JP7043731B2 - Copper-clad laminated board and its manufacturing method, as well as wiring board - Google Patents

Copper-clad laminated board and its manufacturing method, as well as wiring board Download PDF

Info

Publication number
JP7043731B2
JP7043731B2 JP2017030407A JP2017030407A JP7043731B2 JP 7043731 B2 JP7043731 B2 JP 7043731B2 JP 2017030407 A JP2017030407 A JP 2017030407A JP 2017030407 A JP2017030407 A JP 2017030407A JP 7043731 B2 JP7043731 B2 JP 7043731B2
Authority
JP
Japan
Prior art keywords
copper
base layer
layer
clad laminated
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017030407A
Other languages
Japanese (ja)
Other versions
JP2018135561A (en
Inventor
吉幸 浅川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2017030407A priority Critical patent/JP7043731B2/en
Publication of JP2018135561A publication Critical patent/JP2018135561A/en
Application granted granted Critical
Publication of JP7043731B2 publication Critical patent/JP7043731B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

本発明は、絶縁体フィルムの少なくとも一方の表面に接着剤を介することなく下地層とその下地層の表面に形成される銅導体層との積層構造を備えた銅張積層基板と、その製造方法、並びに配線基板に関し、より具体的には、該下地層に窒化チタンを用いる銅張積層基板に関する。 The present invention provides a copper-clad laminated substrate having a laminated structure of a base layer and a copper conductor layer formed on the surface of the base layer without using an adhesive on at least one surface of the insulator film, and a method for manufacturing the same. , And more specifically, a copper-clad laminated substrate using titanium nitride as the underlayer.

フレキシブルなプリント配線基板は、絶縁体フィルム上に接着剤を用いて導体層となる銅箔を貼り合わせた3層銅張積層基板(例えば、特許文献1参照)と、絶縁体フィルム上に接着剤を用いることなしに乾式めっき法または湿式めっき法のメタライジング法により導体層となる銅被膜層を直接形成した2層銅張積層基板とに大別される。 The flexible printed wiring board consists of a three-layer copper-clad laminated board (see, for example, Patent Document 1) in which a copper foil as a conductor layer is bonded on an insulator film using an adhesive, and an adhesive on the insulator film. It is roughly classified into a two-layer copper-clad laminated substrate in which a copper coating layer to be a conductor layer is directly formed by a metallizing method of a dry plating method or a wet plating method without using the above.

ところで、近年の電子機器の高密度化に伴い、狭ピッチ化した配線幅の配線基板が求められるようになり、銅張積層基板からエッチングなどの配線加工を経て配線基板を得るには、銅張積層基板に3層銅張積層基板に代えて、2層銅張積層基板が主に用いられている。 By the way, with the increase in density of electronic devices in recent years, a wiring board having a narrower pitch is required, and in order to obtain a wiring board from a copper-clad laminated board through wiring processing such as etching, copper-clad is used. A two-layer copper-clad laminated substrate is mainly used as the laminated substrate instead of the three-layer copper-clad laminated substrate.

この2層銅張積層基板は、絶縁体フィルムの少なくとも一方の表面に均一な厚みの銅被覆層が形成されるが、その手段としては、通常電気めっき法が採用される。そして、電気めっきを行うために、電気めっきの形成前に絶縁体フィルム上に薄い金属層を形成して表面全面に導電性を付与し、その上に電気めっきを行うのが一般的である(例えば、特許文献2参照)。尚、絶縁体フィルム上に形成される薄い金属層は、真空蒸着法、イオンプレーティング法などの乾式めっき法を用いて形成される。 In this two-layer copper-clad laminated substrate, a copper coating layer having a uniform thickness is formed on at least one surface of the insulator film, and an electroplating method is usually adopted as the means. Then, in order to perform electroplating, it is common to form a thin metal layer on an insulator film to impart conductivity to the entire surface before forming electroplating, and then perform electroplating on the thin metal layer. For example, see Patent Document 2). The thin metal layer formed on the insulator film is formed by using a dry plating method such as a vacuum vapor deposition method or an ion plating method.

こうした中で、絶縁体フィルムと銅被覆層との密着性は、その界面にCuOやCuO等の脆弱層が形成されると非常に弱くなることから、プリント配線板に要求される銅導体層との密着強度を維持するため、絶縁体フィルムと銅被覆層との間に下地金属層として、ニッケル-クロム合金層を設けることが行われている(特許文献3参照)。 Under these circumstances, the adhesion between the insulator film and the copper coating layer becomes very weak when a fragile layer such as CuO or Cu2O is formed at the interface thereof, so that the copper conductor required for a printed wiring board is required. In order to maintain the adhesion strength with the layer, a nickel-chromium alloy layer is provided as a base metal layer between the insulator film and the copper coating layer (see Patent Document 3).

現在のメタライジング法で製造される2層銅張積層基板では、下地金属層にニッケル-クロム合金を用いている。下地金属層にニッケル-クロム系合金を用いる利点は、ニッケル-20%クロム合金を用いた場合、ピール強度で150℃、168時間後の耐熱ピール強度が高いといった特徴がある。欠点としては、逆に絶縁との結合が強いためニッケル-クロム合金が絶縁体フィルムのポリイミド表面に残りやすく、もしも配線間に残った場合は、表面に残ったニッケルとクロムのうち、ニッケルがマイグレーションし絶縁抵抗が劣化し、場合によっては、ショートに至ってしまうという絶縁信頼性の問題があった。 In the two-layer copper-clad laminated substrate manufactured by the current metallizing method, a nickel-chromium alloy is used as the base metal layer. The advantage of using a nickel-chromium alloy for the base metal layer is that when a nickel-20% chromium alloy is used, the peel strength is 150 ° C. and the heat-resistant peel strength after 168 hours is high. On the other hand, the disadvantage is that the nickel-chromium alloy tends to remain on the polyimide surface of the insulator film due to the strong bond with the insulation, and if it remains between the wires, nickel out of the nickel and chromium remaining on the surface will migrate. However, there is a problem of insulation reliability that the insulation resistance deteriorates and, in some cases, a short circuit occurs.

特開平6-132628号公報Japanese Unexamined Patent Publication No. 6-132628 特開平8-139448号公報Japanese Unexamined Patent Publication No. 8-139448 特開平6-120630号公報Japanese Unexamined Patent Publication No. 6-12630 特開2015-101778号公報Japanese Unexamined Patent Publication No. 2015-101778

本発明は、メタライジング法で製造される2層銅張積層基板で下地金属層にニッケル-クロム合金を用いた問題を解決するために、下地金属層にニッケル-クロム合金を用いる代わりに下地層として窒化チタンを用いて、高いピール強度と絶縁信頼性を向上させた銅張積層基板を提供するものである。 In the present invention, in order to solve the problem of using a nickel-chromium alloy for the base metal layer in a two-layer copper-clad laminated substrate manufactured by the metallizing method, instead of using a nickel-chromium alloy for the base metal layer, the base layer is used. To provide a copper-clad laminated substrate with high peel strength and improved insulation reliability by using titanium nitride.

本発明の第1の発明は、絶縁体フィルムの少なくとも一方の表面に接着剤を介さずに備えられる下地層と、該下地層の表面に銅導体層を備えた銅張積層基板において、前記絶縁体フィルムがポリイミドであり、前記絶縁体フィルムの前記下地層側の表面が、イミド結合が切断され形成されたアミド結合と窒素原子を有する官能基を備え、前記下地層が、窒素を18~22.6質量%含有する窒化チタンで、前記下地層の膜厚が、5~300nmであることを特徴とする銅張積層基板である。 The first invention of the present invention is the insulation in a copper-clad laminated substrate provided with a base layer provided on at least one surface of an insulator film without using an adhesive and a copper conductor layer on the surface of the base layer. The body film is polyimide, and the surface of the insulator film on the base layer side has an amide bond formed by cutting an imide bond and a functional group having a nitrogen atom, and the base layer contains nitrogen 18 to 22. It is a copper-clad laminated substrate which is titanium nitride containing 0.6% by mass and has a thickness of the base layer of 5 to 300 nm.

本発明の第2の発明は、絶縁体フィルムの少なくとも一方の表面に、接着剤を介さずに備えられる窒化チタンの下地層と、該下地層の表面に銅導体層を備えた銅張積層基板の製造方法において、その下地層が、窒素を18~22.6質量%含有する窒化チタンで、且つ前記下地層の膜厚が、5~300nmであり、その絶縁体フィルムの下地層側の表面に、窒素ガスあるいは窒素ガスを2体積%以上含有する希ガスとの混合ガス雰囲気下で、印可電圧800V~2600Vでのプラズマ処理あるいは印加電圧600V~2600Vでのイオンビーム処理を実施して、前記絶縁体フィルムの下地層側の表面に、窒素原子を有する官能基を形成した後に前記下地層が設けられることを特徴とする銅張積層基板の製造方法である。 The second invention of the present invention is a copper-clad laminated substrate provided with a titanium nitride underlayer provided on at least one surface of the insulator film without using an adhesive, and a copper conductor layer on the surface of the underlayer. In the manufacturing method of the above, the underlayer is titanium nitride containing 18 to 22.6% by mass of nitrogen, and the thickness of the underlayer is 5 to 300 nm, and the surface of the insulator film on the underlayer side. In a mixed gas atmosphere with nitrogen gas or a rare gas containing 2% by volume or more of nitrogen gas , plasma treatment at an applied voltage of 800 V to 2600 V or ion beam treatment at an applied voltage of 600 V to 2600 V is carried out. It is a method for manufacturing a copper-clad laminated substrate, characterized in that the base layer is provided after forming a functional group having a nitrogen atom on the surface of the insulator film on the base layer side.

本発明の第3の発明は、第2の発明における下地層の成膜が、乾式めっき法であること特徴とする銅張積層基板の製造方法である。 A third invention of the present invention is a method for manufacturing a copper-clad laminated substrate, characterized in that the film formation of the base layer in the second invention is a dry plating method.

本発明の第4の発明は、第3の発明における下地層を成膜する乾式めっき法が、スパッタリング法であり、かつ、窒化物ターゲットを用いることを特徴とする銅張積層基板の製造方法である。 A fourth aspect of the present invention is a method for manufacturing a copper-clad laminated substrate, wherein the dry plating method for forming a base layer in the third aspect of the present invention is a sputtering method and a nitride target is used. be.

本発明の第5の発明は、絶縁体フィルムの少なくとも一方の表面に、接着剤を介さずに下地層を配し、前記下地層の表面に銅導体層を配する積層構造の配線が配される配線基板であって、前記絶縁体フィルムがポリイミドであり、前記絶縁体フィルムの前記下地層側の表面が、イミド結合が切断され形成されたアミド結合と窒素原子を有する官能基を備え、前記下地層が窒素を18~22.6質量%含有する窒化チタンで、下地層の膜厚が、5~300nmであることを特徴とする配線基板である。 In the fifth aspect of the present invention, a laminated structure wiring in which a base layer is arranged on at least one surface of the insulator film without using an adhesive and a copper conductor layer is arranged on the surface of the base layer is arranged. The insulating substrate is polyimide, and the surface of the insulator film on the base layer side is provided with an amide bond formed by cutting an imide bond and a functional group having a nitrogen atom. It is a wiring substrate characterized in that the base layer is titanium nitride containing 18 to 22.6% by mass of nitrogen and the thickness of the base layer is 5 to 300 nm.

本発明に係る銅張積層基板は、下地層に窒化チタンを用いることで、上記課題を解決し、密着性が高く、かつ絶縁信頼性の高い銅導体層を形成した銅張積層基板を得ることができる。また、この基板を使用することによって、密着性が高い配線部を有する信頼性の高い狭幅、狭ピッチの配線部を持った配線基板を効率よく得ることができる。従って、産業上、その効果は大きい。 The copper-clad laminated substrate according to the present invention solves the above-mentioned problems by using titanium nitride as the base layer, and obtains a copper-clad laminated substrate having a copper conductor layer having high adhesion and high insulation reliability. Can be done. Further, by using this substrate, it is possible to efficiently obtain a wiring board having a highly reliable narrow-width and narrow-pitch wiring portion having a wiring portion having high adhesion. Therefore, the effect is great industrially.

本発明に係る銅張積層基板の連続製造に適したロールツーロールスパッタリング装置の一例である。This is an example of a roll-to-roll sputtering apparatus suitable for continuous production of a copper-clad laminated substrate according to the present invention.

本発明に係る銅張積層基板は、絶縁体フィルムの少なくとも一方の表面に、接着剤を介さずに窒化チタンの下地層を備え、その下地層の表面に所望の厚みの銅導体層を備えた銅張積層基板である。 The copper-clad laminated substrate according to the present invention is provided with a titanium nitride underlayer on at least one surface of the insulator film without using an adhesive, and a copper conductor layer having a desired thickness is provided on the surface of the underlayer. It is a copper-clad laminated substrate.

(1)絶縁体フィルム
絶縁体フィルムは、電気絶縁性を備えたフィルムであればよく、樹脂フィルムを用いることが望ましい。本発明で用いることができる絶縁体フィルムには、ポリイミドフィルム、ポリアミドフィルム、ポリエチレンテレフタレート(PET)やポリエチレンテレナフタレート(PEN)等のポリエステル系フィルム、ポリテトラフルオロエチレン系フィルム、ポリフェニレンサルファイド系フィルム、ポリエチレンナフタレート系フィルム、もしくは液晶ポリマー系フィルムから選ばれた絶縁樹脂フィルムを耐熱性、誘電体特性、電気絶縁性や配線基板の製造工程や次工程での耐薬品性等を考慮し用途に応じて適宜選択できる。このうち、ポリイミドフィルムは、電気絶縁性や耐熱性さらには耐薬品性の観点から望ましい。
また、絶縁体フィルムの厚みは、取扱いや柔軟性の観点から10μm~100μmが望ましい。
(1) Insulator film The insulator film may be any film having electrical insulation properties, and it is desirable to use a resin film. The insulator film that can be used in the present invention includes a polyimide film, a polyamide film, a polyester film such as polyethylene terephthalate (PET) and polyethylene terenaphthalate (PEN), a polytetrafluoroethylene film, a polyphenylene sulfide film, and polyethylene. Insulating resin film selected from naphthalate film or liquid crystal polymer film can be used according to the application in consideration of heat resistance, dielectric properties, electrical insulation, chemical resistance in the manufacturing process of wiring boards and the next process. It can be selected as appropriate. Of these, the polyimide film is desirable from the viewpoint of electrical insulation, heat resistance, and chemical resistance.
The thickness of the insulator film is preferably 10 μm to 100 μm from the viewpoint of handling and flexibility.

(2)下地層
本発明に係る銅張積層基板では、下地層に窒素を18~22.6質量%含有する窒化チタンを用いる。これまで広く知られた銅張積層基板では下地層にニッケル-クロム合金を用いているが、銅張積層基板を配線基板へ加工する際には、絶縁体フィルムに残留するニッケルの完全な除去が望ましい。そこで、ニッケルを含まない下地層はいくつか提案されているが、配線間の電気化学反応に起因する酸化還元反応を発生し難く、電気化学的な腐食であるマイグレーション耐性による絶縁信頼性を備えたチタン系の下地層は有望である。
(2) Underlayer In the copper-clad laminated substrate according to the present invention, titanium nitride containing 18 to 22.6% by mass of nitrogen is used for the underlayer. Nickel-chromium alloy is used for the base layer in the copper-clad laminated substrate that has been widely known so far, but when the copper-clad laminated substrate is processed into a wiring board, the nickel remaining on the insulator film is completely removed. desirable. Therefore, although some underlayers that do not contain nickel have been proposed, they are less likely to cause redox reactions due to electrochemical reactions between the wirings, and have insulation reliability due to migration resistance, which is electrochemical corrosion. Titanium-based underlayers are promising.

ところが、金属チタンを下地層として成膜する場合には、金属チタンは非常に活性であり、スパッタリング中の微量の酸素によって、酸化を受けやすく、酸化してしまうとピール強度の劣化(特に耐熱ピール強度)が著しいという問題がある。 However, when a metal titanium film is formed as a base layer, the metal titanium is very active and is easily oxidized by a small amount of oxygen during sputtering, and when it is oxidized, the peel strength deteriorates (particularly heat-resistant peel). There is a problem that the strength) is remarkable.

また、通常では銅張積層基板の製造過程で、絶縁体フィルムと下地層との密着性、すなわちピール強度を改善する為に、絶縁体フィルム表面に存在する絶縁体フィルムの分子が未硬化のオリゴマー等を含む脆弱層の除去と、該脆弱層を除去された絶縁体フィルムを構成する高分子に酸素官能基等を導入する酸素プラズマ処理が行われている。 Further, normally, in the process of manufacturing a copper-clad laminated substrate, in order to improve the adhesion between the insulator film and the base layer, that is, the peel strength, the molecules of the insulator film existing on the surface of the insulator film are uncured oligomers. The fragile layer containing the above is removed, and an oxygen plasma treatment is performed in which an oxygen functional group or the like is introduced into the polymer constituting the insulator film from which the fragile layer has been removed.

例えば、絶縁体フィルムのポリイミドフィルムに酸素プラズマ処理等で酸素原子を有する官能基を形成し、ニッケル-クロム系合金との結合を高める処理が施される。しかし、チタン系下地層の場合はこの酸素プラズマ処理も、絶縁体フィルムに導入される酸素を含む官能基により、下地層が成膜中に酸化されピール強度劣化の原因になる。なお、下地層の酸化の分析は、XPS分析(X-ray Photoelectron Spectroscopy)やオージェ電子分析等から観測される化学シフトから酸素原子とチタン原子の結合から知ることができる。 For example, a polyimide film of an insulator film is subjected to a treatment of forming a functional group having an oxygen atom by oxygen plasma treatment or the like to enhance the bond with a nickel-chromium alloy. However, in the case of a titanium-based base layer, this oxygen plasma treatment also causes the base layer to be oxidized during film formation due to the oxygen-containing functional groups introduced into the insulator film, resulting in deterioration of peel strength. The analysis of the oxidation of the underlying layer can be known from the bond between the oxygen atom and the titanium atom from the chemical shift observed from XPS analysis (X-ray Photoelectron Spectroscopy), Auger electron analysis and the like.

本発明の銅張積層基板では、下地層のチタンは酸素と結合していないことが必要である。
そこで、本発明に係る銅張積層基板では、下地層の成膜の前に絶縁体フィルムの表面に窒素原子を有する官能基を形成し、酸化を防ぐことが望ましい。
ここで、絶縁体フィルムへのポリイミドフィルムを例に説明すると、ポリイミド分子のイミド結合を構成する窒素原子の環状の結合の一方の結合が切断されてアミド結合が生じるのと同時に、イミド結合が切断された他方に窒素原子が導入され、導入された窒素原子がアミノ基となるのである。
絶縁体フィルムの表面に窒素原子を有する官能基を導入するには雰囲気が、窒素ガスあるいは窒素ガスを2体積%以上含有する希ガスとの混合ガスを用いてプラズマ処理あるいはイオンビーム処理を行うことが望ましい。ここで、希ガスとは、アルゴン、キセノン、クリプトン、ヘリウムであり、入手可能性からアルゴンが望ましい。
In the copper-clad laminated substrate of the present invention, it is necessary that the titanium in the base layer is not bonded to oxygen.
Therefore, in the copper-clad laminated substrate according to the present invention, it is desirable to form a functional group having a nitrogen atom on the surface of the insulator film before the film formation of the base layer to prevent oxidation.
Here, to explain the polyimide film to the insulator film as an example, one of the cyclic bonds of the nitrogen atoms constituting the imide bond of the polyimide molecule is cleaved to form an amide bond, and at the same time, the imide bond is cleaved. A nitrogen atom is introduced into the other, and the introduced nitrogen atom becomes an amino group.
In order to introduce a functional group having a nitrogen atom on the surface of the insulator film, the atmosphere should be plasma treatment or ion beam treatment using a nitrogen gas or a mixed gas with a rare gas containing 2% by volume or more of nitrogen gas. Is desirable. Here, the noble gas is argon, xenon, krypton, or helium, and argon is preferable from the viewpoint of availability.

雰囲気ガスの圧力制御の観点からプラズマ処理よりもイオンビーム処理が望ましい。プラズマ処理では印加電圧800V~2600V、イオンビーム処理では印加電圧600V~2600Vを印加すれば、絶縁体フィルムの脆弱層の除去と窒素原子を有する官能基を導入することができる。印加電圧は、絶縁体フィルムの特性を考慮して適宜選択すればよい。 Ion beam treatment is preferable to plasma treatment from the viewpoint of pressure control of atmospheric gas. If an applied voltage of 800 V to 2600 V is applied in the plasma treatment and an applied voltage of 600 V to 2600 V is applied in the ion beam treatment, the fragile layer of the insulator film can be removed and a functional group having a nitrogen atom can be introduced. The applied voltage may be appropriately selected in consideration of the characteristics of the insulator film.

下地層の成膜は、乾式めっき法で成膜され、乾式めっき法のうちスパッタリング法が望ましい。この下地層のスパッタリング成膜は、スパッタリングカソードに金属チタンターゲットを備え、スパッタリングガスのアルゴンなどの希ガスに窒素ガスを添加した反応性スパッタリングで成膜することも可能である。さらに、窒化チタンターゲットを用いて成膜することがより望ましく、窒化チタンターゲットを用いると、スパッタリング装置に吸着していた酸素や水などがスパッタリング雰囲気に放出されても下地層の酸化を防ぐことができる。 The underlayer is formed by a dry plating method, and the sputtering method is preferable among the dry plating methods. The sputtering film formation of this base layer can also be formed by reactive sputtering in which a metallic titanium target is provided on the sputtering cathode and nitrogen gas is added to a rare gas such as argon as the sputtering gas. Furthermore, it is more desirable to form a film using a titanium nitride target, and if a titanium nitride target is used, it is possible to prevent oxidation of the underlying layer even if oxygen or water adsorbed on the sputtering apparatus is released into the sputtering atmosphere. can.

下地層の膜厚は5~300nmが望ましい。
下地層の膜厚が5nm未満では、緻密な下地層を成膜できず、薄いと膜としても存在できず、島状の析出物となり、最終的に得られる銅張積層基板や配線基板の耐食性が低くなり、酸素の影響で酸化が進行する。一方、下地層の膜厚が300nmを超えると配線加工の際のエッチングによる下地層の除去が困難となる。
The film thickness of the base layer is preferably 5 to 300 nm.
If the thickness of the base layer is less than 5 nm, a dense base layer cannot be formed, and if it is thin, it cannot exist as a film, resulting in island-like precipitates, and the corrosion resistance of the finally obtained copper-clad laminated substrate or wiring board. Decreases, and oxidation progresses due to the influence of oxygen. On the other hand, if the film thickness of the base layer exceeds 300 nm, it becomes difficult to remove the base layer by etching during wiring processing.

下地層の窒化チタンの組成は18~22.6質量%の窒素を含む。窒化チタンの窒素の含有率が18~22.6質量%であれば、最終的に得られる銅張積層基板や配線基板を大気中で150℃で熱処理しても下地層が変質することはない。 The composition of titanium nitride in the base layer contains 18 to 22.6% by mass of nitrogen. If the nitrogen content of titanium nitride is 18 to 22.6% by mass, the underlying layer will not be deteriorated even if the finally obtained copper-clad laminated substrate or wiring board is heat-treated at 150 ° C. in the atmosphere. ..

(3)銅導体層
本発明に係る銅張積層基板では、下地層の表面に銅導体層が形成される。銅導体層は、膜厚1~20μmが望ましい。
銅導体層は、下地層の表面に成膜される銅薄膜層と銅電気めっき層の積層構造としてもよい。銅薄膜層は膜厚50nm~1000nmが望ましい。銅薄膜層は、スパッタリング法や蒸着法などの乾式めっき法で成膜することができる。
窒化チタンの下地層の表面に銅薄膜層を設けるのは、導電性を備える窒化チタンの下地層であっても、下地層が5nm~100nmでは下地層の抵抗値が高いので、その表面に電気めっき法で銅導体層の銅電気めっき層を設けることが難しい。そこで、下地層が100nm以下の場合、下地層の表面には銅薄膜層を設けることが望ましい。一方、下地層の膜厚により銅薄膜層を省略できる場合は、下地層と銅導体層の銅電気めっき層が積層された銅張積層基板となる。
(3) Copper Conductor Layer In the copper-clad laminated substrate according to the present invention, a copper conductor layer is formed on the surface of the base layer. The copper conductor layer preferably has a film thickness of 1 to 20 μm.
The copper conductor layer may have a laminated structure of a copper thin film layer and a copper electroplating layer formed on the surface of the base layer. The copper thin film layer preferably has a film thickness of 50 nm to 1000 nm. The copper thin film layer can be formed by a dry plating method such as a sputtering method or a thin film deposition method.
The reason why the copper thin film layer is provided on the surface of the titanium nitride base layer is that even if the base layer is a conductive titanium nitride base layer, the resistance value of the base layer is high when the base layer is 5 nm to 100 nm. It is difficult to provide a copper electroplating layer of a copper conductor layer by the plating method. Therefore, when the base layer is 100 nm or less, it is desirable to provide a copper thin film layer on the surface of the base layer. On the other hand, if the copper thin film layer can be omitted due to the thickness of the base layer, a copper-clad laminated substrate in which the base layer and the copper electroplating layer of the copper conductor layer are laminated is obtained.

銅電気めっき層は、銅薄膜層の表面に電気めっき法により成膜することができる。電気めっきは公知の銅電気めっき浴等を用いて公知の電気めっき方法で成膜できる。
銅薄膜層と銅電気めっき層の膜厚の合計が1~20μmとなればよい。
The copper electroplating layer can be formed on the surface of the copper thin film layer by an electroplating method. The electroplating can be formed by a known electroplating method using a known copper electroplating bath or the like.
The total film thickness of the copper thin film layer and the copper electroplating layer may be 1 to 20 μm.

(4)銅張積層基板の製造方法
本発明に係る銅張積層基板の製造方法の一例は、絶縁体フィルムの少なくとも一方の表面に下地層と必要に応じて銅薄膜層を乾式めっき法で成膜し、その後、公知の銅電気めっきで銅導体層の銅電気めっき層が形成されて、完成する。
(4) Method for manufacturing a copper-clad laminated substrate In an example of the method for manufacturing a copper-clad laminated substrate according to the present invention, a base layer and, if necessary, a copper thin film layer are formed on at least one surface of an insulator film by a dry plating method. A film is formed, and then a copper electroplating layer of a copper conductor layer is formed by known copper electroplating to complete the process.

図1は、銅張積層基板の連続製造に適したロールツーロールスパッタリング装置10の一例である。ロールツーロールスパッタリング装置10で下地層と銅薄膜層を成膜する手順を説明する。
ロールツーロールスパッタリング装置10は、その構成部品のほとんどを収納した直方体状の筐体11を備えている。
筐体11は円筒状でも良く、その形状は問わないが、10-4Pa~1Paの範囲に減圧された状態を保持できれば良い。
FIG. 1 is an example of a roll-to-roll sputtering apparatus 10 suitable for continuous production of a copper-clad laminated substrate. A procedure for forming a base layer and a copper thin film layer with the roll-to-roll sputtering apparatus 10 will be described.
The roll-to-roll sputtering apparatus 10 includes a rectangular parallelepiped housing 11 that houses most of its components.
The housing 11 may have a cylindrical shape, and the shape thereof is not limited, but it is sufficient that the housing 11 can be maintained in a depressurized state in the range of 10 -4 Pa to 1 Pa.

この筐体11内には、長尺の絶縁体フィルム基板であるポリイミドフィルムFを、供給する巻出ロール12、ガイドロール13a、13b、13c、13d、13f、13g、13h、13i、13j、キャンロール14、イオン照射源15、前フィードロール16a、キャンロール17、スパッタリングカソード18a、18b、18c、18d、後ろフィードロール16b、巻取ロール19が格納されている。また、ガイドロール13f、13gには絶縁体フィルムの搬送張力を測定する張力センサーが備わる。巻出ロール12、キャンロール14、キャンロール17、前フィードロール16a、巻取ロール19にはサーボモータによる動力を備える。巻出ロール12、巻取ロール19は、パウダークラッチ等によるトルク制御によって長尺の絶縁体フィルムであるポリイミドフィルムFの張力バランスが保たれるようになっている。 In the housing 11, a polyimide film F, which is a long insulator film substrate, is supplied to the unwinding roll 12, the guide rolls 13a, 13b, 13c, 13d, 13f, 13g, 13h, 13i, 13j, and the can. A roll 14, an ion irradiation source 15, a front feed roll 16a, a can roll 17, a sputtering cathode 18a, 18b, 18c, 18d, a rear feed roll 16b, and a take-up roll 19 are stored. Further, the guide rolls 13f and 13g are provided with a tension sensor for measuring the transport tension of the insulator film. The unwinding roll 12, the can roll 14, the can roll 17, the front feed roll 16a, and the winding roll 19 are provided with power by a servomotor. The unwinding roll 12 and the winding roll 19 are designed so that the tension balance of the polyimide film F, which is a long insulator film, is maintained by torque control by a powder clutch or the like.

スパッタリングカソード18a~18dは、マグネトロンカソード式でキャンロール17に対向して配置される。スパッタリングカソード18a~18dのポリイミドフィルムFの巾方向の寸法は、ポリイミドフィルムFの巾より広ければよい。 The sputtering cathodes 18a to 18d are magnetron cathode type and are arranged to face the canroll 17. The dimension in the width direction of the polyimide film F of the sputtering cathodes 18a to 18d may be wider than the width of the polyimide film F.

ポリイミドフィルムFは、キャンロール14に対向して配されるイオン照射源15により絶縁体フィルムであるポリイミドフィルムFの表面に窒素原子を有する官能基が形成される。そのため、イオン照射源には、希ガスに窒素ガスが添加された混合ガスが供給される。ここで、プラズマ処理で窒素原子を有する官能基の導入を行う場合、イオン照射源15に替えてプラズマ照射手段を配置してプラズマ処理を実施する。 In the polyimide film F, a functional group having a nitrogen atom is formed on the surface of the polyimide film F, which is an insulator film, by an ion irradiation source 15 arranged opposite to the can roll 14. Therefore, a mixed gas in which nitrogen gas is added to the noble gas is supplied to the ion irradiation source. Here, when introducing a functional group having a nitrogen atom in the plasma treatment, a plasma irradiation means is arranged in place of the ion irradiation source 15 to carry out the plasma treatment.

ポリイミドフィルムFは、ロールツーロールスパッタリング装置10内を搬送されて、キャンロール17に対向するスパッタリングカソード18a~18dで成膜され、下地層が成膜され下地層付ポリイミドフィルムF2に加工される。例えば、スパッタリングカソード18aには窒化チタンターゲットを、スパッタリングカソード18b、18c、18dには銅ターゲットを装着して、窒化チタンの下地層の表面に銅薄膜層が製膜された下地層付ポリイミドフィルムF2となる。勿論、スパッタリングカソード18a~18dの全てに窒化チタンターゲットを装着し、下地層のみを成膜した下地層付ポリイミドフィルムF2とすることもできる。 The polyimide film F is conveyed in the roll-to-roll sputtering apparatus 10 and is formed into a film on the sputtering cathodes 18a to 18d facing the can roll 17, and the underlayer is formed and processed into the polyimide film F2 with the underlayer. For example, a titanium nitride target is attached to the sputtering cathode 18a, and a copper target is attached to the sputtering cathodes 18b, 18c, 18d, and a copper thin film layer is formed on the surface of the titanium nitride underlayer. It becomes. Of course, it is also possible to attach a titanium nitride target to all of the sputtering cathodes 18a to 18d to obtain a polyimide film F2 with a base layer in which only the base layer is formed.

窒化チタンの下地層は、スパッタリングガスのアルゴンに窒素ガスを添加した雰囲気で反応性スパッタリングで成膜されることも可能である。
キャンロール14、17は、その表面が硬質クロムめっきで仕上げられ、その内部には筐体12の外部から供給される冷媒や温媒が循環し、略一定の温度に調整される。
The base layer of titanium nitride can also be formed by reactive sputtering in an atmosphere in which nitrogen gas is added to argon as a sputtering gas.
The surface of the can rolls 14 and 17 is finished with hard chrome plating, and a refrigerant or a hot medium supplied from the outside of the housing 12 circulates inside the can rolls 14 and 17, and the temperature is adjusted to a substantially constant temperature.

また、下地層をスパッタリングで成膜した後に、銅薄膜層を蒸着法で成膜しても良い。
ロールツーロールスパッタリング装置10で成膜され、得られた下地層付ポリイミドフィルムを公知のロールツーロール連続電気めっき装置で銅電気めっき層を成膜すれば、銅張積層基板は完成する。
なお、ロールツーロールスパッタリング装置10は、長尺の絶縁体フィルムに連続してプラズマ処理またはイオンビーム処理、次いで、下地層成膜を連続して行うことができる。勿論、連続した処理ではなく、真空チャンバー内で枚葉式にプラズマ処理やイオンビーム処理から下地層の成膜を行ってもよい。
Further, the copper thin film layer may be formed by a vapor deposition method after the underlayer is formed by sputtering.
A copper-clad laminated substrate is completed by forming a copper electroplating layer on a polyimide film with a base layer obtained by the roll-to-roll sputtering apparatus 10 using a known roll-to-roll continuous electroplating apparatus.
The roll-to-roll sputtering apparatus 10 can continuously perform plasma treatment or ion beam treatment on a long insulator film, and then continuously form an underlayer film. Of course, instead of continuous treatment, the underlayer may be formed from plasma treatment or ion beam treatment in a single-wafered manner in a vacuum chamber.

(5)配線基板
本発明に係る銅張積層基板は、公知のセミアディティブ法や公知のサブトラクティブ法で配線加工することができる。
サブトラクティブ法とは、銅張積層基板の銅導体層の表面に、銅導体層等を除去したい個所のレジスト層に開口部を設けて、開口部により露出している不要な銅導体層と下地層を、エッチングなどで除去する方法である。その銅導体層のエッチング除去には塩化第二鉄水溶液などを用いることができ、下地層の除去には、特許文献4に開示される過酸化水素とフッ化物イオン供給源とホスホノブタントリカルボン酸とアゾール化合物を含むエッチング液や塩酸と硫酸と芳香族スルホン酸の混合液系のエッチング液やアンモニアと過酸化水素を含むエッチング液を用いることができる。
(5) Wiring board The copper-clad laminated board according to the present invention can be wired by a known semi-additive method or a known subtractive method.
In the subtractive method, an opening is provided in the resist layer at the place where the copper conductor layer or the like is to be removed on the surface of the copper conductor layer of the copper-clad laminated substrate, and the unnecessary copper conductor layer exposed by the opening and the bottom. This is a method of removing the formation layer by etching or the like. An aqueous solution of ferric chloride or the like can be used to remove the etching of the copper conductor layer, and hydrogen chloride, a fluoride ion source, and a phosphonobutane tricarboxylic acid disclosed in Patent Document 4 can be used to remove the underlying layer. An etching solution containing an azole compound, an etching solution containing a mixed solution of hydrochloric acid, sulfuric acid and an aromatic sulfonic acid, or an etching solution containing ammonia and hydrogen peroxide can be used.

一方、セミアディティブ法は、銅張積層基板の銅導体層の表面に配線パターンを形成したい箇所に、レジスト層の開口部(図示せず)を設け、その開口部によって、露出している銅導体層を陰極として電気銅めっきして所望の膜厚の配線部を形成した後、レジスト層を除去して、フラッシュエッチングなどで配線部以外の前記銅張積層基板の下地層と銅導体層を除去することにより、配線板を完成させる方法ものである。その銅導体層の除去には市販のセミアディティブ方法の銅の除去液を用いることができ、下地層の除去は、サブトラクティブ法と同様の塩酸と硫酸と芳香族スルホン酸の混合液系のエッチング液を用いることができる。 On the other hand, in the semi-additive method, an opening (not shown) of the resist layer is provided at a position where a wiring pattern is desired to be formed on the surface of the copper conductor layer of the copper-clad laminated substrate, and the copper conductor exposed by the opening is provided. After electrolytic copper plating is performed using the layer as a cathode to form a wiring portion having a desired thickness, the resist layer is removed, and the base layer and the copper conductor layer of the copper-clad laminated substrate other than the wiring portion are removed by flash etching or the like. By doing so, it is a method of completing the wiring board. A commercially available semi-additive method copper removing solution can be used to remove the copper conductor layer, and the underlying layer can be removed by etching a mixed solution system of hydrochloric acid, sulfuric acid, and aromatic sulfonic acid in the same manner as in the subtractive method. A liquid can be used.

これまで本発明に係る銅張積層基板を説明してきた。本発明に係る銅張積層基板は絶縁体フィルム表面に窒素原子を有する官能基を形成し、酸化を防ぐこと、スパッタリング中のTiの酸化を防ぎかつ、ポリイミドフィルムとの反応によって酸素と結合することを防ぎ、銅張積層基板の密着性を向上させている。さらには、配線加工後に絶縁体フィルムの表面に残留しやすいニッケル系合金を下地層に用いないので、ニッケルの残留の無い耐マイグレーション性に優れた銅張積層基板とその銅張積層基板から得られる配線基板を提供する事が可能になる。 So far, the copper-clad laminated substrate according to the present invention has been described. The copper-clad laminated substrate according to the present invention forms a functional group having a nitrogen atom on the surface of the insulator film to prevent oxidation, prevent oxidation of Ti during sputtering, and bond with oxygen by reaction with the polyimide film. And improves the adhesion of the copper-clad laminated substrate. Furthermore, since a nickel-based alloy that easily remains on the surface of the insulator film after wiring processing is not used for the base layer, it can be obtained from a copper-clad laminated substrate having excellent migration resistance without nickel residue and a copper-clad laminated substrate thereof. It becomes possible to provide a wiring board.

以下に、本発明の実施例を比較例とともに説明する。特性評価は以下に示す各測定方法で行った。
[ピール強度]
ピール強度は、IPC-TM-650、NUMBER2.4.9に準拠した測定方法で行った。ただし、リード幅は1mmとし、ピールの角度は90°とした。
試験試料の作製は、リードのエッチングには塩化第二鉄エッチング液と、下地層の除去する塩酸と硫酸と芳香族スルホン酸の混合液系のエッチング液を用い、サブトラクティブ法で形成し、得られた試料の室温での90°ピール強度(常態ピール強度)を測定後、試料の一部をオーブンに収納しその後、150℃で168時間放置し、取り出し、室温になるまで放置したのち、90°ピール強度の耐熱性(耐熱ピール強度[IPC-TM-650、NUMBER2.4.9に準拠])を評価した。
Hereinafter, examples of the present invention will be described together with comparative examples. The characteristic evaluation was performed by each measurement method shown below.
[Peel strength]
The peel strength was measured by a measuring method based on IPC-TM-650 and NUMBER 2.4.9. However, the lead width was 1 mm and the peel angle was 90 °.
The test sample was prepared by using a ferric chloride etching solution for lead etching and a mixed solution of hydrochloric acid, sulfuric acid and aromatic sulfonic acid to remove the underlying layer, and forming it by a subtractive method. After measuring the 90 ° peel strength (normal peel strength) of the sample at room temperature, a part of the sample is stored in an oven, then left at 150 ° C. for 168 hours, taken out, left to room temperature, and then 90. ° Heat resistance of peel strength (heat resistant peel strength [based on IPC-TM-650, NUMBER 2.4.9]) was evaluated.

[HHBT試験]
電気化学的な耐腐食性の指標であり耐環境試験であるHHBT(High Temperature High Humidity Bias Test)試験は、試験片にサブトラクトラクティブ法によって形成した30μmピッチ(ライン/スペース=15/15μm)の櫛歯試験片を用いた。エッチングには塩化第二鉄エッチング液と下地層の除去の塩酸と硫酸と芳香族スルホン酸の混合液系のエッチング液(株式会社ADEKA製SX-621)で行った。
[HHBT test]
The HHBT (High Temperature High Humidity Bias Test) test, which is an index of electrochemical corrosion resistance and an environmental resistance test, has a 30 μm pitch (line / space = 15/15 μm) formed on a test piece by a subtractive method. A comb tooth test piece was used. Etching was performed with an etching solution of ferric chloride etching solution and a mixed solution system of hydrochloric acid, sulfuric acid and aromatic sulfonic acid for removing the base layer (SX-621 manufactured by ADEKA Co., Ltd.).

測定は、JPCA-ET04に準拠し、85℃、85%R.H.環境下で、DC60Vを端子間に通電し、通電後1000時間の抵抗変化を観察する。抵抗が10Ω以下になった時点でショート不良と判断し、1000時間の経過後も10Ω以上であれば合格と判断した。 The measurement is based on JPCA-ET04, 85 ° C., 85% R.M. H. Under the environment, energize DC60V between the terminals and observe the resistance change for 1000 hours after energization. When the resistance became 106 Ω or less, it was judged that the short circuit was defective, and if it was 106 Ω or more even after 1000 hours had passed, it was judged to be acceptable.

[耐腐食性評価]
次に、耐腐食性の指標としては、裏面変色が挙げられるが、これは、HHBT試験後のサンプルの裏面観察によって行った。
著しい変色が見られた場合、不良「×」と判断し、変色が見られないか、軽微な場合までを、合格「○」と判断した。
[Corrosion resistance evaluation]
Next, as an index of corrosion resistance, discoloration of the back surface can be mentioned, which was performed by observing the back surface of the sample after the HHBT test.
When a significant discoloration was observed, it was judged as a defective "x", and when no discoloration was observed or even a slight discoloration was observed, it was judged as a pass "○".

厚み38μmのポリイミドフィルム(東レ・ディユポン社製、製品名「カプトン150EN」)を12cm×12cmの大きさに切り出し、真空チャンバー内に載置した。そのポリイミドフィルムの片面を99.995wt%の純度の窒素ガス雰囲気下、2000Vの電圧でプラズマ処理を行った。その後、20質量%の窒素を含む窒化チタンターゲットを装着したスパッタリングカソードで、ポリイミドフィルム上に下地層を20nmの厚みに形成し、その下地層の表面に銅ターゲットを装着した別なスパッタリングカソードで銅薄膜層を200nmの厚みに形成して下地層付ポリイミドフィルムを得た。
ついで、得られた下地層付ポリイミドフィルムを真空チャンバーから取出し、pH1の硫酸銅電気めっき浴を用いた電気めっき法にて、銅薄膜層の表面に銅電気めっき層を8μmまで形成して実施例1に係る銅張積層基板を得た。
A polyimide film having a thickness of 38 μm (manufactured by Toray Industries, Inc., product name “Kapton 150EN”) was cut into a size of 12 cm × 12 cm and placed in a vacuum chamber. One side of the polyimide film was subjected to plasma treatment at a voltage of 2000 V under a nitrogen gas atmosphere having a purity of 99.9995 wt%. Then, with a sputtering cathode equipped with a titanium nitride target containing 20% by mass of nitrogen, a base layer was formed on a polyimide film to a thickness of 20 nm, and copper was used with another sputtering cathode equipped with a copper target on the surface of the base layer. A thin film layer was formed to a thickness of 200 nm to obtain a polyimide film with a base layer.
Then, the obtained polyimide film with a base layer was taken out from a vacuum chamber, and a copper electroplating layer was formed up to 8 μm on the surface of the copper thin film layer by an electroplating method using a copper sulfate electroplating bath having a pH of 1 to be an example. A copper-clad laminated substrate according to No. 1 was obtained.

得られた銅張積層基板からサブトラクティブ法によって、ピール強度試験用試料及びHHBT試験用の櫛歯試験片を作製し、各試験に供した。
その結果を表1に纏めた。
A sample for peel strength test and a comb tooth test piece for HHBT test were prepared from the obtained copper-clad laminated substrate by a subtractive method and used for each test.
The results are summarized in Table 1.

実施例1の銅張積層基板において、窒化チタンの下地層の膜厚を300nmとしたこと、下地層の表面に銅薄膜層を設けない、下地層付ポリイミドフィルムを得たことと、この下地層の表面に銅電気めっき層を膜厚8μmに成膜した以外は、実施例1と同様の条件で製造して実施例2に係る銅張積層基板を得、その銅張積層基板を、実施例1と同様に評価した。
その試験結果を表1に纏めて示した。
なお、実施例2の銅張積層基板では、下地層のTiN層は導電性を有するため、直接銅めっき層を形成することも可能であり、工程上のメリットとなりうる。
In the copper-clad laminated substrate of Example 1, the thickness of the base layer of titanium nitride was set to 300 nm, a polyimide film with a base layer was obtained without providing a copper thin film layer on the surface of the base layer, and this base layer was obtained. A copper-clad laminated substrate according to Example 2 was obtained by manufacturing under the same conditions as in Example 1 except that a copper electroplating layer was formed on the surface of the above to a thickness of 8 μm, and the copper-clad laminated substrate was used in Examples. It was evaluated in the same manner as 1.
The test results are summarized in Table 1.
In the copper-clad laminated substrate of Example 2, since the TiN layer of the base layer has conductivity, it is possible to directly form the copper plating layer, which may be a merit in the process.

(比較例1)
実施例1の銅張積層基板の作製において、プラズマ処理の雰囲気を99.995wt%の純度の窒素ガスに99.995wt%の純度の酸素ガスを10vol%含む混合ガスを用いた以外は実施例1と同様の条件にて、比較例1に係る銅張積層基板を作製した。その得られた比較例1に係る銅張積層基板を実施例1と同様に評価し、表1に纏めて示した。また、耐熱ピール強度測定後、剥離されたリードについて絶縁体フィルムとの剥離面をオージェ電子分析したところ酸化チタンのスペクトルが確認された。
(Comparative Example 1)
In the production of the copper-clad laminated substrate of Example 1, the atmosphere of the plasma treatment was the same as that of Example 1 except that a mixed gas containing 10 vol% of a nitrogen gas having a purity of 99.995 wt% and an oxygen gas having a purity of 99.995 wt% was used. Under the same conditions as in the above, the copper-clad laminated substrate according to Comparative Example 1 was produced. The obtained copper-clad laminated substrate according to Comparative Example 1 was evaluated in the same manner as in Example 1, and is summarized in Table 1. In addition, after measuring the heat-resistant peel strength, Auger electron analysis of the peeled surface of the peeled lead with the insulator film confirmed the spectrum of titanium oxide.

(比較例2)
実施例1の銅張積層基板の作製において、プラズマ処理の雰囲気を99.995wt%の純度の窒素ガスに99.995wt%の純度の酸素ガスを10vol%含む混合ガスを用いたことと、下地層にチタンターゲットをスパッタリングカソードで成膜したこと以外は実施例1と同様の条件にして比較例2に係る銅張積層基板を作製した。すなわち、比較例2に係る銅張積層基板は、下地層が膜厚20nmのチタンの層である。
作製した比較例2に係る銅張積層基板の各特性を評価し、表1に結果を纏めて示した。また、比較例1と同様に、耐熱ビープ強度の測定後の剥離されたリードについて絶縁体フィルムとの剥離面をオージェ電子分析したところ酸化チタンのスペクトルが確認された。
(Comparative Example 2)
In the production of the copper-clad laminated substrate of Example 1, a mixed gas containing 10 vol% of oxygen gas having a purity of 99.995 wt% in a nitrogen gas having a purity of 99.995 wt% was used as the atmosphere of the plasma treatment, and the base layer was used. The copper-clad laminated substrate according to Comparative Example 2 was produced under the same conditions as in Example 1 except that the titanium target was formed into a film with a sputtering cathode. That is, in the copper-clad laminated substrate according to Comparative Example 2, the base layer is a titanium layer having a film thickness of 20 nm.
Each characteristic of the produced copper-clad laminated substrate according to Comparative Example 2 was evaluated, and the results are summarized in Table 1. Further, as in Comparative Example 1, when the peeled lead after the measurement of the heat-resistant beep strength was subjected to Auger electron analysis on the peeled surface with the insulator film, the spectrum of titanium oxide was confirmed.

Figure 0007043731000001
Figure 0007043731000001

なお、本実施例においては、サブトラクティブ法によってポリイミドフィルムの片面に配線パターンを有する基板から得られた片面フレキシブル配線板についての作製例を示したが、絶縁体フィルムの両面に配線部を有する両面フレキシブル配線板、あるいはセミアディティブ法により作製された片面または両面フレキシブル配線板についても同様の優れた結果が得られている。 In this embodiment, a production example of a single-sided flexible wiring board obtained from a substrate having a wiring pattern on one side of the polyimide film by the subtractive method is shown, but both sides having wiring portions on both sides of the insulator film are shown. Similar excellent results have been obtained for the flexible wiring board or the single-sided or double-sided flexible wiring board manufactured by the semi-additive method.

10 ロールツーロールスパッタリング装置
11 筐体
12 巻出ロール
13a~13j ガイドロール
14、17 キャンロール
15 イオン照射源
16a 前フィードロール
16b 後ろフィードロール
18a~18d スパッタリングカソード
19 巻取ロール
F ポリイミドフィルム
F2 下地層付ポリイミドフィルム
10 Roll-to-roll sputtering device 11 Housing 12 Unwinding rolls 13a to 13j Guide rolls 14, 17 Can rolls 15 Ion irradiation source 16a Front feed roll 16b Rear feed rolls 18a to 18d Sputtering cathode 19 Winding roll F Polyimide film F2 Base layer With polyimide film

Claims (5)

絶縁体フィルムの少なくとも一方の表面に接着剤を介さずに備えられる下地層と、該下地層の表面に銅導体層を備えた銅張積層基板において、
前記絶縁体フィルムがポリイミドであり、
前記絶縁体フィルムの前記下地層側の表面が、イミド結合が切断され形成されたアミド結合と窒素原子を有する官能基を備え、
前記下地層が、窒素を18~22.6質量%含有する窒化チタンで、
前記下地層の膜厚が、5~300nmで
あることを特徴とする銅張積層基板。
In a copper-clad laminated substrate having a base layer provided on at least one surface of an insulator film without using an adhesive and a copper conductor layer on the surface of the base layer.
The insulator film is polyimide,
The surface of the insulator film on the base layer side has an amide bond formed by cleaving an imide bond and a functional group having a nitrogen atom.
The base layer is titanium nitride containing 18 to 22.6% by mass of nitrogen.
A copper-clad laminated substrate characterized in that the film thickness of the base layer is 5 to 300 nm.
絶縁体フィルムの少なくとも一方の表面に、接着剤を介さずに備えられる窒化チタンの下地層と、該下地層の表面に銅導体層を備えた銅張積層基板の製造方法において、
前記下地層が、窒素を18~22.6質量%含有する窒化チタンで、且つ前記下地層の膜厚が、5~300nmであり、
前記絶縁体フィルムの下地層側の表面に、窒素ガスあるいは窒素ガスを2体積%以上含有する希ガスとの混合ガス雰囲気下で、印可電圧800V~2600Vでのプラズマ処理あるいは印加電圧600V~2600Vでのイオンビーム処理を実施して、前記絶縁体フィルムの下地層側の表面に、窒素原子を有する官能基を形成した後に前記下地層が設けられることを特徴とする銅張積層基板の製造方法。
In a method for manufacturing a copper-clad laminated substrate having a titanium nitride underlayer provided on at least one surface of an insulator film without using an adhesive and a copper conductor layer on the surface of the underlayer.
The base layer is titanium nitride containing 18 to 22.6% by mass of nitrogen, and the film thickness of the base layer is 5 to 300 nm.
Plasma treatment at an applied voltage of 800V to 2600V or an applied voltage of 600V to 2600V under a mixed gas atmosphere with nitrogen gas or a rare gas containing 2% by volume or more of nitrogen gas on the surface of the insulator film on the base layer side. A method for producing a copper-clad laminated substrate, which comprises performing the ion beam treatment of the above to form a functional group having a nitrogen atom on the surface of the insulator film on the base layer side, and then providing the base layer.
前記下地層の成膜が、乾式めっき法であること特徴とする請求項2に記載の銅張積層基板の製造方法。 The method for manufacturing a copper-clad laminated substrate according to claim 2, wherein the film formation of the base layer is a dry plating method. 前記下地層を成膜する乾式めっき法が、スパッタリング法であり、かつ、窒化物ターゲットを用いることを特徴とする請求項3に記載の銅張積層基板の製造方法。 The method for manufacturing a copper-clad laminated substrate according to claim 3, wherein the dry plating method for forming the underlying layer is a sputtering method, and a nitride target is used. 絶縁体フィルムの少なくとも一方の表面に、接着剤を介さずに下地層を配し、前記下地層の表面に銅導体層を配する積層構造の配線が配される配線基板であって、
前記絶縁体フィルムがポリイミドであり、
前記絶縁体フィルムの前記下地層側の表面が、イミド結合が切断され形成されたアミド結合と窒素原子を有する官能基を備え、
前記下地層が窒素を18~22.6質量%含有する窒化チタンで、
前記下地層の膜厚が、5~300nmであることを特徴とする配線基板。
A wiring substrate in which a base layer is arranged on at least one surface of an insulator film without using an adhesive, and wiring having a laminated structure in which a copper conductor layer is arranged on the surface of the base layer is arranged.
The insulator film is polyimide,
The surface of the insulator film on the base layer side has an amide bond formed by cleaving an imide bond and a functional group having a nitrogen atom.
The base layer is titanium nitride containing 18 to 22.6% by mass of nitrogen.
A wiring board characterized in that the film thickness of the base layer is 5 to 300 nm.
JP2017030407A 2017-02-21 2017-02-21 Copper-clad laminated board and its manufacturing method, as well as wiring board Active JP7043731B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017030407A JP7043731B2 (en) 2017-02-21 2017-02-21 Copper-clad laminated board and its manufacturing method, as well as wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017030407A JP7043731B2 (en) 2017-02-21 2017-02-21 Copper-clad laminated board and its manufacturing method, as well as wiring board

Publications (2)

Publication Number Publication Date
JP2018135561A JP2018135561A (en) 2018-08-30
JP7043731B2 true JP7043731B2 (en) 2022-03-30

Family

ID=63366539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017030407A Active JP7043731B2 (en) 2017-02-21 2017-02-21 Copper-clad laminated board and its manufacturing method, as well as wiring board

Country Status (1)

Country Link
JP (1) JP7043731B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112423983A (en) * 2018-09-25 2021-02-26 东丽Kp薄膜股份有限公司 Laminate and method for producing laminate
JP2021172006A (en) * 2020-04-24 2021-11-01 住友金属鉱山株式会社 Copper-clad laminate, and method for manufacturing copper-clad laminate

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004303863A (en) 2003-03-31 2004-10-28 Toyo Metallizing Co Ltd Flexible printed-wiring board
JP2007302756A (en) 2006-05-10 2007-11-22 Toyobo Co Ltd Metallized polyimide film
JP2012087323A (en) 2010-10-15 2012-05-10 Sumitomo Metal Mining Co Ltd Titanium nitride sputtering target and method for manufacturing the same
WO2012108264A1 (en) 2011-02-10 2012-08-16 Jx日鉱日石金属株式会社 Two-layered copper-clad laminate material, and method for producing same
JP2013023745A (en) 2011-07-22 2013-02-04 Sumitomo Metal Mining Co Ltd Titanium nitride sputtering target and method of manufacturing the same
JP2015014028A (en) 2013-07-05 2015-01-22 住友金属鉱山株式会社 Surface treatment method for resin film and manufacturing method of copper-clad laminate sheet including the same
JP2015040324A (en) 2013-08-21 2015-03-02 住友金属鉱山株式会社 Surface treatment method of resin film, and method of manufacturing copper-clad laminate including the surface treatment method
JP2016534222A (en) 2013-08-06 2016-11-04 ティーイーエル ネックス,インコーポレイテッド Method for enhancing the adhesion of copper to polymer surfaces

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004303863A (en) 2003-03-31 2004-10-28 Toyo Metallizing Co Ltd Flexible printed-wiring board
JP2007302756A (en) 2006-05-10 2007-11-22 Toyobo Co Ltd Metallized polyimide film
JP2012087323A (en) 2010-10-15 2012-05-10 Sumitomo Metal Mining Co Ltd Titanium nitride sputtering target and method for manufacturing the same
WO2012108264A1 (en) 2011-02-10 2012-08-16 Jx日鉱日石金属株式会社 Two-layered copper-clad laminate material, and method for producing same
JP2013023745A (en) 2011-07-22 2013-02-04 Sumitomo Metal Mining Co Ltd Titanium nitride sputtering target and method of manufacturing the same
JP2015014028A (en) 2013-07-05 2015-01-22 住友金属鉱山株式会社 Surface treatment method for resin film and manufacturing method of copper-clad laminate sheet including the same
JP2016534222A (en) 2013-08-06 2016-11-04 ティーイーエル ネックス,インコーポレイテッド Method for enhancing the adhesion of copper to polymer surfaces
JP2015040324A (en) 2013-08-21 2015-03-02 住友金属鉱山株式会社 Surface treatment method of resin film, and method of manufacturing copper-clad laminate including the surface treatment method

Also Published As

Publication number Publication date
JP2018135561A (en) 2018-08-30

Similar Documents

Publication Publication Date Title
JP4968266B2 (en) Two-layer flexible substrate, manufacturing method thereof, and flexible printed wiring board obtained from the two-layer flexible substrate
JPH08330728A (en) Flexible printed-wiring board
JP6083433B2 (en) Two-layer flexible wiring board, flexible wiring board, and manufacturing method thereof
JP3888587B2 (en) Etching method of flexible substrate
JP5769030B2 (en) Metallized resin film and method for producing the same
JP5517019B2 (en) Printed wiring board and method for manufacturing printed wiring board
JP7043731B2 (en) Copper-clad laminated board and its manufacturing method, as well as wiring board
JP2008162245A (en) Plating-method two-layer copper polyimide laminated film, and method for manufacturing the same
JP2009283872A5 (en)
JP2014053410A (en) Production method and production apparatus of double side metal laminate film, and manufacturing method of flexible double side printed wiring board
JP4525682B2 (en) Two-layer flexible substrate and manufacturing method thereof
JP2006306009A (en) Two-layer film, method for producing two-layer film and method for manufacturing printed wiring board
JP2008028150A (en) Method of manufacturing printed wiring board, and printed wiring board obtained thereby
JP2003188495A (en) Method of manufacturing printed wiring board
JP2014222689A (en) Method and apparatus for manufacturing double-side metal laminated film, and manufacturing method of flexible double-side printed wiring board
JP6403095B2 (en) Flexible wiring board and flexible wiring board
KR20200060228A (en) Flexible substrate
JP2011255611A (en) Method for manufacturing heat-resistant resin film with metal base layer with dielectric resin film and for manufacturing heat-resistant resin film with metal film and apparatus for manufacturing heat-resistant resin film with metal base layer with dielectric resin film
JP2004303863A (en) Flexible printed-wiring board
JP5835670B2 (en) Printed wiring board and manufacturing method thereof
JP6398175B2 (en) Two-layer flexible wiring board and manufacturing method thereof
JP2005262707A (en) Copper-clad laminated film and material for flexible circuit board
JP2012186307A (en) Two-layer flexible substrate, method of manufacturing the same, two-layer flexible printed wiring board whose base material is two-layer flexible substrate, and method of manufacturing the same
JP3731841B2 (en) Method for producing two-layer flexible circuit substrate
JP4385297B2 (en) Two-layer flexible substrate and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210708

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220118

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220118

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220125

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220228

R150 Certificate of patent or registration of utility model

Ref document number: 7043731

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150