JP4385297B2 - Two-layer flexible substrate and manufacturing method thereof - Google Patents

Two-layer flexible substrate and manufacturing method thereof Download PDF

Info

Publication number
JP4385297B2
JP4385297B2 JP2004254942A JP2004254942A JP4385297B2 JP 4385297 B2 JP4385297 B2 JP 4385297B2 JP 2004254942 A JP2004254942 A JP 2004254942A JP 2004254942 A JP2004254942 A JP 2004254942A JP 4385297 B2 JP4385297 B2 JP 4385297B2
Authority
JP
Japan
Prior art keywords
layer
film
base metal
metal layer
flexible substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004254942A
Other languages
Japanese (ja)
Other versions
JP2006073765A (en
Inventor
吉幸 浅川
純一 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2004254942A priority Critical patent/JP4385297B2/en
Publication of JP2006073765A publication Critical patent/JP2006073765A/en
Application granted granted Critical
Publication of JP4385297B2 publication Critical patent/JP4385297B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、2層フレキシブル基板とその製造方法に係り、より具体的には、絶縁体フィルム上に乾式めっき法によりニッケル−チタン−モリブデン下地金属層(シード層)を形成し、次いで該下地金属層上に銅被膜層を形成した、密着性が高く、耐食性を有し、かつ絶縁信頼性の高い銅被膜層を形成した2層フレキシブル基板とその製造方法に関するものである。   The present invention relates to a two-layer flexible substrate and a method for producing the same, and more specifically, a nickel-titanium-molybdenum base metal layer (seed layer) is formed on an insulator film by a dry plating method, and then the base metal The present invention relates to a two-layer flexible substrate in which a copper coating layer is formed on the layer, has a high adhesion, has corrosion resistance, and has a high insulation reliability, and a method for manufacturing the same.

一般に、フレキシブル配線板を作製するために用いられる基板は、絶縁体フィルム上に接着剤を用いて導体層となる銅箔を貼り合わせた3層フレキシブル基板(例えば、特許文献1参照)と、該絶縁体フィルム上に接着剤を用いることなしに乾式めっき法または湿式めっき法により導体層となる銅被膜層を直接形成した2層フレキシブル基板とに大別される。   In general, a substrate used for producing a flexible wiring board is a three-layer flexible substrate (for example, see Patent Document 1) in which a copper foil serving as a conductor layer is bonded onto an insulator film using an adhesive, It is roughly classified into a two-layer flexible substrate in which a copper coating layer that is a conductor layer is directly formed on an insulating film by a dry plating method or a wet plating method without using an adhesive.

ここで、3層フレキシブル基板を用いる場合には、サブトラクティブ法によって基板上に所望の配線パターンを形成することにより3層フレキシブル配線板を製造することができ、また、2層フレキシブル基板を用いる場合には、サブトラクティブ法またはアディティブ法によって基板上に所望の配線パターンを形成することにより2層フレキシブル配線板を製造することができるが、従来においては、製造方法が簡単で、低コストで製造することができる3層フレキシブル基板の使用が主流を占めていた。   Here, when using a three-layer flexible substrate, a three-layer flexible wiring board can be manufactured by forming a desired wiring pattern on the substrate by a subtractive method, and when using a two-layer flexible substrate In the conventional method, a two-layer flexible wiring board can be manufactured by forming a desired wiring pattern on a substrate by a subtractive method or an additive method. However, conventionally, the manufacturing method is simple and manufactured at low cost. The use of three-layer flexible substrates that can be used has been dominant.

ところで、近年の電子機器の高密度化に伴い、配線幅も狭ピッチ化した配線板が求められるようになってきている。
しかし、3層フレキシブル基板の製造に際し、基板である絶縁体フィルム上に形成した銅被膜層に所望の配線パターンに従ってエッチングして配線部の形成を行って配線板を製造する場合に、配線部の側面がエッチングされるといういわゆるサイドエッチングが生ずるために配線部の断面形状が裾広がりの台形になり易い。
従って、配線部間の電気的絶縁性を確保するまでエッチングを行うと配線ピッチ幅が広くなり過ぎてしまうために、従来一般的に使用されている35μm厚さの銅箔を接着剤で絶縁体フィルムと貼り合わせた3層フレキシブル基板を用いる限り、配線板における配線部の狭ピッチ化を行うには限界があった。
このため、従来の35μm厚さの銅箔張り合わせ基板に代えて、18μm厚さ以下の薄い銅箔張り合わせ基板を使用し、サイドエッチングによる裾広がりの幅を小さくして配線板における配線部の狭ピッチ化を図ることが行われてきた。
しかし、このような薄肉の銅箔は剛性が小さくハンドリング性が悪いため、一旦銅箔にアルミニウムキャリアなどの補強材を貼り合わせて剛性を高くした後、該銅箔と絶縁体フィルムの貼り合わせを行い、しかる後再びアルミニウムキャリアを除去するなどの方法が採られていたが、この方法はあまりに手間と時間がかかり、作業性、生産性が悪いという問題があった。
また、このような薄い銅箔では、膜厚のばらつきやピンホールや亀裂の発生などによる被膜欠陥が増加するなどの製造技術上の問題もあるし、さらに銅箔が薄くなればなるほど銅箔自体の製造が困難となり、製造価格が高くなって3層フレキシブル配線板のコストメリットが失われてしまう結果となっていた。
By the way, with the recent increase in the density of electronic devices, a wiring board with a narrower wiring width has been demanded.
However, in manufacturing a three-layer flexible substrate, when a wiring board is formed by etching a copper coating layer formed on an insulating film as a substrate according to a desired wiring pattern to form a wiring board, Since so-called side etching in which the side surface is etched occurs, the cross-sectional shape of the wiring portion is likely to be a trapezoid with a widened bottom.
Therefore, if etching is performed until the electrical insulation between the wiring portions is ensured, the wiring pitch width becomes too wide. Therefore, a copper foil having a thickness of 35 μm that has been generally used in the past is used as an insulator with an adhesive. As long as a three-layer flexible substrate bonded to a film is used, there is a limit to narrowing the wiring portion of the wiring board.
For this reason, instead of the conventional 35 μm thick copper foil laminated substrate, a thin copper foil laminated substrate having a thickness of 18 μm or less is used, and the width of the skirt spread by side etching is reduced to narrow the pitch of the wiring portion in the wiring board. It has been carried out.
However, since such a thin copper foil has low rigidity and poor handling properties, a reinforcing material such as an aluminum carrier is once bonded to the copper foil to increase the rigidity, and then the copper foil and the insulator film are bonded together. However, this method had a problem that workability and productivity were poor because it took too much time and time.
In addition, with such thin copper foils, there are problems in manufacturing technology such as film thickness variations, pinholes, cracks, etc. resulting in increased coating defects, and as the copper foil gets thinner, the copper foil itself As a result, the manufacturing cost becomes high and the cost merit of the three-layer flexible wiring board is lost.

殊に最近になって、厚さ10数μm以下、あるいは数μm程度の銅箔を使用しなくては製造できないような狭幅で、狭ピッチの配線部を有する配線板への要求が強まるに至り、3層フレキシブル基板を用いる配線板は、上記のような技術的な問題もさることながら、製造コスト上からも問題があった。   In particular, recently, there is an increasing demand for a wiring board having a narrow width and a narrow pitch wiring portion that cannot be manufactured without using a copper foil having a thickness of less than 10 μm or about several μm. The wiring board using a three-layer flexible substrate has a problem in terms of manufacturing cost as well as the above technical problems.

そこで、接着剤を施すことなく直接絶縁体フィルム上に銅被覆層を形成することができる2層フレキシブル基板を用いた2層フレキシブル配線板が注目されるに至った。
かかる2層フレキシブル基板は接着剤なしで直接絶縁体フィルム上に銅導体層を形成するものであり、従って基板自体の厚さを薄くすることができる上に、被着させる銅導体被膜の厚さも任意の厚さに調整することができるという利点を有する。
そして、このような2層フレキシブル基板を製造する場合には、絶縁体フィルム上に均一な厚さの銅導体層を形成する手段として、通常は、電気銅めっき法が採用されるが、そのためには、電気銅めっき被膜を施す絶縁体フィルムの上に薄膜の下地金属層を形成して表面全面に導電性を付与し、その上に電気銅めっき処理を行うのが一般的である(例えば、特許文献2参照)。
Then, the 2 layer flexible wiring board using the 2 layer flexible substrate which can form a copper coating layer directly on an insulator film, without giving an adhesive agent came to attract attention.
Such a two-layer flexible substrate forms a copper conductor layer directly on an insulator film without an adhesive, so that the thickness of the substrate itself can be reduced and the thickness of the copper conductor film to be deposited is also reduced. It has the advantage that it can be adjusted to any thickness.
And when manufacturing such a two-layer flexible substrate, as a means for forming a copper conductor layer having a uniform thickness on an insulator film, an electrolytic copper plating method is usually employed. In general, a thin base metal layer is formed on an insulator film on which an electrolytic copper plating film is applied to impart conductivity to the entire surface, and then an electrolytic copper plating process is performed thereon (for example, Patent Document 2).

ところで、絶縁体フィルム上に薄膜の下地金属層を得るためには、真空蒸着法、イオンプレーティング法などの乾式めっき法を使用するのが一般的であるが、このような乾式めっき法で得られる被膜層には、通常数十μm〜数百μmの大きさのピンホールが多数発生するので、下地金属層には往々にしてピンホールによる絶縁体フィルム露出部分を生ずることになる。
従来、一般にこの種のフレキシブル配線板においては、配線に必要な銅の導電性被膜の厚さは35μmを超え50μmまでが適当であるとされていたが、形成される配線の幅も数百μm程度であるため、数十μmのピンホールの存在による配線部の欠陥を生ずることは少なかった。
しかしながら、本発明において指向するような狭幅、狭ピッチの配線部を持ったフレキシブル配線板を得ようとする場合には、前述したように配線部形成のための銅被膜の厚さは18μm以下、好ましくは8μm以下、理想的には5μm程度の極めて薄い厚さとすることが好ましく、配線部に欠陥を生ずる恐れが多くなるものであった。
By the way, in order to obtain a thin base metal layer on an insulator film, it is common to use a dry plating method such as a vacuum deposition method or an ion plating method. In the coating layer to be formed, a large number of pinholes having a size of several tens of μm to several hundreds of μm are usually generated. Therefore, an insulating film exposed portion due to pinholes is often generated in the base metal layer.
Conventionally, in this type of flexible wiring board, the thickness of the conductive film of copper necessary for wiring is generally considered to be more than 35 μm and up to 50 μm, but the width of the formed wiring is also several hundred μm. Therefore, the defect of the wiring part due to the presence of several tens of μm pinholes was rare.
However, when it is intended to obtain a flexible wiring board having a narrow width and narrow pitch wiring portion oriented in the present invention, as described above, the thickness of the copper coating for forming the wiring portion is 18 μm or less. The thickness is preferably 8 μm or less, ideally about 5 μm, and the thickness of the wiring portion is likely to be increased.

この状況を、下地金属層を形成した絶縁体フィルム上に所望の厚さの銅被膜層を形成した2層フレキシブル基板を用いて、例えばサブトラクティブ法によってフレキシブル配線板の製造を行う場合を例にとって説明すると、配線部パターンの形成は次の工程で行われる。
(1)該銅導体層上に、配線部のみがマスキングされ非配線部の銅導体層が露出するような所望の配線部パターンを有するレジスト層を設ける、(2)露出している銅導体層を化学エッチング処理により除去する、(3)最後にレジスト層を剥離除去する。
従って、銅被膜層の厚さを、例えば5μmというように極めて薄く形成した基板を使用して、例えば配線幅15μm、配線ピッチ30μmというような狭配線幅、狭配線ピッチの配線板を製造する場合には、乾式めっき処理によって基板の下地金属層に生じているピンホールのうち、粗大なものは大きさが数十μm乃至数百μmのオーダーに達するために、5μm程度の厚さの電気銅めっき被膜を形成したのでは、ピンホールによる絶縁体フィルム露出部分を殆ど埋めることができないため、この露出部分、つまり導体層の欠落部分が配線部にかかり、配線部は該ピンホールの位置で欠落して配線欠陥となるか、そうでなくても配線部の密着不良を招く原因となっていた。
Taking this situation as an example, a flexible wiring board is manufactured by a subtractive method, for example, using a two-layer flexible substrate in which a copper coating layer having a desired thickness is formed on an insulator film on which a base metal layer is formed. If it demonstrates, formation of a wiring part pattern will be performed at the following process.
(1) A resist layer having a desired wiring portion pattern is provided on the copper conductor layer so that only the wiring portion is masked and the copper conductor layer of the non-wiring portion is exposed. (2) The exposed copper conductor layer (3) Finally, the resist layer is peeled and removed.
Therefore, when a wiring board having a narrow wiring width and a narrow wiring pitch such as a wiring width of 15 μm and a wiring pitch of 30 μm is manufactured using a substrate in which the thickness of the copper coating layer is extremely thin, for example, 5 μm. In particular, among the pinholes generated in the base metal layer of the substrate by the dry plating process, the coarse ones reach the order of several tens to several hundreds of micrometers, so that the electrolytic copper having a thickness of about 5 μm is used. When the plating film is formed, the exposed portion of the insulator film due to the pinhole can hardly be filled, so this exposed portion, that is, the missing portion of the conductor layer is applied to the wiring portion, and the wiring portion is missing at the position of the pinhole. As a result, a wiring defect is caused, or even if this is not the case, it causes a poor adhesion of the wiring part.

上記した問題を解決する方法として、絶縁体フィルム上に乾式めっき法で下地金属層を形成した上に、さらに中間金属層として無電解めっきによる銅被覆層を施してピンホールによる絶縁体フィルムの露出部分を被覆する方法が提案されている(例えば、特許文献3参照)。
しかし、この方法によるときは、確かにある程度ピンホールによる絶縁体フィルムの露出部分をなくすことはできるが、一方において、無電解銅めっき処理に用いられるめっき液やその前処理液などが、既に形成されている大小さまざまなピンホール部分から絶縁体フィルムと下地金属層との間に浸透し、これが下地金属層の密着性、その後に形成される電気銅めっきによる導体層の密着性を阻害する原因となる可能性があることがわかってきており、十分な解決策とはなっていなかった。
As a method for solving the above-mentioned problems, a base metal layer is formed on an insulator film by a dry plating method, and a copper coating layer by electroless plating is further applied as an intermediate metal layer to expose the insulator film by a pinhole. A method of covering the part has been proposed (see, for example, Patent Document 3).
However, when this method is used, the exposed part of the insulator film due to pinholes can be eliminated to some extent, but on the other hand, the plating solution used for the electroless copper plating treatment or its pretreatment solution is already formed. Penetration between the insulator film and the underlying metal layer from various pinhole parts, which is the cause of this, impedes the adhesion of the underlying metal layer and the conductor layer due to the subsequent electro copper plating Has been found to be a possible solution and has not been a sufficient solution.

また、例えば、特許文献4には、プラズマ処理された表面を有するポリマーフィルムと、該プラズマ処理された表面に付着した、ニッケルまたはニッケル合金を含むニッケルタイコート層と、該ニッケル層に付着した銅コート層と、さらに該銅コート層に付着した別の銅層を含む無接着剤フレキシブルラミネートが提案されており、ニッケル合金用の金属が、Cu、Cr、Fe、V、Ti、Al、Si、Pd、Ta、W、Zn、In、Sn、Mn、Coおよびこれらのうち2つ以上の混合物からなる群より選択されるニッケルタイコート層が記載されている。具体的には、有用なNi合金としてMonel(約67%Ni、30%Cu)、Inconel(約76%Ni、16%Cr、8%Fe)などが挙げられている。得られるラミネートフィルムは初期剥離強度、ソルダフロート後の剥離強度、熱サイクル後の剥離強度に優れていることが示されているが、複合金属膜の特性の良好さについての記載はされていない。   Further, for example, Patent Document 4 discloses a polymer film having a plasma-treated surface, a nickel tie coat layer containing nickel or a nickel alloy attached to the plasma-treated surface, and copper attached to the nickel layer. A non-adhesive flexible laminate including a coating layer and another copper layer attached to the copper coating layer has been proposed, and metals for nickel alloys are Cu, Cr, Fe, V, Ti, Al, Si, A nickel tie coat layer selected from the group consisting of Pd, Ta, W, Zn, In, Sn, Mn, Co and mixtures of two or more thereof is described. Specifically, useful Ni alloys include Monel (about 67% Ni, 30% Cu), Inconel (about 76% Ni, 16% Cr, 8% Fe) and the like. Although the obtained laminate film is shown to be excellent in initial peel strength, peel strength after solder float, and peel strength after thermal cycling, there is no description about the good characteristics of the composite metal film.

更に、例えば、特許文献5には、銅箔上にポリイミドワニスを塗布硬化させた銅張りポリイミドフィルムのポリイミド側のポリイミド/金属界面の耐熱接着性を向上し、本複合基材の生産性と最終電気製品の耐久性及び信頼性を向上させるために、ポリイミド側に、ニッケル、クロム、モリブデン、タングステン、バナジウム、チタン及びマンガンからなる群から選ばれる少なくとも一種の金属よりなる第一の薄層を真空成膜法で形成し、その上に銅よりなる所定厚の第二の薄層を真空成膜法で形成し、第二の薄層上に所定厚の銅よりなる第三の薄層を所定の電流密度で電気めっきを行い形成することが記載されているが、実施例においては、第一の薄層としてクロムしか示されておらず、複合金属膜の特性の良好さについての記載はされていない。   Furthermore, for example, in Patent Document 5, the heat resistance adhesion at the polyimide / metal interface on the polyimide side of a copper-clad polyimide film obtained by applying and curing a polyimide varnish on a copper foil is improved. In order to improve the durability and reliability of the electrical product, a vacuum is applied to the first thin layer made of at least one metal selected from the group consisting of nickel, chromium, molybdenum, tungsten, vanadium, titanium and manganese on the polyimide side. A second thin layer having a predetermined thickness made of copper is formed thereon by a vacuum film forming method, and a third thin layer made of copper having a predetermined thickness is formed on the second thin layer. However, in the examples, only chromium is shown as the first thin layer, and there is no description about the good characteristics of the composite metal film. The Not.

同様に、例えば、特許文献6にも、層間の密着力、耐熱性、耐薬品性、耐屈曲性および電気特性が優れ、高信頼性で、かつ安価なフレキシブルプリント配線板を得ることを目的として、プラスチックフィルムの片面または両面に、ニッケル、コバルト、クロム、パラジウム、チタン、ジルコニウム、モリブデンまたはタングステンの蒸着層と該蒸着層上に積層した蒸着された粒子径が0.007〜0.850μmの範囲の集合体からなる電子ビーム加熱蒸着銅層とからなり所望の回路を形成した積層体、および回路を形成しない絶縁性の有機物からなるマスク層を積層してフレキシブルプリント配線板とすることが記載されているが、実施例にはクロム蒸着層のみしか記載されておらず、複合金属膜の特性の良好さについての記載はされていない。   Similarly, for example, Patent Document 6 also aims to obtain a flexible printed wiring board that is excellent in adhesion between layers, heat resistance, chemical resistance, bending resistance, and electrical characteristics, and is highly reliable and inexpensive. In addition, a nickel, cobalt, chromium, palladium, titanium, zirconium, molybdenum, or tungsten vapor deposition layer on one or both surfaces of the plastic film and a deposited particle size laminated on the vapor deposition layer is in the range of 0.007 to 0.850 μm. It is described that a flexible printed wiring board is formed by laminating a laminated body formed of an electron beam heat-deposited copper layer made of an assembly of the above and forming a desired circuit and a mask layer made of an insulating organic material that does not form a circuit. However, only the chromium deposition layer is described in the examples, and the description of the good characteristics of the composite metal film is described. There.

他に、例えば、特許文献7には、高温耐久性を向上させ、二次加工性時の性能劣化を緩和する目的から、プラスチックフィルムの片面上または両面上に、チタン、コバルト、モリブテン、及びニッケルのうち、少なくとも2種以上含む合金層を形成し、該合金層上に銅層を形成することを特徴とする金属ポリマーフィルムが提案されている。実施例ではモリブデン量の高い領域しか示されておらず、この領域では耐熱ピール強度が十分ではなかった。
特開平6−132628号公報 特開平8−139448号公報 特開平10−195668号公報 特表2000−508265号公報 特開平7−197239号公報 特開平5−283848号公報 特開平8−332697号公報
In addition, for example, in Patent Document 7, titanium, cobalt, molybdenum, and nickel are formed on one side or both sides of a plastic film for the purpose of improving high-temperature durability and alleviating performance deterioration during secondary workability. Among them, a metal polymer film has been proposed in which an alloy layer containing at least two kinds is formed, and a copper layer is formed on the alloy layer. In the examples, only a region with a high amount of molybdenum was shown, and the heat-resistant peel strength was not sufficient in this region.
JP-A-6-132628 Japanese Patent Laid-Open No. 8-139448 JP-A-10-195668 Special Table 2000-508265 JP 7-197239 A JP-A-5-283848 JP-A-8-332697

本発明は、乾式めっき法および電気めっき法を使用したフレキシブル配線板の製造における上記の問題点を解決し、絶縁体フィルム上に乾式めっき処理によって下地金属層を形成する時に生ずるピンホールに起因する銅被膜部の欠落がなく、かつ絶縁体フィルムと下地金属層との密着性、耐食性に優れ、絶縁信頼性の高い銅被膜層を形成した2層フレキシブル基板とその製造方法を提供することを目的とするものである。   The present invention solves the above problems in the production of a flexible wiring board using a dry plating method and an electroplating method, and is caused by a pinhole generated when a base metal layer is formed on an insulator film by a dry plating process. An object of the present invention is to provide a two-layer flexible substrate having a copper coating layer formed with a copper coating layer having no copper coating portion, excellent adhesion and corrosion resistance between the insulator film and the base metal layer, and having high insulation reliability. It is what.

発明者らは、絶縁体フィルムの少なくとも片面に、接着剤を介さずに直接下地金属層を形成し、該下地金属層上に所望の厚さの銅導体層を形成する2層フレキシブル基板において、前記絶縁体フィルム上に、乾式めっき法により膜厚3〜50nm形成された、チタンの割合が5〜22重量%、モリブデンの割合が2〜40重量%で残部がニッケルの、ニッケル−チタン−モリブデン合金を主として含有する下地金属層と、該下地金属層上に銅被膜層を形成したことを特徴とする2層フレキシブル基板を用い、上記課題を解決し、密着性が高く、耐食性を有し、かつ絶縁信頼性の高い銅導体層を形成した2層フレキシブル基板を得ることができ、狭幅、狭ピッチの配線部を持ったフレキシブル配線板にも適用できることを見出し、本発明に至った。   The inventors have formed a base metal layer directly on at least one surface of the insulator film without using an adhesive, and a copper conductor layer having a desired thickness is formed on the base metal layer. Nickel-titanium-molybdenum having a thickness of 3 to 50 nm formed on the insulator film by dry plating, with a titanium ratio of 5 to 22% by weight, a molybdenum ratio of 2 to 40% by weight and the balance being nickel. Using a base metal layer mainly containing an alloy and a two-layer flexible substrate characterized by forming a copper film layer on the base metal layer, the above problems are solved, adhesion is high, and corrosion resistance is obtained. In addition, the present inventors have found that a two-layer flexible substrate on which a copper conductor layer with high insulation reliability is formed can be obtained and can be applied to a flexible wiring board having a narrow width and a narrow pitch wiring portion. .

即ち、本発明の第1の発明は、絶縁体フィルムの少なくとも片面に、接着剤を介さずに直接下地金属層を形成し、次いで該下地金属層上に銅被膜層を形成する2層フレキシブル基板において、前記下地金属層は、乾式めっき法により形成された、チタンの割合が5〜22重量%、モリブデンの割合が2〜40重量%で残部がニッケルのニッケル−チタン−モリブデン合金を主として含有する膜厚3〜50nmの下地金属層からなることを特徴とする2層フレキシブル基板を提供するものである。
また、本発明の第2の発明は、前記下地金属層上に形成された前記銅被膜層は、膜厚が10nm〜35μmであることを特徴とする第1の発明記載の2層フレキシブル基板を提供するものである。
更に、本発明の第3の発明は、前記絶縁体フィルムは、ポリイミド系フィルム、ポリアミド系フィルム、ポリエステル系フィルム、ポリテトラフルオロエチレン系フィルム、ポリフェニレンサルファイド系フィルム、ポリエチレンナフタレート系フィルム、液晶ポリマー系フィルムから選ばれた樹脂フィルムであることを特徴とする第1の発明記載の2層フレキシブル基板を提供するものである。
That is, the first invention of the present invention is a two-layer flexible substrate in which a base metal layer is formed directly on at least one surface of an insulator film without using an adhesive, and then a copper coating layer is formed on the base metal layer. The base metal layer mainly contains a nickel-titanium-molybdenum alloy formed by a dry plating method with a titanium ratio of 5 to 22% by weight, a molybdenum ratio of 2 to 40% by weight and the balance being nickel. The present invention provides a two-layer flexible substrate comprising a base metal layer having a thickness of 3 to 50 nm.
According to a second aspect of the present invention, there is provided the two-layer flexible substrate according to the first aspect, wherein the copper coating layer formed on the base metal layer has a thickness of 10 nm to 35 μm. It is to provide.
Further, according to a third aspect of the present invention, the insulator film includes a polyimide film, a polyamide film, a polyester film, a polytetrafluoroethylene film, a polyphenylene sulfide film, a polyethylene naphthalate film, and a liquid crystal polymer film. The present invention provides a two-layer flexible substrate according to the first invention, which is a resin film selected from films.

本発明の第4の発明は、絶縁体フィルムの少なくとも片面に、接着剤を介さずに直接下地金属層を形成し、次いで該下地金属層上に銅被膜層を形成する2層フレキシブル基板の製造方法において、前記絶縁体フィルム上に、チタンの割合が5〜22重量%、モリブデンの割合が2〜40重量%で残部がニッケルのニッケル−チタン−モリブデン合金の下地金属層を乾式めっき法により膜厚3〜50nm形成し、次いで該下地金属層上に銅被膜層を形成することを特徴とする2層フレキシブル基板の製造方法を提供するものである。
また、本発明の第5の発明は、前記銅被膜層を乾式めっき法により形成した後、更に、該銅被膜層の上に湿式めっき法により銅被膜層を形成することを特徴とする第4の発明記載の2層フレキシブル基板の製造方法を提供するものである。
更に、本発明の第6の発明は、前記乾式めっき法は、真空蒸着法、スパッタリング法、またはイオンプレーティング法のいずれかであることを特徴とする第4、5の発明記載の2層フレキシブル基板の製造方法を提供するものである。
According to a fourth aspect of the present invention, there is provided a two-layer flexible substrate in which a base metal layer is directly formed on at least one surface of an insulator film without using an adhesive, and then a copper coating layer is formed on the base metal layer. In the method, a base metal layer of a nickel-titanium-molybdenum alloy in which the proportion of titanium is 5 to 22% by weight, the proportion of molybdenum is 2 to 40% by weight and the balance is nickel is formed on the insulator film by a dry plating method. The present invention provides a method for producing a two-layer flexible substrate, wherein a thickness of 3 to 50 nm is formed, and then a copper coating layer is formed on the underlying metal layer.
The fifth invention of the present invention is characterized in that after the copper coating layer is formed by a dry plating method, a copper coating layer is further formed on the copper coating layer by a wet plating method. A method for producing a two-layer flexible substrate according to the invention is provided.
Further, according to a sixth invention of the present invention, the dry plating method is any one of a vacuum deposition method, a sputtering method, and an ion plating method. A method for manufacturing a substrate is provided.

本発明の2層フレキシブル基板の製造方法によれば、絶縁体フィルムの少なくとも片面に、接着剤を介さずに直接下地金属層を形成し、該下地金属層上に所望の厚さの銅導体層を形成する2層フレキシブル基板において、前記絶縁体フィルム上に、乾式めっき法により膜厚3〜50nm形成された、チタンの割合が5〜22重量%、モリブデンの割合が2〜40重量%で残部がニッケルの、ニッケル−チタン−モリブデン合金を主として含有する下地金属層と、該下地金属層上に膜厚10nm〜35μmの銅被膜層を形成したことを特徴とする2層フレキシブル基板を得ることができる。
そして、本発明の2層フレキシブル基板によれば、該下地金属層にチタンが含まれていることから、耐熱ピール強度の低下を防止することができ、また、同時にモリブデンが含まれていることから、耐食性、絶縁信頼性が向上することができるため、該2層フレキシブル基板を用いることによって、密着性、耐食性が高く、欠陥のない配線部を有する信頼性の高い狭幅、狭ピッチの配線部を持ったフレキシブル配線板を効率よく得ることができるので、その効果は極めて大きい。
According to the method for producing a two-layer flexible substrate of the present invention, a base metal layer is directly formed on at least one surface of an insulator film without using an adhesive, and a copper conductor layer having a desired thickness is formed on the base metal layer. In the two-layer flexible substrate for forming a film, a thickness of 3 to 50 nm is formed on the insulator film by a dry plating method, the ratio of titanium is 5 to 22% by weight, the ratio of molybdenum is 2 to 40% by weight and the balance Is a nickel-titanium-molybdenum-based base metal layer, and a copper film layer having a thickness of 10 nm to 35 μm is formed on the base metal layer. it can.
According to the two-layer flexible substrate of the present invention, since the base metal layer contains titanium, it is possible to prevent the heat-resistant peel strength from being lowered, and at the same time, molybdenum is contained. Corrosion resistance and insulation reliability can be improved. By using the two-layer flexible substrate, a highly reliable narrow-width and narrow-pitch wiring portion having a wiring portion having high adhesion and corrosion resistance and no defects. Since the flexible wiring board having the above can be efficiently obtained, the effect is extremely large.

1)2層フレキシブル基板
本発明の2層フレキシブル基板は、絶縁体フィルムの少なくとも片面に、接着剤を介さずに直接下地金属層を形成し、該下地金属層上に所望の厚さの銅導体層を形成する2層フレキシブル基板であって、前記絶縁体フィルム上に、乾式めっき法により膜厚3〜50nm形成されたチタンの割合が5〜22重量%、モリブデンの割合が2〜40重量%で残部がニッケルの、ニッケル−チタン−モリブデン合金を主として含有する下地金属層と、該下地金属層上に銅被膜層を形成したことを特徴としている。
上記構成を採用することによって、密着性が高く、耐食性を有し、かつ絶縁信頼性の高い銅導体層を形成した2層フレキシブル基板を得ることができるのである。
ここで、前記乾式めっき法で得られたニッケル−チタン−モリブデン合金を主として含有する下地金属層の膜厚は、3〜50nmの範囲が好ましい。該膜厚が3nmよりも薄いと、配線加工を行う時のエッチング液が染み込み配線部が浮いてしまう等により配線ピール強度が著しく低下するなどの問題が発生するため、好ましくない。また、該膜厚が50nmよりも厚くなると、エッチングを行うことが難しくなるため、好ましくない。
また、該下地金属層の組成は、チタンの割合が5〜22重量%、モリブデンの割合が2〜40重量%で残部がニッケルであることが必要である。
先ず、チタンの割合が5〜22重量%であることは、熱劣化によって耐熱ピール強度が著しく低下することを防止するために必要である。チタンの割合が5重量%よりも低下すると、耐熱ピール強度が熱劣化で著しく低下することを防止できなくなるため好ましくない。また、チタンの割合が22重量%よりも多くなると、エッチングが難しくなってくるので好ましくない。
このため、チタンの場合、より好ましいのは、5〜15重量%であり、特に好ましいのは6〜12重量%である。
ニッケル−チタン−モリブデンの場合、チタンを含む合金ターゲットを溶解鋳造および圧延で製造する場合、合金ターゲットとして作製できるのは約9重量%までである。ただし、純チタンターゲットとニッケル−モリブデン合金との2元同時スパッタ法を用いれば、9重量%以上の成膜も可能となる。ただし、若干の生産性低下はある。
次に、モリブデンの割合は、2〜40重量%であることが、耐食性、絶縁信頼性の向上のために必要である。モリブデンの割合が2重量%よりも少ないと、添加効果が現れず、耐食性、絶縁信頼性の向上が見られないため好ましくない。また、モリブデンの割合が40重量%を超えると、耐熱ピール強度が極端に低下する傾向にあるため好ましくない。
更に、通常ニッケル基の合金ターゲットの場合、ニッケルの割合が93%より大きいとスパッタリングターゲット自体が強磁性体となってしまい、マグネトロンスパッタリングで成膜する場合には、成膜スピードが低下してしまうため好ましくない。本構成のターゲット組成では、ニッケル量は93%以下となるため、マグネトロンスパッタリング法を用いて成膜した場合でも良好な成膜レートを得ることができる。
ところで、該ニッケル−チタン−モリブデン合金に耐熱性や耐食性を向上する目的で遷移金属元素を目的特性に合わせて適宜添加することが可能である。
また、該下地金属層には、該ニッケル−チタン−モリブデン合金以外に、ターゲット作製時に取り込まれるなどして含まれる1重量%以下の不可避不純物が存在していても良い。
このため、後記する表1では、1重量%以下の不可避不純物を含めたニッケル量として、残部(=bal. (balance))と表記した。
本発明の2層フレキシブル基板においては、該下地金属層上に形成された、乾式めっき法で形成された銅被膜層と該銅被膜層の上に湿式めっき法で積層形成された銅被膜層を合わせた銅被膜層の膜厚は、10nm〜35μmであることが好ましい。10nmよりも薄い場合、乾式めっき法で形成される銅被膜層が薄くなるためその後の湿式めっき工程で給電がし辛くなるため好ましくない。また、35μmよりも厚くなると生産性が低下するため好ましくない。
本発明の2層フレキシブル基板においては、絶縁体フィルムとして、ポリイミド系フィルム、ポリアミド系フィルム、ポリエステル系フィルム、ポリテトラフルオロエチレン系フィルム、ポリフェニレンサルファイド系フィルム、ポリエチレンナフタレート系フィルム、液晶ポリマー系フィルムから選ばれる樹脂フィルムが挙げられるが、ポリイミド系のフィルムは、はんだリフロー等の高温の接続が必要な用途にも適用できる点で好ましい。
また、上記フィルムは、フィルム厚さが8〜75μmのものが好適に使用することができる。尚、ガラス繊維等の無機質材料を適宜添加することもできる。
更に、乾式めっき法としては、真空蒸着法、スパッタリング法、またはイオンプレーティング法のいずれかを用いることができる。
一方、該乾式めっき法で銅層を形成した後、該銅被膜層の上に更に湿式めっき法で銅被膜層を積層形成することは、比較的厚い膜を形成することに適している。
1) Two-layer flexible substrate In the two-layer flexible substrate of the present invention, a base metal layer is directly formed on at least one surface of an insulator film without using an adhesive, and a copper conductor having a desired thickness is formed on the base metal layer. A two-layer flexible substrate for forming a layer, wherein the proportion of titanium formed on the insulator film by a dry plating method with a thickness of 3 to 50 nm is 5 to 22% by weight, and the proportion of molybdenum is 2 to 40% by weight. And the remainder is nickel, the base metal layer mainly containing a nickel-titanium-molybdenum alloy, and the copper coating layer formed on the base metal layer.
By adopting the above configuration, it is possible to obtain a two-layer flexible substrate on which a copper conductor layer having high adhesion, corrosion resistance and high insulation reliability is formed.
Here, the film thickness of the base metal layer mainly containing the nickel-titanium-molybdenum alloy obtained by the dry plating method is preferably in the range of 3 to 50 nm. If the film thickness is less than 3 nm, it is not preferable because an etching solution infiltrate when the wiring process is performed and the wiring part is floated, which causes a problem that the wiring peel strength is significantly reduced. Moreover, since it will become difficult to perform etching when this film thickness becomes thicker than 50 nm, it is not preferable.
Further, the composition of the base metal layer needs to be 5 to 22% by weight of titanium, 2 to 40% by weight of molybdenum, and the balance being nickel.
First, it is necessary for the ratio of titanium to be 5 to 22% by weight in order to prevent the heat-resistant peel strength from being significantly lowered due to thermal degradation. When the proportion of titanium is less than 5% by weight, it is not preferable because the heat-resistant peel strength cannot be prevented from significantly decreasing due to thermal deterioration. Further, if the proportion of titanium is more than 22% by weight, etching becomes difficult, which is not preferable.
For this reason, in the case of titanium, 5 to 15% by weight is more preferable, and 6 to 12% by weight is particularly preferable.
In the case of nickel-titanium-molybdenum, when an alloy target containing titanium is manufactured by melt casting and rolling, the alloy target can be produced up to about 9% by weight. However, if a binary simultaneous sputtering method of a pure titanium target and a nickel-molybdenum alloy is used, film formation of 9% by weight or more is possible. However, there is a slight decrease in productivity.
Next, the ratio of molybdenum is required to be 2 to 40% by weight in order to improve corrosion resistance and insulation reliability. When the proportion of molybdenum is less than 2% by weight, the effect of addition does not appear and corrosion resistance and insulation reliability are not improved, which is not preferable. On the other hand, if the proportion of molybdenum exceeds 40% by weight, the heat-resistant peel strength tends to be extremely lowered, which is not preferable.
Further, in the case of a nickel-based alloy target, if the nickel ratio is greater than 93%, the sputtering target itself becomes a ferromagnetic material, and the film forming speed decreases when the film is formed by magnetron sputtering. Therefore, it is not preferable. In the target composition of this configuration, since the nickel amount is 93% or less, a good film formation rate can be obtained even when the film is formed using the magnetron sputtering method.
By the way, a transition metal element can be appropriately added to the nickel-titanium-molybdenum alloy in accordance with the target characteristics for the purpose of improving heat resistance and corrosion resistance.
In addition to the nickel-titanium-molybdenum alloy, the base metal layer may contain 1% by weight or less of unavoidable impurities contained by being taken in during target production.
For this reason, in Table 1 to be described later, the balance (= bal. (Balance)) is expressed as the nickel amount including inevitable impurities of 1 wt% or less.
In the two-layer flexible substrate of the present invention, a copper coating layer formed on the underlying metal layer by a dry plating method and a copper coating layer formed on the copper coating layer by a wet plating method are provided. The film thickness of the combined copper coating layer is preferably 10 nm to 35 μm. When the thickness is less than 10 nm, the copper coating layer formed by the dry plating method becomes thin, so that it is difficult to supply power in the subsequent wet plating process, which is not preferable. Moreover, when it becomes thicker than 35 micrometers, since productivity falls, it is unpreferable.
In the two-layer flexible substrate of the present invention, as the insulator film, a polyimide film, a polyamide film, a polyester film, a polytetrafluoroethylene film, a polyphenylene sulfide film, a polyethylene naphthalate film, or a liquid crystal polymer film is used. Although the resin film chosen is mentioned, a polyimide-type film is preferable at the point which can be applied also to the use which requires high temperature connections, such as solder reflow.
Further, the film having a film thickness of 8 to 75 μm can be suitably used. An inorganic material such as glass fiber can be added as appropriate.
Furthermore, as the dry plating method, any one of a vacuum vapor deposition method, a sputtering method, and an ion plating method can be used.
On the other hand, it is suitable to form a relatively thick film by forming a copper layer by the wet plating method after forming the copper layer by the dry plating method.

2)2層フレキシブル基板の製造方法
以下、本発明の2層フレキシブル基板の製造方法を詳述する。
本発明においては、上記したようにポリイミド系フィルム、ポリアミド系フィルム、ポリエステル系フィルム、ポリテトラフルオロエチレン系フィルム、ポリフェニレンサルファイド系フィルム、ポリエチレンナフタレート系フィルム、液晶ポリマー系フィルムから選ばれる樹脂フィルムである絶縁体フィルムの少なくとも片面に、接着剤を介さずに直接下地金属層を形成し、該下地金属層上に所望の厚さの銅導体層を形成する。
a)脱水処理
該フィルムは通常水分を含んでおり、乾式めっき法によりニッケル−チタン−モリブデン合金を主として含有する下地金属層を形成する前に、大気乾燥あるいは/および真空乾燥を行い、フィルム中に存在する水分を取り去っておく必要がある。これが不十分であると、下地金属層との密着性が悪くなってしまう。
b)下地金属層の形成
乾式めっき法によりニッケル−チタン−モリブデン合金を主として含有する下地金属層を形成する場合、例えば、巻取式スパッタリング装置を用い下地金属層を形成する場合には、下地金属層の組成を有する合金ターゲットをスパッタリング用カソードに装着する。
ニッケル−チタン−モリブデン合金ターゲットは、チタン量が9重量%を越えると圧延加工性が著しく低下する。9重量%を超える含有量の下地金属層を形成する場合、ニッケル−モリブデン合金ターゲットと純チタンターゲットを2基のカソードに装着して、同時スパッタリングを行い、各カソードの投入電力をコントロールすることによって所望の膜組成の下地金属層を得ることができる。
具体的には、フィルムをセットしたスパッタリング装置内を真空排気後、Arガスを導入し、装置内を1.3Pa程度に保持し、さらに装置内の巻取巻出ロールに装着した絶縁体フィルムを毎分3m程度の速さで搬送しながら、カソードに接続したスパッタリング用直流電源より電力を供給しスパッタリング放電を開始し、フィルム上にニッケル−チタン−モリブデン合金を主として含有する金属層を連続成膜する。この成膜によって所望の膜厚のニッケル−チタン−モリブデン合金を主として含有する下地金属層がフィルム上に形成される。
c)銅被覆層の形成
同様に、銅ターゲットをスパッタリング用カソードに装着したスパッタリング装置を用い、乾式めっき法により銅被膜層を成膜することができる。この時、下地金属層と銅被膜層は同一真空室内で連続して形成することが好ましい。
また、該銅被膜層の上に更に湿式めっき法により銅被膜層を形成する場合には、電気銅めっき処理のみで行う場合と、一次めっきとして無電解銅めっき処理、二次めっきとして電解銅めっき処理等の湿式めっき法を組み合わせて行う場合がある。
ここで、一次めっきとして無電解銅めっき処理を行うのは、乾式めっきを蒸着で行った場合、粗大なピンホールが形成されることがあり、表面に樹脂フィルムが露出する箇所ができることがあるため、基板全面に無電解銅めっき被膜層を形成させることにより、フィルム露出面を覆って基板面全面を良導体化し、これによってピンホールの影響を受けることがないようにするためである。
尚、無電解めっきで使用する無電解めっき液は、含まれる金属イオンが自己触媒性を有し、かつヒドラジン、ホスフィン酸ナトリウム、ホルマリンなどの還元剤によって還元されて金属析出する還元析出型のものであればいずれでもよいが、本発明の主旨からいって、下地金属層に生じているピンホールにより露出した絶縁体フィルムの露出部分の良導体化を図ることが目的でもあることから、導電性が良好で比較的作業性のよい無電解銅めっき液が最適である。
また、かかる一次めっきとしての無電解銅めっき処理による銅めっき被膜層の厚さは、基板面におけるピンホールによる欠陥修復が可能で、かつ、後述する二次めっきとして電気銅めっき処理を施す際に電気銅めっき液によって溶解されない程度の厚さであればよく、0.01〜1.0μmの範囲であることが好ましい。
次に、該無電解銅めっき被膜層の上に、二次めっきとして電気銅めっき処理を行うのは、所望の厚さの銅導体層を形成するためである。
このようにして下地金属層上に形成された銅被膜層によれば、下地金属層形成時に発生した大小様々なピンホールによる影響を受けない良好で導体層の密着度の高い2層フレキシブル基板を得ることが可能となる。
なお、本発明において行われる湿式銅めっき処理は、一次、二次ともに常法による湿式銅めっき法における諸条件を採用すればよい。
また、このようにして下地金属層上に形成された乾式・湿式めっき法による銅被膜層の合計厚さは、厚くとも35μm以下にする必要がある。
2) Manufacturing method of 2 layer flexible board | substrate Hereafter, the manufacturing method of the two layer flexible board | substrate of this invention is explained in full detail.
In the present invention, as described above, it is a resin film selected from a polyimide film, a polyamide film, a polyester film, a polytetrafluoroethylene film, a polyphenylene sulfide film, a polyethylene naphthalate film, and a liquid crystal polymer film. A base metal layer is directly formed on at least one surface of the insulator film without using an adhesive, and a copper conductor layer having a desired thickness is formed on the base metal layer.
a) Dehydration treatment The film usually contains moisture, and before the base metal layer mainly containing a nickel-titanium-molybdenum alloy is formed by a dry plating method, air drying and / or vacuum drying are performed in the film. It is necessary to remove the existing moisture. If this is insufficient, the adhesion with the underlying metal layer will be deteriorated.
b) Formation of base metal layer When a base metal layer mainly containing a nickel-titanium-molybdenum alloy is formed by dry plating, for example, when the base metal layer is formed using a winding type sputtering apparatus, the base metal layer is formed. An alloy target having a layer composition is mounted on the sputtering cathode.
The nickel-titanium-molybdenum alloy target has a marked reduction in rolling workability when the titanium content exceeds 9% by weight. When forming a base metal layer with a content exceeding 9% by weight, a nickel-molybdenum alloy target and a pure titanium target are attached to two cathodes, and simultaneous sputtering is performed, and the input power of each cathode is controlled. A base metal layer having a desired film composition can be obtained.
Specifically, after evacuating the inside of the sputtering apparatus in which the film is set, Ar gas is introduced, the inside of the apparatus is held at about 1.3 Pa, and an insulator film mounted on a winding / unwinding roll in the apparatus is attached. While transporting at a speed of about 3 m / min, power is supplied from a sputtering DC power source connected to the cathode to start sputtering discharge, and a metal layer mainly containing a nickel-titanium-molybdenum alloy is continuously formed on the film. To do. By this film formation, a base metal layer mainly containing a nickel-titanium-molybdenum alloy having a desired film thickness is formed on the film.
c) Formation of copper coating layer Similarly, a copper coating layer can be formed by dry plating using a sputtering apparatus in which a copper target is mounted on a sputtering cathode. At this time, the base metal layer and the copper coating layer are preferably formed continuously in the same vacuum chamber.
In addition, when a copper coating layer is further formed on the copper coating layer by a wet plating method, the electroplating treatment is performed as the primary plating, the electroless copper plating treatment as the primary plating, and the electrolytic copper plating as the secondary plating. In some cases, wet plating methods such as treatment are combined.
Here, the electroless copper plating treatment is performed as the primary plating because, when dry plating is performed by vapor deposition, coarse pinholes may be formed, and the resin film may be exposed on the surface. This is because an electroless copper plating film layer is formed on the entire surface of the substrate so as to cover the film exposed surface and make the entire surface of the substrate a good conductor so that it is not affected by pinholes.
The electroless plating solution used in electroless plating is a reduction deposition type in which the contained metal ions have autocatalytic properties and are reduced by a reducing agent such as hydrazine, sodium phosphinate, formalin, etc. However, in view of the gist of the present invention, the purpose is to improve the conductivity of the exposed portion of the insulator film exposed by the pinhole generated in the underlying metal layer. An electroless copper plating solution that is good and has relatively good workability is optimal.
Moreover, the thickness of the copper plating film layer by the electroless copper plating treatment as the primary plating is capable of repairing defects by pinholes on the substrate surface, and when performing the electrolytic copper plating treatment as the secondary plating described later. The thickness may be such that it is not dissolved by the electrolytic copper plating solution, and is preferably in the range of 0.01 to 1.0 μm.
Next, the electrolytic copper plating process is performed as the secondary plating on the electroless copper plating film layer in order to form a copper conductor layer having a desired thickness.
According to the copper coating layer formed on the base metal layer in this way, a two-layer flexible substrate having a high degree of adhesion of the conductor layer, which is not affected by the large and small pinholes generated when the base metal layer is formed, can be obtained. Can be obtained.
In addition, the wet copper plating process performed in this invention should just employ | adopt the conditions in the wet copper plating method by a conventional method for both primary and secondary.
Further, the total thickness of the copper coating layer formed by the dry / wet plating method formed on the base metal layer in this way needs to be 35 μm or less at the maximum.

3)配線パターンの形成
上記のような本発明に係る2層フレキシブル基板を用いて、該2層フレキシブル基板の少なくとも片面に、配線パターンを個別に形成する。また、所定の位置に層間接続のためのヴィアホールを形成して、各種用途に用いることもできる。
より具体的には、(a)高密度配線パターンをフレキシブルシートの少なくとも片面に個別に形成する。(b)該配線層が形成されたフレキシブルシートに、該配線層とフレキシブルシートとを貫通するヴィアホールを形成する。(c)場合によっては、該ヴィアホール内に、導電性物質を充填してホール内を導電化する。
前記配線パターンの形成方法としては、フォトエッチング等の従来公知の方法が使用でき、例えば、少なくとも片面に銅被膜層形成された2層フレキシブル基板を準備して、該銅上にスクリーン印刷あるいはドライフィルムをラミネートして感光性レジスト膜を形成後、露光現像してパターニングする。次いで、塩化第2鉄溶液等のエッチング液で該金属箔を選択的にエッチング除去した後、レジストを除去して所定の配線パターンを形成する。
配線をより高密度化するためには、両面に銅被膜層が形成された2層フレキシブル基板を準備し、両面をパターン加工して基板両面に配線パターンを形成することが好ましい。全配線パターンを幾つの配線領域に分割するかどうかは該配線パターンの配線密度の分布等によるが、例えば、配線パターンを配線幅と配線間隔がそれぞれ50μm以下の高密度配線領域とその他の配線領域に分け、プリント基板との熱膨張差や取扱い上の都合等を考慮し、分割する配線基板のサイズを10〜65mm程度に設定して適宜分割すればよい。
前記ヴィアホールの形成方法としては、従来公知の方法が使用でき、例えば、レーザー加工、フォトエッチング等により、前記配線パターンの所定の位置に、該配線パターンとフレキシブルシートを貫通するヴィアホールを形成する。ヴィアホールの直径は、ホール内の導電化に支障がない範囲内で小さくすることが好ましく、通常100μm以下、好ましくは50μm以下にする。
該ヴィアホール内には、めっき、蒸着、スパッタリング等により銅等の導電性金属を充填、あるいは所定の開孔パターンを持つマスクを使用して導電性ペーストを圧入、乾燥し、ホール内を導電化して層間の電気的接続を行う。前記導電性金属としては、銅、金、ニッケル等が挙げられる。
[実施例]
3) Formation of wiring pattern Using the two-layer flexible substrate according to the present invention as described above, a wiring pattern is individually formed on at least one surface of the two-layer flexible substrate. In addition, via holes for interlayer connection can be formed at predetermined positions and used for various purposes.
More specifically, (a) high-density wiring patterns are individually formed on at least one surface of the flexible sheet. (B) A via hole penetrating the wiring layer and the flexible sheet is formed in the flexible sheet on which the wiring layer is formed. (C) In some cases, the via hole is filled with a conductive substance to make the inside of the hole conductive.
As the method for forming the wiring pattern, a conventionally known method such as photoetching can be used. For example, a two-layer flexible substrate having a copper coating layer formed on at least one surface is prepared, and screen printing or dry film is formed on the copper. Are laminated to form a photosensitive resist film, which is then exposed and developed for patterning. Next, the metal foil is selectively removed by etching with an etchant such as a ferric chloride solution, and then the resist is removed to form a predetermined wiring pattern.
In order to further increase the density of the wiring, it is preferable to prepare a two-layer flexible substrate having a copper coating layer formed on both surfaces, and pattern the both surfaces to form a wiring pattern on both surfaces of the substrate. Whether or not the entire wiring pattern is divided into the number of wiring areas depends on the distribution of wiring density of the wiring pattern. For example, the wiring pattern has a wiring width and a wiring interval of 50 μm or less, respectively, and other wiring areas. In consideration of the difference in thermal expansion from the printed circuit board and convenience in handling, the size of the wiring board to be divided may be set to about 10 to 65 mm and divided appropriately.
As a method for forming the via hole, a conventionally known method can be used. For example, a via hole penetrating the wiring pattern and the flexible sheet is formed at a predetermined position of the wiring pattern by laser processing, photoetching, or the like. . The diameter of the via hole is preferably reduced within a range that does not hinder the conductivity in the hole, and is usually 100 μm or less, preferably 50 μm or less.
The via hole is filled with a conductive metal such as copper by plating, vapor deposition, sputtering, etc., or a conductive paste is press-fitted and dried using a mask having a predetermined opening pattern to make the inside of the hole conductive. To make electrical connection between layers. Examples of the conductive metal include copper, gold, and nickel.
[Example]

つぎに本発明の実施例を比較例とともに説明する。
ピール強度の測定方法は、IPC−TM−650、NUMBER2.4.9に準拠した方法で行った。ただし、リード幅は1mmとし、ピールの角度は90°とした。リードはサブトラクティブ法あるいはセミアディティブ法で形成した。また、耐熱性の指標としては、1mmのリードを形成したフィルム基材を、150℃のオーブンに168時間放置し、取り出したあと室温になるまで放置したのち、90°ピール強度を評価することで行った。
まず、得られた2層フレキシブル基板を用い、30μmピッチ(ライン/スペース=15/15μm)の櫛歯試験片を塩化第二鉄エッチングで、サブトラクト法によって形成、あるいは、セミアディティブ法によって形成した試験片を作製した。
エッチング性の確認は、基本的には上記試験片の顕微鏡観察によって行った。また、HHBT試験片の絶縁抵抗値の測定でも行い、10−6Ω以下の抵抗値の場合は、リード間にエッチング残渣があるとみなし、エッチング性は良くないと判定した。
耐環境試験であるHHBT(High Temperature High Humidity Bias Test)試験の測定は、上記試験片を用い、JPCA−ET04に準拠し、85℃85%RH環境下で、DC40Vを端子間に印加し、1000hr抵抗を観察する。抵抗が10Ω以下になった時点でショート不良と判断し、1000hr経過後も10Ω以上であれば合格と判断した。
腐食の指標としては、裏面変色が挙げられるが、これは、HHBT試験後のサンプル裏面観察によって行った。著しい変色が見られた場合、不良と判断し、変色が軽微な場合、合格と判断した。
Next, examples of the present invention will be described together with comparative examples.
The peel strength was measured by a method based on IPC-TM-650 and NUMBER 2.4.9. However, the lead width was 1 mm and the peel angle was 90 °. Leads were formed by the subtractive method or the semi-additive method. In addition, as an index of heat resistance, a film substrate on which a 1 mm lead is formed is left in an oven at 150 ° C. for 168 hours, taken out to room temperature, and then evaluated for 90 ° peel strength. went.
First, using the obtained two-layer flexible substrate, a 30 μm pitch (line / space = 15/15 μm) comb-teeth test piece was formed by ferric chloride etching by the subtractive method or by the semi-additive method A piece was made.
The etching property was basically confirmed by microscopic observation of the test piece. Further, the insulation resistance value of the HHBT test piece was also measured, and when the resistance value was 10 −6 Ω or less, it was determined that there was an etching residue between the leads, and it was determined that the etching property was not good.
The measurement of the HHBT (High Temperature High Humidity Bias Test) test, which is an environmental resistance test, was performed using the above test piece in accordance with JPCA-ET04, applying DC 40 V between terminals under an environment of 85 ° C. and 85% RH, and 1000 hr. Observe resistance. When the resistance became 10 6 Ω or less, it was judged as a short circuit defect, and after 1000 hours, it was judged as acceptable if it was 10 6 Ω or more.
As an index of corrosion, discoloration of the back surface can be mentioned. This was performed by observation of the back surface of the sample after the HHBT test. When significant discoloration was seen, it was judged as bad, and when discoloration was slight, it was judged as acceptable.

厚さ50μmのポリイミドフィルム(東レ・ディユポン社製、製品名「カプトン150EN」)を12cm×12cmの大きさに切り出し、その片面に下地金属層の第1層として5重量%Ti−20重量%Mo−Ni合金ターゲット(住友金属鉱山製)を用い、直流スパッタリング法により、5重量%Ti−20重量%Mo−Ni合金下地金属層を成膜した。別途同条件で成膜した一部を透過電子顕微鏡(TEM:日立製作所(株)製)を用いて膜厚を測定したところ20nmであった。上記NiTiMo膜を成膜したフィルム上に、さらにその上に第2層として、Cuターゲット(住友金属鉱山製)を用いて、スパッタリング法により銅被膜層を200nmの厚さに形成し、電気めっきで8μmまで成膜して、評価用の原料基材とした。この基材からサブトラクト法でピール強度評価用の1mmのリードと、HHBT試験用の30μmピッチの櫛歯試験片を形成した。
得られた2層フレキシブル基板の初期ピール強度は645N/mであった。150℃のオーブン168時間放置後の耐熱ピール強度は520N/mと大きな変化が無く、良好であった。
絶縁信頼性試験を3サンプルについて行ったが、いずれも劣化は認められなかった。また、エッチング残渣もなくエッチング性も良好であった。更に、耐腐食性試験(85℃85%RH恒温槽中に1000時間放置後のフィルム裏面変色)で変化は見られなかった。
A polyimide film with a thickness of 50 μm (product name “Kapton 150EN” manufactured by Toray Diupon Co., Ltd.) is cut into a size of 12 cm × 12 cm, and 5 wt% Ti-20 wt% Mo is used as the first layer of the base metal layer on one side. Using a Ni alloy target (manufactured by Sumitomo Metal Mining), a 5 wt% Ti-20 wt% Mo-Ni alloy base metal layer was formed by direct current sputtering. A part of the film formed separately under the same conditions was measured using a transmission electron microscope (TEM: manufactured by Hitachi, Ltd.) to find a film thickness of 20 nm. Using the Cu target (manufactured by Sumitomo Metal Mining) as a second layer on the NiTiMo film, a copper coating layer is formed to a thickness of 200 nm by sputtering and electroplating. A film was formed to a thickness of 8 μm to obtain a raw material substrate for evaluation. From this base material, a 1 mm lead for peel strength evaluation and a 30 μm pitch comb-teeth test piece for HHBT test were formed by the subtract method.
The initial peel strength of the obtained two-layer flexible substrate was 645 N / m. The heat-resistant peel strength after leaving in an oven at 150 ° C. for 168 hours was good with no significant change of 520 N / m.
An insulation reliability test was performed on three samples, but no deterioration was observed in any of the samples. Moreover, there was no etching residue and the etching property was good. Furthermore, no change was observed in the corrosion resistance test (discoloration of the back surface of the film after being left in a constant temperature bath at 85 ° C. and 85% RH for 1000 hours).

下地金属層の第1層として、純Tiターゲットと25重量%Mo−Ni合金ターゲット(住友金属鉱山製)を用い、2元同時スパッタリング法により、22重量%Ti−20重量%Mo−Ni合金下地金属層を成膜した以外は実施例1と同様にして、評価用の原料基材を得た。
別途同条件で成膜した一部を透過電子顕微鏡(TEM:日立製作所(株)製)を用いて膜厚を測定したところ20nmであった。この基材からサブトラクト法でピール強度評価用の1mmのリードと、HHBT試験用の30μmピッチの櫛歯試験片を形成した。
得られたフレキシブル基板の初期ピール強度は633N/mであった。150℃のオーブン168時間放置後の耐熱ピール強度は577N/mと大きな変化が無く、良好であった。
絶縁信頼性試験を3サンプルについて行ったが、いずれも劣化は認められなかった。また、エッチング残渣もなくエッチング性も良好であった。更に、耐腐食性試験(85℃85%RH恒温槽中に1000時間放置後のフィルム裏面変色)で変化は見られなかった。
Using a pure Ti target and a 25 wt% Mo-Ni alloy target (manufactured by Sumitomo Metal Mining) as the first layer of the underlayer metal layer, a 22 wt% Ti-20 wt% Mo-Ni alloy underlayer is formed by a binary simultaneous sputtering method. A raw material substrate for evaluation was obtained in the same manner as in Example 1 except that the metal layer was formed.
A part of the film formed separately under the same conditions was measured using a transmission electron microscope (TEM: manufactured by Hitachi, Ltd.) to find a film thickness of 20 nm. From this base material, a 1 mm lead for peel strength evaluation and a 30 μm pitch comb-teeth test piece for HHBT test were formed by the subtract method.
The initial peel strength of the obtained flexible substrate was 633 N / m. The heat-resistant peel strength after leaving in an oven at 150 ° C. for 168 hours was as good as 577 N / m with no significant change.
An insulation reliability test was performed on three samples, but no deterioration was observed in any of the samples. Moreover, there was no etching residue and the etching property was good. Furthermore, no change was observed in the corrosion resistance test (discoloration of the back surface of the film after being left in a constant temperature bath at 85 ° C. and 85% RH for 1000 hours).

下地金属層の第1層として5重量%Ti−2重量%Mo−Ni合金ターゲット(住友金属鉱山製)を用い、直流スパッタリング法により、5重量%Ti−2重量%Mo−Ni合金下地金属層を成膜した以外は実施例1と同様にして、評価用の原料基材を得た。
別途同条件で成膜した一部を透過電子顕微鏡(TEM:日立製作所(株)製)を用いて膜厚を測定したところ20nmであった。この基材からサブトラクト法でピール強度評価用の1mmのリードと、HHBT試験用の30μmピッチの櫛歯試験片を形成した。
得られたフレキシブル基板の初期ピール強度は688N/mであった。150℃のオーブン168時間放置後の耐熱ピール強度は478N/mと大きな変化が無く、良好であった。
絶縁信頼性試験を3サンプルについて行ったが、いずれも劣化は認められなかった。また、エッチング残渣もなくエッチング性も良好であった。更に、耐腐食性試験(85℃85%RH恒温槽中に1000時間放置後のフィルム裏面変色)で変化は見られなかった。
A 5 wt% Ti-2 wt% Mo-Ni alloy target (manufactured by Sumitomo Metal Mining) was used as the first layer of the base metal layer, and a 5 wt% Ti-2 wt% Mo-Ni alloy base metal layer was formed by DC sputtering. A raw material substrate for evaluation was obtained in the same manner as in Example 1 except that was formed into a film.
A part of the film formed separately under the same conditions was measured using a transmission electron microscope (TEM: manufactured by Hitachi, Ltd.) to find a film thickness of 20 nm. From this base material, a 1 mm lead for peel strength evaluation and a 30 μm pitch comb-teeth test piece for HHBT test were formed by the subtract method.
The initial peel strength of the obtained flexible substrate was 688 N / m. The heat-resistant peel strength after leaving in an oven at 150 ° C. for 168 hours was good with no significant change of 478 N / m.
An insulation reliability test was performed on three samples, but no deterioration was observed in any of the samples. Moreover, there was no etching residue and the etching property was good. Furthermore, no change was observed in the corrosion resistance test (discoloration of the back surface of the film after being left in a constant temperature bath at 85 ° C. and 85% RH for 1000 hours).

下地金属層の第1層として5重量%Ti−40重量%Mo−Ni合金ターゲット(住友金属鉱山製)を用い、直流スパッタリング法により、5重量%Ti−40重量%Mo−Ni合金下地金属層を成膜した以外は実施例1と同様にして、評価用の原料基材を得た。
別途同条件で成膜した一部を透過電子顕微鏡(TEM:日立製作所(株)製)を用いて膜厚を測定したところ20nmであった。この基材からサブトラクト法でピール強度評価用の1mmのリードと、HHBT試験用の30μmピッチの櫛歯試験片を形成した。
得られたフレキシブル基板の初期ピール強度は695N/mであった。150℃のオーブン168時間放置後の耐熱ピール強度は456N/mと大きな変化が無く、良好であった。
絶縁信頼性試験を3サンプルについて行ったが、いずれも劣化は認められなかった。また、エッチング残渣もなくエッチング性も良好であった。更に、耐腐食性試験(85℃85%RH恒温槽中に1000時間放置後のフィルム裏面変色)で変化は見られなかった。
5 wt% Ti-40 wt% Mo-Ni alloy target (manufactured by Sumitomo Metal Mining Co., Ltd.) is used as the first layer of the base metal layer, and 5 wt% Ti-40 wt% Mo-Ni alloy base metal layer is formed by DC sputtering. A raw material substrate for evaluation was obtained in the same manner as in Example 1 except that was formed into a film.
A part of the film formed separately under the same conditions was measured using a transmission electron microscope (TEM: manufactured by Hitachi, Ltd.) to find a film thickness of 20 nm. From this base material, a 1 mm lead for peel strength evaluation and a 30 μm pitch comb-teeth test piece for HHBT test were formed by the subtract method.
The initial peel strength of the obtained flexible substrate was 695 N / m. The heat-resistant peel strength after leaving in an oven at 150 ° C. for 168 hours was good with no significant change of 456 N / m.
An insulation reliability test was performed on three samples, but no deterioration was observed in any of the samples. Moreover, there was no etching residue and the etching property was good. Furthermore, no change was observed in the corrosion resistance test (discoloration of the back surface of the film after being left in a constant temperature bath at 85 ° C. and 85% RH for 1000 hours).

下地金属層の第1層として15重量%Ti−20重量%Mo−Ni合金ターゲット(住友金属鉱山製)を用い、直流スパッタリング法により、15重量%Ti−20重量%Mo−Ni合金下地金属層を成膜した以外は実施例1と同様にして、評価用の原料基材を得た。
別途同条件で成膜した一部を透過電子顕微鏡(TEM:日立製作所(株)製)を用いて膜厚を測定したところ5nmであった。この基材からサブトラクト法でピール強度評価用の1mmのリードと、HHBT試験用の30μmピッチの櫛歯試験片を形成した。
得られたフレキシブル基板の初期ピール強度は630N/mであった。150℃のオーブン168時間放置後の耐熱ピール強度は521N/mと大きな変化が無く、良好であった。
絶縁信頼性試験を3サンプルについて行ったが、いずれも劣化は認められなかった。また、エッチング残渣もなくエッチング性も良好であった。更に、耐腐食性試験(85℃85%RH恒温槽中に1000時間放置後のフィルム裏面変色)で変化は見られなかった。
A 15 wt% Ti-20 wt% Mo-Ni alloy target (manufactured by Sumitomo Metal Mining Co., Ltd.) was used as the first layer of the base metal layer, and a 15 wt% Ti-20 wt% Mo-Ni alloy base metal layer was formed by DC sputtering. A raw material substrate for evaluation was obtained in the same manner as in Example 1 except that was formed into a film.
A part of the film formed separately under the same conditions was measured with a transmission electron microscope (TEM: manufactured by Hitachi, Ltd.) to find a film thickness of 5 nm. From this base material, a 1 mm lead for peel strength evaluation and a 30 μm pitch comb-teeth test piece for HHBT test were formed by the subtract method.
The initial peel strength of the obtained flexible substrate was 630 N / m. The heat-resistant peel strength after leaving in an oven at 150 ° C. for 168 hours was good with no significant change of 521 N / m.
An insulation reliability test was performed on three samples, but no deterioration was observed in any of the samples. Moreover, there was no etching residue and the etching property was good. Furthermore, no change was observed in the corrosion resistance test (discoloration of the back surface of the film after being left in a constant temperature bath at 85 ° C. and 85% RH for 1000 hours).

下地金属層の第1層として7.5重量%Ti−20重量%Mo−Ni合金ターゲット(住友金属鉱山製)を用い、直流スパッタリング法により、7.5重量%Ti−20重量%Mo−Ni合金下地金属層を成膜し、スパッタリング時間を替えることで膜厚を変更した以外は実施例1と同様にして、評価用の原料基材を得た。
別途同条件で成膜した一部を透過電子顕微鏡(TEM:日立製作所(株)製)を用いて膜厚を測定したところ3nmであった。この基材からサブトラクト法でピール強度評価用の1mmのリードと、HHBT試験用の30μmピッチの櫛歯試験片を形成した。
得られたフレキシブル基板の初期ピール強度は716N/mであった。150℃のオーブン168時間放置後の耐熱ピール強度は435N/mと変化は小さく、良好であった。
絶縁信頼性試験を3サンプルについて行ったが、いずれも劣化は認められなかった。また、エッチング残渣もなくエッチング性も良好であった。更に、耐腐食性試験(85℃85%RH恒温槽中に1000時間放置後のフィルム裏面変色)で変化は見られなかった。
A 7.5 wt% Ti-20 wt% Mo-Ni alloy target (manufactured by Sumitomo Metal Mining) was used as the first layer of the base metal layer, and 7.5 wt% Ti-20 wt% Mo-Ni was formed by DC sputtering. A raw material substrate for evaluation was obtained in the same manner as in Example 1 except that the alloy base metal layer was formed and the film thickness was changed by changing the sputtering time.
A part of the film formed separately under the same conditions was measured with a transmission electron microscope (TEM: manufactured by Hitachi, Ltd.) and found to have a thickness of 3 nm. From this base material, a 1 mm lead for peel strength evaluation and a 30 μm pitch comb-teeth test piece for HHBT test were formed by the subtract method.
The initial peel strength of the obtained flexible substrate was 716 N / m. The heat-resistant peel strength after leaving in an oven at 150 ° C. for 168 hours was 435 N / m and the change was small and good.
An insulation reliability test was performed on three samples, but no deterioration was observed in any of the samples. Moreover, there was no etching residue and the etching property was good. Furthermore, no change was observed in the corrosion resistance test (discoloration of the back surface of the film after being left in a constant temperature bath at 85 ° C. and 85% RH for 1000 hours).

下地金属層の第1層として7.5重量%Ti−20重量%Mo−Ni合金ターゲット(住友金属鉱山製)を用い、直流スパッタリング法により、7.5重量%Ti−20重量%Mo−Ni合金下地金属層を成膜し、スパッタリング時間を替えることで膜厚を変更した以外は実施例1と同様にして、評価用の原料基材を得た。
別途同条件で成膜した一部を透過電子顕微鏡(TEM:日立製作所(株)製)を用いて膜厚を測定したところ5nmであった。この基材からサブトラクト法でピール強度評価用の1mmのリードと、HHBT試験用の50μmピッチの櫛歯試験片を形成した。
得られたフレキシブル基板の初期ピール強度は722N/mであった。150℃のオーブン168時間放置後の耐熱ピール強度は450N/mと変化は小さく、良好であった。
絶縁信頼性試験を3サンプルについて行ったが、いずれも劣化は認められなかった。また、エッチング残渣もなくエッチング性も良好であった。更に、耐腐食性試験(85℃85%RH恒温槽中に1000時間放置後のフィルム裏面変色)で変化は見られなかった。
A 7.5 wt% Ti-20 wt% Mo-Ni alloy target (manufactured by Sumitomo Metal Mining) was used as the first layer of the base metal layer, and 7.5 wt% Ti-20 wt% Mo-Ni was formed by DC sputtering. A raw material substrate for evaluation was obtained in the same manner as in Example 1 except that the alloy base metal layer was formed and the film thickness was changed by changing the sputtering time.
A part of the film formed separately under the same conditions was measured with a transmission electron microscope (TEM: manufactured by Hitachi, Ltd.) to find a film thickness of 5 nm. From this substrate, a 1 mm lead for peel strength evaluation and a 50 μm pitch comb-teeth test piece for HHBT test were formed by the subtract method.
The initial peel strength of the obtained flexible substrate was 722 N / m. The heat-resistant peel strength after leaving in an oven at 150 ° C. for 168 hours was as good as 450 N / m with little change.
An insulation reliability test was performed on three samples, but no deterioration was observed in any of the samples. Moreover, there was no etching residue and the etching property was good. Furthermore, no change was observed in the corrosion resistance test (discoloration of the back surface of the film after being left in a constant temperature bath at 85 ° C. and 85% RH for 1000 hours).

実施例1と同様にして、膜厚20nmのNiTiMo膜を成膜した。さらにその上に第2層として、Cuターゲット(住友金属鉱山製)を用いて、スパッタリング法により銅被膜層を1μmの厚さに形成し、電気めっきで8μmまで成膜し、評価用の原料基材とした。この基材からサブトラクト法でピール強度評価用の1mmのリードと、HHBT試験用の30μmピッチの櫛歯試験片を形成した。
得られたフレキシブル基板の初期ピール強度は630N/mであった。150℃のオーブン168時間放置後の耐熱ピール強度は555N/mと大きな変化が無く、良好であった。
絶縁信頼性試験を3サンプルについて行ったが、いずれも劣化は認められなかった。また、エッチング残渣もなくエッチング性も良好であった。更に、耐腐食性試験(85℃85%RH恒温槽中に1000時間放置後のフィルム裏面変色)で変化は見られなかった。
In the same manner as in Example 1, a 20 nm thick NiTiMo film was formed. Furthermore, as a second layer, a Cu target (made by Sumitomo Metal Mining) is used to form a copper film layer with a thickness of 1 μm by sputtering, and a film thickness of 8 μm is formed by electroplating. A material was used. From this base material, a 1 mm lead for peel strength evaluation and a 30 μm pitch comb-teeth test piece for HHBT test were formed by the subtract method.
The initial peel strength of the obtained flexible substrate was 630 N / m. The heat-resistant peel strength after leaving in an oven at 150 ° C. for 168 hours was good with no significant change of 555 N / m.
An insulation reliability test was performed on three samples, but no deterioration was observed in any of the samples. Moreover, there was no etching residue and the etching property was good. Furthermore, no change was observed in the corrosion resistance test (discoloration of the back surface of the film after being left in a constant temperature bath at 85 ° C. and 85% RH for 1000 hours).

実施例1と同様にして、膜厚20nmのNiTiMo膜を成膜した。さらにその上に第2層として、Cuターゲット(住友金属鉱山製)を用いて、スパッタリング法により銅被膜層を8μmまで成膜し、評価用の原料基材とした。この基材からサブトラクト法でピール強度評価用の1mmのリードと、HHBT試験用の30μmピッチの櫛歯試験片を形成した。
得られたフレキシブル基板の初期ピール強度は635N/mであった。150℃のオーブン168時間放置後の耐熱ピール強度は575N/mと大きな変化が無く、良好であった。
絶縁信頼性試験を3サンプルについて行ったが、いずれも劣化は認められなかった。また、エッチング残渣もなくエッチング性も良好であった。更に、耐腐食性試験(85℃85%RH恒温槽中に1000時間放置後のフィルム裏面変色)で変化は見られなかった。
In the same manner as in Example 1, a 20 nm thick NiTiMo film was formed. Further, as a second layer, a Cu target layer (made by Sumitomo Metal Mining Co., Ltd.) was used to form a copper coating layer up to 8 μm by sputtering, and used as a raw material substrate for evaluation. From this base material, a 1 mm lead for peel strength evaluation and a 30 μm pitch comb-teeth test piece for HHBT test were formed by the subtract method.
The initial peel strength of the obtained flexible substrate was 635 N / m. The heat-resistant peel strength after leaving in an oven at 150 ° C. for 168 hours was good with no significant change of 575 N / m.
An insulation reliability test was performed on three samples, but no deterioration was observed in any of the samples. Moreover, there was no etching residue and the etching property was good. Furthermore, no change was observed in the corrosion resistance test (discoloration of the back surface of the film after being left in a constant temperature bath at 85 ° C. and 85% RH for 1000 hours).

実施例1と同様にして、膜厚20nmのNiTiMo膜を成膜した。さらにその上に第2層として、Cuターゲット(住友金属鉱山製)を用いて、スパッタリング法により銅被膜層を500nmまで成膜し、この基材からピール強度評価用の1mmのリードと、HHBT試験用の30μmピッチの櫛歯試験片を、セミアディティブ法で8μmまで厚付けして形成した。
得られたフレキシブル基板の初期ピール強度は600N/mであった。150℃のオーブン168時間放置後の耐熱ピール強度は545N/mと大きな変化が無く、良好であった。
絶縁信頼性試験を3サンプルについて行ったが、いずれも劣化は認められなかった。また、エッチング残渣もなくエッチング性も良好であった。更に、耐腐食性試験(85℃85%RH恒温槽中に1000時間放置後のフィルム裏面変色)で変化は見られなかった。
(比較例1)
In the same manner as in Example 1, a 20 nm thick NiTiMo film was formed. Furthermore, as a second layer, a Cu target layer (made by Sumitomo Metal Mining Co., Ltd.) was used to form a copper film layer up to 500 nm by sputtering. From this substrate, a 1 mm lead for peel strength evaluation and an HHBT test A 30-μm-pitch comb-tooth test piece for use was semi-additively formed to a thickness of 8 μm.
The initial peel strength of the obtained flexible substrate was 600 N / m. The heat-resistant peel strength after leaving in an oven at 150 ° C. for 168 hours was good with no significant change of 545 N / m.
An insulation reliability test was performed on three samples, but no deterioration was observed in any of the samples. Moreover, there was no etching residue and the etching property was good. Furthermore, no change was observed in the corrosion resistance test (discoloration of the back surface of the film after being left in a constant temperature bath at 85 ° C. and 85% RH for 1000 hours).
(Comparative Example 1)

下地金属層の第1層として4重量%Ti−20重量%Mo−Ni合金ターゲット(住友金属鉱山製)を用い、直流スパッタリング法により、4重量%Ti−20重量%Mo−Ni合金下地金属層を成膜した以外は実施例1と同様にして、評価用の原料基材を得た。
別途同条件で成膜した一部を透過電子顕微鏡(TEM:日立製作所(株)製)を用いて膜厚を測定したところ20nmであった。この基材からサブトラクト法でピール強度評価用の1mmのリードと、HHBT試験用の30μmピッチの櫛歯試験片を形成した。
得られたフレキシブル基板の初期ピール強度は522N/mであった。150℃のオーブン168時間放置後の耐熱ピール強度は332N/mと大きな低下が見られた。
さらに絶縁信頼性試験を3サンプルについて行ったが、絶縁劣化が2サンプルで見られた。
一方、エッチング性は良好であった。また、耐腐食性試験(85℃85%RH恒温槽中に1000時間放置後のフィルム裏面変色)では、フィルム裏面に一部変色が認められた。
(比較例2)
Using a 4 wt% Ti-20 wt% Mo-Ni alloy target (manufactured by Sumitomo Metal Mining) as the first layer of the underlayer metal layer, a 4 wt% Ti-20 wt% Mo-Ni alloy underlayer metal layer is formed by DC sputtering. A raw material substrate for evaluation was obtained in the same manner as in Example 1 except that was formed into a film.
A part of the film formed separately under the same conditions was measured using a transmission electron microscope (TEM: manufactured by Hitachi, Ltd.) to find a film thickness of 20 nm. From this base material, a 1 mm lead for peel strength evaluation and a 30 μm pitch comb-teeth test piece for HHBT test were formed by the subtract method.
The initial peel strength of the obtained flexible substrate was 522 N / m. The heat-resistant peel strength after leaving in an oven at 150 ° C. for 168 hours was greatly reduced to 332 N / m.
Furthermore, although the insulation reliability test was done about 3 samples, insulation deterioration was seen by 2 samples.
On the other hand, the etching property was good. Further, in the corrosion resistance test (discoloration on the back side of the film after being left in a constant temperature bath at 85 ° C. and 85% RH) for 1000 hours, partial discoloration was observed on the back side of the film.
(Comparative Example 2)

下地金属層の第1層として、純Tiターゲットと25重量%Mo−Ni合金ターゲット(住友金属鉱山製)を用い、2元同時スパッタリング法により、24重量%Ti−20重量%Mo−Ni合金下地金属層を成膜した以外は実施例1と同様にして、評価用の原料基材を得た。
別途同条件で成膜した一部を透過電子顕微鏡(TEM:日立製作所(株)製)を用いて膜厚を測定したところ20nmであった。この基材からサブトラクト法でピール強度評価用の1mmのリードと、HHBT試験用の30μmピッチの櫛歯試験片を形成した。
得られたフレキシブル基板の初期ピール強度は705N/mであった。150℃のオーブン168時間放置後の耐熱ピール強度は471N/mと変化は小さく、良好であった。
さらに絶縁信頼性試験を3サンプルについて行おうとしたが、2サンプルで塩鉄エッチングで下地金属層がエッチングできず、30μmピッチのリードを形成できなかった。
また、耐腐食性試験(85℃85%RH恒温槽中に1000時間放置後のフィルム裏面変色)では、フィルム裏面には変化が見られなかった。
(比較例3)
A pure Ti target and a 25 wt% Mo—Ni alloy target (manufactured by Sumitomo Metal Mining) were used as the first layer of the under metal layer, and a 24 wt% Ti-20 wt% Mo—Ni alloy base was formed by a binary simultaneous sputtering method. A raw material substrate for evaluation was obtained in the same manner as in Example 1 except that the metal layer was formed.
A part of the film formed separately under the same conditions was measured using a transmission electron microscope (TEM: manufactured by Hitachi, Ltd.) to find a film thickness of 20 nm. From this base material, a 1 mm lead for peel strength evaluation and a 30 μm pitch comb-teeth test piece for HHBT test were formed by the subtract method.
The initial peel strength of the obtained flexible substrate was 705 N / m. The heat-resistant peel strength after leaving in an oven at 150 ° C. for 168 hours was 471 N / m, and the change was small and good.
Further, an insulation reliability test was performed on three samples, but the base metal layer could not be etched by salt iron etching in two samples, and leads having a pitch of 30 μm could not be formed.
Further, in the corrosion resistance test (discoloration of the back side of the film after being left in a constant temperature bath at 85 ° C. and 85% RH) for 1000 hours, no change was observed on the back side of the film.
(Comparative Example 3)

下地金属層の第1層として7.5重量%Ti−0.5重量%Mo−Ni合金ターゲット(住友金属鉱山製)を用い、直流スパッタリング法により、7.5重量%Ti−0.5重量%Mo−Ni合金下地金属層を成膜した以外は実施例1と同様にして、評価用の原料基材を得た。
別途同条件で成膜した一部を透過電子顕微鏡(TEM:日立製作所(株)製)を用いて膜厚を測定したところ20nmであった。この基材からサブトラクト法でピール強度評価用の1mmのリードと、HHBT試験用の30μmピッチの櫛歯試験片を形成した。
得られたフレキシブル基板の初期ピール強度は557N/mであった。150℃のオーブン168時間放置後の耐熱ピール強度は392N/mと変化は小さく、良好であった。
さらに絶縁信頼性試験を3サンプルについて行ったが、2サンプルで、抵抗が10Ω以下になりショート不良となった。一方、エッチング性は良好であった。
また、耐腐食性試験(85℃85%RH恒温槽中に1000時間放置後のフィルム裏面変色)では、フィルム裏面に多くの部分に変色が認められた。
(比較例4)
A 7.5 wt% Ti-0.5 wt% Mo-Ni alloy target (manufactured by Sumitomo Metal Mining) was used as the first layer of the base metal layer, and 7.5 wt% Ti-0.5 wt% by DC sputtering. A raw material substrate for evaluation was obtained in the same manner as in Example 1 except that the% Mo—Ni alloy base metal layer was formed.
A part of the film formed separately under the same conditions was measured using a transmission electron microscope (TEM: manufactured by Hitachi, Ltd.) to find a film thickness of 20 nm. From this base material, a 1 mm lead for peel strength evaluation and a 30 μm pitch comb-teeth test piece for HHBT test were formed by the subtract method.
The initial peel strength of the obtained flexible substrate was 557 N / m. The heat-resistant peel strength after leaving in an oven at 150 ° C. for 168 hours was 392 N / m, and the change was small and good.
Further, an insulation reliability test was performed on three samples. In two samples, the resistance was 10 6 Ω or less, resulting in a short circuit failure. On the other hand, the etching property was good.
Further, in the corrosion resistance test (discoloration of the back side of the film after being left in a constant temperature bath at 85 ° C. and 85% RH) for 1000 hours, discoloration was observed in many parts on the back side of the film.
(Comparative Example 4)

下地金属層の第1層として7.5重量%Ti−44重量%Mo−Ni合金ターゲット(住友金属鉱山製)を用い、直流スパッタリング法により、7.5重量%Ti−44重量%Mo−Ni合金下地金属層を成膜した以外は実施例1と同様にして、評価用の原料基材を得た。
別途同条件で成膜した一部を透過電子顕微鏡(TEM:日立製作所(株)製)を用いて膜厚を測定したところ20nmであった。この基材からサブトラクト法でピール強度評価用の1mmのリードと、HHBT試験用の30μmピッチの櫛歯試験片を形成した。
得られたフレキシブル基板の初期ピール強度は681N/mであった。150℃のオーブン168時間放置後の耐熱ピール強度は273N/mと大きな低下が見られた。
さらに絶縁信頼性試験を3サンプルについて行ったが、いずれも劣化は認められなかった。
一方、エッチング性は良好であった。
また、耐腐食性試験(85℃85%RH恒温槽中に1000時間放置後のフィルム裏面変色)で変化は見られなかった。
(比較例5)
A 7.5% by weight Ti-44% by weight Mo-Ni alloy target (manufactured by Sumitomo Metal Mining Co., Ltd.) was used as the first layer of the base metal layer by a direct current sputtering method. A raw material substrate for evaluation was obtained in the same manner as in Example 1 except that the alloy base metal layer was formed.
A part of the film formed separately under the same conditions was measured using a transmission electron microscope (TEM: manufactured by Hitachi, Ltd.) to find a film thickness of 20 nm. From this base material, a 1 mm lead for peel strength evaluation and a 30 μm pitch comb-teeth test piece for HHBT test were formed by the subtract method.
The initial peel strength of the obtained flexible substrate was 681 N / m. The heat-resistant peel strength after leaving in an oven at 150 ° C. for 168 hours was greatly reduced to 273 N / m.
Furthermore, although the insulation reliability test was done about 3 samples, deterioration was not recognized by all.
On the other hand, the etching property was good.
Further, no change was observed in the corrosion resistance test (discoloration of the film back surface after being left in a constant temperature bath at 85 ° C. and 85% RH for 1000 hours).
(Comparative Example 5)

下地金属層の第1層として7.5重量%Ti−20重量%Mo−Ni合金ターゲット(住友金属鉱山製)を用い、直流スパッタリング法により、7.5重量%Ti−20重量%Mo−Ni合金下地金属層を成膜し、スパッタリング時間を実施例6よりもさらに短めに替えることで膜厚を変更した以外は実施例1と同様にして、評価用の原料基材を得た。
別途同条件で成膜した一部を透過電子顕微鏡(TEM:日立製作所(株)製)を用いて膜厚を測定したところ2nmであった。この基材からサブトラクト法でピール強度評価用の1mmのリードと、HHBT試験用の30μmピッチの櫛歯試験片を形成した。
得られたフレキシブル基板の初期ピール強度は695N/mであった。150℃のオーブン168時間放置後の耐熱ピール強度は420N/mと変化は小さく、良好であった。
さらに絶縁信頼性試験を3サンプルについて行ったが、いずれも抵抗が10Ω以下になりショート不良となった。
一方、エッチング性は良好であった。
また、耐腐食性試験(85℃85%RH恒温槽中に1000時間放置後のフィルム裏面変色)ではフィルム裏面の多くの部分に変色が認められた。
(比較例6)
A 7.5 wt% Ti-20 wt% Mo-Ni alloy target (manufactured by Sumitomo Metal Mining) was used as the first layer of the base metal layer, and 7.5 wt% Ti-20 wt% Mo-Ni was formed by DC sputtering. An alloy base metal layer was formed, and a raw material substrate for evaluation was obtained in the same manner as in Example 1 except that the film thickness was changed by changing the sputtering time to be shorter than that in Example 6.
A part of the film formed separately under the same conditions was measured with a transmission electron microscope (TEM: manufactured by Hitachi, Ltd.) and found to have a thickness of 2 nm. From this base material, a 1 mm lead for peel strength evaluation and a 30 μm pitch comb-teeth test piece for HHBT test were formed by the subtract method.
The initial peel strength of the obtained flexible substrate was 695 N / m. The heat-resistant peel strength after leaving in an oven at 150 ° C. for 168 hours was as good as 420 N / m with little change.
Further, an insulation reliability test was performed on three samples. In all cases, the resistance became 10 6 Ω or less, resulting in a short circuit failure.
On the other hand, the etching property was good.
Further, in the corrosion resistance test (discoloration of the back side of the film after being left in a constant temperature bath at 85 ° C. and 85% RH) for 1000 hours, discoloration was observed in many portions on the back side of the film.
(Comparative Example 6)

下地金属層の第1層として7.5重量%Ti−20重量%Mo−Ni合金ターゲット(住友金属鉱山製)を用い、直流スパッタリング法により、7.5重量%Ti−20重量%Mo−Ni合金下地金属層を成膜し、スパッタリング時間を実施例7よりもさらに長くすることで膜厚を変更した以外は実施例1と同様にして、評価用の原料基材を得た。
別途同条件で成膜した一部を透過電子顕微鏡(TEM:日立製作所(株)製)を用いて膜厚を測定したところ53nmであった。この基材からサブトラクト法でピール強度評価用の1mmのリードと、HHBT試験用の30μmピッチの櫛歯試験片を形成した。
得られたフレキシブル基板の初期ピール強度は715N/mであった。150℃のオーブン168時間放置後の耐熱ピール強度は468N/mと大きな変化が無く、良好であった。
エッチング試験では、3サンプルのうち、2サンプルで塩鉄エッチングで下地金属層がエッチングできず、30μmピッチのリードを形成できなかった。
さらに絶縁信頼性試験を3サンプルについて行ったが、いずれも劣化は認められなかった。
また、耐腐食性試験(85℃85%RH恒温槽中に1000時間放置後のフィルム裏面変色)で変化は見られなかった。
上記実施例、比較例の結果を表1に纏めて示す。

A 7.5 wt% Ti-20 wt% Mo-Ni alloy target (manufactured by Sumitomo Metal Mining) was used as the first layer of the base metal layer, and 7.5 wt% Ti-20 wt% Mo-Ni was formed by DC sputtering. An alloy base metal layer was formed, and a raw material substrate for evaluation was obtained in the same manner as in Example 1 except that the film thickness was changed by making the sputtering time longer than that in Example 7.
A part of the film formed under the same conditions was measured with a transmission electron microscope (TEM: manufactured by Hitachi, Ltd.), and the film thickness was 53 nm. From this base material, a 1 mm lead for peel strength evaluation and a 30 μm pitch comb-teeth test piece for HHBT test were formed by the subtract method.
The initial peel strength of the obtained flexible substrate was 715 N / m. The heat-resistant peel strength after leaving in an oven at 150 ° C. for 168 hours was as good as 468 N / m with no significant change.
In the etching test, the base metal layer could not be etched by salt iron etching in 2 samples out of 3 samples, and leads with a pitch of 30 μm could not be formed.
Furthermore, although the insulation reliability test was done about 3 samples, deterioration was not recognized by all.
Further, no change was observed in the corrosion resistance test (discoloration of the film back surface after being left in a constant temperature bath at 85 ° C. and 85% RH for 1000 hours).
The results of the above examples and comparative examples are summarized in Table 1.

Figure 0004385297
Figure 0004385297

以上述べた通り、本発明の2層フレキシブル基板の製造方法によれば、絶縁体フィルムの少なくとも片面に、接着剤を介さずに直接下地金属層を形成し、該下地金属層上に所望の厚さの銅導体層を形成する2層フレキシブル基板において、前記絶縁体フィルム上に、乾式めっき法により膜厚3〜50nm形成された、チタンの割合が5〜22重量%、モリブデンの割合が2〜40重量%で残部がニッケルの、ニッケル−チタン−モリブデン合金を主として含有する下地金属層と、該下地金属層上に膜厚10nm〜35μmの銅被膜層を形成することができ、そして、本発明の2層フレキシブル基板によれば、該下地金属層にチタンが含まれていることから、耐熱ピール強度の低下を防止することができ、また、同時にモリブデンが含まれていることから、耐食性、絶縁信頼性が向上することができるため、該2層フレキシブル基板を用いることによって、密着性、耐食性が高く、欠陥のない配線部を有する信頼性の高い狭幅、狭ピッチの配線部を持ったフレキシブル配線板を効率よく得ることができるので、その効果は極めて大きい。   As described above, according to the method for producing a two-layer flexible substrate of the present invention, a base metal layer is formed directly on at least one surface of the insulator film without using an adhesive, and a desired thickness is formed on the base metal layer. In the two-layer flexible substrate for forming the copper conductor layer, the titanium film is formed on the insulator film by a dry plating method with a film thickness of 3 to 50 nm, the titanium ratio is 5 to 22% by weight, and the molybdenum ratio is 2 to 2. A base metal layer mainly containing a nickel-titanium-molybdenum alloy having a nickel content of 40% by weight and a copper film layer having a thickness of 10 nm to 35 μm can be formed on the base metal layer. According to the two-layer flexible substrate, since the base metal layer contains titanium, it is possible to prevent a decrease in heat-resistant peel strength, and at the same time, molybdenum is contained. Therefore, since the corrosion resistance and the insulation reliability can be improved, by using the two-layer flexible substrate, the adhesiveness and the corrosion resistance are high, and the highly reliable narrow width and narrow pitch having a defect-free wiring portion. Since a flexible wiring board having a wiring portion can be obtained efficiently, the effect is extremely great.

Claims (6)

絶縁体フィルムの少なくとも片面に、接着剤を介さずに直接下地金属層を形成し、次いで該下地金属層上に銅被膜層を形成する2層フレキシブル基板において、
前記下地金属層は、乾式めっき法により形成された、チタンの割合が5〜22重量%、モリブデンの割合が2〜40重量%で残部がニッケルのニッケル−チタン−モリブデン合金を主として含有する膜厚3〜50nmの下地金属層からなることを特徴とする2層フレキシブル基板。
In a two-layer flexible substrate in which a base metal layer is directly formed on at least one surface of an insulator film without using an adhesive, and then a copper coating layer is formed on the base metal layer.
The base metal layer is formed by a dry plating method and mainly contains a nickel-titanium-molybdenum alloy in which the proportion of titanium is 5 to 22% by weight, the proportion of molybdenum is 2 to 40% by weight and the balance is nickel. A two-layer flexible substrate comprising a base metal layer of 3 to 50 nm.
前記下地金属層上に形成された前記銅被膜層は、膜厚が10nm〜35μmであることを特徴とする請求項1記載の2層フレキシブル基板。   2. The two-layer flexible substrate according to claim 1, wherein the copper coating layer formed on the base metal layer has a thickness of 10 nm to 35 μm. 前記絶縁体フィルムは、ポリイミド系フィルム、ポリアミド系フィルム、ポリエステル系フィルム、ポリテトラフルオロエチレン系フィルム、ポリフェニレンサルファイド系フィルム、ポリエチレンナフタレート系フィルム、液晶ポリマー系フィルムから選ばれた樹脂フィルムであることを特徴とする請求項1又は2記載の2層フレキシブル基板。   The insulator film is a resin film selected from a polyimide film, a polyamide film, a polyester film, a polytetrafluoroethylene film, a polyphenylene sulfide film, a polyethylene naphthalate film, and a liquid crystal polymer film. The two-layer flexible substrate according to claim 1 or 2, characterized in that: 絶縁体フィルムの少なくとも片面に、接着剤を介さずに直接下地金属層を形成し、次いで該下地金属層上に銅被膜層を形成する2層フレキシブル基板の製造方法において、前記絶縁体フィルム上に、チタンの割合が5〜22重量%、モリブデンの割合が2〜40重量%で残部がニッケルのニッケル−チタン−モリブデン合金の下地金属層を乾式めっき法により膜厚3〜50nm形成し、次いで該下地金属層上に銅被膜層を形成することを特徴とする2層フレキシブル基板の製造方法。   In a method for manufacturing a two-layer flexible substrate, in which a base metal layer is directly formed on at least one surface of an insulator film without using an adhesive, and then a copper coating layer is formed on the base metal layer, The base metal layer of nickel-titanium-molybdenum alloy having a titanium ratio of 5 to 22% by weight, a molybdenum ratio of 2 to 40% by weight and the balance being nickel is formed by dry plating, A method for producing a two-layer flexible substrate, comprising forming a copper coating layer on a base metal layer. 前記銅被膜層を乾式めっき法により形成した後、更に、該銅被膜層の上に湿式めっき法により銅被膜層を形成することを特徴とする請求項4記載の2層フレキシブル基板の製造方法。   5. The method for producing a two-layer flexible substrate according to claim 4, wherein after the copper coating layer is formed by a dry plating method, a copper coating layer is further formed on the copper coating layer by a wet plating method. 前記乾式めっき法は、真空蒸着法、スパッタリング法、またはイオンプレーティング法のいずれかであることを特徴とする請求項4又は5記載の2層フレキシブル基板の製造方法。

6. The method for manufacturing a two-layer flexible substrate according to claim 4, wherein the dry plating method is any one of a vacuum deposition method, a sputtering method, and an ion plating method.

JP2004254942A 2004-09-01 2004-09-01 Two-layer flexible substrate and manufacturing method thereof Active JP4385297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004254942A JP4385297B2 (en) 2004-09-01 2004-09-01 Two-layer flexible substrate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004254942A JP4385297B2 (en) 2004-09-01 2004-09-01 Two-layer flexible substrate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006073765A JP2006073765A (en) 2006-03-16
JP4385297B2 true JP4385297B2 (en) 2009-12-16

Family

ID=36154059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004254942A Active JP4385297B2 (en) 2004-09-01 2004-09-01 Two-layer flexible substrate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4385297B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4877022B2 (en) * 2007-04-10 2012-02-15 住友金属鉱山株式会社 Method for manufacturing printed wiring board
JP2011100846A (en) * 2009-11-05 2011-05-19 Sumitomo Metal Mining Co Ltd Two-layer flexible board, method of manufacturing the same, two-layer flexible wiring board, method of manufacturing the same, and plasma processing device
KR101189133B1 (en) 2012-01-20 2012-10-10 엘에스엠트론 주식회사 Flexible circuit clad laminate, printed circuit board using it, and method of manufacturing the same
CN103397225B (en) * 2013-07-19 2015-06-10 宝钛特种金属有限公司 Nickel molybdenum titanium intermediate alloy and preparation method thereof
CN103938029B (en) * 2014-04-24 2016-03-02 武侗 A kind of master alloy nickel molybdenum 30 additive for titanium molybdenum Ni-Ti alloy ingot casting and production method

Also Published As

Publication number Publication date
JP2006073765A (en) 2006-03-16

Similar Documents

Publication Publication Date Title
JP4605511B2 (en) Two-layer flexible substrate and manufacturing method thereof
JP4968266B2 (en) Two-layer flexible substrate, manufacturing method thereof, and flexible printed wiring board obtained from the two-layer flexible substrate
JP3888587B2 (en) Etching method of flexible substrate
JP4525682B2 (en) Two-layer flexible substrate and manufacturing method thereof
US6544664B1 (en) Copper foil for printed wiring board
JP4924843B2 (en) Two-layer flexible substrate and method for manufacturing the same, printed wiring board using the two-layer flexible substrate, and method for manufacturing the same
JPWO2009034764A1 (en) Printed wiring board manufacturing method and printed wiring board obtained by the manufacturing method
JP5672299B2 (en) Two-layer flexible substrate and manufacturing method thereof
JP2007069561A (en) Two-layered flexible substrate and manufacturing method therefor
JP4385297B2 (en) Two-layer flexible substrate and manufacturing method thereof
JP4986081B2 (en) Method for manufacturing printed wiring board
JP4385298B2 (en) Two-layer flexible substrate and manufacturing method thereof
JP2012186307A (en) Two-layer flexible substrate, method of manufacturing the same, two-layer flexible printed wiring board whose base material is two-layer flexible substrate, and method of manufacturing the same
JP5223325B2 (en) Metal-coated polyethylene naphthalate substrate and manufacturing method thereof
US20080102305A1 (en) Adhesiveless Copper Clad Laminates And Method For Manufacturing Thereof
JP4222001B2 (en) Copper coated plastic substrate
JP2006013152A (en) Two-layer flexible board and manufacturing method thereof
JP4877022B2 (en) Method for manufacturing printed wiring board
JP2010212459A (en) Double-layer flexible metal insulator laminated substrate, and double-layer flexible wiring board
KR20220133495A (en) Environmentally Friendly Flexible Circuit Board Using Non-Adhesive Coarse Laminated Plates and Its Manufacturing Method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090903

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090916

R150 Certificate of patent or registration of utility model

Ref document number: 4385297

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4