JP2017210674A - Cu-Co-Ni-Si ALLOY FOR ELECTRONIC COMPONENT - Google Patents

Cu-Co-Ni-Si ALLOY FOR ELECTRONIC COMPONENT Download PDF

Info

Publication number
JP2017210674A
JP2017210674A JP2016106589A JP2016106589A JP2017210674A JP 2017210674 A JP2017210674 A JP 2017210674A JP 2016106589 A JP2016106589 A JP 2016106589A JP 2016106589 A JP2016106589 A JP 2016106589A JP 2017210674 A JP2017210674 A JP 2017210674A
Authority
JP
Japan
Prior art keywords
alloy
mass
rolling
bending
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016106589A
Other languages
Japanese (ja)
Other versions
JP6310004B2 (en
Inventor
弘泰 堀江
Hiroyasu Horie
弘泰 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2016106589A priority Critical patent/JP6310004B2/en
Publication of JP2017210674A publication Critical patent/JP2017210674A/en
Application granted granted Critical
Publication of JP6310004B2 publication Critical patent/JP6310004B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a Cu-Co-Ni-Si alloy having improved flexure processability and a manufacturing method therefor.SOLUTION: The Cu-Co-Ni-Si alloy for electronic component contains 0.5 to 3.0 mass% of Co and 0.1 to 1.0 mass% of Ni with a mass ratio of Ni to Co, (Ni/Co), of 0.1 to 1.0 and contains Si with a mass ratio of (Co+Ni)/Si of 3 to 5 and the balance Cu with inevitable impurities and has a percentage of Σ3 coincidence boundaries in all crystal particle boundaries of 30 to 55% and a work hardening coefficient of 0.02 to 0.15.SELECTED DRAWING: None

Description

本発明は、電子部品、特にコネクタ、バッテリー端子、ジャック、リレー、スイッチ、リードフレーム等に好適な電子部品用Cu−Co−Ni−Si合金に関する。   The present invention relates to a Cu—Co—Ni—Si alloy for electronic components suitable for electronic components, particularly connectors, battery terminals, jacks, relays, switches, lead frames and the like.

近年は、電気・電子機器や車載部品に使用されるリードフレーム、コネクタなどの電子部品の小型化が進み、電子部品を構成する銅合金部材の狭ピッチ化及び低背化の傾向が著しい。小型のコネクタほどピン幅が狭く、小さく折り畳んだ加工形状となるため、使用する銅合金部材には、必要なバネ性を得るための強度や曲げ加工性が求められる。また、高電流化による発熱を抑制する観点から、銅合金部材の高導電化も求められている。このような要求に対し、Cu−Co−Ni−Si合金は、Cu−Ni−Si合金に比べて強度は低いものの導電率は高く、Cu−Co−Si合金に比べて導電率は低いものの強度が高く、強度と導電率のバランスに優れており、信号系端子用部材として使用されている。   In recent years, electronic components such as lead frames and connectors used in electric / electronic devices and in-vehicle components have been miniaturized, and the tendency of narrowing the pitch and reducing the height of copper alloy members constituting the electronic components has been remarkable. The smaller the connector, the narrower the pin width and the smaller the folded shape, so that the copper alloy member to be used is required to have strength and bending workability to obtain the necessary spring properties. In addition, from the viewpoint of suppressing heat generation due to an increase in current, it is also required to increase the conductivity of the copper alloy member. In response to such demands, the Cu—Co—Ni—Si alloy has a lower electrical conductivity than the Cu—Ni—Si alloy, but has a higher electrical conductivity, whereas the Cu—Co—Si alloy has a lower electrical conductivity than the Cu—Co—Si alloy. And is excellent in the balance between strength and conductivity, and is used as a signal system terminal member.

信号系端子用部材の中には、実装時のクリック感を担保するために、予め端子の両側にたたき加工することで、板厚を薄くした後に、従来と同様の曲げ加工を加えるものもある。この際に問題となるのは、たたき加工を加えることで加工歪が導入されるため、たたき加工を加えない状態に比べて曲げ加工性が損なわれてしまう点である。そのため、Cu−Co−Ni−Si合金が従来兼ね備えている強度と導電率のバランスに加え、たたき加工を加えても曲げ加工性を維持することが課題とされている。   Some members for signal system terminals are subjected to the same bending process as before after thinning the plate thickness by striking both sides of the terminal in advance in order to secure the click feeling at the time of mounting. . In this case, a problem arises in that bending workability is impaired as compared with a state in which no knocking process is added because a processing strain is introduced by adding a knocking process. Therefore, in addition to the balance of strength and electrical conductivity that Cu—Co—Ni—Si alloys have conventionally had, it is a problem to maintain bending workability even when tapping is applied.

このような背景の下、特許文献1には、Cu−Co−Si合金の双晶境界頻度を制御することで、良好な曲げ加工性および繰り返し曲げ加工性を図った技術が記載されている。特許文献1によれば、溶解鋳造、均質化焼鈍、熱間圧延、面削の後、複数回の冷間圧延、焼鈍を繰返し、さらに溶体化処理、時効処理、及び最終冷間圧延を行って製造することが記載されている。溶体化処理前の冷間圧延では、最終パス、及び最終パスより1つ前のパスの平均加工度を32〜40%、圧延速度を220〜320mpmとすること、溶体化処理では850〜1080℃で5〜20秒間実施することが記載されている。   Under such a background, Patent Document 1 describes a technique that achieves good bending workability and repeated bending workability by controlling the twin boundary frequency of a Cu—Co—Si alloy. According to Patent Document 1, after melt casting, homogenization annealing, hot rolling, and face cutting, a plurality of cold rolling and annealing are repeated, and further solution treatment, aging treatment, and final cold rolling are performed. Manufacturing is described. In cold rolling before solution treatment, the average degree of processing of the final pass and the pass one step before the final pass is 32 to 40%, the rolling speed is 220 to 320 mpm, and 850 to 1080 ° C. in the solution treatment. In 5 to 20 seconds.

特許文献2には、Cu−Co−Si系合金のCube方位{001}<100>やBrass方位{110}<112>、Copper方位{112}<111>、加工硬化指数を制御することで強度及び曲げ加工性を向上させた技術が記載されている。当該公報によれば、鋳造、熱間圧延、冷間圧延、予備焼鈍、軽圧延、溶体化熱処理、冷間圧延、時効処理、冷間圧延、歪取焼鈍の順で製造することが記載されている。予備焼鈍の軟化率や冷間圧延の歪速度を調整することが有効である旨が記載されている。   In Patent Document 2, the Cu-Co-Si alloy Cube orientation {001} <100>, Brass orientation {110} <112>, Copper orientation {112} <111>, and strength by controlling the work hardening index are disclosed. And a technique for improving the bending workability is described. According to the publication, it is described that the production is performed in the order of casting, hot rolling, cold rolling, pre-annealing, light rolling, solution heat treatment, cold rolling, aging treatment, cold rolling, and strain relief annealing. Yes. It is described that it is effective to adjust the softening rate of pre-annealing and the strain rate of cold rolling.

特許文献3には、溶体化処理後の冷却速度を統制することで、結晶粒径やそのアスペクト比を制御し、曲げ加工性を向上させる技術が記載されている。   Patent Document 3 describes a technique for improving the bending workability by controlling the crystal grain size and its aspect ratio by controlling the cooling rate after solution treatment.

特許文献4には、15〜50%の冷間圧延が施された材料に、テンションレベラーを用いて、その材料の0.2%耐力(MPa)の5〜20%に相当する張力を付与しながら伸び率が0.1〜1.5%となる連続繰り返し曲げ加工を施し、次いで時効処理を施す工程を採用することにより、板厚方向における両表層部と中央部との析出物量に差を生じさせ、曲げ加工性を向上させる技術が記載されている。   In Patent Document 4, a tension leveler is used to apply a tension corresponding to 5 to 20% of the 0.2% proof stress (MPa) of a material that has been cold-rolled 15 to 50%. However, by adopting a process in which the elongation rate is continuously repeated at 0.1 to 1.5% and then an aging treatment is adopted, the difference in the amount of precipitates in both the surface layer part and the central part in the thickness direction is obtained. Techniques for generating and improving bending workability are described.

特開2012−211377号公報JP 2012-2111377 A 特開2013−95976号公報JP 2013-95976 A 国際公開第2009/099198号International Publication No. 2009/099198 特開2007−231364号公報JP 2007-231364 A

Cu−Co−Ni−Si合金の強度、導電率及び曲げ加工性については様々な観点から特性向上が図られているが、一方で電子機器の小型化も同時に進んでおり、より厳しい曲げ加工性が求められている。ノッチ曲げや180度密着曲げ以外にも、材料をテーパー状にたたき加工(板厚を減肉させる)し、その後に曲げ加工を加える方法も採用されている。特許文献1においては双晶境界頻度、特許文献2では加工硬化指数を制御することが記載されているが、いずれの方策でも、たたき加工を加えた曲げに対応することは難しい。また、特許文献3及び4ではノッチ曲げや180度密着曲げには対応することは可能であるが、たたき加工を加えた曲げに対応することは難しい。   The strength, conductivity, and bending workability of Cu-Co-Ni-Si alloys have been improved from various viewpoints. On the other hand, downsizing of electronic equipment is also progressing at the same time, and more severe bending workability is achieved. Is required. In addition to notch bending and 180-degree contact bending, a method of taping the material into a tapered shape (thinning the plate thickness) and then bending is also employed. Patent Document 1 describes twin boundary frequency, and Patent Document 2 describes controlling work hardening index, but it is difficult to cope with bending with a striking process by either method. In Patent Documents 3 and 4, it is possible to cope with notch bending and 180-degree contact bending, but it is difficult to cope with bending with tapping.

そこで、本発明はCu−Co−Ni−Si合金の曲げ加工性を、従来とは異なるアプローチによって改善することを主たる課題とする。本発明は、従来の手法よりも曲げ加工性に優れたCu−Co−Ni−Si合金を提供することを他の課題とする。   Therefore, the main object of the present invention is to improve the bending workability of the Cu—Co—Ni—Si alloy by an approach different from the conventional one. Another object of the present invention is to provide a Cu—Co—Ni—Si alloy that is superior in bending workability to conventional methods.

本発明者は上記課題を解決すべく鋭意検討を重ねた結果、特許文献1に記載の双晶境界頻度と特許文献2に記載の加工硬化指数を同時に制御することで、たたき加工を加えた曲げにも耐え得ることができるのではないかと考えた。しかしながら、特許文献1及び2に記載の製造工程を単純に組み合わせたとしても所望の曲げ加工性は得られないことから、新たなプロセスにより双晶境界頻度と加工硬化指数を制御することが特に重要であると考えた。   As a result of intensive studies to solve the above problems, the present inventor has controlled the twin boundary frequency described in Patent Document 1 and the work hardening index described in Patent Document 2 at the same time, so I thought I could endure it. However, even if the manufacturing processes described in Patent Documents 1 and 2 are simply combined, desired bending workability cannot be obtained. Therefore, it is particularly important to control the twin boundary frequency and work hardening index by a new process. I thought.

この点について更に詳細に検討したところ、熱間圧延後に高温の熱処理を加えることで双晶境界頻度、すなわち全結晶粒界に占めるΣ3対応粒界の割合を制御できることを見出した。また、溶体化処理前に低温の熱処理を加えることで加工硬化指数(n値)を制御できることを見出した。たたき加工を加えた曲げ加工性を備えるためには、両者とも高めることが好ましいと考えられるが、従来の方法では前者を高くすると後者が小さくなり、後者を高くすると前者が小さくなってしまう。これに対し、上述したプロセスによって両者をバランスよく制御することが可能であるとの新たな知見を得た。本発明はこのような知見に基づいて完成したものである。   When this point was examined in more detail, it was found that the twin boundary frequency, that is, the ratio of the Σ3-corresponding grain boundary in all the grain boundaries can be controlled by applying a high-temperature heat treatment after hot rolling. Moreover, it discovered that a work hardening index | exponent (n value) was controllable by adding low temperature heat processing before solution treatment. In order to provide bending workability with tapping, it is considered preferable to increase both. However, in the conventional method, if the former is increased, the latter is decreased, and if the latter is increased, the former is decreased. On the other hand, the new knowledge that it was possible to control both with a good balance by the process mentioned above was acquired. The present invention has been completed based on such findings.

本発明の電子部品用Cu−Co−Ni−Si合金は、0.5〜3.0質量%のCoおよび、0.1〜1.0質量%のNiを含有し、Coに対するNiの質量比(Ni/Co)が0.1〜1.0であり、Siを(Co+Ni)/Siの質量比が3〜5となるように含有し、残部がCuおよび不可避的不純物からなり、全結晶粒界に占めるΣ3対応粒界の割合が30〜55%であり、かつ、加工硬化指数が0.02〜0.15であるものである。   The Cu-Co-Ni-Si alloy for electronic parts of the present invention contains 0.5 to 3.0 mass% Co and 0.1 to 1.0 mass% Ni, and the mass ratio of Ni to Co (Ni / Co) is 0.1 to 1.0, Si is contained so that the mass ratio of (Co + Ni) / Si is 3 to 5, the remainder is made of Cu and inevitable impurities, and all crystal grains The proportion of the Σ3-compatible grain boundary in the boundary is 30 to 55%, and the work hardening index is 0.02 to 0.15.

本発明の電子部品用Cu−Co−Ni−Si合金は、更にFe、Mg、Sn、Zn、B、P、Cr、Zr、Ti、AlおよびMnからなる群から選ばれる少なくとも一種を総計で最大1.0質量%含有することができる。   The Cu—Co—Ni—Si alloy for electronic parts of the present invention further includes at least one selected from the group consisting of Fe, Mg, Sn, Zn, B, P, Cr, Zr, Ti, Al, and Mn in total. It can contain 1.0 mass%.

本発明の電子部品用Cu−Co−Ni−Si合金は、圧延方向に平行な方向での0.2%耐力が650MPa以上であり、かつ、導電率が50%IACS以上であることが好ましい。   The Cu—Co—Ni—Si alloy for electronic parts of the present invention preferably has a 0.2% proof stress in a direction parallel to the rolling direction of 650 MPa or more and a conductivity of 50% IACS or more.

本発明の電子部品用Cu−Co−Ni−Si合金は、加工度20%で圧延した後の曲げ半径(R)/板厚(t)=1.0として、曲げ軸が圧延方向と同一方向のBadwayでW曲げ試験したときの曲げ部表面の平均粗さRaが1.0μm以下であることが好ましい。   In the Cu-Co-Ni-Si alloy for electronic parts of the present invention, the bending axis after rolling at a workability of 20% / plate thickness (t) = 1.0, and the bending axis is the same as the rolling direction. It is preferable that the average roughness Ra of the surface of the bent portion when the W-bending test is performed with the Badway is 1.0 μm or less.

本発明の電子部品用Cu−Co−Ni−Si合金の製造方法は、0.5〜3.0質量%のCoおよび、0.1〜1.0質量%のNiを含有し、Coに対するNiの濃度(質量%)比(Ni/Co)が0.1〜1.0であり、Siを(Co+Ni)/Siの質量比が3〜5となるように含有し、残部がCuおよび不可避的不純物からなるCu−Co−Ni−Si合金のインゴットを鋳造する工程と、均質化焼鈍を施す工程と、熱間圧延を施す工程と、900〜950℃で3〜24時間にわたって第一熱処理を施す工程と、加工度90%以上の冷間圧延を施す工程と、400〜600℃で1〜10時間の第二熱処理を施す工程と、溶体化処理を施す工程と、時効処理を施す工程と、最終冷間圧延を施す工程とをこの順序で行うことを含むものである。   The manufacturing method of the Cu-Co-Ni-Si alloy for electronic components of this invention contains 0.5-3.0 mass% Co and 0.1-1.0 mass% Ni, Ni with respect to Co Concentration (mass%) ratio of Ni (Co / Ni) is 0.1 to 1.0, Si is contained so that the mass ratio of (Co + Ni) / Si is 3 to 5, with the balance being Cu and inevitable A step of casting an ingot of a Cu—Co—Ni—Si alloy made of impurities, a step of homogenizing annealing, a step of hot rolling, and a first heat treatment at 900 to 950 ° C. for 3 to 24 hours A step, a step of performing cold rolling at a workability of 90% or more, a step of applying a second heat treatment at 400 to 600 ° C. for 1 to 10 hours, a step of applying a solution treatment, a step of applying an aging treatment, And performing the final cold rolling process in this order. .

本発明の電子部品用Cu−Co−Ni−Si合金の製造方法では、Cu−Co−Ni−Si合金は、更にFe、Mg、Sn、Zn、B、P、Cr、Zr、Ti、AlおよびMnからなる群から選ばれる少なくとも一種を総計で最大1.0質量%含有することができる。   In the method for producing a Cu—Co—Ni—Si alloy for electronic parts according to the present invention, the Cu—Co—Ni—Si alloy further comprises Fe, Mg, Sn, Zn, B, P, Cr, Zr, Ti, Al and A total of at least one selected from the group consisting of Mn can be up to 1.0% by mass.

本発明の伸銅品は、上記のいずれかのCu−Co−Ni−Si合金を備えたものである。   The copper-strengthened product of the present invention comprises any one of the above-described Cu—Co—Ni—Si alloys.

本発明の電子部品は、上記のいずれかのCu−Co−Ni−Si合金を備えたものである。   An electronic component according to the present invention includes any one of the above-described Cu—Co—Ni—Si alloys.

本発明によれば、強度、導電率及び曲げ加工性の三者の特性に優れたCu−Co−Ni−Si合金を得ることができる。このような銅合金は、たたき加工後に曲げ加工を加えて製造されるコネクタやバッテリー端子などの電子部品に特に好適に用いることができ、これら電子部品の信頼性向上に寄与することができる。   According to the present invention, it is possible to obtain a Cu—Co—Ni—Si alloy excellent in the three characteristics of strength, conductivity, and bending workability. Such a copper alloy can be particularly suitably used for electronic parts such as connectors and battery terminals that are manufactured by bending after tapping, and can contribute to improving the reliability of these electronic parts.

(Co濃度)
Coは、後述のNi、Siとともに、Co−Ni−Si系析出物を形成して、銅合金板材の強度と導電性を向上させる効果を有する。Co含有量が少なすぎる場合には、この効果を十分に発揮させることが困難になる。そのため、Co含有量は、0.5質量%以上にすることが好ましく、0.8質量%以上にすることが更に好ましく、1.1質量%以上にすることがより一層好ましい。一方、Coの融点はNiよりも高いので、Co含有量が多すぎると、完全固溶は困難であり、未固溶の部分は強度に寄与しない。そのため、Co含有量は、3.0質量%以下にすることが好ましく、2.0質量%以下にすることが更に好ましい。
(Co concentration)
Co has the effect of improving the strength and conductivity of the copper alloy sheet by forming a Co—Ni—Si based precipitate together with Ni and Si described later. When the Co content is too small, it becomes difficult to sufficiently exhibit this effect. Therefore, the Co content is preferably 0.5% by mass or more, more preferably 0.8% by mass or more, and even more preferably 1.1% by mass or more. On the other hand, since the melting point of Co is higher than that of Ni, if the Co content is too large, complete solid solution is difficult, and the undissolved portion does not contribute to the strength. Therefore, the Co content is preferably 3.0% by mass or less, and more preferably 2.0% by mass or less.

(Ni濃度)
Niは、Co、Siとともに、Co−Ni−Si系析出物を形成して、銅合金板材の強度と導電性を向上させる効果を有する。Ni含有量が少なすぎる場合には、この効果を十分に発揮させることが困難になる。そのため、Ni含有量は0.1質量%以上とし、0.2質量%以上にすることが好ましく、0.3質量%以上にすることがより一層好ましい。一方、Ni含有量が多すぎると、強度向上効果が飽和するだけでなく、導電率が低下する。また、粗大な析出物が生成し易く、曲げ加工時の割れの原因になる。そのため、Ni含有量は1.0質量%以下とし、0.8質量%以下にすることが更に好ましい。
(Ni concentration)
Ni, together with Co and Si, forms a Co—Ni—Si based precipitate and has the effect of improving the strength and conductivity of the copper alloy sheet. When the Ni content is too small, it becomes difficult to sufficiently exhibit this effect. Therefore, the Ni content is 0.1% by mass or more, preferably 0.2% by mass or more, and more preferably 0.3% by mass or more. On the other hand, if the Ni content is too large, not only the strength improvement effect is saturated, but also the conductivity is lowered. In addition, coarse precipitates are easily generated and cause cracks during bending. Therefore, the Ni content is 1.0% by mass or less, and more preferably 0.8% by mass or less.

(Si濃度)
Siは、Ni、Coとともに、Co−Ni−Si系析出物を生成する。但し、合金中のNi、CoおよびSiは、時効処理によってその全てが析出物になるとは限らず、ある程度はCuマトリックス中に固溶した状態で存在する。固溶状態のNi、CoおよびSiは、銅合金板材の強度を若干向上させるが、析出状態と比べてその効果は小さく、また、導電率を低下させる要因になる。そのため、Siの含有量は、一般的には、できるだけ析出物(Ni+Co)2Siの組成比に近づけるのが好ましい。すなわち、(Ni+Co)/Si質量比を、約4.2を中心として3〜5の範囲内に調整するのが一般的であり、Siは、(Ni+Co)/Siの質量比がこの範囲となるように添加する。(Ni+Co)/Siの質量比は、3.7〜4.7とすることが好ましい。
(Si concentration)
Si produces Co—Ni—Si based precipitates together with Ni and Co. However, Ni, Co, and Si in the alloy are not necessarily all precipitated by the aging treatment, and to some extent exist in a solid solution state in the Cu matrix. Ni, Co, and Si in the solid solution state slightly improve the strength of the copper alloy sheet, but the effect is smaller than that in the precipitated state, and causes a decrease in conductivity. Therefore, in general, the Si content is preferably as close to the composition ratio of precipitates (Ni + Co) 2 Si as possible. That is, it is common to adjust the (Ni + Co) / Si mass ratio within a range of 3 to 5 centering around 4.2, and Si has a (Ni + Co) / Si mass ratio within this range. Add as follows. The mass ratio of (Ni + Co) / Si is preferably 3.7 to 4.7.

(Coに対するNiの質量比(Ni/Co))
Ni/Coを調整することにより、強度と導電率の両立を図る。Niの比率を高くする(Coの比率を低くする)と、強度は高くなり、導電率は低下する。一方、Coの比率を高くする(Niの比率を低くする)と、強度は低下し、導電率は高くなる。圧延方向に平行な方向での0.2%耐力を650MPa以上とし、かつ、導電率を50%IACS以上とするためには、Ni/Coを0.1〜1.0、好ましくは0.2〜0.7となるように調整しておくとよい。
(Mass ratio of Ni to Co (Ni / Co))
By adjusting Ni / Co, both strength and electrical conductivity are achieved. Increasing the Ni ratio (lowering the Co ratio) increases the strength and decreases the conductivity. On the other hand, when the Co ratio is increased (Ni ratio is decreased), the strength decreases and the conductivity increases. In order to set the 0.2% proof stress in the direction parallel to the rolling direction to 650 MPa or more and the conductivity to 50% IACS or more, Ni / Co is 0.1 to 1.0, preferably 0.2. It is good to adjust so that it may be set to -0.7.

(添加元素)
必要に応じて、Fe、Mg、Sn、Zn、B、P、Cr、Zr、Ti、AlおよびMnのうちの少なくとも一種を添加してもよい。例えば、SnとMgは耐応力緩和特性の向上効果があり、Znは銅合金板材のはんだ付け性および鋳造性を改善する効果があり、Fe、Cr、Mn、Ti、Zr、Alなどは強度を向上させる作用を有する。そのほかに、Pは脱酸効果を有し、Bは鋳造組織の微細化効果を有し、熱間加工性を向上させる効果を有する。ただし、これら添加元素の量が大きすぎると、製造性や導電率が大きく損なわれる。そこで、添加元素は、合計で0〜1.0質量%とすることができる。また、強度、導電率、曲げ性のバランスを考慮すると、上記の元素の一種以上を総量で0.1〜0.7質量%含有させることが好ましい。
(Additive elements)
If necessary, at least one of Fe, Mg, Sn, Zn, B, P, Cr, Zr, Ti, Al, and Mn may be added. For example, Sn and Mg have the effect of improving the stress relaxation resistance, Zn has the effect of improving the solderability and castability of the copper alloy sheet, and Fe, Cr, Mn, Ti, Zr, Al, etc. have the strength. Has the effect of improving. In addition, P has a deoxidizing effect, B has an effect of refining a cast structure, and has an effect of improving hot workability. However, if the amount of these additive elements is too large, the productivity and conductivity are greatly impaired. Therefore, the additive elements can be 0 to 1.0% by mass in total. In consideration of the balance of strength, electrical conductivity, and bendability, it is preferable to contain one or more of the above elements in a total amount of 0.1 to 0.7% by mass.

なお、添加元素ごとには、耐応力緩和特性、強度、はんだ付け性、鋳造性、熱間加工性の向上などのバランスを考慮して、合計量を超えない範囲で、Znは0.1質量%以上かつ1.0質量%以下含有させることができ、SnおよびCrは0.1質量%以上かつ0.8質量%以下含有させることができ、Fe、MgおよびMnは0.1質量%以上かつ0.5質量%以下含有させることができ、B、P、Zr、TiおよびAlは0.01質量%以上かつ0.2質量%以下含有させることができる。   In addition, for each additive element, in consideration of the balance of stress relaxation resistance, strength, solderability, castability, hot workability, etc., Zn is 0.1 mass within a range not exceeding the total amount. % And 1.0 mass% or less, Sn and Cr can be contained 0.1 mass% or more and 0.8 mass% or less, Fe, Mg and Mn are 0.1 mass% or more And 0.5 mass% or less can be contained, B, P, Zr, Ti, and Al can be contained 0.01 mass% or more and 0.2 mass% or less.

(全結晶粒界に占めるΣ3対応粒界の割合)
対応粒界理論によると、Σ3対応粒界は双晶境界のことを指す。双晶境界は境界間の原子の整合性が良い為、境界近傍において不均一変形が起こりにくく、曲げ変形時、境界近傍を基点とする割れやしわが発生しにくいため、その割合が高いほど曲げ加工性は良好になる。
(Percentage of grain boundaries corresponding to Σ3 in all grain boundaries)
According to the corresponding grain boundary theory, the Σ3 corresponding grain boundary refers to the twin boundary. Because twin boundaries have good atomic alignment between the boundaries, non-uniform deformation is unlikely to occur near the boundaries, and cracks and wrinkles starting from the boundaries are less likely to occur during bending deformation. Workability is improved.

全結晶粒界に占めるΣ3対応粒界の割合は、EBSD(Electron Back Scatter Diffraction Pattern)法によって測定することができる。より詳細には、EBSD法により結晶方位を解析した後、隣接結晶方位間の方位差を求め、ランダム粒界及び各対応粒界の割合(粒界性格分布)を決定することができる。そして、全結晶粒界に占めるΣ3対応粒界の割合は、(対応粒界Σ3の長さの総和)/(結晶粒界の長さの総和)×100で計算することができる。   The ratio of the Σ3 corresponding grain boundary to the total crystal grain boundary can be measured by an EBSD (Electron Back Scatter Diffraction Pattern) method. More specifically, after analyzing the crystal orientation by the EBSD method, the orientation difference between adjacent crystal orientations can be obtained, and the ratio (grain boundary character distribution) of random grain boundaries and corresponding grain boundaries can be determined. The ratio of the Σ3-corresponding grain boundary in all the grain boundaries can be calculated by (total length of corresponding grain boundaries Σ3) / (total sum of crystal grain lengths) × 100.

本発明では、材料表面(圧延面)に対するEBSD測定における結晶方位解析において、全結晶粒界に占めるΣ3対応粒界の割合が30〜55%である。この割合が30%を下回った場合および55%を上回った場合はいずれも、特にたたき加工を施した後の曲げ加工性が悪くなる。この観点から、当該割合は、好ましくは35〜50%であり、より好ましくは40〜50%である。   In the present invention, in the crystal orientation analysis in the EBSD measurement with respect to the material surface (rolled surface), the ratio of the Σ3-corresponding grain boundary in all the grain boundaries is 30 to 55%. In both cases where this ratio is less than 30% and more than 55%, the bendability after the hitting process is deteriorated. From this viewpoint, the proportion is preferably 35 to 50%, and more preferably 40 to 50%.

全結晶粒界に占めるΣ3対応粒界の割合の測定においては、測定結果の安定性のために、1視野当たり400μm×400μmの面積を5視野測定し、それぞれの視野において全結晶粒界に占めるΣ3対応粒界の割合を求め、5視野の平均値を算出して測定値とする。   In the measurement of the ratio of the Σ3-compatible grain boundary in the total grain boundary, for the stability of the measurement result, five fields of 400 μm × 400 μm per field are measured, and each field occupies all the grain boundaries. The ratio of the grain boundary corresponding to Σ3 is obtained, and the average value of the five fields of view is calculated as the measured value.

EBSD測定における測定条件としては、以下のものを採用することができる。
(a)SEM条件
・ビーム条件:加速電圧15kV、照射電流量5×10-8
・ワークディスタンス:25mm
・観察視野:400μm×400μm
・観察面:圧延面
・観察面の事前処理:リン酸67%+硫酸10%+水の溶液中で15V×60秒の条件で電解研磨して組織を現出
(b)EBSD条件
・測定プログラム:OIM Data Collection
・データ解析プログラム:OIM Analysis(Ver.5.3)
・ステップ幅:0.5μm
As measurement conditions in the EBSD measurement, the following can be employed.
(A) SEM conditions ・ Beam conditions: acceleration voltage 15 kV, irradiation current amount 5 × 10 −8 A
・ Work distance: 25mm
Observation field: 400 μm × 400 μm
・ Observation surface: Rolling surface ・ Pretreatment of observation surface: Electropolishing in a solution of phosphoric acid 67% + sulfuric acid 10% + water under conditions of 15 V × 60 seconds (b) EBSD conditions ・ Measurement program : OIM Data Collection
Data analysis program: OIM Analysis (Ver. 5.3)
・ Step width: 0.5μm

(加工硬化指数(n値))
引張試験において試験片を引張り、荷重を負荷すると、弾性限度を越えて最高荷重点に達するまでの塑性変形域では試験片各部は一様に伸びる(均一伸び)。この均一伸びが発生する塑性変形域では真応力σtと真ひずみεtの間には、下記の式(1)の関係が成立し、これをn乗硬化則という。
σt=Kεt n (1)
ここで、式(1)中、nは、加工硬化指数といい(須藤一著:材料試験法、内田老鶴圃社、(1976)、p.34)、0≦n≦1の値をとる。この加工硬化指数が大きいほど曲げ加工性が良好になる。
(Work hardening index (n value))
When a test piece is pulled and a load is applied in a tensile test, each part of the test piece is uniformly extended (uniform elongation) in the plastic deformation region exceeding the elastic limit and reaching the maximum load point. In the plastic deformation region where the uniform elongation occurs, the relationship of the following formula (1) is established between the true stress σ t and the true strain ε t , which is called the n-th power hardening law.
σ t = Kε t n (1)
Here, in formula (1), n is referred to as a work hardening index (Kazuto Sudo, material test method, Uchida Otsuru Farm Co., (1976), p. 34), and takes a value of 0 ≦ n ≦ 1. . The higher the work hardening index, the better the bending workability.

n乗硬化則の成立する材料では、応力−ひずみ曲線の最高荷重点における真ひずみと加工硬化係数は一致することから、本発明においては、最高荷重点における真ひずみを加工硬化指数(n値)とする(須藤一著、「材料試験法」、内田老鶴圃社、1976年、p.35)。具体的には、後述する0.2%耐力を測定するのと同様の方法で、圧延平行方向の引張り試験を、JIS Z2241(2011)に従って行い、応力−ひずみ曲線を得る。真ひずみεtは、得られた応力−ひずみ曲線より読み取った最高荷重点における公称ひずみεを、下記の式(2)に代入して算出する。
εt=ln(1+ε) (2)
In a material satisfying the n-th power hardening law, the true strain at the highest load point of the stress-strain curve matches the work hardening coefficient. Therefore, in the present invention, the true strain at the highest load point is expressed by the work hardening index (n value). (Kazuto Sudo, “Materials Testing Method”, Uchida Otsuru Farm, 1976, p. 35). Specifically, a tensile test in the rolling parallel direction is performed according to JIS Z2241 (2011) by the same method as measuring 0.2% proof stress described later, and a stress-strain curve is obtained. The true strain ε t is calculated by substituting the nominal strain ε at the highest load point read from the obtained stress-strain curve into the following equation (2).
ε t = ln (1 + ε) (2)

強度、導電率及び曲げ加工性に優れたCu−Co−Ni−Si合金を得る上では、全結晶粒界に占めるΣ3対応粒界の割合を制御すると共に、n値を所定範囲とすることが重要である。具体的には、圧延方向に平行な方向における加工硬化指数(n値)が0.02〜0.15である。n値は、好ましくは0.05〜0.14であり、さらに好ましくは0.08〜0.13である。   In obtaining a Cu—Co—Ni—Si alloy excellent in strength, electrical conductivity and bending workability, the ratio of Σ3 corresponding grain boundaries in the total grain boundaries is controlled and the n value is set within a predetermined range. is important. Specifically, the work hardening index (n value) in a direction parallel to the rolling direction is 0.02 to 0.15. n value becomes like this. Preferably it is 0.05-0.14, More preferably, it is 0.08-0.13.

(0.2%耐力)
圧延方向に平行な方向での0.2%耐力は、JIS Z2241(2011)(金属材料引張試験方法)に準拠して測定する。本発明に係るCu−Co−Ni−Si合金においては一実施形態において、圧延方向に平行な方向での0.2%耐力が650MPa以上を達成することができる。好ましくは700MPa以上であり、より好ましくは750MPa以上である。0.2%耐力の上限値は、特に規制されないが、50%IACS以上の導電率となるには、850MPa以下であり、典型的には800MPa以下である。
(0.2% yield strength)
The 0.2% yield strength in the direction parallel to the rolling direction is measured according to JIS Z2241 (2011) (metal material tensile test method). In the Cu—Co—Ni—Si alloy according to the present invention, in one embodiment, the 0.2% proof stress in the direction parallel to the rolling direction can achieve 650 MPa or more. Preferably it is 700 MPa or more, More preferably, it is 750 MPa or more. The upper limit value of the 0.2% proof stress is not particularly limited, but is 850 MPa or less, and typically 800 MPa or less in order to obtain a conductivity of 50% IACS or more.

(導電率)
JIS H0505に準拠し、4端子法にて測定する。本発明に係るCu−Co−Ni−Si合金においては一実施形態において、導電率が50%IACS以上を達成することができる。好ましくは55%IACS以上であり、より好ましくは60%IACS以上である。導電率の上限値は、特に規制されないが、650MPa以上の0.2%耐力となるには、70%IACS以下であり、典型的には65%IACS以下である。
(conductivity)
Measured by the 4-terminal method in accordance with JIS H0505. In one embodiment, the Cu—Co—Ni—Si alloy according to the present invention can achieve a conductivity of 50% IACS or more. Preferably it is 55% IACS or more, More preferably, it is 60% IACS or more. The upper limit value of the electrical conductivity is not particularly limited, but is 70% IACS or less, and typically 65% IACS or less to achieve a 0.2% proof stress of 650 MPa or more.

(曲げ加工性)
本発明に係るCu−Co−Ni−Si合金は優れた曲げ加工性を有することができる。本発明に係るCu−Co−Ni−Si合金の一実施形態では、たたき加工を模擬した20%の圧延を加えた後に、JIS H3130(2012)に従い、W曲げ試験をBadway方向に曲げ半径(R)/板厚(t)=1.0で行ったときに、曲げ部の外周表面における平均粗さRaが1.0μm以下であるという特性を有する。平均粗さRaはJIS B0601(2013)に準拠して算出する。曲げ加工後にも曲げ部の平均粗さRaが小さいということは、破断を引き起こすおそれのある有害なクラックが曲げ部に入りにくいことを意味する。一般的には曲げ試験前の本発明に係るCu−Co−Ni−Si合金の表面の平均粗さRaは0.2μm以下である。
上述したクラック発生防止の観点から、曲げ部の表面粗さは、0.8μm以下であることが好ましく、特に0.6μm以下であることが一層好適である。一方、特に好ましい下限値は存在しないが、曲げ部の表面粗さは、典型的には0.1μm以上、より典型的には0.2μm以上となる。
(Bending workability)
The Cu—Co—Ni—Si alloy according to the present invention can have excellent bending workability. In one embodiment of the Cu—Co—Ni—Si alloy according to the present invention, after applying 20% rolling simulating the tapping process, according to JIS H3130 (2012), the W bend test is performed with a bend radius (R ) / Plate thickness (t) = 1.0, the average roughness Ra on the outer peripheral surface of the bent portion is 1.0 μm or less. The average roughness Ra is calculated according to JIS B0601 (2013). The fact that the average roughness Ra of the bent part is small even after the bending process means that harmful cracks that may cause breakage are unlikely to enter the bent part. Generally, the average roughness Ra of the surface of the Cu—Co—Ni—Si alloy according to the present invention before the bending test is 0.2 μm or less.
From the viewpoint of preventing the occurrence of cracks described above, the surface roughness of the bent portion is preferably 0.8 μm or less, and more preferably 0.6 μm or less. On the other hand, there is no particularly preferred lower limit, but the surface roughness of the bent portion is typically 0.1 μm or more, more typically 0.2 μm or more.

(用途)
本発明に係るCu−Co−Ni−Si合金は種々の伸銅品、例えば板、条、管、棒及び線に加工することができる。本発明に係るCu−Co−Ni−Si合金は、限定的ではないが、スイッチ、コネクタ、ジャック、端子(特に、バッテリー端子)、リレー等の電子部品における導電材やばね材に好適に使用することができる。これらの電子部品は例えば車載部品や電気・電子機器用部品として使用可能である。
(Use)
The Cu-Co-Ni-Si alloy according to the present invention can be processed into various copper products, such as plates, strips, tubes, bars and wires. The Cu—Co—Ni—Si alloy according to the present invention is preferably used for a conductive material and a spring material in electronic parts such as a switch, a connector, a jack, a terminal (particularly a battery terminal), and a relay, although not limited thereto. be able to. These electronic components can be used, for example, as vehicle-mounted components or components for electric / electronic devices.

(製造方法)
本発明に係るCu−Co−Ni−Si合金の好適な製造方法の例を工程毎に説明する。
(Production method)
The example of the suitable manufacturing method of the Cu-Co-Ni-Si alloy which concerns on this invention is demonstrated for every process.

<インゴット鋳造>
大気溶解炉を用い、電気銅、Ni、Co、Si等の原料を溶解し、上述したような所望の組成の溶湯を得る。そして、この溶湯をインゴットに鋳造する。Ni、Co、Si以外の添加元素はFe、Mg、Sn、Zn、B、P、Cr、Zr、Ti、Al及びMnからなる群から選択される一種または二種以上を合計で0〜1.0質量%含有するように添加する。
<Ingot casting>
Using an atmospheric melting furnace, raw materials such as electrolytic copper, Ni, Co, and Si are melted to obtain a molten metal having a desired composition as described above. Then, this molten metal is cast into an ingot. The additive elements other than Ni, Co, and Si are one or two or more selected from the group consisting of Fe, Mg, Sn, Zn, B, P, Cr, Zr, Ti, Al, and Mn. Add to contain 0% by weight.

<均質化焼鈍及び熱間圧延>
インゴット製造時に生じた凝固偏析や晶出物は粗大なので均質化焼鈍でできるだけ母相に固溶させて小さくし、可能な限り無くすことが望ましい。これは曲げ割れの防止に効果があるからである。具体的には、インゴット鋳造後に、900〜1050℃に加熱して3時間〜24時間にわたる均質化焼鈍を行った後、熱間圧延を実施するのが好ましい。熱間圧延では、元厚から全体の圧下率が90%までのパスは700℃以上とするのが好ましい。その後、水冷にて室温まで急速に冷却させる。
<Homogenization annealing and hot rolling>
Since the solidified segregation and crystallized matter produced during the production of the ingot are coarse, it is desirable to make it as small as possible by dissolving it in the parent phase as much as possible by homogenization annealing. This is because it is effective in preventing bending cracks. Specifically, after ingot casting, it is preferable to perform hot rolling after heating to 900 to 1050 ° C. and performing homogenization annealing for 3 to 24 hours. In hot rolling, it is preferable that the pass from the original thickness to the overall reduction rate of 90% is 700 ° C. or higher. Thereafter, it is rapidly cooled to room temperature with water cooling.

<第一熱処理>
熱間圧延後、高温での第一熱処理を実施する。熱間圧延中に析出する粗大な析出物を再度固溶させることで、積層欠陥エネルギーを低下させ、後述の溶体化処理におけるΣ3対応粒界の割合を高くすることができる。第一熱処理の条件は典型的には、900〜950℃で3時間〜24時間、好ましくは900℃〜950℃で7時間〜20時間、より好ましくは、910時間〜940℃で7時間〜20時間とし、加熱後は水冷する。この工程を実施しない場合には、溶体化処理及びその後の工程を適切に実施したとしても全結晶粒界に占めるΣ3対応粒界の割合が小さくなる。また、900℃未満で第一熱処理をしても同様に小さくなる。一方、950℃を超える温度で第一熱処理をすると、Σ3対応粒界の割合は大きくなるが、結晶粒径が大きくなるため、曲げ加工性が低下する。
<First heat treatment>
After the hot rolling, a first heat treatment is performed at a high temperature. By re-dissolving coarse precipitates precipitated during hot rolling, the stacking fault energy can be reduced, and the proportion of Σ3-corresponding grain boundaries in the solution treatment described later can be increased. The conditions for the first heat treatment are typically 900 to 950 ° C. for 3 hours to 24 hours, preferably 900 ° C. to 950 ° C. for 7 hours to 20 hours, more preferably 910 hours to 940 ° C. for 7 hours to 20 hours. Time and heat-cool after heating. If this step is not carried out, the proportion of the Σ3-compatible grain boundaries in the total grain boundaries will be small even if the solution treatment and the subsequent steps are carried out appropriately. Moreover, even if it performs 1st heat processing at less than 900 degreeC, it becomes small similarly. On the other hand, when the first heat treatment is performed at a temperature exceeding 950 ° C., the ratio of the grain boundary corresponding to Σ3 increases, but the crystal grain size increases, so that the bending workability decreases.

<冷間圧延および第二熱処理>
第一熱処理の後、加工度(圧下率)90%以上、好ましくは93%以上の条件にて冷間圧延を行い、次いで、低温での第二熱処理を実施する。メカニズムは解明できていないが、ここで低温の第二熱処理を加えることで、全結晶粒界に占めるΣ3対応粒界の割合を維持したまま、加工硬化指数を大きくすることができる。第二熱処理の条件は典型的には400〜600℃で1時間〜10時間とし、好ましくは450〜550℃で1時間〜10時間、より好ましくは450〜550℃で3時間〜8時間とし、加熱後は水冷する。この工程を実施しない場合には、溶体化処理及びその後の工程を適切に実施したとしても、加工硬化指数は小さくなる。また、適切な条件で第二熱処理をしない場合も、同様に小さくなる。第二熱処理前の冷間圧延の加工度が小さすぎる場合もまた、加工硬化指数は小さくなる。なお、加工度(%)は{((圧延前の厚み−圧延後の厚み)/圧延前の厚み)×100}で定義される。
<Cold rolling and second heat treatment>
After the first heat treatment, cold rolling is performed under a condition of a workability (rolling rate) of 90% or more, preferably 93% or more, and then a second heat treatment is performed at a low temperature. Although the mechanism has not been elucidated, by adding a low-temperature second heat treatment here, the work hardening index can be increased while maintaining the proportion of the grain boundaries corresponding to Σ3 in the total grain boundaries. The conditions for the second heat treatment are typically 400 to 600 ° C. for 1 hour to 10 hours, preferably 450 to 550 ° C. for 1 hour to 10 hours, more preferably 450 to 550 ° C. for 3 hours to 8 hours, Cool with water after heating. If this step is not carried out, the work hardening index becomes small even if the solution treatment and the subsequent steps are carried out appropriately. Moreover, it becomes small similarly, when not performing 2nd heat processing on appropriate conditions. The work hardening index is also reduced when the degree of cold rolling work before the second heat treatment is too small. The degree of processing (%) is defined by {((thickness before rolling−thickness after rolling) / thickness before rolling) × 100}.

<溶体化処理>
その後、溶体化処理を実施する。具体的には、900〜1050℃に加熱して30秒〜10分加熱し、加熱後は水冷する。
<Solution treatment>
Thereafter, a solution treatment is performed. Specifically, it is heated to 900 to 1050 ° C., heated for 30 seconds to 10 minutes, and cooled with water after heating.

<時効処理>
溶体化処理に引き続いて時効処理を行う。材料温度450〜600℃で5〜25時間加熱することが好ましく、材料温度480〜570℃で10〜20時間加熱することがより好ましい。時効処理は、酸化被膜の発生を抑制するためにAr、N2、H2等の不活性雰囲気で行うことが好ましい。
<Aging treatment>
An aging treatment is performed following the solution treatment. Heating at a material temperature of 450 to 600 ° C. for 5 to 25 hours is preferable, and heating at a material temperature of 480 to 570 ° C. for 10 to 20 hours is more preferable. The aging treatment is preferably performed in an inert atmosphere of Ar, N 2 , H 2 or the like in order to suppress the generation of an oxide film.

<最終の冷間圧延>
時効処理に引き続いて最終の冷間圧延を行う。最終の冷間加工によって強度を高めることができるが、本発明において意図されるような強度および曲げ加工性の良好なバランスを得るためには圧下率を5〜40%、好ましくは10〜35%とすることが望ましい。
<Final cold rolling>
Following the aging treatment, the final cold rolling is performed. Although the strength can be increased by the final cold working, in order to obtain a good balance between strength and bending workability as intended in the present invention, the rolling reduction is 5 to 40%, preferably 10 to 35%. Is desirable.

<歪取焼鈍>
最終の冷間圧延に引き続いて、歪取焼鈍を行う。材料温度350〜650℃で1秒〜3600秒にわたって加熱することが好ましく、材料温度350〜450℃で1500秒〜3600秒、材料温度450〜550℃で500秒〜1500秒、材料温度550〜650℃で1秒〜500秒にわたって加熱することがより好ましい。
<Strain relief annealing>
Following the final cold rolling, strain relief annealing is performed. Heating is preferably performed at a material temperature of 350 to 650 ° C. for 1 second to 3600 seconds, a material temperature of 350 to 450 ° C. for 1500 seconds to 3600 seconds, a material temperature of 450 to 550 ° C. for 500 seconds to 1500 seconds, a material temperature of 550 to 650 It is more preferable to heat at 1 ° C. for 1 second to 500 seconds.

なお、当業者であれば、上記各工程の合間に適宜、表面の酸化スケール除去のための研削、研磨、ショットブラスト酸洗等の工程を行うことができることは理解できるだろう。   A person skilled in the art will understand that steps such as grinding, polishing, and shot blast pickling for removing oxide scale on the surface can be appropriately performed between the above steps.

以下に本発明の実施例を比較例と共に示すが、これらは本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。   Examples of the present invention are shown below together with comparative examples, which are provided for a better understanding of the present invention and its advantages, and are not intended to limit the invention.

表1に示す各元素を含有し、残部が銅及び不純物からなる銅合金を、高周波溶解炉にて1300℃で溶製し、厚さ30mmのインゴットに鋳造した。次いで、このインゴットを1000℃で5時間加熱後、板厚1〜10mmまで熱間圧延し、熱間圧延終了後は速やかに冷却した。次いで、表1に示す条件で第一熱処理を行い、直ちに水冷した。その後、表1に示す冷間圧延を行って厚さ0.125mmの板とした。次いで、表1に示す条件の第二熱処理、溶体化処理を行った。その後、500℃で15時間の時効処理、加工度20%の圧延で板厚を0.1mmとし、450℃で1500秒の歪取焼鈍を実施した。   A copper alloy containing each element shown in Table 1 and the balance consisting of copper and impurities was melted at 1300 ° C. in a high frequency melting furnace and cast into a 30 mm thick ingot. Next, the ingot was heated at 1000 ° C. for 5 hours, and then hot-rolled to a thickness of 1 to 10 mm, and cooled quickly after the hot rolling was completed. Next, the first heat treatment was performed under the conditions shown in Table 1 and immediately cooled with water. Thereafter, cold rolling shown in Table 1 was performed to obtain a plate having a thickness of 0.125 mm. Next, the second heat treatment and solution treatment under the conditions shown in Table 1 were performed. Thereafter, the plate thickness was set to 0.1 mm by aging treatment at 500 ° C. for 15 hours and rolling at a workability of 20%, and strain relief annealing was performed at 450 ° C. for 1500 seconds.

作製した試験片について、次の評価を行った。
(イ)全結晶粒界に占めるΣ3対応粒界の割合
各試験片の板面(圧延面)を電解研磨した後、EBSD測定を実施した。全結晶粒界長さとΣ3対応粒界の長さを求め、その比を算出した。
(ロ)加工硬化指数(n値)
圧延方向と平行な方向の引張り試験を行い、応力−ひずみ曲線を得て、先述した方法によりn値を求めた。
(ハ)0.2%耐力
JIS13B号試験片を作製し、上述した測定方法に従い引張試験機を用いて圧延方向と平行な方向の0.2%耐力を測定した。
(ニ)導電率
JIS H0505に準拠し、4端子法で導電率(EC:%IACS)を測定した。
(ホ)加工度20%で圧延した後の曲げ部の表面粗さ
各試験片をたたき加工を模して加工度20%(板厚0.08mm)で圧延した後、JIS H3130(2012)に従いW曲げ試験をBadway(曲げ軸が圧延方向と同一方向)、R/t=1.0で実施し、この試験片の曲げ部の外周表面を観察した。観察方法はレーザーテック社製コンフォーカル顕微鏡HD100を用いて曲げ部の外周表面を撮影し、付属のソフトウェアを用いて平均粗さRa(JIS B0601:2013に準拠)を測定し、比較した。なお、曲げ加工前の試料表面はコンフォーカル顕微鏡を用いて観察したところ凹凸は確認できず、平均粗さRaはいずれも0.2μm以下であった。曲げ加工後の表面平均粗さRaが1.0μm以下の場合を○、Raが1.0μmを超える場合を×と評価した。
The following evaluation was performed about the produced test piece.
(A) Ratio of grain boundary corresponding to Σ3 in all crystal grain boundaries After electrolytic polishing of the plate surface (rolled surface) of each test piece, EBSD measurement was performed. The total grain boundary length and the length of the grain boundary corresponding to Σ3 were determined, and the ratio was calculated.
(B) Work hardening index (n value)
A tensile test in a direction parallel to the rolling direction was performed to obtain a stress-strain curve, and the n value was obtained by the method described above.
(C) 0.2% yield strength A JIS No. 13B test piece was prepared, and 0.2% yield strength in a direction parallel to the rolling direction was measured using a tensile tester according to the measurement method described above.
(D) Conductivity Conductivity (EC:% IACS) was measured by the 4-terminal method in accordance with JIS H0505.
(E) Surface roughness of the bent part after rolling at a working degree of 20% After rolling each test piece at a working degree of 20% (plate thickness of 0.08 mm) simulating a test piece, in accordance with JIS H3130 (2012). A W bending test was performed with Badway (bending axis being in the same direction as the rolling direction) and R / t = 1.0, and the outer peripheral surface of the bent portion of the test piece was observed. As an observation method, the outer peripheral surface of the bent portion was photographed using a laser tech confocal microscope HD100, and the average roughness Ra (conforming to JIS B0601: 2013) was measured using the attached software and compared. In addition, when the sample surface before a bending process was observed using the confocal microscope, the unevenness | corrugation was not able to be confirmed but all average roughness Ra was 0.2 micrometer or less. The case where the surface average roughness Ra after bending was 1.0 μm or less was evaluated as “◯”, and the case where Ra exceeded 1.0 μm was evaluated as “×”.

表1及び2に示すところから、発明例1〜20はいずれも、各元素を所定量で含有し、所定の範囲を満たす条件で製造したことにより、全結晶粒界に占めるΣ3対応粒界の割合が30〜55%で加工硬化指数が0.02〜0.15であり、0.2%耐力、導電性、曲げ加工性が良好なものとなった。   As shown in Tables 1 and 2, each of Invention Examples 1 to 20 contains each element in a predetermined amount and is manufactured under conditions satisfying a predetermined range, so that the Σ3 corresponding grain boundary occupying in all the crystal grain boundaries can be obtained. The ratio was 30 to 55%, the work hardening index was 0.02 to 0.15, and 0.2% proof stress, conductivity, and bending workability were good.

一方、比較例1〜3は、第一熱処理の温度条件が所定の範囲を外れたこと、または、第一熱処理を行わなかったことにより、Σ3対応粒界の割合が所定の範囲内とはならず、その結果として、曲げ加工性が悪化した。
比較例4は第一熱処理後の冷間圧延の加工度が小さく、比較例5、6は所定の範囲を外れる温度条件で第二熱処理を行い、比較例7は第二熱処理を行わなかったことにより、いずれの比較例4〜7でも加工硬化指数が低下し、曲げ加工性が悪化した。
On the other hand, in Comparative Examples 1 to 3, when the temperature condition of the first heat treatment is out of the predetermined range, or the first heat treatment is not performed, the ratio of the Σ3-compatible grain boundaries does not fall within the predetermined range. As a result, bending workability deteriorated.
Comparative Example 4 had a small degree of cold rolling after the first heat treatment, Comparative Examples 5 and 6 performed the second heat treatment under temperature conditions outside the predetermined range, and Comparative Example 7 did not perform the second heat treatment. As a result, in any of Comparative Examples 4 to 7, the work hardening index decreased and the bending workability deteriorated.

比較例8、9はCoの含有に起因して、比較例8では強度が、また比較例9では導電性および曲げ加工性が悪化した。   In Comparative Examples 8 and 9, due to the Co content, the strength in Comparative Example 8 and the conductivity and bending workability in Comparative Example 9 deteriorated.

比較例10、11については、Niの含有量に起因して、比較例10では曲げ加工性が、また比較例11では導電性および曲げ加工性が悪化した。比較例12、13は、Ni/Coの比が所定の範囲外であったことから、強度ないし導電率が低下した。比較例14、15は、(Co+Ni)/Siの比が小さすぎるか又は大きすぎたことにより、強度ないし導電率が低下した。比較例16は、所定量を超えて添加元素を含有させたことにより導電率が低下した。
比較例17は特許文献1、比較例18は特許文献2、比較例19は特許文献3、比較例20は特許文献4に記載の工程に従ってそれぞれ製造したものであるが、曲げ加工性が悪化した。
In Comparative Examples 10 and 11, due to the Ni content, the bending workability in Comparative Example 10 and the conductivity and bending workability in Comparative Example 11 deteriorated. In Comparative Examples 12 and 13, since the Ni / Co ratio was outside the predetermined range, the strength or the conductivity decreased. In Comparative Examples 14 and 15, the ratio of (Co + Ni) / Si was too small or too large, resulting in a decrease in strength or conductivity. In Comparative Example 16, the conductivity was lowered by adding the additive element in excess of the predetermined amount.
Comparative Example 17 was manufactured according to the steps described in Patent Document 1, Comparative Example 18 was Patent Document 2, Comparative Example 19 was Patent Document 3, and Comparative Example 20 was described in Patent Document 4, but the bending workability deteriorated. .

Claims (8)

0.5〜3.0質量%のCoおよび、0.1〜1.0質量%のNiを含有し、Coに対するNiの質量比(Ni/Co)が0.1〜1.0であり、Siを(Co+Ni)/Siの質量比が3〜5となるように含有し、残部がCuおよび不可避的不純物からなり、全結晶粒界に占めるΣ3対応粒界の割合が30〜55%であり、かつ、加工硬化指数が0.02〜0.15である電子部品用Cu−Co−Ni−Si合金。   0.5 to 3.0% by mass of Co and 0.1 to 1.0% by mass of Ni, and the mass ratio of Ni to Co (Ni / Co) is 0.1 to 1.0, Si is contained so that the mass ratio of (Co + Ni) / Si is 3 to 5, the balance is made of Cu and inevitable impurities, and the proportion of Σ3 corresponding grain boundaries in the total grain boundaries is 30 to 55%. And the Cu-Co-Ni-Si alloy for electronic components whose work hardening index is 0.02-0.15. 更にFe、Mg、Sn、Zn、B、P、Cr、Zr、Ti、AlおよびMnからなる群から選ばれる少なくとも一種を総計で最大1.0質量%含有する請求項1に記載のCu−Co−Ni−Si合金。   Furthermore, Cu-Co of Claim 1 which contains at least 1 type chosen from the group which consists of Fe, Mg, Sn, Zn, B, P, Cr, Zr, Ti, Al, and Mn in total up to 1.0 mass%. -Ni-Si alloy. 圧延方向に平行な方向での0.2%耐力が650MPa以上であり、導電率が50%IACS以上である請求項1又は2に記載のCu−Co−Ni−Si合金。   The Cu-Co-Ni-Si alloy according to claim 1 or 2, wherein the 0.2% yield strength in a direction parallel to the rolling direction is 650 MPa or more, and the electrical conductivity is 50% IACS or more. 加工度20%で圧延した後の曲げ半径(R)/板厚(t)=1.0として、曲げ軸が圧延方向と同一方向のBadwayでW曲げ試験したときの曲げ部表面の平均粗さRaが1.0μm以下である請求項1〜3の何れか一項に記載のCu−Co−Ni−Si合金。   Bending radius (R) / sheet thickness (t) after rolling at a workability of 20% = 1.0, and the average roughness of the surface of the bending portion when a W-bending test is performed with a Badway in which the bending axis is the same as the rolling direction. Ra is 1.0 micrometer or less, The Cu-Co-Ni-Si alloy as described in any one of Claims 1-3. 0.5〜3.0質量%のCoおよび、0.1〜1.0質量%のNiを含有し、Coに対するNiの濃度(質量%)比(Ni/Co)が0.1〜1.0であり、Siを(Co+Ni)/Siの質量比が3〜5となるように含有し、残部がCuおよび不可避的不純物からなるCu−Co−Ni−Si合金のインゴットを鋳造する工程と、均質化焼鈍を施す工程と、熱間圧延を施す工程と、900〜950℃で3〜24時間にわたって第一熱処理を施す工程と、加工度90%以上の冷間圧延を施す工程と、400〜600℃で1〜10時間の第二熱処理を施す工程と、溶体化処理を施す工程と、時効処理を施す工程と、最終冷間圧延を施す工程とをこの順序で行うことを含む、電子部品用Cu−Co−Ni−Si合金の製造方法。   It contains 0.5 to 3.0% by mass of Co and 0.1 to 1.0% by mass of Ni, and the concentration ratio (Ni / Co) of Ni to Co is 0.1 to 1. A step of casting an ingot of a Cu—Co—Ni—Si alloy containing 0 and Si such that the mass ratio of (Co + Ni) / Si is 3 to 5 and the balance being Cu and inevitable impurities; A step of performing homogenization annealing, a step of performing hot rolling, a step of performing a first heat treatment at 900 to 950 ° C. for 3 to 24 hours, a step of performing cold rolling with a workability of 90% or more, and 400 to 400 An electronic component comprising performing a second heat treatment at 600 ° C. for 1 to 10 hours, a solution treatment step, an aging treatment step, and a final cold rolling step in this order. For producing Cu-Co-Ni-Si alloy for use. Cu−Co−Ni−Si合金が、更にFe、Mg、Sn、Zn、B、P、Cr、Zr、Ti、AlおよびMnからなる群から選ばれる少なくとも一種を総計で最大1.0質量%含有する、請求項5に記載のCu−Co−Ni−Si合金の製造方法。   The Cu-Co-Ni-Si alloy further contains at least one selected from the group consisting of Fe, Mg, Sn, Zn, B, P, Cr, Zr, Ti, Al, and Mn in a total of up to 1.0 mass% The method for producing a Cu—Co—Ni—Si alloy according to claim 5. 請求項1〜4の何れか一項に記載のCu−Co−Ni−Si合金を備えた伸銅品。   The copper-stretched article provided with the Cu-Co-Ni-Si alloy as described in any one of Claims 1-4. 請求項1〜4の何れか一項に記載のCu−Co−Ni−Si合金を備えた電子部品。   The electronic component provided with the Cu-Co-Ni-Si alloy as described in any one of Claims 1-4.
JP2016106589A 2016-05-27 2016-05-27 Cu-Co-Ni-Si alloy for electronic parts Active JP6310004B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016106589A JP6310004B2 (en) 2016-05-27 2016-05-27 Cu-Co-Ni-Si alloy for electronic parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016106589A JP6310004B2 (en) 2016-05-27 2016-05-27 Cu-Co-Ni-Si alloy for electronic parts

Publications (2)

Publication Number Publication Date
JP2017210674A true JP2017210674A (en) 2017-11-30
JP6310004B2 JP6310004B2 (en) 2018-04-11

Family

ID=60474609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016106589A Active JP6310004B2 (en) 2016-05-27 2016-05-27 Cu-Co-Ni-Si alloy for electronic parts

Country Status (1)

Country Link
JP (1) JP6310004B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020172692A (en) * 2019-04-11 2020-10-22 Jx金属株式会社 Copper alloy for electronic material, manufacturing method of copper alloy for electronic material and electronic component

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009242932A (en) * 2008-03-31 2009-10-22 Nippon Mining & Metals Co Ltd Cu-Ni-Si-Co BASED ALLOY FOR ELECTRONIC MATERIAL, AND METHOD FOR PRODUCING THE SAME
WO2011036804A1 (en) * 2009-09-28 2011-03-31 Jx日鉱日石金属株式会社 Cu-Ni-Si-Co COPPER ALLOY FOR ELECTRONIC MATERIAL AND PROCESS FOR PRODUCING SAME
JP2011231393A (en) * 2010-04-05 2011-11-17 Dowa Metaltech Kk Copper alloy sheet, method for production of copper alloy sheet, and electric/electronic component
JP2012167319A (en) * 2011-02-14 2012-09-06 Jx Nippon Mining & Metals Corp Cu-Co-Si-BASED ALLOY, ROLLED COPPER ARTICLE, ELECTRONIC COMPONENT, CONNECTOR, AND METHOD FOR PRODUCING Cu-Co-Si-BASED ALLOY
JP2012211377A (en) * 2011-03-31 2012-11-01 Jx Nippon Mining & Metals Corp Cu-Co-Si BASED ALLOY STRIP
JP2013095976A (en) * 2011-11-02 2013-05-20 Jx Nippon Mining & Metals Corp Cu-Co-Si-BASED ALLOY AND METHOD FOR PRODUCING THE SAME

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009242932A (en) * 2008-03-31 2009-10-22 Nippon Mining & Metals Co Ltd Cu-Ni-Si-Co BASED ALLOY FOR ELECTRONIC MATERIAL, AND METHOD FOR PRODUCING THE SAME
WO2011036804A1 (en) * 2009-09-28 2011-03-31 Jx日鉱日石金属株式会社 Cu-Ni-Si-Co COPPER ALLOY FOR ELECTRONIC MATERIAL AND PROCESS FOR PRODUCING SAME
EP2484787A1 (en) * 2009-09-28 2012-08-08 JX Nippon Mining & Metals Corporation Cu-Ni-Si-Co COPPER ALLOY FOR ELECTRONIC MATERIAL AND PROCESS FOR PRODUCING SAME
JP2011231393A (en) * 2010-04-05 2011-11-17 Dowa Metaltech Kk Copper alloy sheet, method for production of copper alloy sheet, and electric/electronic component
JP2012167319A (en) * 2011-02-14 2012-09-06 Jx Nippon Mining & Metals Corp Cu-Co-Si-BASED ALLOY, ROLLED COPPER ARTICLE, ELECTRONIC COMPONENT, CONNECTOR, AND METHOD FOR PRODUCING Cu-Co-Si-BASED ALLOY
JP2012211377A (en) * 2011-03-31 2012-11-01 Jx Nippon Mining & Metals Corp Cu-Co-Si BASED ALLOY STRIP
JP2013095976A (en) * 2011-11-02 2013-05-20 Jx Nippon Mining & Metals Corp Cu-Co-Si-BASED ALLOY AND METHOD FOR PRODUCING THE SAME

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020172692A (en) * 2019-04-11 2020-10-22 Jx金属株式会社 Copper alloy for electronic material, manufacturing method of copper alloy for electronic material and electronic component
JP7046032B2 (en) 2019-04-11 2022-04-01 Jx金属株式会社 Copper alloys for electronic materials, manufacturing methods and electronic parts for copper alloys for electronic materials

Also Published As

Publication number Publication date
JP6310004B2 (en) 2018-04-11

Similar Documents

Publication Publication Date Title
JP5117604B1 (en) Cu-Ni-Si alloy and method for producing the same
KR101866129B1 (en) Copper alloy for electronic materials
KR20130109161A (en) Cu-ni-si-co copper alloy for electron material and method for producing same
US20130180630A1 (en) Cu-Co-Si-BASED ALLOY FOR ELECTRONIC MATERIAL AND METHOD OF MANUFACTURING THE SAME
JP2012046774A (en) Cu-Co-Si-BASED ALLOY FOR ELECTRONIC MATERIAL
JP6222885B2 (en) Cu-Ni-Si-Co based copper alloy for electronic materials
JP4642119B2 (en) Copper alloy and method for producing the same
JP6080822B2 (en) Titanium copper for electronic parts and manufacturing method thereof
JP6730784B2 (en) Cu-Ni-Co-Si alloy for electronic parts
JP2017066532A (en) Copper alloy sheet having excellent conductivity and stress relaxation properties
JP2016176106A (en) ELECTRONIC COMPONENT Cu-Ni-Co-Si ALLOY
JP6310004B2 (en) Cu-Co-Ni-Si alloy for electronic parts
JP6246173B2 (en) Cu-Co-Ni-Si alloy for electronic parts
JP6246174B2 (en) Cu-Co-Ni-Si alloy for electronic parts
JP2022042515A (en) Copper alloy for electronic material, manufacturing method of copper alloy for electronic material and electronic component
JP2018062705A (en) Copper alloy for electronic material
JP2019077889A (en) Copper alloy for electronic material
JP6522677B2 (en) Cu-Ni-Co-Si alloy for electronic parts
JP7311651B1 (en) Copper alloys for electronic materials and electronic parts
JP6310131B1 (en) Titanium copper for electronic parts
JP2016183418A (en) Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP2019203202A (en) ELECTRONIC COMPONENT Cu-Ni-Co-Si ALLOY
JP2019194361A (en) ELECTRONIC COMPONENT Cu-Ni-Co-Si ALLOY
JP2021088738A (en) Copper alloy for electronic material, electronic component and manufacturing method for copper alloy for electronic material
JP2020029593A (en) Copper alloy for electronic material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180315

R150 Certificate of patent or registration of utility model

Ref document number: 6310004

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250