウレタンエラストマー)、厚み:0.9mm、平均気孔径:5μm、表面層の圧縮率:10.2%(Fujibo社製)
定盤回転数:40rpm
研磨荷重:9.8kPa
研磨液供給量:100mL/分(被研磨基板面1cm2あたり、0.076mL/minに相当)
研磨時間:2分
工程(3)後に、洗浄を行った。洗浄条件は、前記工程(2)と同条件で行った。
[Step (3): Finish Polishing]
Polishing machine: Double-sided polishing machine (type 9B double-sided polishing machine, manufactured by Speed Fam Co., Ltd.), the number of polishing substrates to be polished separately from the polishing machine used in step (1): 10 sheets Polishing solution: Polishing solution composition C
Polishing pad: suede type (foamed layer: polyurethane elastomer), thickness: 0.9 mm, average pore diameter: 5 μm, compression ratio of surface layer: 10.2% (manufactured by Fujibo)
Plate rotation speed: 40 rpm
Polishing load: 9.8 kPa
Polishing liquid supply amount: 100 mL / min (corresponding to 0.076 mL / min per 1 cm 2 of the substrate to be polished)
Polishing time: Washing was performed after the step (3) for 2 minutes. The washing conditions were the same as in the step (2).
 6.評価方法
 [工程(1)の研磨速度の測定方法及び評価]
 研磨前後の各基板1枚当たりの重さを計り(Sartorius社製、「BP-210S」)を用いて測定し、各基板の質量変化から質量減少量を求めた。全10枚の平均の質量減少量を研磨時間で割った値を研磨速度として下記式により算出し、その結果を、表3に示した。
 質量減少量(g)={研磨前の質量(g)-研磨後の質量(g)}
 研磨速度(mg/min)=質量減少量(mg)/研磨時間(min)
6. Evaluation method [Measurement method and evaluation of polishing rate in step (1)]
The weight per substrate before and after polishing was measured using a measure ("Sortorius, BP-210S" manufactured by Sartorius), and the amount of mass loss was determined from the mass change of each substrate. The value obtained by dividing the average mass loss of all ten sheets by the polishing time was calculated as the polishing rate by the following equation, and the results are shown in Table 3.
Mass loss (g) = {mass before polishing (g)-mass after polishing (g)}
Polishing rate (mg / min) = mass loss (mg) / polishing time (min)
 また、下記式により速度低下率(%)を算出し、その結果を表3に示した。
速度低下率(%)=100-3か月静置後の研磨速度÷製造直後の研磨速度×100
 速度低下率:評価
 -5%以上5%未満   :「A:研磨速度に優れ、更なる基板収率向上が期待できる」
 5%以上10%未満   :「B:研磨速度が良好で、基板収率向上が期待できる」
 10%以上       :「C:実生産には改良が必要」
The rate of decrease in speed (%) was calculated according to the following equation, and the results are shown in Table 3.
Speed reduction rate (%) = Polishing speed after standing for 100-3 months ÷ Polishing speed immediately after production × 100
Rate reduction rate: Evaluation-5% or more and less than 5%: "A: Excellent polishing rate, and further improvement of substrate yield can be expected"
5% or more and less than 10%: "B: The polishing rate is good, and substrate yield improvement can be expected"
10% or more: "C: Need for improvement in actual production"
 [工程(1)後の基板表面の長周期欠陥の評価方法]
 工程(1)の研磨後の10枚の基板の両面(計20点)について、工程(2)を行った後、下記の条件で測定し発生率(%)を求めた。基板表面に肉眼で確認できる小さな斑点がPEDであり、基板表面にそれが1点でも確認できた場合、その面は長周期欠陥有りとみなした。
 長周期欠陥発生率(%)
=(長周期欠陥が発生している基板面の数/20)×100
 長周期欠陥発生率を下記基準で5段階評価した。すなわち、評価の値が大きいほど長周期欠陥の発生率が低いことを意味する。その結果を表3に示す。
[評価基準]
 長周期欠陥発生率:評価
 10%以下    :「5:極めて発生が抑制され、基板収率向上が期待できる」
 10%越20%以下:「4:実生産可能」
 20%越30%以下:「3:実生産には改良が必要」
 30%越50%以下:「2:基板収率が大幅に低下する」
 50%越     :「1:実生産には程遠い(一般的なシリカ砥粒を用いた場合と同じレベル)」
[測定機器]
光干渉型表面形状測定機:「OptiFLAT III」(KLA Tencor社製)Radius Inside/Out:14.87mm/47.83mm
Center X/Y:55.44mm/53.38mm
Low Cutoff:2.5mm
Inner Mask:18.50mm
Outer Mask:45.5mm
Long Period:2.5mm
Wa Correction:0.9
Rn Correction:1.0
No Zernike Terms:8
[Method for evaluating long period defects on substrate surface after step (1)]
Step (2) was carried out on both sides (total 20 points) of the ten substrates after polishing of step (1), and then the occurrence rate (%) was determined by measurement under the following conditions. When the small spot which can be checked with the naked eye on the substrate surface is PED and it could be confirmed even at one point on the substrate surface, the surface was regarded as having a long period defect.
Long cycle defect rate (%)
= (Number of substrate surfaces with long-period defects / 20) x 100
The long cycle defect incidence rate was evaluated in five levels based on the following criteria. That is, the larger the evaluation value, the lower the incidence of long-period defects. The results are shown in Table 3.
[Evaluation criteria]
Long cycle defect occurrence rate: Evaluation 10% or less: "5: occurrence is extremely suppressed, and substrate yield improvement can be expected"
10% over 20% or less: "4: Real production possible"
20% over 30% or less: "3: Need for improvement in actual production"
30% or more and 50% or less: "2: substrate yield is significantly reduced"
50% over: "1: far from the actual production (same level as when using general silica abrasive)"
[measuring equipment]
Optical interference surface profiler: OptiFLAT III (manufactured by KLA Tencor) Radius Inside / Out: 14.87 mm / 47.83 mm
Center X / Y: 55.44 mm / 53.38 mm
Low Cutoff: 2.5mm
Inner Mask: 18.50 mm
Outer Mask: 45.5 mm
Long Period: 2.5 mm
Wa Correction: 0.9
Rn Correction: 1.0
No Zernike Terms: 8
 [アルミナ残留の評価方法]
 研磨後の各基板の表面を走査型電子顕微鏡(日立製作所社製:S-4000)にて1万倍で観察し、下記の3段階評価をした。
A:表面にアルミナ残留物が全く観察されないもの
B:表面にわずかにアルミナ残留物が観察されたもの
C:表面にアルミナ残留物が観察されたもの
[Evaluation method of alumina residue]
The surface of each substrate after polishing was observed at a magnification of 10,000 with a scanning electron microscope (manufactured by Hitachi, Ltd .: S-4000), and the following three-step evaluation was performed.
A: No alumina residue observed on the surface B: A slight alumina residue observed on the surface C: An alumina residue observed on the surface
 7.結果
 各評価の結果を表3に示した。
7. Results The results of each evaluation are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 例えば、実施例2と比較例2とを対比すると、表3に示されるように、実施例2のシリカスラリーの方が、比較例2のシリカスラリーよりも沈降率が顕著に小さくなっており、再分散性向上剤を含むことによりシリカ粒子の再分散性が向上している。実施例1と比較例1、実施例6と比較例3との対比においても同様である。 For example, when Example 2 and Comparative Example 2 are compared, as shown in Table 3, the sedimentation rate of the silica slurry of Example 2 is significantly smaller than that of the silica slurry of Comparative Example 2, The redispersibility of the silica particles is improved by the inclusion of the redispersibility improver. The same applies to the comparison between Example 1 and Comparative Example 1 and Example 6 and Comparative Example 3.
 また、製造直後のシリカスラリーを用いて調製された研磨剤組成物を用いた場合、実施例2と比較例2について、研磨速度に顕著な差が見られないが、製造から3か月静置後のシリカスラリーを用いて調製された研磨剤組成物を用いた場合、比較例2では、研磨速度が顕著に低下したが、実施例2ではほとんど変わらなかった。また、製造から3か月静置後のシリカスラリーを用いて調製された研磨剤組成物を用いた場合、実施例2の方が比較例2よりも、長周期欠陥の発生率が顕著に低かった。実施例1と比較例1、実施例6と比較例3との対比においても同様である。 In addition, when using an abrasive composition prepared using a silica slurry immediately after production, no noticeable difference is found in the polishing rate for Example 2 and Comparative Example 2, but leaving still for 3 months from production In the case of using the abrasive composition prepared using the later silica slurry, in Comparative Example 2, the polishing rate was significantly reduced, but in Example 2, there was almost no change. In addition, when using an abrasive composition prepared using a silica slurry after standing for 3 months from production, the incidence of long period defects is significantly lower in Example 2 than in Comparative Example 2. The The same applies to the comparison between Example 1 and Comparative Example 1 and Example 6 and Comparative Example 3.
 分散剤としてよく知られたPEG(重量平均分子量6,000)を用いた比較例5のシリカスラリーにおいては、シリカ粒子の再分散性は悪かった。比較例6では、重量平均分子量がより大きいPEGを用いることにより、再分散性の評価は良好となったが、研磨速度が遅かった。比較例7のシリカスラリーの調製に用いたポリアクリル酸は、カルボン酸系重合体であるが、アルカリ増粘型ポリマーエマルジョンにあたらない。 In the silica slurry of Comparative Example 5 using PEG (weight average molecular weight 6,000) well known as a dispersant, the redispersibility of the silica particles was poor. In Comparative Example 6, by using PEG having a larger weight average molecular weight, the evaluation of redispersibility was good, but the polishing rate was slow. The polyacrylic acid used to prepare the silica slurry of Comparative Example 7 is a carboxylic acid-based polymer but is not affected by the alkali-thickening polymer emulsion.
 表3に示されるように、再分散性向上剤としてアルカリ増粘型ポリマーエマルジョンを含有する実施例1~14のシリカスラリーは、当該アルカリ増粘型ポリマーエマルジョンを含まない比較例1~4のシリカスラリーに比べて、長期保存後のシリカ粒子の再分散性が優れている。そして、長期保存された実施例1~14のシリカスラリーを用いて調製された研磨液組成物1~14は、研磨液組成物15~21に比べて、高研磨速度の確保と長周期欠陥の低減が行える。 As shown in Table 3, the silica slurries of Examples 1 to 14 which contain an alkali-thickening polymer emulsion as a redispersibility improver are the silicas of Comparative Examples 1 to 4 which do not contain the alkali-thickening polymer emulsion. The redispersibility of silica particles after long-term storage is superior to that of a slurry. And, polishing compositions 1 to 14 prepared using the silica slurry of Examples 1 to 14 stored for a long period of time have high polishing speed and long period defects compared with polishing compositions 15 to 21. It is possible to reduce.
 本発明によれば、長期保存後においても、高研磨速度の確保と長周期欠陥等の基板品質の悪化抑制とが両立できるから、当該基板品質が良好な磁気ディスク基板の製造の生産性を向上できる。本発明は、磁気ディスク基板の製造に好適に用いることができる。 According to the present invention, even after long-term storage, it is possible to ensure both high polishing speed and suppression of deterioration of the substrate quality such as long period defects, so the productivity of manufacturing the magnetic disk substrate with good substrate quality is improved. it can. The present invention can be suitably used for manufacturing a magnetic disk substrate.

Claims (13)

  1.  シリカ粒子、再分散性向上剤、及び水を含み、
     再分散性向上剤が、アルカリ増粘型ポリマーエマルジョンであり、
     25℃におけるpHが8.0以上12.0以下である、研磨液組成物用シリカスラリー。
    Silica particles, redispersibility improver, and water
    The redispersibility improver is an alkali-thickened polymer emulsion,
    The silica slurry for polishing liquid composition whose pH in 25 degreeC is 8.0 or more and 12.0 or less.
  2.  前記研磨液組成物用シリカスラリーの25℃における粘度が20mPa・s以上である、請求項1に記載の研磨液組成物用シリカスラリー。 The silica slurry for polishing composition according to claim 1, wherein the viscosity at 25 ° C of the silica slurry for polishing composition is 20 mPa · s or more.
  3.  pHを0.5以上6.0以下とした場合に、25℃における粘度が10mPa・s以下となる、請求項1又は2に記載の研磨液組成物用シリカスラリー。 The silica slurry for polishing composition according to claim 1 or 2, wherein the viscosity at 25 ° C is 10 mPa · s or less when the pH is 0.5 or more and 6.0 or less.
  4.  前記再分散性向上剤が、アルカリ増粘型のカルボン酸系重合体である、請求項1から3のいずれかの項に記載の研磨液組成物用シリカスラリー。 The silica slurry for polishing composition according to any one of claims 1 to 3, wherein the redispersibility improver is an alkali-thickened carboxylic acid-based polymer.
  5.  前記シリカ粒子が、非球状シリカ粒子を含む、請求項1から4のいずれかの項に記載の研磨液組成物用シリカスラリー。 The silica slurry for polishing composition according to any one of claims 1 to 4, wherein the silica particles include non-spherical silica particles.
  6.  前記非球状シリカ粒子の平均二次粒子径が、150nm以上580nm以下である、請求項5に記載の研磨液組成物用シリカスラリー。 The silica slurry for polishing composition according to claim 5, wherein an average secondary particle diameter of the non-spherical silica particles is 150 nm or more and 580 nm or less.
  7.  前記研磨液組成物が、磁気ディスク基板用研磨剤組成物である、請求項1から6のいずれかに記載の研磨液組成物用シリカスラリー。 The silica slurry for polishing composition according to any one of claims 1 to 6, wherein the polishing composition is a polishing composition for a magnetic disk substrate.
  8.  請求項1から7のいずれかの項に記載の研磨液組成物用シリカスラリー(第1液)と、前記研磨液組成物用シリカスラリーとは別の容器内に収容された酸性水溶液(第2液)とを含み、前記第1液と前記第2液とを混合したときの25℃におけるpHが0.5以上6.0以下である、研磨液キット。 An acidic aqueous solution (second example) housed in a separate container from the silica slurry (first liquid) for a polishing composition according to any one of claims 1 to 7 and the silica slurry for the polishing composition. A polishing solution kit, wherein the pH at 25 ° C. when mixing the first solution and the second solution is 0.5 or more and 6.0 or less.
  9.  請求項1から7のいずれかの項に記載の研磨液組成物用シリカスラリーと酸とを混合して、25℃におけるpHを0.5以上6.0以下とする工程を含む、研磨液組成物の製造方法。 A polishing composition comprising a step of mixing the silica slurry for a polishing composition according to any one of claims 1 to 7 with an acid to make the pH at 25 ° C 0.5 or more and 6.0 or less. Method of manufacturing objects.
  10.  前記研磨液組成物用シリカスラリーにおけるシリカ粒子の含有量が10質量%以上70質量%以下であり、前記工程において、更に水を混合する、請求項9に記載の研磨液組成物の製造方法。 The method for producing a polishing composition according to claim 9, wherein the content of silica particles in the silica slurry for a polishing composition is 10% by mass to 70% by mass, and water is further mixed in the step.
  11.  請求項1から7のいずれかの項に記載の研磨液組成物用シリカスラリーを用いて調製された磁気ディスク基板用研磨液組成物を用いて被研磨基板を研磨する工程を含む、磁気ディスク基板の製造方法。 A magnetic disk substrate comprising a step of polishing a substrate to be polished using a polishing composition for a magnetic disk substrate prepared using the silica slurry for a polishing composition according to any one of claims 1 to 7. Manufacturing method.
  12.  前記被研磨基板が、Ni-Pメッキされたアルミニウム合金基である、請求項11に記載の磁気ディスク基板の製造方法。 The method of manufacturing a magnetic disk substrate according to claim 11, wherein the substrate to be polished is a Ni-P plated aluminum alloy base.
  13.  請求項1から7のいずれかの項に記載の研磨液組成物用シリカスラリーを用いて調製された研磨液組成物を用いて被研磨基板を研磨する工程を含み、
     前記被研磨基板は、磁気ディスク基板の製造に用いられる基板である、基板の研磨方法。
    A process of polishing a substrate to be polished using a polishing composition prepared using the silica slurry for a polishing composition according to any one of claims 1 to 7,
    The method for polishing a substrate, wherein the substrate to be polished is a substrate used for manufacturing a magnetic disk substrate.
PCT/JP2018/024104 2017-06-26 2018-06-26 Silica slurry for polishing-liquid composition WO2019004161A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-124474 2017-06-26
JP2017124474 2017-06-26
JP2018-119536 2018-06-25
JP2018119536A JP7096714B2 (en) 2017-06-26 2018-06-25 Silica slurry for polishing liquid composition

Publications (1)

Publication Number Publication Date
WO2019004161A1 true WO2019004161A1 (en) 2019-01-03

Family

ID=64741593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024104 WO2019004161A1 (en) 2017-06-26 2018-06-26 Silica slurry for polishing-liquid composition

Country Status (1)

Country Link
WO (1) WO2019004161A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005081504A (en) * 2003-09-09 2005-03-31 Kao Corp Polishing liquid kit for magnetic disk
JP2010163553A (en) * 2009-01-16 2010-07-29 Nicca Chemical Co Ltd Abrasive composition and polishing method
JP2012251099A (en) * 2011-06-06 2012-12-20 Ishihara Chem Co Ltd Buffing method, buffing composition, and aqueous emulsified buffing composition for repairing coated automobile surface
JP2014130659A (en) * 2012-12-28 2014-07-10 Kao Corp Magnetic disk substrate polishing liquid composition
JP2015127988A (en) * 2013-12-27 2015-07-09 花王株式会社 Polishing liquid composition for magnetic disk substrate
JP2016023210A (en) * 2014-07-17 2016-02-08 日立化成株式会社 Polisher, polisher set and substrate polishing method
JP2016084428A (en) * 2014-10-27 2016-05-19 花王株式会社 Polishing liquid composition
JP2017011220A (en) * 2015-06-25 2017-01-12 花王株式会社 Polishing liquid composition for silicon wafer
JP2017019978A (en) * 2015-07-15 2017-01-26 株式会社フジミインコーポレーテッド Polishing composition, magnetic disk substrate manufacturing method and magnetic disk substrate
JP2017025295A (en) * 2015-07-15 2017-02-02 株式会社フジミインコーポレーテッド Composition for polishing and method for producing magnetic disk substrate
JP2017076694A (en) * 2015-10-14 2017-04-20 日立化成株式会社 Polishing liquid for CMP and polishing method
JP2018109074A (en) * 2016-12-28 2018-07-12 花王株式会社 Method for producing polishing liquid composition

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005081504A (en) * 2003-09-09 2005-03-31 Kao Corp Polishing liquid kit for magnetic disk
JP2010163553A (en) * 2009-01-16 2010-07-29 Nicca Chemical Co Ltd Abrasive composition and polishing method
JP2012251099A (en) * 2011-06-06 2012-12-20 Ishihara Chem Co Ltd Buffing method, buffing composition, and aqueous emulsified buffing composition for repairing coated automobile surface
JP2014130659A (en) * 2012-12-28 2014-07-10 Kao Corp Magnetic disk substrate polishing liquid composition
JP2015127988A (en) * 2013-12-27 2015-07-09 花王株式会社 Polishing liquid composition for magnetic disk substrate
JP2016023210A (en) * 2014-07-17 2016-02-08 日立化成株式会社 Polisher, polisher set and substrate polishing method
JP2016084428A (en) * 2014-10-27 2016-05-19 花王株式会社 Polishing liquid composition
JP2017011220A (en) * 2015-06-25 2017-01-12 花王株式会社 Polishing liquid composition for silicon wafer
JP2017019978A (en) * 2015-07-15 2017-01-26 株式会社フジミインコーポレーテッド Polishing composition, magnetic disk substrate manufacturing method and magnetic disk substrate
JP2017025295A (en) * 2015-07-15 2017-02-02 株式会社フジミインコーポレーテッド Composition for polishing and method for producing magnetic disk substrate
JP2017076694A (en) * 2015-10-14 2017-04-20 日立化成株式会社 Polishing liquid for CMP and polishing method
JP2018109074A (en) * 2016-12-28 2018-07-12 花王株式会社 Method for producing polishing liquid composition

Similar Documents

Publication Publication Date Title
JP3986960B2 (en) Abrasive
JP6957232B2 (en) Abrasive liquid composition
JP6771484B2 (en) Abrasive liquid composition for magnetic disk substrate
WO2016002613A1 (en) Polishing liquid composition for magnetic disk substrates
CN108864948A (en) Glass polishing powder, polishing fluid and preparation method thereof, glass and electronic product
TWI704216B (en) Abrasive composition and method for polishing magnetic disk substrate
JP6820723B2 (en) Abrasive liquid composition for magnetic disk substrate
JP4187206B2 (en) Polishing liquid composition
JP2011104694A (en) Inorganic oxide particulate dispersion liquid, polishing particle dispersion liquid, and polishing composition
JP7096714B2 (en) Silica slurry for polishing liquid composition
JP2009163810A (en) Method of manufacturing hard disk substrate
JP6584936B2 (en) Polishing liquid composition for magnetic disk substrate
WO2015057433A1 (en) Polishing composition and method for nickel-phosphorous coated memory disks
JP4462593B2 (en) Polishing liquid composition
WO2019004161A1 (en) Silica slurry for polishing-liquid composition
JP6982427B2 (en) Silica slurry
JP6997083B2 (en) Manufacturing method of magnetic disk board
JP6584935B2 (en) Polishing liquid composition for magnetic disk substrate
JP6546492B2 (en) Method of manufacturing aluminum magnetic disk substrate
JP2003297778A (en) Composition for polishing and method for modifying the same
JP6944231B2 (en) Abrasive liquid composition
JP7055695B2 (en) Silica abrasive grains for polishing
JP6959857B2 (en) Abrasive liquid composition
JP4604727B2 (en) Additive for CMP abrasives
JP2005014204A (en) Polishing composition and polishing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18823302

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18823302

Country of ref document: EP

Kind code of ref document: A1