JP2016180681A - Ground collapse detection system - Google Patents
Ground collapse detection system Download PDFInfo
- Publication number
- JP2016180681A JP2016180681A JP2015060960A JP2015060960A JP2016180681A JP 2016180681 A JP2016180681 A JP 2016180681A JP 2015060960 A JP2015060960 A JP 2015060960A JP 2015060960 A JP2015060960 A JP 2015060960A JP 2016180681 A JP2016180681 A JP 2016180681A
- Authority
- JP
- Japan
- Prior art keywords
- dimensional
- coordinate data
- ground collapse
- dimensional model
- detection system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 37
- 238000006073 displacement reaction Methods 0.000 claims abstract description 24
- 238000000034 method Methods 0.000 claims abstract description 16
- 238000012545 processing Methods 0.000 claims abstract description 10
- 238000012544 monitoring process Methods 0.000 abstract description 23
- 239000013049 sediment Substances 0.000 abstract 1
- 238000003384 imaging method Methods 0.000 description 7
- 238000012806 monitoring device Methods 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 230000005856 abnormality Effects 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Testing Or Calibration Of Command Recording Devices (AREA)
- Alarm Systems (AREA)
Abstract
Description
本発明は、地盤崩壊検知システムに関するものであり、詳しくは、地滑りや土砂崩れといった地盤崩壊による土砂災害が発生するおそれのある傾斜地の変位を観測することによって、地盤崩壊の発生や前兆現象を検知するためのシステムに関するものである。 The present invention relates to a ground collapse detection system, and in particular, detects the occurrence of a ground collapse or a precursor phenomenon by observing the displacement of an inclined land where a landslide disaster such as a landslide or a landslide may occur. It is about the system for.
近年、集中豪雨等による山肌の地滑りや土砂崩れといった地盤崩壊による土砂災害が多発している。このため、土砂災害の前兆現象を検知して地盤崩壊の発生時期を予測して警報を発することにより、被害を最小限に抑えるための検知技術の開発がますます重要となってきている。しかし、例えば洪水被害の場合は、河川の水位の上昇といった顕著な現象によって予測可能であるのに対し、地滑りや土砂崩れといった地盤崩壊による土砂災害を予測するには、崩壊の前兆となる微少変位を精度良く検知する必要がある。 In recent years, landslide disasters due to ground collapse such as landslides and landslides due to heavy rain have occurred frequently. For this reason, it is becoming more and more important to develop detection technology to minimize damage by detecting warning signs of landslide disasters, predicting the occurrence of ground collapse, and issuing warnings. However, in the case of flood damage, for example, it can be predicted by a remarkable phenomenon such as a rise in the water level of the river, but in order to predict landslide disasters caused by ground collapse such as landslides and landslides, a small displacement that is a precursor to the collapse is used. It is necessary to detect with high accuracy.
地盤崩壊の前兆となる斜面の微少変位を検知することによって土砂災害を予測するための従来技術としては、図4に示すように、山肌など監視対象斜面200に設置したターゲット102を、異なる方向から複数の変位検知装置101によって撮影し、その画像を用いてターゲット102を設置した斜面200の変位情報を検知し、異常変位が判断されると警報を発するようにしたものが知られている(例えば下記の特許文献1参照)。 As a conventional technique for predicting a landslide disaster by detecting a slight displacement of a slope that is a sign of ground collapse, as shown in FIG. 4, a target 102 installed on a monitored slope 200 such as a mountain surface is viewed from different directions. It is known that a plurality of displacement detection devices 101 are used to detect displacement information of the slope 200 on which the target 102 is installed using the images, and issue an alarm when an abnormal displacement is determined (for example, See Patent Document 1 below).
また、監視対象斜面に打ち込んだアンカーに検知用のワイヤを張設し、斜面に変位を生じた場合のワイヤの張力変化を電気的に検知し、監視者への異常報知を行うようにしたものも知られている。 In addition, a detection wire is stretched on the anchor driven on the slope to be monitored, and the change in wire tension when the displacement occurs on the slope is electrically detected to notify the monitor of the abnormality. Is also known.
しかしながら、従来の技術によれば、土砂崩れ等が発生するおそれが想定される危険箇所にターゲットなどの装置を配置する必要があり、すなわち危険箇所への作業者の立ち入りが必要であった。また、計測箇所がターゲットなどの物理的な装置によるため、1回の計測範囲が狭く、特許文献1に開示された技術は、変位検知装置101にごみや鳥などが撮影された場合、撮影された画像内の特徴点が大きく変化することによって異常と判定してしまう誤判定の恐れがあり、検知精度が低いといった問題がある。 However, according to the conventional technology, it is necessary to arrange a device such as a target in a dangerous place where a possibility of landslide or the like may occur, that is, an operator needs to enter the dangerous place. In addition, since the measurement location is based on a physical device such as a target, the one-time measurement range is narrow, and the technique disclosed in Patent Document 1 is photographed when garbage or birds are photographed by the displacement detection device 101. There is a risk of erroneous determination that a feature point in an image is greatly changed, thereby determining an abnormality, and there is a problem that detection accuracy is low.
本発明は、以上のような点に鑑みてなされたものであって、その技術的課題は、土砂崩れ等が発生するおそれがある危険な斜面へ作業者が立ち入る必要がなく、しかも検知の精度が高い地盤崩壊検知システムを提供することにある。 The present invention has been made in view of the above points, and its technical problem is that it is not necessary for an operator to enter a dangerous slope where landslides may occur, and the detection accuracy is high. It is to provide a high ground collapse detection system.
上述した技術的課題を有効に解決するための手段として、請求項1の発明に係る地盤崩壊検知システムは、地盤崩壊による土砂災害が発生するおそれのある監視対象斜面から離れた遠隔地に設置されて前記監視対象斜面を異なる視点で撮影する複数のカメラと、前記カメラによる画像データを処理する演算処理装置を備え、前記演算処理装置が、前記各カメラによる複数の二次元画像データから三次元モデルを生成する三次元モデル生成部と、前記三次元モデルから特定箇所の三次元座標データを取得する座標データ取得部と、取得された前記三次元座標データの変化から前記監視対象斜面の微少変位を検知する変位検知部を備えることを特徴とするものである。 As a means for effectively solving the technical problem described above, the ground collapse detection system according to the invention of claim 1 is installed in a remote place away from a slope to be monitored where a landslide disaster may occur due to ground collapse. A plurality of cameras that capture the slope to be monitored from different viewpoints, and an arithmetic processing device that processes image data from the cameras, the arithmetic processing device comprising a three-dimensional model from a plurality of two-dimensional image data from the cameras. A three-dimensional model generation unit that generates a coordinate data acquisition unit that acquires three-dimensional coordinate data of a specific location from the three-dimensional model, and a minute displacement of the slope to be monitored from a change in the acquired three-dimensional coordinate data. A displacement detection unit for detection is provided.
請求項2の発明に係る地盤崩壊検知システムは、請求項1に記載された構成において、カメラが遠隔操作方式の無人飛行体に搭載されたことを特徴とするものである。 The ground collapse detection system according to the invention of claim 2 is characterized in that, in the configuration described in claim 1, the camera is mounted on a remotely operated unmanned air vehicle.
請求項3の発明に係る地盤崩壊検知システムは、請求項1又は2に記載された構成において、三次元モデルから取得された特定箇所の三次元座標データが所定値を超えて変化したときに警報を発する警報部を備えることを特徴とするものである。 A ground collapse detection system according to a third aspect of the present invention provides a warning when the three-dimensional coordinate data of a specific location acquired from a three-dimensional model changes beyond a predetermined value in the configuration described in the first or second aspect. It is provided with the alarm part which emits.
請求項4の発明に係る地盤崩壊検知システムは、請求項1〜3のいずれかに記載された構成において、特定箇所の三次元座標データの変化が、平常時の画像データによる三次元モデルから取得された三次元座標データとの比較により検知されることを特徴とするものである。 A ground collapse detection system according to a fourth aspect of the present invention is the configuration described in any one of the first to third aspects, wherein a change in the three-dimensional coordinate data at a specific location is obtained from a three-dimensional model based on normal image data. It is detected by comparison with the obtained three-dimensional coordinate data.
本発明に係る地盤崩壊検知システムによれば、危険な監視対象斜面に、監視のためのターゲット等を設置することなく、監視対象斜面から離れたカメラで撮像した視点の異なる複数の二次元画像データを用いて三次元モデルを生成し、その任意の箇所の三次元座標の変化を利用するものであるため、地盤崩壊又はその前兆現象の検知を安全に行うことができる。しかも三次元モデル化の際に画像データ中に存在するごみや鳥類などの撮像は除去することが可能であるため、検知精度を向上することができる。 According to the ground collapse detection system according to the present invention, a plurality of two-dimensional image data having different viewpoints captured by a camera away from the monitoring target slope without installing a monitoring target on the dangerous monitoring target slope. Is used to generate a three-dimensional model and use a change in three-dimensional coordinates at an arbitrary location, so that it is possible to safely detect ground collapse or its precursor. In addition, since it is possible to remove imaging such as dust and birds existing in the image data during the three-dimensional modeling, it is possible to improve detection accuracy.
以下、本発明に係る地盤崩壊検知システムの好ましい実施の形態を、図1及び図2を参照しながら説明する。まず図1において、参照符号Aは山地、Bは山地Aのうち降雨の際などに土砂崩れや地滑りなど地盤崩壊による土砂災害が発生するおそれが指摘される山肌などの監視対象斜面である。 Hereinafter, a preferred embodiment of a ground collapse detection system according to the present invention will be described with reference to FIGS. 1 and 2. First, in FIG. 1, reference numeral A is a mountainous area, and B is a monitoring target slope such as a mountain surface where it is pointed out that landslide disasters such as landslides and landslides may occur during rainfall in the mountainous area A.
監視対象斜面Bから離れた安全な遠隔地C1,C2には、監視対象斜面Bを互いに異なる視点で撮影するカメラ1がそれぞれ設置されている。また、参照符号2は例えば複数のロータを備え、垂直離着陸やホバリングが可能な遠隔操作方式の小型の無人ヘリコプタ21あるいは小型の無人飛行機22を利用した空撮装置であり、カメラ10がそれぞれ搭載されている。 Cameras 1 for photographing the monitoring target slope B from different viewpoints are respectively installed in the safe remote areas C1 and C2 away from the monitoring target slope B. Reference numeral 2 is an aerial imaging apparatus using a small unmanned helicopter 21 or a small unmanned airplane 22 of a remote control system that includes a plurality of rotors and can perform vertical take-off and landing and hovering. ing.
遠隔地C1,C2に設置されたカメラ1あるいは空撮装置2に搭載されたカメラ10は、図2に示すように、いずれもレンズ11により取り込んだ光学像をCCDやCMOS等の撮像素子12によって、適当な時間間隔で、かつ互いに同期したタイミングで画像信号に変換(撮像)し、その画像データを処理部13で画像処理し、送信部14によって、撮影時刻のデータや、不図示のGPS(Global Positioning System)による撮影位置データ(各カメラ1,10の位置データ)と共に送信するものである。 As shown in FIG. 2, the camera 1 installed in the remote place C1, C2 or the camera 10 mounted on the aerial imaging apparatus 2 uses an image sensor 12 such as a CCD or CMOS to capture an optical image captured by the lens 11. The image data is converted (imaged) at an appropriate time interval and at a timing synchronized with each other, and the image data is subjected to image processing by the processing unit 13, and the transmission unit 14 performs shooting time data or GPS (not shown) It is transmitted together with shooting position data (position data of each camera 1 and 10) by Global Positioning System.
監視対象斜面Bから離れた他の安全な遠隔地Dには、監視装置3が設置されている。監視装置3は例えばパーソナルコンピュータからなるものであって、公知の3Dモデリングソフトウエアによる処理プログラムを実行する演算制御部31と、キーボードやマウス等による入力部32と、演算制御部31からの画像データや撮影時刻、撮影位置等のデータが書き込まれる記憶部33と、各カメラ1,10に内蔵された送信部14から送信された画像データを受信する受信部34と、演算制御部31からの出力データを表示する表示部35と、演算制御部31によって駆動される警報部36を備える。なお、カメラ1,10における送信部14と監視装置3における受信部34との間でのデータの送受信は、無線通信によるものでも良いし、有線通信によるものであっても良い。 A monitoring device 3 is installed in another safe remote place D away from the monitoring target slope B. The monitoring device 3 is composed of, for example, a personal computer, and includes an arithmetic control unit 31 that executes a processing program using known 3D modeling software, an input unit 32 such as a keyboard or a mouse, and image data from the arithmetic control unit 31. And a storage unit 33 in which data such as a shooting time and a shooting position are written, a receiving unit 34 that receives image data transmitted from the transmitting unit 14 built in each camera 1, 10, and an output from the arithmetic control unit 31. A display unit 35 for displaying data and an alarm unit 36 driven by the calculation control unit 31 are provided. Note that data transmission / reception between the transmission unit 14 in the cameras 1 and 10 and the reception unit 34 in the monitoring device 3 may be performed by wireless communication or by wired communication.
監視装置3における演算制御部31は、公知の3Dモデリングソフトウエアによる処理プログラムによって、各カメラ1,10で同時刻に撮影された二次元画像データ及びGPSによる撮影位置データから三次元モデルを生成する三次元モデル生成部31aと、生成された三次元モデルから特定箇所の三次元座標データを取得する座標データ取得部31bと、座標データ取得部31bで取得された三次元座標データの変化を検知することによって監視対象斜面Bの変位を検知する変位検知部31cとして機能するものである。 The arithmetic control unit 31 in the monitoring device 3 generates a three-dimensional model from two-dimensional image data photographed at the same time by the cameras 1 and 10 and photographing position data by GPS by a processing program using known 3D modeling software. The three-dimensional model generation unit 31a, a coordinate data acquisition unit 31b that acquires three-dimensional coordinate data of a specific location from the generated three-dimensional model, and a change in the three-dimensional coordinate data acquired by the coordinate data acquisition unit 31b are detected. This functions as a displacement detector 31c that detects the displacement of the slope B to be monitored.
三次元モデル生成部31aによって複数の二次元画像データから三次元モデルを生成する方法としては、異なる視点から撮影された二次元画像上で物体表面上の点の対応づけを行って、三角測量の手法により三次元形状を生成するステレオマッチング処理や、異なる視点から撮影された二次元画像上の対象物のシルエットから複数の視体積を求め、その交差領域によって対象物の三次元形状を生成する視体積交差法(シルエット法)などの公知の方法が好適に採用される。 As a method of generating a 3D model from a plurality of 2D image data by the 3D model generation unit 31a, points on an object surface are correlated on a 2D image taken from different viewpoints, and triangulation is performed. A stereo matching process that generates a three-dimensional shape using a technique, or a view that generates multiple view volumes from silhouettes of an object on a two-dimensional image taken from different viewpoints, and generates a three-dimensional shape of the object from the intersection area. A known method such as a volume intersection method (silhouette method) is preferably employed.
座標データ取得部31bは、三次元モデル生成部31aによって生成された三次元モデルに含まれる特徴点の三次元座標測量データ(特定の点の標高や位置、カメラ1,10からの距離など)を算出するものである。取得されたデータは、記憶部33に逐次保存され、データの履歴として蓄積される。 The coordinate data acquisition unit 31b obtains the three-dimensional coordinate survey data of the feature points included in the three-dimensional model generated by the three-dimensional model generation unit 31a (elevation and position of a specific point, distance from the cameras 1 and 10). Is to be calculated. The acquired data is sequentially stored in the storage unit 33 and accumulated as a data history.
変位検知部31cは、平常時に撮影された画像データによる三次元モデルから取得され記憶部33に保存された三次元座標データと、最新の三次元モデルから取得された三次元座標データとの差分を、あらかじめ設定され記憶部33に記憶された閾値と比較することにより、監視対象斜面Bの変位を検知するものである。 The displacement detection unit 31c calculates a difference between the 3D coordinate data acquired from the 3D model based on the image data captured in the normal state and stored in the storage unit 33, and the 3D coordinate data acquired from the latest 3D model. The displacement of the monitoring target slope B is detected by comparing with a threshold value set in advance and stored in the storage unit 33.
表示部35は、液晶ディスプレイ装置等からなるものであって、三次元モデル生成部31aによって生成された三次元モデルの画像データは、この表示部35に表示することができる。また、表示される三次元画像は、キーボードやマウス等による入力部32の操作によって、回転や拡大、縮小などを自在に行うことができるようになっている。 The display unit 35 includes a liquid crystal display device or the like, and the image data of the three-dimensional model generated by the three-dimensional model generation unit 31a can be displayed on the display unit 35. The displayed three-dimensional image can be freely rotated, enlarged, and reduced by operating the input unit 32 using a keyboard, a mouse, or the like.
警報部36は、変位検知部31cにおいて設定された閾値を超える監視対象斜面Bの変位が検知された場合に演算制御部31から出力される発報指令により駆動されるものであって、例えばランプの点滅によるものや、ブザー等、音で報知するもの、あるいは管理者が携帯する通信端末などが好適に使用される。 The alarm unit 36 is driven by a notification command output from the calculation control unit 31 when a displacement of the monitoring target slope B exceeding the threshold set in the displacement detection unit 31c is detected. For example, a flashing light, a buzzer or the like that is notified by sound, or a communication terminal carried by an administrator is preferably used.
以上の構成を備える地盤崩壊検知システムによれば、監視対象斜面Bから離れた安全な遠隔地C1,C2に設置されたカメラ1あるいは空撮装置2のカメラ10は、適当な時間間隔で、かつ互いに同期したタイミングで山地Aにおける監視対象斜面Bを撮像する。この場合、空撮装置2を用いることによって、狭い場所や高所なども撮影することができるといった利点がある。撮像された二次元画像データは、処理部13で画像処理されると共に、送信部14から、撮影時刻のデータや、撮影位置データと共に送信され、遠隔地Dにある監視装置3の受信部34で受信され、記憶部33に保存される。 According to the ground collapse detection system having the above configuration, the camera 1 or the camera 10 of the aerial imaging device 2 installed in the safe remote area C1, C2 away from the monitoring target slope B is set at an appropriate time interval, and The monitoring target slope B in the mountain area A is imaged at a timing synchronized with each other. In this case, by using the aerial imaging apparatus 2, there is an advantage that it is possible to photograph a narrow place or a high place. The captured two-dimensional image data is image-processed by the processing unit 13 and transmitted from the transmission unit 14 together with the data of the photographing time and the photographing position data, and is received by the receiving unit 34 of the monitoring device 3 in the remote place D. Received and stored in the storage unit 33.
図3は、監視装置3の演算制御部31による処理を示すフローチャートである。すなわち演算制御部31は、まず記憶部33から、同時刻に撮影された視点の異なる複数の二次元画像データを読み出し(ステップS1)、三次元モデル生成部31aによってステレオマッチング処理もしくは視体積交差法を用いて監視対象斜面Bの三次元形状を生成する(ステップS2)。 FIG. 3 is a flowchart showing processing by the arithmetic control unit 31 of the monitoring device 3. That is, the arithmetic control unit 31 first reads out a plurality of two-dimensional image data having different viewpoints taken at the same time from the storage unit 33 (step S1), and the three-dimensional model generation unit 31a performs a stereo matching process or a view volume intersection method. Is used to generate a three-dimensional shape of the slope B to be monitored (step S2).
このとき、画像中に、監視対象斜面Bの手前に存在するごみや鳥など、監視に対する障害物Xが写っている場合は、監視対象斜面Bに対する各カメラ1,10の視差によって、障害物Xと監視対象斜面Bの位置関係を三次元で把握することができるため、各カメラ1,10に撮影範囲を指定しておくことによって、監視対象斜面Bの三次元モデルから障害物Xを容易に除去することができる。 At this time, when an obstacle X for monitoring such as garbage or birds existing in front of the monitoring target slope B is reflected in the image, the obstacle X is determined by the parallax of the cameras 1 and 10 with respect to the monitoring target slope B. Since the positional relationship between the monitoring target slope B and the monitoring target slope B can be grasped in three dimensions, the obstacle X can be easily obtained from the three-dimensional model of the monitoring target slope B by specifying the photographing range for each camera 1, 10. Can be removed.
次に、ステレオマッチング処理もしくは視体積交差法により生成された三次元モデルから、座標データ取得部31bにおいて、特定の点の標高や位置、距離などの三次元座標の測量データを取得する(ステップS3)。 Next, from the three-dimensional model generated by the stereo matching process or the visual volume intersection method, the coordinate data acquisition unit 31b acquires survey data of three-dimensional coordinates such as the altitude, position, and distance of a specific point (step S3). ).
次に、変位検知部31cにおいて、この三次元座標データと、平常時に撮影された画像データによる三次元モデルから取得され記憶部33に保存された三次元座標データとの差分を算出することによって三次元モデルの画像中の任意の特徴点など特定の点の変位を検知し(ステップS4)、検知された変位量があらかじめ設定された閾値以上である場合は(ステップS5=YES)、警報部36への発報指令を出力し(ステップS6)、閾値未満である場合は(ステップS5=NO)、処理はステップS1に戻って、次の撮影時刻に撮影された二次元画像データの読み出しが行われる。 Next, the displacement detection unit 31c calculates the difference between the three-dimensional coordinate data and the three-dimensional coordinate data acquired from the three-dimensional model of the image data captured in the normal state and stored in the storage unit 33, thereby obtaining the tertiary. When a displacement of a specific point such as an arbitrary feature point in the image of the original model is detected (step S4), and the detected displacement amount is equal to or larger than a preset threshold (step S5 = YES), the alarm unit 36 Is issued (step S6), and if it is less than the threshold (step S5 = NO), the process returns to step S1 to read the two-dimensional image data taken at the next photographing time. Is called.
したがって、上述した実施の形態によれば、土砂崩れや地滑りなど地盤崩壊による土砂災害が発生するおそれが指摘される山肌などの危険な監視対象斜面Bに作業者が立ち入る必要がないので安全であり、ターゲットなど特殊な装置を設置する必要がないため、容易に実施することができ、しかも計測箇所がターゲットなどの設置個所に限定されるものではなく、カメラ1,10による二次元画像データを三次元モデリングするものであるため一度に広範囲の変位検知が可能である。 Therefore, according to the above-described embodiment, it is safe because an operator does not have to enter the dangerous monitoring target slope B such as a mountain surface where there is a possibility that a landslide disaster due to ground collapse such as landslide and landslide may occur. Since it is not necessary to install a special device such as a target, the measurement can be easily performed, and the measurement location is not limited to the installation location such as the target. Because it is modeled, it can detect a wide range of displacement at once.
また、三次元モデルを生成して起伏の座標データの変化を求めるものであるため、精度良く検知することができ、画像中に写っているごみや鳥など、監視に対する障害物Xの存在による誤検知も防止することができる。 Moreover, since a three-dimensional model is generated to determine the change in the coordinate data of the undulations, it can be detected with high accuracy, and there is an error due to the presence of an obstacle X for monitoring, such as dust and birds reflected in the image. Detection can also be prevented.
また、上述した実施の形態では複数の固定式のカメラ1のほか、無人ヘリコプタ21あるいは小型の無人飛行機22にカメラ10を搭載した空撮装置2を用いているが、複数の固定式のカメラ1のみ、あるいは複数の空撮装置2のみを用いても良い。 In the above-described embodiment, in addition to the plurality of fixed cameras 1, the aerial imaging device 2 in which the camera 10 is mounted on the unmanned helicopter 21 or the small unmanned airplane 22 is used. Or only a plurality of aerial imaging devices 2 may be used.
本発明に係る地盤崩壊検知システムは、例えば山間部での鉄道や道路の工事などにおいて線路脇や道路脇の山肌の監視に利用することで、土砂崩れなどの危険性を検知するのに有効である。 The ground collapse detection system according to the present invention is effective for detecting the risk of landslides, for example, by monitoring the side of a track or the side of a road in the construction of a railway or road in a mountainous area. .
1,10 カメラ
2 空撮装置
3 監視装置
B 監視対象斜面
C1,C2,D 遠隔地
1,10 Camera 2 Aerial device 3 Monitoring device B Oblique slope C1, C2, D
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015060960A JP6673641B2 (en) | 2015-03-24 | 2015-03-24 | Ground collapse detection system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015060960A JP6673641B2 (en) | 2015-03-24 | 2015-03-24 | Ground collapse detection system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016180681A true JP2016180681A (en) | 2016-10-13 |
JP6673641B2 JP6673641B2 (en) | 2020-03-25 |
Family
ID=57131546
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015060960A Active JP6673641B2 (en) | 2015-03-24 | 2015-03-24 | Ground collapse detection system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6673641B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101819546B1 (en) * | 2017-04-27 | 2018-01-17 | 이정우 | The system for monitoring tunnel collapse based on drop detection sensor |
CN108560525A (en) * | 2018-04-28 | 2018-09-21 | 四川理工学院 | A kind of benchmaring structure of side slope protection monitoring device |
JP2018178483A (en) * | 2017-04-11 | 2018-11-15 | 大成建設株式会社 | Deformation measuring device for retaining wall, deformation measurement system, and retaining structure |
CN109446726A (en) * | 2018-11-26 | 2019-03-08 | 泉州装备制造研究所 | The slope monitoring system of acquisition slope deforming three-dimensional data based on big data analysis |
JP2019066242A (en) * | 2017-09-29 | 2019-04-25 | 株式会社トプコン | Pile head analysis system, pile head analysis method, and pile head analysis program |
JP2019094666A (en) * | 2017-11-22 | 2019-06-20 | 株式会社興和 | Anchor construction position display device and construction method for slope face structure |
CN110847140A (en) * | 2019-10-22 | 2020-02-28 | 上海建工电子商务有限公司 | Soil slope stability monitoring method |
JP2020060526A (en) * | 2018-10-12 | 2020-04-16 | 株式会社熊谷組 | Method and system for monitoring collapsed slope |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07110214A (en) * | 1993-10-07 | 1995-04-25 | Wacom Co Ltd | Optical position detecting device |
JPH11120352A (en) * | 1997-10-15 | 1999-04-30 | Mitsubishi Electric Corp | Processor and method for image processing |
JP2001195578A (en) * | 2000-01-06 | 2001-07-19 | Kumagai Gumi Co Ltd | Fluctuation quantity output device for monitor area surface |
JP2002016906A (en) * | 2000-06-30 | 2002-01-18 | Toshiba Corp | Long-term continuous monitoring system and method for long-term continuous monitoring using monitoring camera |
JP2003240613A (en) * | 2002-02-20 | 2003-08-27 | Tamu Tec:Kk | Remote monitoring device |
JP2006027331A (en) * | 2004-07-13 | 2006-02-02 | Hiroboo Kk | Method for collecting aerial image information by utilizing unmanned flying object |
JP2008281385A (en) * | 2007-05-09 | 2008-11-20 | Olympus Corp | Image processing device |
JP2010041586A (en) * | 2008-08-07 | 2010-02-18 | Olympus Corp | Imaging device |
JP2012083237A (en) * | 2010-10-13 | 2012-04-26 | Japan Conservation Engineers Co Ltd | Slope deformation monitoring method using ground 3d laser scanner without installing target |
CN104299365A (en) * | 2014-08-06 | 2015-01-21 | 江苏恒创软件有限公司 | Method for monitoring mountain landslide and debris flow in mountainous areas based on unmanned aerial vehicle |
JP2015203685A (en) * | 2014-04-16 | 2015-11-16 | 富士通株式会社 | Environment monitoring system and environment monitoring method |
-
2015
- 2015-03-24 JP JP2015060960A patent/JP6673641B2/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07110214A (en) * | 1993-10-07 | 1995-04-25 | Wacom Co Ltd | Optical position detecting device |
JPH11120352A (en) * | 1997-10-15 | 1999-04-30 | Mitsubishi Electric Corp | Processor and method for image processing |
JP2001195578A (en) * | 2000-01-06 | 2001-07-19 | Kumagai Gumi Co Ltd | Fluctuation quantity output device for monitor area surface |
JP2002016906A (en) * | 2000-06-30 | 2002-01-18 | Toshiba Corp | Long-term continuous monitoring system and method for long-term continuous monitoring using monitoring camera |
JP2003240613A (en) * | 2002-02-20 | 2003-08-27 | Tamu Tec:Kk | Remote monitoring device |
JP2006027331A (en) * | 2004-07-13 | 2006-02-02 | Hiroboo Kk | Method for collecting aerial image information by utilizing unmanned flying object |
JP2008281385A (en) * | 2007-05-09 | 2008-11-20 | Olympus Corp | Image processing device |
JP2010041586A (en) * | 2008-08-07 | 2010-02-18 | Olympus Corp | Imaging device |
JP2012083237A (en) * | 2010-10-13 | 2012-04-26 | Japan Conservation Engineers Co Ltd | Slope deformation monitoring method using ground 3d laser scanner without installing target |
JP2015203685A (en) * | 2014-04-16 | 2015-11-16 | 富士通株式会社 | Environment monitoring system and environment monitoring method |
CN104299365A (en) * | 2014-08-06 | 2015-01-21 | 江苏恒创软件有限公司 | Method for monitoring mountain landslide and debris flow in mountainous areas based on unmanned aerial vehicle |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018178483A (en) * | 2017-04-11 | 2018-11-15 | 大成建設株式会社 | Deformation measuring device for retaining wall, deformation measurement system, and retaining structure |
KR101819546B1 (en) * | 2017-04-27 | 2018-01-17 | 이정우 | The system for monitoring tunnel collapse based on drop detection sensor |
JP6996925B2 (en) | 2017-09-29 | 2022-01-17 | 株式会社トプコン | Pile head analysis system, pile head analysis method, and pile head analysis program |
JP2019066242A (en) * | 2017-09-29 | 2019-04-25 | 株式会社トプコン | Pile head analysis system, pile head analysis method, and pile head analysis program |
US11195016B2 (en) | 2017-09-29 | 2021-12-07 | Topcon Corporation | Pile head analysis system, pile head analysis method, and storage medium in which pile head analysis program is stored |
JP2019094666A (en) * | 2017-11-22 | 2019-06-20 | 株式会社興和 | Anchor construction position display device and construction method for slope face structure |
CN108560525A (en) * | 2018-04-28 | 2018-09-21 | 四川理工学院 | A kind of benchmaring structure of side slope protection monitoring device |
CN108560525B (en) * | 2018-04-28 | 2020-09-01 | 四川理工学院 | Side slope protection monitoring devices's benchmark detects structure |
JP7094854B2 (en) | 2018-10-12 | 2022-07-04 | 株式会社熊谷組 | Collapsed slope monitoring method and collapsed slope monitoring system |
JP2020060526A (en) * | 2018-10-12 | 2020-04-16 | 株式会社熊谷組 | Method and system for monitoring collapsed slope |
CN109446726A (en) * | 2018-11-26 | 2019-03-08 | 泉州装备制造研究所 | The slope monitoring system of acquisition slope deforming three-dimensional data based on big data analysis |
CN109446726B (en) * | 2018-11-26 | 2023-03-24 | 泉州装备制造研究所 | Slope monitoring system for acquiring three-dimensional data of slope deformation based on big data analysis |
CN110847140A (en) * | 2019-10-22 | 2020-02-28 | 上海建工电子商务有限公司 | Soil slope stability monitoring method |
Also Published As
Publication number | Publication date |
---|---|
JP6673641B2 (en) | 2020-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6673641B2 (en) | Ground collapse detection system | |
US20220122288A1 (en) | Information processing device, information processing method, and computer program | |
JP6712778B2 (en) | Object detection device, object detection system, and object detection method | |
JP5590533B2 (en) | Tilt change monitoring system and tilt change monitoring method | |
JP2009008662A (en) | Object detection cooperatively using sensor and video triangulation | |
CN111435081B (en) | Sea surface measuring system, sea surface measuring method and storage medium | |
KR101880437B1 (en) | Unmanned surface vehicle control system for providing wide viewing angle using real camera image and virtual camera image | |
KR101852057B1 (en) | unexpected accident detecting system using images and thermo-graphic image | |
CN106463032A (en) | Intrusion detection with directional sensing | |
CN104902246A (en) | Video monitoring method and device | |
JP6806396B1 (en) | Disaster prediction system and disaster prediction method | |
JP6666245B2 (en) | Method, system, computer program product and apparatus for selecting operating mode of mobile platform | |
JP2011095112A (en) | Three-dimensional position measuring apparatus, mapping system of flying object, and computer program | |
US20120183205A1 (en) | Method for displacement measurement, device for displacement measurement, and program for displacement measurement | |
KR100935898B1 (en) | Automatic displacement detecting apparatus and method, and slop maintenance and management system and method using the same | |
JP2011169658A (en) | Device and method for pinpointing photographed position | |
KR101028136B1 (en) | System and method for disaster alarm of structure by displacement based on single photogrammetry | |
JP2018104934A (en) | Displacement monitoring system for tunnel working surface | |
JP6581280B1 (en) | Monitoring device, monitoring system, monitoring method, monitoring program | |
CN115797406A (en) | Out-of-range warning method, device, equipment and storage medium | |
JP7437930B2 (en) | Mobile objects and imaging systems | |
JP2019179015A (en) | Route display device | |
KR101674033B1 (en) | Image mapping system of a closed circuit television based on the three dimensional map | |
Luo et al. | Mobile surveying system for road assets monitoring and management | |
KR101684098B1 (en) | Monitoring system with 3-dimensional sensor and image analysis integrated |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20171130 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20181018 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181024 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181220 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190605 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191023 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191217 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200226 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200305 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6673641 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |