JP7046032B2 - Copper alloys for electronic materials, manufacturing methods and electronic parts for copper alloys for electronic materials - Google Patents
Copper alloys for electronic materials, manufacturing methods and electronic parts for copper alloys for electronic materials Download PDFInfo
- Publication number
- JP7046032B2 JP7046032B2 JP2019075831A JP2019075831A JP7046032B2 JP 7046032 B2 JP7046032 B2 JP 7046032B2 JP 2019075831 A JP2019075831 A JP 2019075831A JP 2019075831 A JP2019075831 A JP 2019075831A JP 7046032 B2 JP7046032 B2 JP 7046032B2
- Authority
- JP
- Japan
- Prior art keywords
- solution treatment
- copper alloy
- mass
- ratio
- electronic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Conductive Materials (AREA)
Description
本発明は、電子材料用銅合金、電子材料用銅合金の製造方法及び電子部品に関し、特に、各種電子部品への適用に好適な析出硬化型銅合金であるCu-Co-Si系合金に関する。 The present invention relates to a copper alloy for electronic materials, a method for producing a copper alloy for electronic materials, and electronic parts, and more particularly to a Cu—Co—Si based alloy, which is a precipitation-curable copper alloy suitable for application to various electronic parts.
コネクタ、スイッチ、リレー、ピン、端子、リードフレーム等の各種電子部品に使用される電子材料用銅合金には、基本特性として高強度及び高導電性(又は熱伝導性)を両立させることが要求される。近年は、スマートフォンやタブレットPCをはじめとした電子機器の小型化に伴い、これらに搭載される基板、コネクタ等も軽薄化、短小化が進んでいる。コネクタ等が小型化した際に端子保持強度を維持し、また複雑な曲げ加工に耐えられるよう、使用される銅合金にも高い強度および曲げ加工性が要求されている。 Copper alloys for electronic materials used in various electronic components such as connectors, switches, relays, pins, terminals, and lead frames are required to have both high strength and high conductivity (or thermal conductivity) as basic characteristics. Will be done. In recent years, with the miniaturization of electronic devices such as smartphones and tablet PCs, the boards, connectors, and the like mounted on them have become thinner and shorter. The copper alloy used is also required to have high strength and bendability so that the terminal holding strength can be maintained when the connector or the like is miniaturized and it can withstand complicated bending.
また、電子機器のバッテリーの大容量化や急速充電ニーズの高まりに伴い、電源端子として用いられる銅合金には発熱抑制の観点から高い導電率が求められる傾向にある。 Further, as the capacity of batteries of electronic devices increases and the needs for quick charging increase, copper alloys used as power supply terminals tend to be required to have high conductivity from the viewpoint of suppressing heat generation.
さらに、電子機器の電気接続用コネクタに求められる特性として、応力緩和特性がある。コネクタ同士は材料の弾性的接触で電気的に接続されているが、高温環境下において接触圧は応力緩和現象により徐々に低下していく。コネクタに応力緩和特性の低い材料を用いた場合、高温環境下では接触不良が生じる可能性があり、また接点部の接触抵抗の上昇に伴いコネクタの発熱量が大きくなる。とりわけ車載用途のコネクタについては、エンジンルームや排気システム等の周辺に装着されるものも増えていることから、より過酷な高温環境下での応力緩和特性が良好な銅合金が希求されている。 Further, stress relaxation characteristics are required for electrical connection connectors of electronic devices. The connectors are electrically connected to each other by elastic contact of materials, but the contact pressure gradually decreases due to the stress relaxation phenomenon in a high temperature environment. When a material having low stress relaxation characteristics is used for the connector, contact failure may occur in a high temperature environment, and the heat generation amount of the connector increases as the contact resistance of the contact portion increases. In particular, as for connectors for in-vehicle use, since the number of connectors mounted around the engine room, exhaust system, etc. is increasing, a copper alloy having good stress relaxation characteristics in a harsher high temperature environment is desired.
高い強度、導電率、曲げ加工性及び良好な応力緩和特性を有する銅合金としてCu-Co-Si合金やCu-Co-Ni-Si合金がある。これらの合金では銅マトリックス中に微細なCo-SiおよびCo-Ni-Si系金属間化合物粒子を析出させ、強度と導電率の向上を図っている。 Cu—Co—Si alloys and Cu—Co—Ni—Si alloys are examples of copper alloys having high strength, conductivity, bending workability and good stress relaxation characteristics. In these alloys, fine Co—Si and Co—Ni—Si intermetallic compound particles are precipitated in the copper matrix to improve the strength and conductivity.
例えば、特許文献1(特許第5117602号公報)には、NiとCoのいずれか1種または2種を合計で0.5~5.0mass%、Siを0.2~1.5mass%含有し、残部が銅及び不可避不純物からなる合金組成を有し、EBSD(Electron Back Scatter Diffraction:電子後方散乱回折)測定における結晶方位解析において、Cube方位{100}<001>の面積率が5%以上、かつNDRDW方位{012}<221>の面積率が10%以下であることを特徴とする銅合金板材が記載されている。これにより、銅合金板材は圧延方向に対して垂直方向のたわみ係数が低く、曲げ加工性に優れ、優れた強度を有し、またコネクタ等の製造工程における歩留が向上するという効果が得られる。 For example, Patent Document 1 (Japanese Patent No. 5117602) contains 0.5 to 5.0 mass% of any one or two of Ni and Co in total, and 0.2 to 1.5 mass% of Si. , The balance has an alloy composition consisting of copper and unavoidable impurities, and the area ratio of the Cube orientation {100} <001> is 5% or more in the crystal orientation analysis in EBSD (Electron Backscatter Diffraction) measurement. Moreover, the copper alloy plate material characterized in that the area ratio of the NDRDW direction {012} <221> is 10% or less is described. As a result, the copper alloy plate has a low deflection coefficient in the direction perpendicular to the rolling direction, has excellent bending workability, has excellent strength, and has the effect of improving the yield in the manufacturing process of connectors and the like. ..
また、特許文献2(特許第5448763号公報)には、NiまたはCoのどちらか一方または両方の合計で0.5~5.0質量%、Siを0.2~1.5質量%、それぞれ含有し、残部がCuおよび不可避的不純物からなる銅合金材料であって、Cube方位の結晶粒の面積率が10%以上、かつRDW方位の結晶粒の面積率が10%以上であることを特徴とする高強度で、曲げ加工性に優れた電気電子部品用銅合金材料が記載されている。このようにする理由は、Cube方位やRDW方位を増加させることで、曲げ加工時の割れの原因となる板表面のせん断帯が少なくなるからである。 Further, in Patent Document 2 (Japanese Patent No. 5448763), the total of either one or both of Ni or Co is 0.5 to 5.0% by mass, and Si is 0.2 to 1.5% by mass, respectively. It is a copper alloy material contained and the balance is composed of Cu and unavoidable impurities, and is characterized in that the area ratio of crystal grains in the Cube orientation is 10% or more and the area ratio of crystal grains in the RDW orientation is 10% or more. A copper alloy material for electrical and electronic parts, which has high strength and excellent bending workability, is described. The reason for doing so is that by increasing the Cube direction and the RDW direction, the shear band on the plate surface that causes cracking during bending is reduced.
また、特許文献3(特許第5534610号公報)には、0.7~3.0質量%のCo、0.1~1.0質量%のSiを含有し、残部が銅及び不可避不純物から成り、双晶境界頻度が40~70%であり、圧延直角方向の結晶粒径のアスペクト比が0.45~0.88であるCu-Co-Si系合金条が記載されている。双晶境界頻度を40~70%とする理由は、境界間の原子の整合性が良い双晶境界を所定の割合に制御することで、境界近傍において不均一変形が起こりにくくなり、曲げ変形時、境界近傍を基点とする割れやしわが発生しにくくなるからである。 Further, Patent Document 3 (Japanese Patent No. 5534610) contains 0.7 to 3.0% by mass of Co and 0.1 to 1.0% by mass of Si, and the balance is composed of copper and unavoidable impurities. A Cu—Co—Si alloy strip having a twin boundary frequency of 40 to 70% and an aspect ratio of crystal grain size in the direction perpendicular to rolling of 0.45 to 0.88 is described. The reason why the twinning boundary frequency is set to 40 to 70% is that by controlling the twinning boundary with good atomic consistency between the boundaries to a predetermined ratio, non-uniform deformation is less likely to occur near the boundary, and bending deformation occurs. This is because cracks and wrinkles starting from the vicinity of the boundary are less likely to occur.
また、特許文献4(特許第4875768号公報)には、NiとCoのいずれか1種または2種を合計で0.5~5.0mass%、Siを0.3~1.5mass%含有し、残部が銅及び不可避不純物からなる組成を有し、0.2%耐力が600MPa以上であり、導電率が35%IACS以上であり、板厚と同じ内側曲げ半径で、圧延方向に対して平行及び垂直な方向に90°W曲げを行った場合に、割れが生じず、耐力の80%の応力を負荷して150℃に1000時間保持した後の応力緩和率が30%以内であり、EBSD測定における結晶方位解析において、Cube方位{001}<100>の面積率が7~47%であることを特徴とする銅合金板材が記載されている。このようにする理由は、塑性変形が局所的に発達して剪断変形帯を形成し、局所的な加工硬化によってマイクロボイドの生成と連結が起こり、成形限界に達することがクラックの原因であり、その対策として、曲げ変形において加工硬化が起きにくい結晶方位の割合を高めることが有効であるからである。 Further, Patent Document 4 (Japanese Patent No. 4875768) contains 0.5 to 5.0 mass% of any one or two of Ni and Co in total and 0.3 to 1.5 mass% of Si. The balance is composed of copper and unavoidable impurities, 0.2% proof stress is 600 MPa or more, conductivity is 35% IACS or more, the inner bending radius is the same as the plate thickness, and it is parallel to the rolling direction. And when 90 ° W bending is performed in the vertical direction, cracking does not occur, the stress relaxation rate after applying a stress of 80% of the yield strength and holding at 150 ° C for 1000 hours is within 30%, and EBSD. A copper alloy plate material characterized in that the area ratio of the Cube orientation {001} <100> is 7 to 47% in the crystal orientation analysis in the measurement is described. The reason for doing this is that the plastic deformation develops locally to form a shear deformation zone, and local work hardening causes the formation and connection of microvoids, reaching the molding limit, which is the cause of cracks. This is because, as a countermeasure, it is effective to increase the ratio of the crystal orientation in which work hardening is unlikely to occur in bending deformation.
しかしながら、電子部品の軽薄化、短小化が進んでおり、それに伴い電子材料用金属部品に求められる0.2%耐力、導電性及び曲げ加工性も上昇傾向にある。また、応力緩和特性に対する要求も高まると予想される。 However, electronic components are becoming thinner and shorter, and along with this, the 0.2% proof stress, conductivity, and bending workability required for metal components for electronic materials are also on the rise. It is also expected that the demand for stress relaxation characteristics will increase.
特許文献1~3に記載された発明は、強度及び曲げ加工性の改善がみられるが、より高度の強度と曲げ加工性の両立が求められる場合、十分に対応できないと思われる。また、応力緩和特性に関しては検討していない。 The inventions described in Patent Documents 1 to 3 show improvements in strength and bending workability, but it seems that they cannot sufficiently cope with the case where both higher strength and bending workability are required. Moreover, the stress relaxation characteristics have not been examined.
特許文献4に記載された発明においては、応力緩和特性が課題とされていたものの、その解決手段は、Mg、Sn、Znという副添加元素を添加することであり、効果が限定的であるうえ、銅合金材料に対する制約がある場合には十分に対応できないと考えられる。 In the invention described in Patent Document 4, stress relaxation characteristics have been an issue, but the solution thereof is to add sub-additive elements such as Mg, Sn, and Zn, and the effect is limited. , It is considered that it cannot be sufficiently dealt with when there are restrictions on copper alloy materials.
本開示は、上記課題を解決するものであり、電子材料用途として好適な0.2%耐力、導電率を有し、曲げ加工性及び応力緩和特性を向上させた、信頼性の高い電子材料用銅合金を提供することを課題とする。 The present disclosure solves the above problems, and is for highly reliable electronic materials having 0.2% proof stress and conductivity suitable for electronic material applications and having improved bending workability and stress relaxation characteristics. The subject is to provide a copper alloy.
発明者は鋭意検討の結果、0.5~3.0質量%のCoを含有し、かつSiを質量割合でCo/Siが3.0~5.0となるように含有し、残部が銅および不可避的不純物からなる電子材料用銅合金において、圧延面についてEBSD測定により確認される結晶粒のうち、双晶の存在する結晶粒の数の割合を30%以上とし、かつ、圧延直角方向(TD)との角度θが20°以下である双晶境界の全双晶境界に占める割合を40%以上とすることで、0.2%耐力及び導電率を高いレベルに維持しつつ、曲げ加工性及び応力緩和特性を向上させた信頼性の高い電子材料用銅合金が得られることができることを見出した。そして、このような電子材料用銅合金は、製造過程の特定の段階でテンションレベラーにより予歪みの付加を行うことで得ることができるとの新たな知見を得た。 As a result of diligent studies, the inventor contained 0.5 to 3.0% by mass of Co and Si in a mass ratio of Co / Si to 3.0 to 5.0, and the balance was copper. In the copper alloy for electronic materials consisting of unavoidable impurities, the ratio of the number of crystal grains in which twins are present among the crystal grains confirmed by EBSD measurement on the rolled surface is 30% or more, and the direction perpendicular to the rolling direction (rolling perpendicular direction ( By setting the ratio of the twin boundary with the TD) to 20 ° or less to the total twin boundary of 40% or more, bending processing is performed while maintaining the 0.2% resistance and conductivity at a high level. It has been found that a highly reliable copper alloy for electronic materials with improved properties and stress relaxation characteristics can be obtained. Then, we have obtained new knowledge that such a copper alloy for electronic materials can be obtained by adding prestraining with a tension leveler at a specific stage of the manufacturing process.
本発明の実施の形態に係る電子材料用銅合金、電子部品及び電子材料用銅合金の製造方法は、以下のように特定される。
(1)Coを0.5~3.0質量%含有し、かつSiを質量割合でCo/Siが3.0~5.0となるように含有し、残部が銅および不可避的不純物からなり、圧延面についてEBSD測定により確認される結晶粒のうち、双晶の存在する結晶粒の数の割合が30%以上であり、かつ、圧延直角方向(TD)との角度θが20°以下である双晶境界の全双晶境界に占める割合が40%以上である電子材料用銅合金。
(2)さらにCr、Mn、Sn、P、B、Zr、Ti、Mg、Al、Fe及びZnから選択される少なくとも一種類以上の合計が1.0質量%以下である(1)に記載の電子材料用銅合金。
(3)さらにNiを0.1質量%未満で含有する(1)又は(2)に記載の電子材料用銅合金。
(3)(1)~(3)いずれか一項に記載の電子材料用銅合金を備えた電子部品。
(4)Coを0.5~3.0質量%含有し、かつSiを質量割合でCo/Siが3.0~5.0となるように含有し、残部が銅および不可避的不純物からなる銅合金のインゴットを熱間圧延した後、冷間圧延工程及びその後の溶体化処理工程を行う電子材料用銅合金の製造方法であって、溶体化処理工程において、溶体化処理を第1溶体化処理と第2溶体化処理に分けて行い、第1溶体化処理における処理温度を750~900℃、冷却速度を20℃/sec以上とし、第2溶体化処理における処理温度を850~1000℃とし、炉内張力の値を5~10MPaとし、第1溶体化処理と第2溶体化処理との間に、テンションレベラーにより1.5~3.0%の予歪みの付加を行うことを特徴とする電子材料用銅合金の製造方法。
The method for producing a copper alloy for electronic materials, electronic components, and a copper alloy for electronic materials according to an embodiment of the present invention is specified as follows.
(1) Co is contained in an amount of 0.5 to 3.0% by mass, Si is contained in a mass ratio of Co / Si of 3.0 to 5.0, and the balance is composed of copper and unavoidable impurities. Of the crystal grains confirmed by EBSD measurement on the rolled surface, the ratio of the number of crystal grains in which twins are present is 30% or more, and the angle θ with the rolling perpendicular direction (TD) is 20 ° or less. A copper alloy for electronic materials in which a certain twin boundary occupies 40% or more of all twin boundaries.
(2) Further, according to (1), the total of at least one selected from Cr, Mn, Sn, P, B, Zr, Ti, Mg, Al, Fe and Zn is 1.0% by mass or less. Copper alloy for electronic materials.
(3) The copper alloy for electronic materials according to (1) or (2), which further contains Ni in an amount of less than 0.1% by mass.
(3) An electronic component provided with the copper alloy for electronic materials according to any one of (1) to (3).
(4) Co is contained in an amount of 0.5 to 3.0% by mass, Si is contained in a mass ratio of Co / Si of 3.0 to 5.0, and the balance is composed of copper and unavoidable impurities. A method for producing a copper alloy for electronic materials, in which a copper alloy ingot is hot-rolled and then a cold rolling step and a subsequent solution treatment step are performed. In the solution treatment step, the solution treatment is made into a first solution. The treatment and the second solution treatment are performed separately, and the treatment temperature in the first solution treatment is 750 to 900 ° C, the cooling rate is 20 ° C / sec or more, and the treatment temperature in the second solution treatment is 850 to 1000 ° C. The value of the in-core tension is set to 5 to 10 MPa, and a prestrain of 1.5 to 3.0% is added by a tension leveler between the first solution treatment and the second solution treatment. A method for manufacturing copper alloys for electronic materials.
本開示によれば、電子材料用途として好適な0.2%耐力、導電率を有し、曲げ加工性及び応力緩和特性を向上させた信頼性の高い電子材料用銅合金が得られる。 According to the present disclosure, a highly reliable copper alloy for electronic materials having 0.2% proof stress and conductivity suitable for electronic material applications and having improved bending workability and stress relaxation characteristics can be obtained.
以下に、本発明の実施の形態について詳細に説明する。
この発明の一の実施形態の電子材料用銅合金は、Coを0.5~3.0質量%含有し、かつSiを質量割合でCo/Siが3.0~5.0となるように含有し、残部が銅および不可避的不純物からなり、圧延面についてEBSD測定により確認される結晶粒のうち、双晶の存在する結晶粒の数の割合が30%以上であり、かつ、圧延直角方向(TD)との角度θが20°以下である双晶境界の全双晶境界に占める割合が40%以上である。
Hereinafter, embodiments of the present invention will be described in detail.
The copper alloy for electronic materials according to the embodiment of the present invention contains 0.5 to 3.0% by mass of Co and has a Co / Si content of 3.0 to 5.0 in a mass ratio of Si. The ratio of the number of crystal grains in which twins are present is 30% or more among the crystal grains contained and the balance is composed of copper and unavoidable impurities and confirmed by EBSD measurement on the rolled surface, and the direction perpendicular to the rolling direction. The ratio of the twin boundary having an angle θ with (TD) of 20 ° or less to the total twin boundary is 40% or more.
(Coの添加量)
Co及びSiは、適当な熱処理を施すことによりCo2Siとして母相中に析出し、導電率を劣化させずに高強度化が図れる。ただし、Co濃度が0.5%未満の場合は析出硬化が不十分となり、他方の成分を添加しても所望とする強度が得られない。また、Co濃度が3.0質量%を超える場合は十分な強度が得られるものの、導電性や曲げ加工性、熱間加工性が低下する。
(Amount of Co added)
By applying an appropriate heat treatment, Co and Si are precipitated as Co 2 Si in the matrix phase, and the strength can be increased without deteriorating the conductivity. However, if the Co concentration is less than 0.5%, precipitation hardening becomes insufficient, and even if the other component is added, the desired strength cannot be obtained. Further, when the Co concentration exceeds 3.0% by mass, sufficient strength is obtained, but conductivity, bending workability, and hot workability are deteriorated.
(Siの添加量)
Siは質量割合でCo/Siが3.0~5.0となるように調整する。上記割合とすれば、析出硬化後の強度と導電率を共に向上させることができる。上記割合が5.0を超えると、時効処理でのCo2Siの析出が不十分になり、強度が低下する。上記割合が3.0未満であると、Co2Siとして析出しないSiが母相中に固溶し、導電率が低下する。
(Amount of Si added)
Si is adjusted so that Co / Si is 3.0 to 5.0 in terms of mass ratio. With the above ratio, both the strength and conductivity after precipitation hardening can be improved. If the above ratio exceeds 5.0, the precipitation of Co 2 Si in the aging treatment becomes insufficient, and the strength decreases. When the above ratio is less than 3.0, Si that does not precipitate as Co 2 Si dissolves in the matrix phase, and the conductivity decreases.
(双晶境界頻度及び双晶粒界の角度)
銅合金の圧延面についてEBSD測定により確認される結晶粒のうち、双晶の存在する結晶粒の数の割合が30%以上であることが必要である。好ましくは35%以上、さらに好ましくは40%以上とする。同時に、圧延直角方向(TD)との角度θが20°以下である双晶境界の全双晶境界に占める割合を40%以上とする。好ましくは45%以上、さらに好ましくは50%以上とする。
(Twin boundary frequency and twin grain boundary angle)
It is necessary that the ratio of the number of crystal grains in which twins are present to the crystal grains confirmed by EBSD measurement on the rolled surface of the copper alloy is 30% or more. It is preferably 35% or more, more preferably 40% or more. At the same time, the ratio of the twin boundary having an angle θ with the rolling perpendicular direction (TD) of 20 ° or less to the total twin boundary is set to 40% or more. It is preferably 45% or more, more preferably 50% or more.
結晶粒界は隣接結晶粒間の方位差により大角粒界と小角粒界に分類される。一般に方位差15°以上の結晶粒界は大角粒界、方位差15°未満の結晶粒界は小角粒界と呼ばれる。大角粒界の中でも非常に整合性の高い粒界は対応粒界と呼ばれ、その整合性を示す指標としてΣ値が用いられる。このΣ値は結晶の単位胞に対する対応格子の単位胞の体積の割合の逆数であり、Σ値が低い粒界は粒界エネルギーが低く安定な粒界である。このうちΣ3粒界は双晶粒界であり、Cu-Co-Si合金に対し溶体化処理を行った際に生じる焼鈍双晶がこれに当たる。 Grain boundaries are classified into large-angle grain boundaries and small-angle grain boundaries according to the orientation difference between adjacent crystal grains. Generally, a crystal grain boundary having an orientation difference of 15 ° or more is called a large angle grain boundary, and a crystal grain boundary having an orientation difference of less than 15 ° is called a small angle grain boundary. Among the large-angle grain boundaries, the grain boundaries with extremely high consistency are called corresponding grain boundaries, and the Σ value is used as an index to indicate the consistency. This Σ value is the reciprocal of the volume ratio of the unit cell of the corresponding lattice to the unit cell of the crystal, and the grain boundary with a low Σ value is a stable grain boundary with a low grain boundary energy. Of these, the Σ3 grain boundaries are twin grain boundaries, which correspond to the annealed twins generated when the Cu—Co—Si alloy is subjected to solution treatment.
図1に結晶粒と双晶界面の模式図が示されている。実線で示される一つの結晶粒内に、点線で示されるように双晶粒界が生じる。ここで圧延直角方向(TD)と双晶粒界がなす角度をθと定義する。このような原子の整合性が高い低エネルギー粒界である双晶粒界が存在する結晶粒の割合を増やすことで、曲げ加工性および高温クリープ特性が上昇する。さらに圧延直角方向(TD)と双晶粒界がなす角度θが20°以下であるような双晶境界を増やすことで、従来の銅合金よりも高いレベルで強度、曲げ加工性及び応力緩和特性を両立させることができる。 FIG. 1 shows a schematic diagram of the interface between crystal grains and twins. Twin grain boundaries occur within one crystal grain shown by the solid line, as shown by the dotted line. Here, the angle formed by the rolling perpendicular direction (TD) and the twin grain boundaries is defined as θ. By increasing the proportion of crystal grains in which twin grain boundaries, which are low-energy grain boundaries with high atomic consistency, are present, bending workability and high-temperature creep characteristics are improved. Furthermore, by increasing the twin boundary where the angle θ between the rolling perpendicular direction (TD) and the twin boundary is 20 ° or less, the strength, bending workability and stress relaxation characteristics are higher than those of conventional copper alloys. Can be compatible.
(Cr、Mn、Sn、P、B、Zr、Ti、Mg、Al、Fe及びZnの添加量)
Cr、Mn、Sn、Zr、Ti、Mg、Al、Fe及びZnは、微量の添加で、導電率を損なわずに強度、応力緩和特性等の製品特性を改善する。Pは脱酸効果を有し、Bは鋳造組織の微細化効果を有し、熱間加工性を向上させる効果を有する。添加の効果は主に母相への固溶により発揮されるが、第二相粒子に含有されることで一層の効果を発揮させることもできる。しかしながら、Cr、Mn、Sn、P、B、Zr、Ti、Mg、Al、Fe及びZnの濃度が合計1.0質量%を超えると曲げ特性及び応力緩和特性が低下するうえ、製造性も損なわれる。
(Amount of Cr, Mn, Sn, P, B, Zr, Ti, Mg, Al, Fe and Zn added)
Cr, Mn, Sn, Zr, Ti, Mg, Al, Fe and Zn are added in a small amount to improve product characteristics such as strength and stress relaxation characteristics without impairing conductivity. P has a deoxidizing effect, B has an effect of miniaturizing the cast structure, and has an effect of improving hot workability. The effect of the addition is mainly exerted by solid solution to the parent phase, but further effect can be exerted by being contained in the second phase particles. However, if the total concentration of Cr, Mn, Sn, P, B, Zr, Ti, Mg, Al, Fe and Zn exceeds 1.0% by mass, the bending characteristics and stress relaxation characteristics are deteriorated, and the manufacturability is also impaired. Is done.
従って、本実施形態では、Cr、Mn、Sn、P、B、Zr、Ti、Mg、Al、Fe及びZnを合計1.0質量%以下添加することが好ましい。また、Cr、Mn、Sn、P、B、Zr、Ti、Mg、Al、Fe及びZnの合計は、0.7質量%以下がさらに好ましく、0.5質量%以下がさらに好ましい。但し、Cr、Mn、Sn、P、B、Zr、Ti、Mg、Al、Fe及びZnの合計が0.01質量%未満ではその効果が小さいので、Cr、Mn、Sn、P、B、Zr、Ti、Mg、Al、Fe及びZnの合計は、好ましくは0.01質量%以上である。また、0.05質量%以上がさらに好ましく、0.1質量%以上がさらに好ましい。 Therefore, in this embodiment, it is preferable to add Cr, Mn, Sn, P, B, Zr, Ti, Mg, Al, Fe and Zn in a total amount of 1.0% by mass or less. Further, the total of Cr, Mn, Sn, P, B, Zr, Ti, Mg, Al, Fe and Zn is more preferably 0.7% by mass or less, still more preferably 0.5% by mass or less. However, if the total of Cr, Mn, Sn, P, B, Zr, Ti, Mg, Al, Fe and Zn is less than 0.01% by mass, the effect is small, so that Cr, Mn, Sn, P, B and Zr , Ti, Mg, Al, Fe and Zn are preferably 0.01% by mass or more. Further, 0.05% by mass or more is more preferable, and 0.1% by mass or more is further preferable.
(Niの添加量)
Niは適当な熱処理を施すことでNi2Siとして母相中に析出し、合金の強度を向上させる。ただしNiの濃度が0.1質量%以上になると導電率が損なわれるため、Niの添加量は0.1質量%未満とし、好ましくは0.02~0.08質量%とする。
(Amount of Ni added)
Ni is precipitated in the matrix phase as Ni 2 Si by applying an appropriate heat treatment to improve the strength of the alloy. However, since the conductivity is impaired when the concentration of Ni is 0.1% by mass or more, the amount of Ni added is less than 0.1% by mass, preferably 0.02 to 0.08% by mass.
(0.2%耐力)
コネクタ等の所定の電子材料で要求される特性を満たすため、圧延平行方向の0.2%耐力は好ましくは575MPa以上、より好ましくは590MPa以上とする。0.2%耐力の上限値は、特に規制されないが、55%IACS以上の導電率となるには、典型的には850MPa以下である。0.2%耐力は、引張試験機を用いてJIS Z2241に準拠して測定する。
(0.2% proof stress)
In order to satisfy the characteristics required for a predetermined electronic material such as a connector, the 0.2% proof stress in the rolling parallel direction is preferably 575 MPa or more, more preferably 590 MPa or more. The upper limit of the 0.2% proof stress is not particularly limited, but is typically 850 MPa or less for a conductivity of 55% IACS or more. 0.2% proof stress is measured according to JIS Z2241 using a tensile tester.
(導電率)
導電率は好ましくは55%IACS以上とする。これにより、電子材料として有効に用いることができる。導電率はJIS H0505に準拠して4端子法で測定することができる。導電率は、60%IACS以上であることが好ましい。
(conductivity)
The conductivity is preferably 55% IACS or higher. Thereby, it can be effectively used as an electronic material. The conductivity can be measured by the 4-terminal method according to JIS H0505. The conductivity is preferably 60% IACS or higher.
(製造方法)
上述したようなCu-Co-Si系合金は、まず大気溶解炉等を用いて電気銅、Co、Si等の原料を溶解し、所望の組成の溶湯を得た後これをインゴットに鋳造する。その後均質化焼鈍、熱間圧延、第1中間冷間圧延、第1溶体化処理、第2中間冷間圧延、テンションレベラー処理、第2溶体化処理、時効処理、最終冷間圧延、歪取焼鈍をこの順に行うことで上述したようなCu-Co-Si系合金を製造することができる。なお熱間圧延後、必要に応じて面削を行うことが可能である。また上記各工程の合間には、表面の酸化スケール除去のための研削、研磨、ショットブラスト酸洗等が適宜行われる。
(Production method)
In the Cu—Co—Si alloy as described above, raw materials such as electrolytic copper, Co, and Si are first melted using an atmospheric melting furnace or the like to obtain a molten metal having a desired composition, which is then cast into an ingot. After that, homogenization annealing, hot rolling, first intermediate cold rolling, first solution treatment, second intermediate cold rolling, tension leveler treatment, second solution treatment, aging treatment, final cold rolling, strain relief annealing In this order, a Cu—Co—Si based alloy as described above can be produced. After hot rolling, face cutting can be performed as needed. Further, between each of the above steps, grinding, polishing, shot blast pickling and the like for removing the oxide scale on the surface are appropriately performed.
ここで、溶体化処理工程において、溶体化処理を2回に分けて行い、1回目の溶体化処理と2回目の溶体化処理との間に、テンションレベラーにより予歪みの付加を行うことが肝要である。従来技術では、溶体化処理を1回のみ行うのが通常であり、この段階において、テンションレベラーによる予歪みの付加は行われていなかった。 Here, in the solution treatment step, it is important to perform the solution treatment in two steps and to add prestrain by a tension leveler between the first solution treatment and the second solution treatment. Is. In the prior art, the solution treatment is usually performed only once, and the prestrain is not added by the tension leveler at this stage.
<インゴット製造>
溶解鋳造は一般的には大気溶解炉で行うが、真空中又は不活性ガス雰囲気中で行うことも可能である。電気銅を溶解した後に、Co、Si等各試料の組成に応じて原料を添加し、撹拌後一定時間保持して、所望の組成の溶湯を得る。そして、この溶湯を1250℃以上に調整した後、インゴットに鋳造する。Co、Si以外、Cr、Mn、Sn、P、B、Zr、Ti、Mg、Al、Fe及びZnから選択される少なくとも一種類以上を合計1.0質量%以下になるように添加することもできる。またNiを0.1質量%未満添加することもできる。
<Manufacturing ingots>
Melting casting is generally carried out in an atmospheric melting furnace, but it can also be carried out in vacuum or in an inert gas atmosphere. After dissolving the electrolytic copper, raw materials are added according to the composition of each sample such as Co and Si, and the mixture is kept for a certain period of time after stirring to obtain a molten metal having a desired composition. Then, after adjusting this molten metal to 1250 ° C. or higher, it is cast into an ingot. In addition to Co and Si, at least one selected from Cr, Mn, Sn, P, B, Zr, Ti, Mg, Al, Fe and Zn may be added so as to have a total of 1.0% by mass or less. can. Further, Ni may be added in an amount of less than 0.1% by mass.
<均質化焼鈍・熱間圧延>
鋳造時の凝固過程では粗大な晶出物が、その冷却過程では粗大な析出物が生成する。均質化焼鈍を適切な温度・時間で行った後に熱間圧延を行うことで、これらの第二相粒子を母相に再固溶させる。均質化焼鈍温度が低すぎる場合は粗大な第二相粒子を母相に再固溶させることができず、製品強度や曲げ加工性が損なわれる。均質化焼鈍温度が高すぎる場合は材料が溶解する可能性があるため好ましくない。具体的には均質化温度は950~1025℃が、時間は1~24hが好ましい。
<Homogenization annealing / hot rolling>
Coarse crystals are formed in the solidification process during casting, and coarse precipitates are formed in the cooling process. By performing homogenization annealing at an appropriate temperature and time and then hot rolling, these second-phase particles are re-dissolved in the parent phase. If the homogenization annealing temperature is too low, the coarse second-phase particles cannot be re-dissolved in the parent phase, and the product strength and bending workability are impaired. If the homogenization annealing temperature is too high, the material may dissolve, which is not preferable. Specifically, the homogenization temperature is preferably 950 to 1025 ° C., and the time is preferably 1 to 24 hours.
高温で熱間圧延を行うと材料が割れる可能性があるため、960℃以下の温度域で熱間圧延を開始することが好ましい。また熱間圧延後は速やかに冷却することが望ましい。冷却速度が遅い場合、粗大な第二相粒子が析出してしまう。熱間圧延終了後400℃以下まで急冷(=水冷)することにより、この第二相粒子の析出を抑制することができる。具体的には400℃までの冷却速度は10℃/sec以上が好ましい。 Since the material may crack when hot rolling is performed at a high temperature, it is preferable to start hot rolling in a temperature range of 960 ° C. or lower. It is also desirable to cool quickly after hot rolling. If the cooling rate is slow, coarse second-phase particles will precipitate. Precipitation of the second phase particles can be suppressed by quenching (= water cooling) to 400 ° C. or lower after the completion of hot rolling. Specifically, the cooling rate up to 400 ° C. is preferably 10 ° C./sec or more.
<第1中間冷間圧延>
熱間圧延後のインゴットについて中間冷間圧延を行う。ここで、十分な加工ひずみを蓄積するため、第1中間冷間圧延の加工度は95%以上が望ましい。
<First intermediate cold rolling>
Intermediate cold rolling is performed on the ingot after hot rolling. Here, in order to accumulate sufficient machining strain, it is desirable that the workability of the first intermediate cold rolling is 95% or more.
<第1溶体化処理>
第1溶体化処理において母相にCo、Siを固溶させ合金の積層欠陥エネルギーを低下させる。この第1溶体化処理を所定の条件で行うことにより、続く中間圧延、テンションレベラー処理後の第2溶体化処理における焼鈍双晶の形成が促進される。第1溶体化処理の処理温度は750~900℃とする。温度が低すぎる場合は、Co、Siの固溶量が不足するため、製品において双晶の存在する結晶粒の比率を所定の範囲に制御することができない。温度が高すぎる場合には、Co、Siの固溶が進みすぎることになり、双晶の存在する結晶粒の比率は大きくなるものの、θ≦20°の双晶境界の割合を所定の割合に制御することができない。
<First solution treatment>
In the first solution treatment, Co and Si are solid-solved in the matrix phase to reduce the stacking defect energy of the alloy. By performing this first solution treatment under predetermined conditions, the formation of annealed twins in the second solution treatment after the subsequent intermediate rolling and tension leveler treatment is promoted. The treatment temperature of the first solution treatment is 750 to 900 ° C. If the temperature is too low, the solid solution amounts of Co and Si are insufficient, and the ratio of crystal grains in which twins are present in the product cannot be controlled within a predetermined range. If the temperature is too high, the solid solution of Co and Si will proceed too much, and the ratio of crystal grains with twins will increase, but the ratio of twin boundaries with θ ≤ 20 ° will be set to a predetermined ratio. I can't control it.
なお第1溶体化処理は、15~300℃/secにわたって行うことができる。この時間が長すぎる、または短すぎる場合は、製品の双晶の状態の制御が困難となる。 The first solution treatment can be performed at 15 to 300 ° C./sec. If this time is too long or too short, it will be difficult to control the twin state of the product.
また第二相粒子の析出を防止する観点から、溶体化処理後の冷却速度はできるだけ高い方が好ましく、具体的には第1溶体化処理後の冷却速度は20℃/sec以上とする。このように制御しない場合、製品において双晶の存在する結晶粒の比率が低下する。 Further, from the viewpoint of preventing the precipitation of the second phase particles, it is preferable that the cooling rate after the solution treatment is as high as possible, and specifically, the cooling rate after the first solution treatment is 20 ° C./sec or more. If not controlled in this way, the proportion of crystal grains in which twins are present in the product will decrease.
<第2中間冷間圧延>
第1溶体化処理後に引き続いて第2の中間冷間圧延を行う。ここで、第2中間冷間圧延の加工度を15~50%とすることで、製品の双晶の割合、方向を所定の範囲に制御しやすくなる。
<Second intermediate cold rolling>
After the first solution treatment, a second intermediate cold rolling is subsequently performed. Here, by setting the workability of the second intermediate cold rolling to 15 to 50%, it becomes easy to control the ratio and direction of twins in the product within a predetermined range.
<テンションレベラー処理>
テンションレベラーに材料を通板することで、材料に更なる歪が付与され、これがその後の第2溶体化処理で所定の状態の焼鈍双晶を発生させるための駆動力となる。圧延加工によってもテンションレベラー加工と同程度の歪を付与することは可能であるが、この場合は製品において所定の状態の焼鈍双晶を得ることができない。理由は定かではないが、テンションレベラーを用いた場合には材料は繰り返し曲げ、曲げ戻し加工されるため、材料表層部に圧縮歪が集中的に付与され、圧延加工時とは異なる歪分布となっており、この歪分布が焼鈍双晶の形成に好都合と考えられる。
<Tension leveler processing>
By passing the material through the tension leveler, further strain is applied to the material, which serves as a driving force for generating annealed twins in a predetermined state in the subsequent second solution treatment. It is possible to apply the same degree of strain as the tension leveler processing by rolling processing, but in this case, it is not possible to obtain annealed twins in a predetermined state in the product. Although the reason is not clear, when the tension leveler is used, the material is repeatedly bent and bent back, so that compressive strain is concentrated on the surface layer of the material, resulting in a strain distribution different from that during rolling. This strain distribution is considered to be convenient for the formation of annealed twins.
通常形状矯正の目的でテンションレベラーに材料を通板する際の材料の伸び率は0.1~1.0%程度であるが、本製造方法では伸び率が1.5~3.0%になるように高張力を付与して通板する。テンションレベラー通板時の伸び率が高すぎる場合、製品における双晶の存在する結晶粒の比率が低下する。また伸び率が低すぎる場合は、製品におけるθ≦20°の双晶境界の割合が低下する。 Normally, the elongation rate of the material when passing the material through the tension leveler for the purpose of shape correction is about 0.1 to 1.0%, but in this manufacturing method, the elongation rate is 1.5 to 3.0%. A high tension is applied so that the plate is passed through. If the elongation rate at the time of passing the tension leveler plate is too high, the ratio of crystal grains in which twins are present in the product decreases. If the elongation is too low, the proportion of twin boundaries of θ ≦ 20 ° in the product will decrease.
<第2溶体化処理>
テンションレベラー処理後に、第2の溶体化処理を行う。第2溶体化処理の目的は、母相にCo、Siを固溶させることによる時効硬化能の向上、および焼鈍双晶の形成である。第2溶体化処理の処理温度は850~1000℃とする。この範囲外の場合には、所定の状態の焼鈍双晶を得ることができない。また温度が低すぎる場合には十分な時効硬化量が得られないため製品強度が不足し、温度が高すぎると析出物による粒界のピン止め効果がなくなり、結晶粒が粗大化して同様に製品強度が低下する。加えて第2溶体化処理時の炉内張力を制御することも重要であり、炉内張力の値を5~10MPaとすることで、所定の状態の焼鈍双晶を得ることができる。
<Second solution treatment>
After the tension leveler treatment, a second solution treatment is performed. The purpose of the second solution treatment is to improve the aging hardening ability by dissolving Co and Si in the matrix phase and to form annealed twins. The treatment temperature of the second solution treatment is 850 to 1000 ° C. If it is out of this range, annealed twins in a predetermined state cannot be obtained. In addition, if the temperature is too low, a sufficient amount of aging hardening cannot be obtained, resulting in insufficient product strength. The strength decreases. In addition, it is also important to control the in-core tension during the second solution treatment, and by setting the in-core tension value to 5 to 10 MPa, annealed twins in a predetermined state can be obtained.
<時効処理>
適切な大きさの析出物が均一に分布するように第2時効処理を行うことで、所望の強度および導電率が得られる。第2時効処理の温度は、450℃より低いと導電率が低くなり、550℃より高いと強度が低下するので、450~550℃とすることが好ましい。また時効処理の時間は1~24hが好ましい。第2時効処理は、酸化被膜の発生を抑制するためにAr、N2、H2等の不活性雰囲気で行うことが好ましい。
<Aging process>
The desired strength and conductivity can be obtained by performing the second aging treatment so that the precipitates of an appropriate size are uniformly distributed. The temperature of the second aging treatment is preferably 450 to 550 ° C. because the conductivity is lowered when the temperature is lower than 450 ° C. and the strength is lowered when the temperature is higher than 550 ° C. The aging treatment time is preferably 1 to 24 hours. The second aging treatment is preferably carried out in an inert atmosphere such as Ar, N 2 or H 2 in order to suppress the formation of an oxide film.
<最終冷間圧延>
時効処理後に引き続いて最終の冷間圧延を行うことで、転位を導入し強度上昇をはかる。圧延加工度が高いほど高強度の材料が得られるが、圧延加工度が高すぎる場合には曲げ加工性が損なわれる。強度と曲げ加工性の良好なバランスを得るために、圧延加工度を10~50%、好ましくは20~40%とする。
<Final cold rolling>
After the aging treatment, the final cold rolling is carried out to introduce dislocations and increase the strength. The higher the degree of rolling, the higher the strength of the material, but if the degree of rolling is too high, the bending workability is impaired. In order to obtain a good balance between strength and bending workability, the rolling workability is set to 10 to 50%, preferably 20 to 40%.
<歪取焼鈍>
最終の冷間圧延の後、電子部品に適用するのに必要な応力緩和特性を得るため、歪取焼鈍を行う。歪取焼鈍の条件は慣用の条件でよいが、具体的には350~550℃で0.5~60minとする。
<Strain removal annealing>
After the final cold rolling, strain relaxation annealing is performed to obtain the stress relaxation properties required for application to electronic components. The conditions for strain removal annealing may be conventional conditions, but specifically, it is 0.5 to 60 min at 350 to 550 ° C.
この発明の電子材料用銅合金は種々の伸銅品、例えば板、条、管、棒及び線に加工することができ、更に、この電子材料用銅合金は、リードフレーム、コネクタ、ピン、端子、リレー、スイッチ、二次電池用箔材等の電子部品等に使用することができる。 The copper alloy for electronic materials of the present invention can be processed into various copper products such as plates, strips, pipes, rods and wires, and further, the copper alloy for electronic materials can be used for lead frames, connectors, pins and terminals. , Relays, switches, electronic parts such as foil materials for secondary batteries, etc.
以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。 Examples of the present invention are shown below together with comparative examples, but these examples are provided for a better understanding of the present invention and its advantages, and are not intended to limit the invention.
表1に示す成分組成の銅合金を、高周波溶解炉を用いて1300℃で溶製し、厚さ30mmのインゴットに鋳造した。次いで、このインゴットに対し950℃で3h均質化焼鈍を行った後、板厚10mmまで熱間圧延し、速やかに水中冷却を行った。そして、加工度97%第1中間冷間圧延を行った後、表1に示す条件で第1溶体化処理を行い、加工度40%で第2中間冷間圧延を行い、さらに所定の伸び率のテンションレベラー処理を行った後、表1に示すように第2溶体化処理を行い、500℃で12hの条件で時効処理した後、最終冷間圧延により厚さ0.1mmの板とした。最後に、500℃で10minの条件で歪取焼鈍を行った。 The copper alloy having the composition shown in Table 1 was melted at 1300 ° C. using a high-frequency melting furnace and cast into an ingot having a thickness of 30 mm. Next, the ingot was homogenized and annealed at 950 ° C. for 3 hours, then hot-rolled to a plate thickness of 10 mm, and quickly cooled in water. Then, after performing the first intermediate cold rolling with a processing degree of 97%, the first solution treatment is performed under the conditions shown in Table 1, the second intermediate cold rolling is performed with a processing degree of 40%, and a predetermined elongation rate is further performed. After the tension leveler treatment, the second solution treatment was performed as shown in Table 1, the aging treatment was performed at 500 ° C. for 12 hours, and then the final cold rolling was performed to obtain a plate having a thickness of 0.1 mm. Finally, strain removal annealing was performed at 500 ° C. under the condition of 10 min.
このようにして得られた各試験片に対し、以下の特性評価を行った。その結果を表2に示す。 The following characteristic evaluations were performed on each of the test pieces thus obtained. The results are shown in Table 2.
<強度(0.2%耐力)>
引張方向が圧延方向と平行になるようにJIS13B号試験片を作製し、JIS Z 2241に準拠して、引張試験機により圧延方向と平行に引張試験を行い、0.2%耐力を測定した。
<Strength (0.2% proof stress)>
A JIS 13B test piece was prepared so that the tensile direction was parallel to the rolling direction, and a tensile test was conducted in parallel with the rolling direction with a tensile tester in accordance with JIS Z 2241 to measure 0.2% strength.
<導電率>
試験片の長手方向が圧延方向と平行になるように試験片を採取し、JIS H0505に準拠し、4端子法で導電率(EC:%IACS)を測定した。
<Conductivity>
The test piece was collected so that the longitudinal direction of the test piece was parallel to the rolling direction, and the conductivity (EC:% IACS) was measured by the 4-terminal method according to JIS H0505.
<双晶境界頻度及び双晶粒界の角度>
双晶の存在する結晶粒の比率、およびθ≦20°の双晶境界の割合は、EBSD(Electron Back Scatter Diffraction:電子後方散乱回折)測定を用いて算出した。まず試験片を20mm四方に切り出し、圧延面表面をリン酸67%+硫酸10%溶液中において、電圧15Vで60sec電解研磨した。測定には日本電子株式会社製JXA8500Fを用い、試験片の圧延面法線方向(ND:Normal Direction)を入射電子線に対して70°傾け、圧延平行方向(RD:Rolling Direction)を試料ホルダーの傾斜方向に合わせて設置し、その傾斜面にフォーカスした電子線を照射した。加速電圧:20kV、照射電流量:5×10-8A、ワーキングディスタンス25mmとし、観察視野500μm×500μm(ステップ幅1μm)でn=5で測定を行った。ここではEBSDによって得られた隣接する測定点間の方位差が15°以上の領域を結晶粒界と定義し、また各対応粒界のうちΣ3対応粒界を双晶粒界と定義して、双晶の存在する結晶粒の比率およびθ≦20°である双晶境界の全双晶境界に占める割合を求めた。測定プログラムはTSL OIM data collection、解析プログラムはTSL OIM Analysisを用いた。
<Twin boundary frequency and twin grain boundary angle>
The ratio of crystal grains in which twins are present and the ratio of twin boundaries at θ≤20 ° were calculated using EBSD (Electron Backscatter Diffraction) measurement. First, the test piece was cut into 20 mm squares, and the surface of the rolled surface was electropolished for 60 sec at a voltage of 15 V in a solution of 67% phosphoric acid + 10% sulfuric acid. JXA8500F manufactured by JEOL Ltd. is used for the measurement, the rolling surface normal direction (ND: Normal Direction) of the test piece is tilted by 70 ° with respect to the incident electron beam, and the rolling parallel direction (RD: Rolling Direction) of the sample holder is set. It was installed in the direction of inclination, and the inclined surface was irradiated with an electron beam focused on it. The acceleration voltage was 20 kV, the irradiation current amount was 5 × 10 -8 A, the working distance was 25 mm, and the measurement was performed at n = 5 with an observation field of view of 500 μm × 500 μm (step width 1 μm). Here, a region where the orientation difference between adjacent measurement points obtained by EBSD is 15 ° or more is defined as a grain boundary, and the Σ3 corresponding grain boundary of each corresponding grain boundary is defined as a twin grain boundary. The ratio of crystal grains in which twins were present and the ratio of twin boundaries with θ ≦ 20 ° to all twin boundaries were determined. The measurement program used was TSL OIM data collection, and the analysis program used was TSL OIM Analysis.
<応力緩和特性>
JIS-B2712(2006)に従い応力緩和率を測定した。幅10mm×長さ100mmの試験片を切り出し、標点距離25mmにおいて0.2耐力の80%の値の負荷応力が加わるように試料高さy1を決定した。これを温度150℃および250℃で1000h加熱した後に除荷し、その永久変形量yから応力緩和率を算出した。ここで応力緩和率は以下の式で与えられる。
式中、y0:初期そり(mm)、y1:試料高さ(mm)、y:永久変形量(mm)である。
温度150℃における1000h後の応力緩和率が25%以下であり、かつ250℃における1000h後の応力緩和率が60%以下の時、電子材料として有効に用いることができる。
<Stress relaxation characteristics>
The stress relaxation rate was measured according to JIS-B2712 (2006). A test piece having a width of 10 mm and a length of 100 mm was cut out, and the sample height y 1 was determined so that a load stress of 80% of the 0.2 proof stress was applied at a gauge point distance of 25 mm. This was heated at temperatures of 150 ° C. and 250 ° C. for 1000 hours and then unloaded, and the stress relaxation rate was calculated from the permanent deformation amount y. Here, the stress relaxation rate is given by the following equation.
In the formula, y 0 : initial warp (mm), y 1 : sample height (mm), y: permanent deformation amount (mm).
When the stress relaxation rate after 1000 hours at a temperature of 150 ° C. is 25% or less and the stress relaxation rate after 1000 hours at 250 ° C. is 60% or less, it can be effectively used as an electronic material.
<曲げ加工性>
JIS H3130(2012)に従いW曲げ試験をBadway(曲げ軸が圧延方向と直交)、R/t=1.0(t=0.1mm)で実施し、この試験片の曲げ部の外周表面を観察した。観察方法はレーザーテック社製コンフォーカル顕微鏡HD100を用いて曲げ部の外周表面を撮影し、付属のソフトウェアを用いて平均粗さRa(JIS-B0601:2013に準拠)を測定し、比較した。なお、曲げ加工前の試料表面はコンフォーカル顕微鏡を用いて観察したところ凹凸は確認できず、平均粗さRaはいずれも0.2μm以下であった。曲げ加工後の表面平均粗さRaが1.0μm以下の場合を○、Raが1.0μmを超える場合を×と評価した。
<Bending workability>
A W bending test was carried out in Badway (the bending axis is orthogonal to the rolling direction) and R / t = 1.0 (t = 0.1 mm) according to JIS H3130 (2012), and the outer peripheral surface of the bent portion of this test piece was observed. did. As an observation method, the outer peripheral surface of the bent portion was photographed using a lasertec confocal microscope HD100, and the average roughness Ra (based on JIS-B0601: 2013) was measured and compared using the attached software. When the surface of the sample before bending was observed using a confocal microscope, no unevenness could be confirmed, and the average roughness Ra was 0.2 μm or less. The case where the surface average roughness Ra after bending was 1.0 μm or less was evaluated as ◯, and the case where Ra exceeded 1.0 μm was evaluated as ×.
表1、2に示すように、発明例1~20はいずれも、所定の条件の第1溶体化処理、テンションレベラー処理及び第2溶体化処理を適切に行ったことにより、好適な0.2%耐力、導電率を有し、曲げ加工性及び応力緩和特性を得ることができた。 As shown in Tables 1 and 2, all of Invention Examples 1 to 20 are suitable 0.2 because the first solution treatment, the tension leveler treatment and the second solution treatment under predetermined conditions are appropriately performed. It has% proof stress and conductivity, and bending workability and stress relaxation characteristics can be obtained.
比較例1~3は第1溶体化処理温度あるいは冷却速度が本実施形態に係る製造条件を満たさなかった例、比較例4はテンションレベラー加工を行わなかった例、比較例5、6はテンションレベラー加工での伸び率が本実施形態に係る条件を満たさなかった例、比較例7~10は第2溶体化処理の処理温度あるいは炉内張力が本実施形態に係る条件を満たさなかった例であり、いずれも0.2%耐力、導電率、曲げ加工性及び応力緩和特性のいずれかが悪化した。
比較例11~15は、本実施形態に係る銅合金の組成を満たさないので、0.2%耐力、導電率、曲げ加工性及び応力緩和特性のいずれかが悪化した。
Comparative Examples 1 to 3 are examples in which the first solution treatment temperature or cooling rate does not satisfy the production conditions according to the present embodiment, Comparative Example 4 is an example in which tension leveler processing is not performed, and Comparative Examples 5 and 6 are tension levelers. Examples in which the elongation rate in processing did not satisfy the conditions according to the present embodiment, and Comparative Examples 7 to 10 are examples in which the processing temperature of the second solution treatment or the tension in the furnace did not satisfy the conditions according to the present embodiment. In each case, any of 0.2% proof stress, conductivity, bending workability and stress relaxation characteristics deteriorated.
Since Comparative Examples 11 to 15 do not satisfy the composition of the copper alloy according to the present embodiment, any one of 0.2% proof stress, conductivity, bending workability and stress relaxation characteristics deteriorated.
このように、本開示によれば、電子材料に用いて好適な0.2%耐力、導電率を有し、曲げ加工性及び応力緩和特性を向上させた信頼性の高い電子材料用銅合金が得られることがわかる。 As described above, according to the present disclosure, a highly reliable copper alloy for electronic materials having 0.2% proof stress and conductivity suitable for use in electronic materials and having improved bending workability and stress relaxation characteristics is provided. It turns out that it can be obtained.
Claims (5)
前記溶体化処理工程において、溶体化処理を第1溶体化処理と第2溶体化処理に分けて行い、前記第1溶体化処理における処理温度を750~900℃、冷却速度を20℃/sec以上とし、前記第2溶体化処理における処理温度を850~1000℃とし、炉内張力の値を5~10MPaとし、前記第1溶体化処理と前記第2溶体化処理との間に、テンションレベラーにより1.5~3.0%の予歪みの付加を行い、圧延面についてEBSD測定により確認される結晶粒のうち、双晶の存在する結晶粒の数の割合が30%以上であり、かつ、圧延直角方向(TD)との角度θが20°以下である双晶境界の境界長さの全双晶境界に占める割合が40%以上の銅合金を得ることを特徴とする電子材料用銅合金の製造方法。 A copper alloy containing 0.5 to 3.0% by mass of Co, containing Si in a mass ratio of 3.0 to 5.0, and the balance being copper and unavoidable impurities. The method for producing a copper alloy for an electronic material according to claim 1, wherein a cold rolling step and a subsequent solution treatment step are performed after hot rolling the ingot.
In the solution treatment step, the solution treatment is divided into a first solution treatment and a second solution treatment, and the treatment temperature in the first solution treatment is 750 to 900 ° C. and the cooling rate is 20 ° C./sec or more. The treatment temperature in the second solution treatment was set to 850 to 1000 ° C, the value of the in-core tension was set to 5 to 10 MPa, and the tension leveler was used between the first solution treatment and the second solution treatment. A prestrain of 1.5 to 3.0% is added, and the ratio of the number of crystal grains in which twins are present to the crystal grains confirmed by EBSD measurement on the rolled surface is 30% or more, and A copper alloy for electronic materials, characterized in that a copper alloy having a ratio of the boundary length of the twin boundary having an angle θ with the rolling perpendicular direction (TD) of 20 ° or less to the total twin boundary is 40% or more. Manufacturing method.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019075831A JP7046032B2 (en) | 2019-04-11 | 2019-04-11 | Copper alloys for electronic materials, manufacturing methods and electronic parts for copper alloys for electronic materials |
JP2021207434A JP2022042515A (en) | 2019-04-11 | 2021-12-21 | Copper alloy for electronic material, manufacturing method of copper alloy for electronic material and electronic component |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019075831A JP7046032B2 (en) | 2019-04-11 | 2019-04-11 | Copper alloys for electronic materials, manufacturing methods and electronic parts for copper alloys for electronic materials |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021207434A Division JP2022042515A (en) | 2019-04-11 | 2021-12-21 | Copper alloy for electronic material, manufacturing method of copper alloy for electronic material and electronic component |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020172692A JP2020172692A (en) | 2020-10-22 |
JP7046032B2 true JP7046032B2 (en) | 2022-04-01 |
Family
ID=72830109
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019075831A Active JP7046032B2 (en) | 2019-04-11 | 2019-04-11 | Copper alloys for electronic materials, manufacturing methods and electronic parts for copper alloys for electronic materials |
JP2021207434A Pending JP2022042515A (en) | 2019-04-11 | 2021-12-21 | Copper alloy for electronic material, manufacturing method of copper alloy for electronic material and electronic component |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021207434A Pending JP2022042515A (en) | 2019-04-11 | 2021-12-21 | Copper alloy for electronic material, manufacturing method of copper alloy for electronic material and electronic component |
Country Status (1)
Country | Link |
---|---|
JP (2) | JP7046032B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI814182B (en) * | 2021-12-21 | 2023-09-01 | 鉑識科技股份有限公司 | Composite copper layer and preparation method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009263784A (en) | 2008-03-31 | 2009-11-12 | Nippon Mining & Metals Co Ltd | Cu-Ni-Si BASE ALLOY TO BE USED IN ELECTRICALLY CONDUCTIVE SPRING MATERIAL |
JP2012211377A (en) | 2011-03-31 | 2012-11-01 | Jx Nippon Mining & Metals Corp | Cu-Co-Si BASED ALLOY STRIP |
JP2017210674A (en) | 2016-05-27 | 2017-11-30 | Jx金属株式会社 | Cu-Co-Ni-Si ALLOY FOR ELECTRONIC COMPONENT |
-
2019
- 2019-04-11 JP JP2019075831A patent/JP7046032B2/en active Active
-
2021
- 2021-12-21 JP JP2021207434A patent/JP2022042515A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009263784A (en) | 2008-03-31 | 2009-11-12 | Nippon Mining & Metals Co Ltd | Cu-Ni-Si BASE ALLOY TO BE USED IN ELECTRICALLY CONDUCTIVE SPRING MATERIAL |
JP2012211377A (en) | 2011-03-31 | 2012-11-01 | Jx Nippon Mining & Metals Corp | Cu-Co-Si BASED ALLOY STRIP |
JP2017210674A (en) | 2016-05-27 | 2017-11-30 | Jx金属株式会社 | Cu-Co-Ni-Si ALLOY FOR ELECTRONIC COMPONENT |
Also Published As
Publication number | Publication date |
---|---|
JP2022042515A (en) | 2022-03-14 |
JP2020172692A (en) | 2020-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101331339B1 (en) | Cu-ni-si-co based copper ally for electronic materials and manufacturing method therefor | |
JP5225787B2 (en) | Cu-Ni-Si alloy plate or strip for electronic materials | |
US20170130309A1 (en) | Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, rolled copper alloy material for electronic equipment, and part for electronic equipment | |
KR101866129B1 (en) | Copper alloy for electronic materials | |
TW201313924A (en) | Copper alloy for electronic device, method for manufacturing copper alloy for electronic device, wrought copper alloy material for electronic device, and part for electronic device | |
KR101917416B1 (en) | Copper-cobalt-silicon alloy for electrode material | |
JP6494681B2 (en) | Copper alloy and electronic parts for electronic materials | |
JP4642119B2 (en) | Copper alloy and method for producing the same | |
JP2013104068A (en) | Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL | |
JP2022042515A (en) | Copper alloy for electronic material, manufacturing method of copper alloy for electronic material and electronic component | |
JP6730784B2 (en) | Cu-Ni-Co-Si alloy for electronic parts | |
JP6618945B2 (en) | Copper alloy for electronic materials | |
JP2016176106A (en) | ELECTRONIC COMPONENT Cu-Ni-Co-Si ALLOY | |
JP2011246740A (en) | Cu-Co-Si BASED ALLOY SHEET OR STRIP FOR ELECTRONIC MATERIAL | |
JP6246173B2 (en) | Cu-Co-Ni-Si alloy for electronic parts | |
JP2019077889A (en) | Copper alloy for electronic material | |
JP2018062705A (en) | Copper alloy for electronic material | |
JP6310004B2 (en) | Cu-Co-Ni-Si alloy for electronic parts | |
JP6246174B2 (en) | Cu-Co-Ni-Si alloy for electronic parts | |
JP7311651B1 (en) | Copper alloys for electronic materials and electronic parts | |
JP6671434B2 (en) | Copper alloy for electronic materials | |
JP2016183418A (en) | Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL | |
JP2019203202A (en) | ELECTRONIC COMPONENT Cu-Ni-Co-Si ALLOY | |
JP2019210538A (en) | Copper alloy for electronic material | |
JP2013117060A (en) | Cu-Co-Si-BASED ALLOY FOR ELECTRONIC MATERIAL |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200120 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210302 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210309 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210507 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20210921 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211221 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20211221 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20220104 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20220111 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220308 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220322 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7046032 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |