JP7051039B2 - Sediment disaster evacuation notification system - Google Patents

Sediment disaster evacuation notification system Download PDF

Info

Publication number
JP7051039B2
JP7051039B2 JP2017248981A JP2017248981A JP7051039B2 JP 7051039 B2 JP7051039 B2 JP 7051039B2 JP 2017248981 A JP2017248981 A JP 2017248981A JP 2017248981 A JP2017248981 A JP 2017248981A JP 7051039 B2 JP7051039 B2 JP 7051039B2
Authority
JP
Japan
Prior art keywords
gps
data
sediment
master unit
position coordinates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017248981A
Other languages
Japanese (ja)
Other versions
JP2019114177A (en
Inventor
俊博 村上
Original Assignee
株式会社トーエン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トーエン filed Critical 株式会社トーエン
Priority to JP2017248981A priority Critical patent/JP7051039B2/en
Publication of JP2019114177A publication Critical patent/JP2019114177A/en
Application granted granted Critical
Publication of JP7051039B2 publication Critical patent/JP7051039B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、崖崩れや山崩れなどによる地盤の変動量を計測し、UAVを中継基地局としてパーソナルコンピュータで計測結果を受信するとともに、計測結果から土砂災害の発生予測を算出して注意喚起を行う土砂災害避難通知システムに関するものである。 The present invention measures the amount of ground movement caused by landslides and landslides, receives the measurement results with a personal computer using the UAV as a relay base station, and calculates the prediction of sediment-related disasters from the measurement results to call attention. It is related to the sediment disaster evacuation notification system.

近年、突発的な集中豪雨の発生頻度の増大、大規模地震の切迫性の増大、活発な火山活動により、土砂災害を引き起こす誘因の多発化、激甚化が懸念されている。土砂災害の発生を予測することは防災対策において肝要で、従来から種々のシステム等が提案されている。例えば特許文献1においては、地殻変動の測定にGPSを用いて地表面の距離の変動を観測し、その際に、観測データとして得られるGPS座標を地図座標に変換してデータの解析を行う地盤災害予測方法が提案されている。また例えば、特許文献2においては、複数のカメラ撮像した画像データから作成した三次元モデルと、変位検知部において取得した三次元座標データとの差分を算出し、算出された変位量があらかじめ設定された閾値以上である場合は、発報指令を出力するシステムが提案されている。さらに、特許文献3においては、山肌など監視対象斜面に設置したターゲットを、異なる方向から複数の変位検知装置によって撮影し、その画像を用いてターゲットを設置した斜面の変位情報を検知し、異常変位が判断されて警報を発するように構成されたものが提案されている。 In recent years, there are concerns that the frequency of sudden torrential rains will increase, the urgency of large-scale earthquakes will increase, and active volcanic activity will cause more and more incentives to cause sediment-related disasters. Predicting the occurrence of sediment-related disasters is essential for disaster prevention measures, and various systems have been proposed so far. For example, in Patent Document 1, GPS is used to measure crustal movements, and changes in the distance on the ground surface are observed. At that time, GPS coordinates obtained as observation data are converted into map coordinates to analyze the data. A disaster prediction method has been proposed. Further, for example, in Patent Document 2, the difference between the three-dimensional model created from the image data captured by a plurality of cameras and the three-dimensional coordinate data acquired by the displacement detection unit is calculated, and the calculated displacement amount is set in advance. A system that outputs a warning command when the value is equal to or higher than the threshold value has been proposed. Further, in Patent Document 3, a target installed on a slope to be monitored such as a mountain surface is photographed by a plurality of displacement detection devices from different directions, and the displacement information of the slope on which the target is installed is detected using the images to obtain an abnormal displacement. Is proposed to be configured to issue an alarm when determined.

特開2002-250624号公報Japanese Patent Application Laid-Open No. 2002-250624 特開2016-180681号公報Japanese Unexamined Patent Publication No. 2016-180681 特開2013-64680号公報Japanese Unexamined Patent Publication No. 2013-64680

しかしながら、特許文献1に示す方法では、GPS受信機で受信した位置データを、GPS受信機から位置測定装置に送信するよう構成されているため、位置測定装置から外部機器へ位置データを無線送信する際には、電波の届く範囲内に位置測定装置を設置する必要があり、設置箇所が限定されるものであった。一方、土砂災害の発生地点は、従来の無線通信規格では受信機や送信機の設置並びに中継が困難な山頂付近や丘陵地帯等の場所が多く、仮に通信インフラを整備するとしても、多大なコストが必要となるという問題があった。 However, in the method shown in Patent Document 1, since the position data received by the GPS receiver is configured to be transmitted from the GPS receiver to the position measuring device, the position data is wirelessly transmitted from the position measuring device to the external device. In that case, it was necessary to install a position measuring device within the reach of radio waves, and the installation location was limited. On the other hand, there are many places where sediment-related disasters occur, such as near mountain peaks and hills where it is difficult to install receivers and transmitters and relay with conventional wireless communication standards, and even if communication infrastructure is to be developed, it will cost a lot. There was a problem that it was necessary.

また、特許文献2や特許文献3に示すように、カメラを用いて地盤を撮像するシステムでは、実際には地盤を直接的に撮像することが困難であった。例えば、カメラと監視するべき地盤の間に樹木が伸長した場合や、経年により地盤上に樹木や草花が生えて地盤が視認できない場合は、地盤を直接的に撮像することは不可能となり、地盤の変化を検知できなくなる。 Further, as shown in Patent Document 2 and Patent Document 3, it is actually difficult to directly image the ground in a system that images the ground using a camera. For example, if trees grow between the camera and the ground to be monitored, or if trees and flowers grow on the ground over time and the ground cannot be seen, it becomes impossible to directly image the ground, and the ground becomes impossible. It becomes impossible to detect the change of.

本発明は、上記のような従来技術の課題に鑑みなされたものであり、確実に地盤の変動量を検知し、検知した変動量を外部機器へ確実に中継することができ、運用コストが低コストな土砂災害避難通知システムを安価に提供することを目的とする。 The present invention has been made in view of the above-mentioned problems of the prior art, and can reliably detect the amount of fluctuation in the ground and reliably relay the detected fluctuation amount to an external device, and the operating cost is low. The purpose is to provide a costly sediment disaster evacuation notification system at low cost.

このため、本発明の土砂災害避難通知システムは、地盤崩壊による土砂災害が発生するおそれのある危険区域内に複数設置され、GPS衛星との通信により自身が設置された位置の三次元位置座標を計測し、計測した三次元位置座標が変動した際の変動量を算出してGPS親機へ送信可能なGPS子機と、GPS子機から変動量を受信するとともに、自律型UAVとデータの送受信可能なGPS親機と、あらかじめ定められた航路を飛行し、GPS親機からデータを受信し、データセンターへのデータ中継を可能とする自律型UAVと、自律型UAVから受信したデータに基づき、土砂災害の予測を行うデータセンターを備えることを第1の特徴とする。また、データセンターは、変動量が閾値を超えた場合に警報を発することを第2の特徴とする。 Therefore, a plurality of sediment disaster evacuation notification systems of the present invention are installed in a dangerous area where a sediment disaster due to a ground collapse may occur, and the three-dimensional position coordinates of the position where the self is installed by communication with a GPS satellite are obtained. A GPS slave unit that can measure and calculate the fluctuation amount when the measured three-dimensional position coordinates fluctuate and send it to the GPS master unit, receive the fluctuation amount from the GPS slave unit, and send and receive data to and from the autonomous UAV. Based on the possible GPS master unit, the autonomous UAV that flies on a predetermined route, receives data from the GPS master unit, and enables data relay to the data center, and the data received from the autonomous UAV. The first feature is to have a data center for predicting sediment-related disasters. The second feature of the data center is that it issues an alarm when the fluctuation amount exceeds the threshold value.

本発明は、以下の優れた効果を有する。
(1)自律型UAVを使用するため、人里離れた山奥などの通信インフラが整備されていない場所であっても、本システムを設置して土砂災害の発生を予測、または監視することができ、通信インフラを整備する必要がないため、運用コストを低廉化することができる。また、GPS子機等の検出器からデータセンター等の外部機器に確実にデータを送信することができる。
(2)地盤の変動量を検知して土砂災害の予測を行うため、客観的事実に基づいた予測、引いては警報発令を行うことができる。
The present invention has the following excellent effects.
(1) Since an autonomous UAV is used, this system can be installed to predict or monitor the occurrence of sediment-related disasters even in remote mountains and other places where communication infrastructure is not maintained. Since there is no need to develop communication infrastructure, operating costs can be reduced. In addition, data can be reliably transmitted from a detector such as a GPS slave unit to an external device such as a data center.
(2) Since the amount of change in the ground is detected to predict sediment-related disasters, it is possible to make predictions based on objective facts and, by extension, issue warnings.

本発明の実施の形態に係る土砂災害避難通知システムの構成図である。It is a block diagram of the earth and sand disaster evacuation notification system which concerns on embodiment of this invention. 図1に示した本発明の実施形態に係る地盤災害予測システムの動作を示すフローチャートである。It is a flowchart which shows the operation of the ground disaster prediction system which concerns on embodiment of this invention shown in FIG.

以下、実施例を示す図面に基づき本発明の実施の形態に係る土砂災害避難通知システムを説明するが、本発明が本実施例に限定されないことは言うまでもない。本発明における土砂災害避難通知システムは、図1に示すように、危険区域H内に複数設置され、GPS衛星との通信により自身が設置された位置の三次元位置座標を計測し、この三次元位置座標が変動した際の変動量を算出してGPS親機11へ送信可能なGPS子機12と、GPS子機12から変動量を受信するとともに、自律型UAV13とデータの送受信可能なGPS親機11と、あらかじめ定められた航路を飛行し、GPS親機11からデータを受信し、データセンター14へのデータ中継を可能とする自律型UAV13と、自律型UAV13から受信したデータに基づき、土砂災害の予測を行うデータセンター14とから構成されたシステムである。ここで危険区域Hとは、地盤崩壊による土砂災害が発生するおそれのある区域を指す。 Hereinafter, the sediment-related disaster evacuation notification system according to the embodiment of the present invention will be described with reference to the drawings showing the embodiments, but it goes without saying that the present invention is not limited to the present embodiments. As shown in FIG. 1, a plurality of sediment disaster evacuation notification systems in the present invention are installed in the danger zone H, measure the three-dimensional position coordinates of the position where they are installed by communication with a GPS satellite, and this three-dimensional A GPS slave unit 12 that can calculate the fluctuation amount when the position coordinates fluctuate and send it to the GPS master unit 11, and a GPS master that can receive the fluctuation amount from the GPS slave unit 12 and can send and receive data to and from the autonomous UAV 13. Based on the autonomous UAV 13 that flies on the aircraft 11 and a predetermined route, receives data from the GPS master unit 11 and enables data relay to the data center 14, and the data received from the autonomous UAV 13, sediment It is a system composed of a data center 14 for predicting a disaster. Here, the dangerous area H refers to an area where a sediment-related disaster due to a ground collapse may occur.

GPS親機11は、複数のGPS子機12のデータ収集ボックス兼、データ送受信の役割を担っている。GPS親機11は、複数のGPS子機12からGPS子機12ごとにそれぞれの変動量(変位情報)を受信する、自律型UAV13又はデータセンター14からのデータ送信指令を受信する受信機能と、各GPS子機12の変動量を記憶するメモリ機能と、自律型UAV13もしくはデータセンター14にメモリ機能に記憶されている変動量を送信する送信機能と、電源回路を有する。電源回路は、有線で商用電力から電力が供給される構造のほか、バッテリー等の蓄電機器や太陽光パネル等の発電機器と接続され電力が供給される構造で合っても良い。GPS子機12が独立して電力を得ることができれば、有線ケーブル15でGPS子機12とGPS親機11を接続する必要はなく、本実施例に限定するものではない。ただし、その際には、GPS子機12とGPS親機11が互いに無線通信によりデータの送受信が可能な構成とされなければならない。 The GPS master unit 11 also serves as a data collection box for the plurality of GPS slave units 12 and plays a role of transmitting and receiving data. The GPS master unit 11 has a reception function for receiving a data transmission command from an autonomous UAV 13 or a data center 14, which receives fluctuation amounts (displacement information) for each GPS slave unit 12 from a plurality of GPS slave units 12. It has a memory function for storing the fluctuation amount of each GPS slave unit 12, a transmission function for transmitting the fluctuation amount stored in the memory function to the autonomous UAV 13 or the data center 14, and a power supply circuit. The power supply circuit may be fitted with a structure in which electric power is supplied from commercial electric power by wire, or a structure in which electric power is supplied by being connected to a power storage device such as a battery or a power generation device such as a solar panel. If the GPS slave unit 12 can obtain electric power independently, it is not necessary to connect the GPS slave unit 12 and the GPS master unit 11 with the wired cable 15, and the present embodiment is not limited to this. However, in that case, the GPS slave unit 12 and the GPS master unit 11 must be configured to be capable of transmitting and receiving data by wireless communication with each other.

GPS子機12は、自身の三次元位置座標が変動した際に、GPS親機11へその変動量を送信する。GPS子機12は、GPS衛星(図示せず)から常時又は定時的に送信される電波を受信する受信機能と、受信した電波から自身の三次元位置座標を演算する、及び三次元位置座標が変動した際にその変動量を演算する演算機能と、変動した際の時刻をカウントする計時機能と、演算された三次元位置座標、変動量、及び時刻を記憶するメモリ機能と、GPS親機11へメモリ機能内のデータ(GPS子機12の識別番号、三次元位置座標、変動量、時刻)を送信する送信機能を有する。図1に示すように、複数のGPS子機12とGPS親機11は有線ケーブル15で接続されており、GPS子機12の稼働電力は、有線ケーブル15を介して供給可能に構成されている。また、GPS子機12内のデータは、有線ケーブル15を介してGPS親機11へ送信可能に構成されている。 When the GPS slave unit 12 changes its three-dimensional position coordinates, the GPS slave unit 12 transmits the fluctuation amount to the GPS master unit 11. The GPS slave unit 12 has a reception function for receiving radio waves constantly or regularly transmitted from GPS satellites (not shown), calculates its own three-dimensional position coordinates from the received radio waves, and has three-dimensional position coordinates. A calculation function that calculates the amount of fluctuation when it fluctuates, a time counting function that counts the time when it fluctuates, a memory function that stores the calculated three-dimensional position coordinates, the amount of fluctuation, and the time, and the GPS master unit 11. It has a transmission function for transmitting data in the memory function (identification number of GPS slave unit 12, three-dimensional position coordinates, fluctuation amount, time). As shown in FIG. 1, a plurality of GPS slave units 12 and a GPS master unit 11 are connected by a wired cable 15, and the operating power of the GPS slave unit 12 can be supplied via the wired cable 15. .. Further, the data in the GPS slave unit 12 is configured to be receivable to the GPS master unit 11 via the wired cable 15.

以上のように構成されたGPS親機11と、GPS親機11に連結された複数のGPS子機12は、例えば土砂災害が予測される危険区域Hの地表上に設置され、地表の変動によりGPS子機12の三次元位置座標が変動した際には、瞬時にその変動量が演算され、GPS親機11へと送信され、どのGPS子機12が、何時に、どれだけ変動したかが記録される。 The GPS master unit 11 configured as described above and the plurality of GPS slave units 12 connected to the GPS master unit 11 are installed on the ground surface of the danger zone H where a sediment disaster is predicted, for example, due to changes in the ground surface. When the three-dimensional position coordinates of the GPS slave unit 12 fluctuate, the amount of fluctuation is calculated instantly and transmitted to the GPS master unit 11, which GPS slave unit 12 fluctuates at what time and how much. Recorded.

自律型UAV13は、あらかじめ定められた航路を自律飛行可能な空中航行機である。このような自律型UAVとして、例えば、スウィフト・エンジニアング社製のVTOLドローンが挙げられる。自律型UAV13は、GPS親機11と特定小電力無線通信技術の一つである低消費電力で長距離通信を実現する低電力広域通信方式(Low Power Wide Area、以下「LPWA」という。)で互いに無線通信可能とされており、GPS親機11内にメモリされたデータ(GPS子機12の識別番号、三次元位置座標、変動量、時刻)を受信する受信器と、受信したデータ(GPS子機12の識別番号、三次元位置座標、変動量、時刻)を記録するメモリ機能と、GPS親機11と送受信可能な区域に到達した際に信号を発信するほか、データセンター14へデータを送信する発信器が搭載されている。そのため、自律型UAV13が飛行できる場所であれば、GPS親機11を設置可能となる。また、自律型UAV13はデータの中継基地局として利用することができる。尚、LPWA通信方式のほか、Bluetooth(「Bluetooth」は登録商標)など種々の無線通信を使用することができるが、100km~200kmの距離を通信可能なLPWA通信方式が好ましい。さらに、自律型UAV13を飛行させる時間帯も例えば、2時間ごとなど定時に飛行させるほか、必要に応じて飛行させることが可能である。 The autonomous UAV 13 is an aerial navigation aircraft capable of autonomously flying on a predetermined route. Examples of such an autonomous UAV include a VTOL drone manufactured by Swift Engineering. The autonomous UAV 13 is a low power wide area communication method (Low Power Wide Area, hereinafter referred to as "LPWA") that realizes long-distance communication with low power consumption, which is one of the specified low power wireless communication technologies, with the GPS master unit 11. A receiver that is capable of wireless communication with each other and receives data (identification number of GPS slave unit 12, three-dimensional position coordinates, fluctuation amount, time) stored in the GPS master unit 11 and received data (GPS). It has a memory function that records the identification number of the slave unit 12, three-dimensional position coordinates, fluctuation amount, time), sends a signal when it reaches an area where transmission and reception is possible with the GPS master unit 11, and also sends data to the data center 14. It is equipped with a transmitter to transmit. Therefore, the GPS master unit 11 can be installed in a place where the autonomous UAV 13 can fly. Further, the autonomous UAV 13 can be used as a data relay base station. In addition to the LPWA communication method, various wireless communications such as Bluetooth (“Bluetooth” is a registered trademark) can be used, but the LPWA communication method capable of communicating over a distance of 100 km to 200 km is preferable. Further, the autonomous UAV 13 can be flown on a regular basis, for example, every two hours, or can be flown as needed.

データセンター14は、GPS子機12が検知した変動量に基づいて、土砂災害が発生する可能性の予測を行い、表示する端末機器である。データセンター14は、市役所や県庁などの行政機関に設置されたパーソナルコンピュータ等の端末機器であり、データ(GPS子機12の識別番号、三次元位置座標、変動量、時刻)を記憶、演算、表示できる機器であれば良く、とくに限定するものではない。 The data center 14 is a terminal device that predicts and displays the possibility of a sediment-related disaster based on the amount of fluctuation detected by the GPS slave unit 12. The data center 14 is a terminal device such as a personal computer installed in an administrative agency such as a city hall or a prefectural office, and stores and calculates data (identification number of GPS slave unit 12, three-dimensional position coordinates, fluctuation amount, time). Any device that can display is acceptable, and is not particularly limited.

次に、図2を参照して、上述した各装置の処理を具体的に説明する。図2に示すように、GPS子機12は、常時又は定時的にGPS衛星から送信される電波を基に、自身の位置情報(三次元位置座標)を算出して取得する(ステップ1)。この際に、位置情報が変動し、座標変位を検知(ステップ2)した場合は変動量を演算してGPS親機11へ変位情報(変動量、変動前並びに変動後の三次元位置座標、変動した時刻)を送信し(ステップ3)、GPS親機11は、GPS子機12から受信した変位情報を蓄積(ステップ4)する。座標変位を検知しない場合は、再度位置情報の取得を繰り返す。 Next, with reference to FIG. 2, the processing of each of the above-mentioned devices will be specifically described. As shown in FIG. 2, the GPS slave unit 12 calculates and acquires its own position information (three-dimensional position coordinates) based on the radio waves transmitted from the GPS satellites at all times or on a regular basis (step 1). At this time, if the position information fluctuates and the coordinate displacement is detected (step 2), the fluctuation amount is calculated and the displacement information (variation amount, three-dimensional position coordinates before and after the fluctuation, fluctuation) is sent to the GPS master unit 11. (Step 3), and the GPS master unit 11 accumulates the displacement information received from the GPS slave unit 12 (step 4). If the coordinate displacement is not detected, the acquisition of the position information is repeated again.

自律型UAV13は、あらかじめ定められた航路、すなわち、出発地点(例えばデータセンター14)からGPS親機11と無線通信可能な範囲へ向かい出発地点へ戻るという一定の航路を飛行している。自律型UAV13は、GPS親機11と送受信可能な区域に到達すると、GPS親機11へ向かって信号を発信する(ステップ5)。信号を受信したGPS親機11は、GPS親機11内にメモリされたデータ(GPS子機12の識別番号、三次元位置座標、変動量、時刻)を自律型UAV13に送信する(ステップ6)。データを受信した自律型UAV13は、データセンター14へ戻りGPS親機11から受信したデータをデータセンター14へ送信する(ステップ7)。すわなち、GPS親機11とデータセンター14間の中継基地局として機能する。 The autonomous UAV 13 is flying on a predetermined route, that is, a certain route from the starting point (for example, the data center 14) to the range where wireless communication is possible with the GPS master unit 11 and returning to the starting point. When the autonomous UAV 13 reaches an area where transmission / reception is possible with the GPS master unit 11, it transmits a signal to the GPS master unit 11 (step 5). Upon receiving the signal, the GPS master unit 11 transmits the data (identification number of the GPS slave unit 12, three-dimensional position coordinates, fluctuation amount, time) stored in the GPS master unit 11 to the autonomous UAV 13 (step 6). .. The autonomous UAV 13 that has received the data returns to the data center 14 and transmits the data received from the GPS master unit 11 to the data center 14 (step 7). That is, it functions as a relay base station between the GPS master unit 11 and the data center 14.

GPS親機11が、データセンター14と無線通信可能な位置に設置されている場合は、図1に示すように、GPS親機11からデータセンター14へ直接、LPWA通信方式により無線通信が行われ、GPS親機11内にメモリされたデータ(GPS子機12の識別番号、三次元位置座標、変動量、時刻)は、自律型UAV13に中継されることがない。 When the GPS master unit 11 is installed at a position capable of wireless communication with the data center 14, wireless communication is performed directly from the GPS master unit 11 to the data center 14 by the LPWA communication method as shown in FIG. The data stored in the GPS master unit 11 (identification number of the GPS slave unit 12, three-dimensional position coordinates, fluctuation amount, time) is not relayed to the autonomous UAV 13.

データセンター14は、受信したデータ(GPS子機12の識別番号、三次元位置座標、変動量、時刻)を解析し(ステップ8)、解析結果を表示し、閾値を超えた際など必要に応じて警報を発令する(ステップ9)。解析結果は、ハザードマップへ表示をリンクさせることが好ましい。例えば、変動量が検出されたGPS子機12がマッピングに表示され、変動量に基づき危険地域が着色表示される。より具体的には、変動量が10cm未満の区域であれば、要注意観察対象として黄色着色表示され、変動量が10cm~20cmの区域満であれば、警報発令対象、避難勧告対象として橙色着色表示され、変動量が20cm以上の区域であれば、要警報対象、要避難指示対象として赤色表示される。 The data center 14 analyzes the received data (identification number of the GPS slave unit 12, three-dimensional position coordinates, fluctuation amount, time) (step 8), displays the analysis result, and if necessary, such as when the threshold is exceeded. And issue an alarm (step 9). It is preferable to link the display of the analysis result to the hazard map. For example, the GPS slave unit 12 in which the fluctuation amount is detected is displayed in the mapping, and the dangerous area is colored and displayed based on the fluctuation amount. More specifically, if the fluctuation amount is less than 10 cm, it is displayed in yellow as a cautionary observation target, and if the fluctuation amount is 10 cm to 20 cm, it is colored orange as an alarm issuance target and an evacuation advisory target. If it is displayed and the fluctuation amount is 20 cm or more, it is displayed in red as a warning target and an evacuation order target.

尚、本発明の要旨は、自律型UAV13を中継基地局として使用し、従来電波が届かない山奥などでもあってもGPS子機12が検知した変動量を迅速かつ確実にデータセンター14へ送信できる点である。したがって、データセンター14で変動量から土砂災害の発生予測を解析する手法は、上記例に限定されるものではなく、その要旨を逸脱しない範囲内で改変を施し得るのは勿論構わない。 The gist of the present invention is that the autonomous UAV 13 can be used as a relay base station, and the fluctuation amount detected by the GPS slave unit 12 can be quickly and surely transmitted to the data center 14 even in the mountains where radio waves do not reach in the past. It is a point. Therefore, the method of analyzing the occurrence prediction of sediment-related disasters from the fluctuation amount in the data center 14 is not limited to the above example, and it is of course possible to make modifications within a range that does not deviate from the gist.

11 GPS親機
12 GPS子機
13 自律型UAV
14 データセンター
15 有線ケーブル
H 危険区域
11 GPS master unit 12 GPS slave unit 13 Autonomous UAV
14 Data Center 15 Wired Cable H Hazardous Area

Claims (2)

地盤崩壊による土砂災害が発生するおそれのある危険区域内に複数設置され、GPS衛星との通信により自身が設置された位置の三次元位置座標を計測し、計測した三次元位置座標が変動した際の変動量を算出してGPS親機へ有線接続を介して送信可能な複数のGPS子機と、複数のGPS子機と有線接続を介して接続され複数のGPS子機から各GPS子機のデータ(GPS子機の識別番号、三次元位置座標、変動量、及び時刻)を受信するとともに、自律型UAVとデータの送受信可能なGPS親機と、あらかじめ定められた航路を飛行し、GPS親機からデータを受信し、データセンターへのデータ中継を可能とする自律型UAVと、自律型UAVから受信したデータに基づき、土砂災害の予測を行うデータセンターを備えることを特徴とする土砂災害避難通知システム。 When multiple installations are made in a dangerous area where sediment disasters due to ground collapse may occur, the three-dimensional position coordinates of the position where they are installed are measured by communication with the GPS satellite, and the measured three-dimensional position coordinates fluctuate. Multiple GPS slave units that can calculate the amount of fluctuation and send it to the GPS master unit via a wired connection, and multiple GPS slave units that are connected via a wired connection and from multiple GPS slave units to each GPS slave unit It receives data (GPS slave unit identification number, three-dimensional position coordinates, fluctuation amount, and time), and flies with an autonomous UAV, a GPS master unit that can send and receive data, and a predetermined route, and is a GPS master. A sediment disaster evacuation characterized by having an autonomous UAV that receives data from the machine and enables data relay to the data center, and a data center that predicts sediment disasters based on the data received from the autonomous UAV. Notification system. 前記データセンターは、前記変動量が閾値を超えた場合に警報を発することを特徴とする請求項1に記載の土砂災害避難通知システム。 The sediment-related disaster evacuation notification system according to claim 1, wherein the data center issues an alarm when the fluctuation amount exceeds a threshold value.
JP2017248981A 2017-12-26 2017-12-26 Sediment disaster evacuation notification system Active JP7051039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017248981A JP7051039B2 (en) 2017-12-26 2017-12-26 Sediment disaster evacuation notification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017248981A JP7051039B2 (en) 2017-12-26 2017-12-26 Sediment disaster evacuation notification system

Publications (2)

Publication Number Publication Date
JP2019114177A JP2019114177A (en) 2019-07-11
JP7051039B2 true JP7051039B2 (en) 2022-04-11

Family

ID=67222712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017248981A Active JP7051039B2 (en) 2017-12-26 2017-12-26 Sediment disaster evacuation notification system

Country Status (1)

Country Link
JP (1) JP7051039B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112146615B (en) * 2020-09-23 2022-03-29 招商局重庆交通科研设计院有限公司 Slope monitoring method based on multiple unmanned aerial vehicles
CN112669571B (en) * 2020-12-16 2021-08-24 中国地质大学(北京) Real-time landslide prediction early warning system based on three-dimensional GIS
CN112767656B (en) * 2021-01-05 2021-11-23 中铁十九局集团矿业投资有限公司 Open mine landslide disaster early warning method and system
KR102488400B1 (en) * 2022-11-01 2023-01-18 주식회사 자연과기술 Ground pressure measurement and danger warning system using air lidar

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000018982A (en) 1998-07-02 2000-01-21 Toshiba Corp System and sensor for detection of movement of soil and stone, dropping control device for coordinate positioning apparatus and dropping-type coordinate positioning apparatus
JP2002243833A (en) 2001-02-15 2002-08-28 Mitsui Bussan Plant Kk Wide-area location/displacement observing system
JP2003214849A (en) 2002-01-17 2003-07-30 Kokusai Kogyo Co Ltd Disaster-prevention monitoring system
JP2004280204A (en) 2003-03-12 2004-10-07 Kokusai Kogyo Co Ltd Slope collapse prediction system
JP2009093594A (en) 2007-10-12 2009-04-30 Hazama Corp Disaster-prevention monitoring system and disaster-prevention monitoring method
US20140366648A1 (en) 2012-10-25 2014-12-18 Avatech, Inc. Methods, apparatus and systems for measuring snow structure and stability
CN205679265U (en) 2016-06-06 2016-11-09 天津中翔腾航科技股份有限公司 Farm environment unmanned plane information acquisition system
JP2017223606A (en) 2016-06-17 2017-12-21 東日本旅客鉄道株式会社 Slope monitoring system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06160509A (en) * 1992-11-19 1994-06-07 Furuno Electric Co Ltd Land fluctuation observation system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000018982A (en) 1998-07-02 2000-01-21 Toshiba Corp System and sensor for detection of movement of soil and stone, dropping control device for coordinate positioning apparatus and dropping-type coordinate positioning apparatus
JP2002243833A (en) 2001-02-15 2002-08-28 Mitsui Bussan Plant Kk Wide-area location/displacement observing system
JP2003214849A (en) 2002-01-17 2003-07-30 Kokusai Kogyo Co Ltd Disaster-prevention monitoring system
JP2004280204A (en) 2003-03-12 2004-10-07 Kokusai Kogyo Co Ltd Slope collapse prediction system
JP2009093594A (en) 2007-10-12 2009-04-30 Hazama Corp Disaster-prevention monitoring system and disaster-prevention monitoring method
US20140366648A1 (en) 2012-10-25 2014-12-18 Avatech, Inc. Methods, apparatus and systems for measuring snow structure and stability
CN205679265U (en) 2016-06-06 2016-11-09 天津中翔腾航科技股份有限公司 Farm environment unmanned plane information acquisition system
JP2017223606A (en) 2016-06-17 2017-12-21 東日本旅客鉄道株式会社 Slope monitoring system

Also Published As

Publication number Publication date
JP2019114177A (en) 2019-07-11

Similar Documents

Publication Publication Date Title
JP7051039B2 (en) Sediment disaster evacuation notification system
US11830372B2 (en) System and method of collision avoidance in unmanned aerial vehicles
US6501392B2 (en) Aircraft weather information system
KR101692781B1 (en) Drone - Sensor Interconnected Disaster Management System
EP2933663A2 (en) Weather data dissemination
US20110010025A1 (en) Monitoring system using unmanned air vehicle with wimax communication
US20070152814A1 (en) Systems and methods for autonomous data acquisition, sensor integration and information transmission in a lightweight device
TWI620157B (en) Disaster response system, disaster response method, disaster detection device, and processing method thereof
KR101678744B1 (en) Portable roadway detector evaluation system and monitoring system
JP2011250159A (en) Mobile communication system
KR102026821B1 (en) Remote measurement and management system for slope
JP2016180681A (en) Ground collapse detection system
US20210043094A1 (en) Air position information and traffic management system for unmanned and manned aircraft
RU2015101174A (en) SYSTEM AND METHOD FOR MONITORING OPERATIONAL CHARACTERISTICS OF RAILWAY CAR
KR20170088124A (en) Communication system of unmanned ship and communication method using the same
JP2023076492A (en) Semiconductor device and position movement calculation system
KR101884268B1 (en) Seismic-sensing system for power transmission tower using control apparatus based on wireless communication, and method thereof
US9297925B1 (en) Smart module for communications, processing, and interface
JP6346043B2 (en) Remote monitoring system and observation device
EP2020647A1 (en) Automatic multi-user system for localization, alarm and personal emergency, operating in multi-standard mode in aerial environment
KR20140137233A (en) System and Method for Shipping lookout using the 3D spatial
ES2935197T3 (en) Smart spacer and method for monitoring overhead transmission lines
JP4140699B2 (en) Slope monitoring system
CN113160512A (en) Remote forest fire early warning method based on Beidou positioning short message
JP2017223606A (en) Slope monitoring system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220304

R150 Certificate of patent or registration of utility model

Ref document number: 7051039

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150