JP7031936B2 - メタステーブル回避型同期化回路およびメタステーブル回避方法 - Google Patents

メタステーブル回避型同期化回路およびメタステーブル回避方法 Download PDF

Info

Publication number
JP7031936B2
JP7031936B2 JP2020089426A JP2020089426A JP7031936B2 JP 7031936 B2 JP7031936 B2 JP 7031936B2 JP 2020089426 A JP2020089426 A JP 2020089426A JP 2020089426 A JP2020089426 A JP 2020089426A JP 7031936 B2 JP7031936 B2 JP 7031936B2
Authority
JP
Japan
Prior art keywords
signal
level
input data
output
clock signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020089426A
Other languages
English (en)
Other versions
JP2021184549A (ja
Inventor
昌二 脇田
貴志 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Platforms Ltd
Original Assignee
NEC Platforms Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Platforms Ltd filed Critical NEC Platforms Ltd
Priority to JP2020089426A priority Critical patent/JP7031936B2/ja
Publication of JP2021184549A publication Critical patent/JP2021184549A/ja
Application granted granted Critical
Publication of JP7031936B2 publication Critical patent/JP7031936B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Synchronisation In Digital Transmission Systems (AREA)

Description

本発明は、メタステーブル回避型同期化回路、通信機器およびメタステーブル回避方法に関し、特に、同じ周波数のクロック信号で動作する論理回路モジュール間で非同期転送をする際のメタステーブルの発生を回避するメタステーブル回避型同期化回路、通信機器およびメタステーブル回避方法に関する。
電気・電子通信分野において使用する通信機器は、種々の機能を実現するために、機能ごとに異なる論理回路モジュールに分割して異なるクロック信号を用いて構成する場合が多くなってきている。そして、かかる通信機器においては、論理回路モジュール間に非同期の信号を転送するために、電子回路としてラッチ回路やフリップフロップ等を使用して、非同期信号を同期化するための同期化回路が必要になっている。
しかし、同期化回路に入力されてくる信号とクロック信号との立ち上がりや立下がりのタイミングが近接した状態になったりすると、信号レベルが“Lレベル(例えば論理レベル0)”と“Hレベル(例えば論理レベル1)”との閾値の中間的な電圧を継続するメタステーブルが発生して、出力信号が不安定になってしまう。メタステーブルの状態は、通常、或る程度の時間継続した後、自然に“Lレベル(論理レベル0)”か“Hレベル(論理レベル1)”かのいずれかの安定した状態に移動するが、電子機器として正常な動作を行うことができない状況に陥る可能性が高い。
このようなメタステーブルの発生を防止する技術として、例えば、論理回路モジュール間で異なる周波数で動作する場合には、受信側同期化回路としてラッチ回路やフリップフロップ等を2段構成とすることが提案されている。しかし、この2段構成によっては、論理回路モジュール間で同じ周波数を用いている場合には、メタステーブルの発生を防止することができない。このため、同じ周波数を用いて動作する場合においてもメタステーブルの発生を防止する技術として、図4に示すような特許文献1の特開2014-140123号公報「メタステーブル防止型同期回路」に記載された技術が提案されている。図4は、現状の技術として前記特許文献1において開示されたメタステーブル防止型同期化回路を示すブロック構成図である。
前記特許文献1においては、図4に示すように、メタステーブルの発生を防止する回路は、一対の位相同期回路(Phase Locked Loop)のPLL1 110A、PLL2 120Aと転送二重化回路130Aと一対のメタステーブル検出回路140Aと転送選択回路150Aとを有して構成される。ここで、PLL1 110A、PLL2 120Aは、同一の周波数で位相が180°異なる2個のクロック信号を出力する。また、転送二重化回路130Aは、入力データ信号130cを、PLL1 110A、PLL2 120Aそれぞれから出力される同一の周波数で位相が180°異なる2個のクロック信号によって非同期に転送される2系統の転送同期化信号130a、130bに分離する。
また、一対のメタステーブル検出回路140Aは、転送二重化回路130Aから出力される2系統の転送同期化信号130a、130bそれぞれのメタステーブルの有無を判定する。そして、転送選択回路150Aは、一対のメタステーブル検出回路140Aそれぞれからの判定結果として出力される検出信号140a、140cに基づいて、2系統の転送同期化信号130a、130bのうち、メタステーブルが検出されていない信号を転送出力用として選択して、選択した信号を同期化出力信号150aとして出力する。
したがって、同じ周波数のクロック信号間で非同期転送しても、正しく同期化を行い、メタステーブルに影響されることなく正常な信号を転送することができるものと推定される。
特開2014-140123号公報
しかしながら、本発明に関連する前記特許文献1等に記載された現状の技術においては、次のような解決するべき課題がある。
第1の課題は、 異なる周波数で非同期転送する場合には、前述したように、同期化回路として受信側のフリップフロップを2段構成にすることにより、メタステーブルの除去を行うという技術を採用しているが、同じ周波数のクロック間で非同期転送する場合には、メタステーブルを除去することができないという点である。その理由は、 受信したデータの周期とその受信したデータを取り込むための受信クロックの周期とが一致した場合には、メタステーブルを除去することができないからである。
第2の課題は、 前述の第1の課題を解決するための前記特許文献1の技術においては、前述したように、同じ周波数のクロックを2系統(すなわち、同じ周波数で、位相が180°異なるクロックを2系統)用意することによって、課題の解決を図ろうとしている。しかし、前記特許文献1の技術は、図4に示したように、一対のメタステーブル検出回路140Aにおいてメタステーブル発生信号そのものを判定用の信号として使用しているところに問題がある。その理由は、 メタステーブル発生中の信号は発振状態にあり、判定用の信号には適していないからである。
(本発明の目的)
本発明の目的は、かかる課題に鑑み、同じ周波数のクロックにて動作する論理回路モジュール間を、データ信号を非同期転送する場合であっても、メタステーブルの影響を回避することが可能なメタステーブル回避型同期化回路、通信機器およびメタステーブル回避方法を提供することにある。
前述の課題を解決するため、本発明によるメタステーブル回避型同期化回路、通信機器およびメタステーブル回避方法は、次のような特徴的な構成を採用している。
(1)本発明によるメタステーブル回避型同期化回路は、
同じ周波数のクロック信号により動作する論理回路モジュール間で非同期転送データ信号の同期化を行うメタステーブル回避型同期化回路であって、
前記クロック信号の周波数を2逓倍(n:正整数)した2逓倍クロック信号を生成する位相同期部と、
入力データ信号を前記2逓倍クロック信号に同期して順次取り込む(n+1)段のシフトレジスタと、
前記2逓倍クロック信号に同期して動作し、前記シフトレジスタに順次取り込んだ前記入力データ信号それぞれのうち、互いに連接したn個の組合せからなる各組合せの前段と後段とのそれぞれに取り込んだ前記入力データ信号間の信号レベルを比較し、信号レベルの切り替わりがあった場合に、当該組合せにおける前記入力データ信号間のエッジとして検出するエッジ検出部と、
前記2逓倍クロック信号に同期して動作し、前記エッジ検出部において検出した前記エッジの個数が、前記シフトレジスタの互いに連接したすべての組合せの個数を示すn個であった場合には、前記入力データ信号の信号レベルの切り替わりがあったものと判定して、前記入力データ信号の信号レベルの切り替わりに応じた信号レベルからなる前記2逓倍クロック信号による出力データ信号を生成する出力信号生成部と、
前記2逓倍クロック信号による出力データ信号を一旦保持し、前記クロック信号に同期するタイミングで出力データ信号として出力する出力最終段同期フリップフロップと、
を有することを特徴とする。
(2)本発明による通信機器は、
機能ごとに異なる論理回路モジュールに分割して前記論理回路モジュール毎に異なるクロック信号を用いて動作する通信機器において、
各前記論理回路モジュール間を非同期に転送するデータ信号の同期化を図る同期化回路として、前記(1)項に記載のメタステーブル回避型同期化回路を用いる、
ことを特徴とする。
(3)本発明によるメタステーブル回避方法は、
同じ周波数のクロック信号により動作する論理回路モジュール間で非同期転送データ信号の同期化を行う際に発生するメタステーブルの発生を回避するメタステーブル回避方法であって、
前記クロック信号の周波数を2逓倍(n:正整数)した2逓倍クロック信号を生成する位相同期ステップと、
入力データ信号を前記2逓倍クロック信号に同期して順次取り込む(n+1)段のシフトレジストステップと、
前記2逓倍クロック信号に同期して動作し、前記シフトレジストステップとして順次取り込んだ前記入力データ信号それぞれのうち、互いに連接したn個の組合せからなる各組合せの前段と後段とのそれぞれに取り込んだ前記入力データ信号間の信号レベルを比較し、信号レベルの切り替わりがあった場合に、当該組合せにおける前記入力データ信号間のエッジとして検出するエッジ検出ステップと、
前記2逓倍クロック信号に同期して動作し、前記エッジ検出ステップにおいて検出した前記エッジの個数が、前記シフトレジストステップにおける互いに連接したすべての組合せの個数を示すn個であった場合には、前記入力データ信号の信号レベルの切り替わりがあったものと判定して、前記入力データ信号の信号レベルの切り替わりに応じた信号レベルからなる前記2逓倍クロック信号による出力データ信号を生成する出力信号生成ステップと、
前記2逓倍クロック信号による出力データ信号を一旦保持し、前記クロック信号に同期するタイミングで出力データ信号として出力するステップと、
を有することを特徴とする。
本発明のメタステーブル回避型同期化回路、通信機器およびメタステーブル回避方法によれば、主に、以下のような効果を奏することができる。
本発明によれば、データ信号が同じ周波数のクロック信号にて動作する論理回路モジュール間を非同期転送する場合であっても、該論理回路モジュール間におけるデータ信号の転送動作を正確に行うことができる。その理由は、クロック信号の周波数を適切な値に逓倍した逓倍クロック信号を用いて該データ信号に関する複数回のエッジ検出動作を実施した結果に基づいて同期化を行うことを可能にすることにより、非同期転送の同期化に際して発生するメタステーブルの影響を確実に回避することができるからである。
本発明の実施形態に係るメタステーブル回避型同期化回路の基本構成の一例を示す概略ブロック図である。 図1のメタステーブル回避型同期化回路内の出力信号生成回路の内部構成の一例を示す概略ブロック図である。 図1、図2に示したメタステーブル回避型同期化回路、出力信号生成回路の各信号の動作タイミングの一例を示すタイムチャートである。 現状の技術として前記特許文献1において開示されたメタステーブル防止型同期化回路のブロック構成を示すブロック構成図である。
以下、本発明によるメタステーブル回避型同期化回路、通信機器およびメタステーブル回避方法の好適な実施形態について添付図を参照して説明する。なお、以下の説明においては、本発明によるメタステーブル回避型同期化回路およびメタステーブル回避方法について説明する。ここで、機能ごとに異なる論理回路モジュールに分割して各論理回路モジュール毎に異なるクロック信号を用いて動作する通信機器において、本発明によるメタステーブル回避型同期化回路を、各論理回路モジュール間を非同期に転送するデータ信号の同期化を図る同期化回路として使用するようにしても良いことは言うまでもない。また、以下の各図面に付した図面参照符号は、理解を助けるための一例として各要素に便宜上付記したものであり、本発明を図示の態様に限定することを意図するものではないことも言うまでもない。
(本発明の特徴)
本発明の実施形態の説明に先立って、本発明の特徴についてその概要をまず説明する。本発明は、出力タイミングクロックを適切な値に逓倍した逓倍クロック例えば8逓倍したクロックを生成する位相同期部(PLL:Phase Locked Loop)と、入力データ信号を順次取り込むシフトレジスタと、該シフトレジスタに順次取り込んだ入力データ信号の“Hレベル(例えば論理レベル1)”、“Lレベル(例えば論理レベル0)”の切り替わりをエッジとして検出するエッジ検出部と、該エッジ回路で検出したエッジの個数の判定結果に基づいて出力データ信号の切り替えを行い、入力データ信号の切り替わりに応じた出力データ信号を生成する出力信号生成部と、該出力データ信号を一旦保持して、出力タイミングクロックによる同期化処理後の出力データ信号として出力する出力最終段同期フリップフロップと、を有する構成とすることを主要な特徴としている。
かかる構成において、入力データ信号の取り込み、入力データ信号の切り替わりエッジの検出などの処理を適切な値に逓倍したクロック例えば8逓倍のクロックを用いて制御を行うことを可能にする。而して、信号を同じ周波数のクロックにて動作する論理回路モジュール間を非同期転送する場合であっても、メタステーブルの影響を回避する同期化手段を実現することが可能になり、最終段で所望の出力クロックでデータを同期出力することが可能になるという効果が得られる。
(本発明の実施形態の構成例)
次に、本発明の実施形態に係るメタステーブル回避型同期化回路の構成例について図面を参照して詳細に説明する。図1は、本発明の実施形態に係るメタステーブル回避型同期化回路の基本構成の一例を示す概略ブロック図である。本発明の実施形態に係るメタステーブル回避型同期化回路100は、同じ周波数のクロック信号を用いて動作する論理回路モジュール間を非同期転送するデータ信号の同期化を行うことが可能な回路であり、図1に示すように、位相同期回路(PLL:Phase Locked Loop)110、シフトレジスタ120、エッジ検出回路130、出力信号生成回路140、出力最終段同期フリップフロップ150を有して構成される。
位相同期回路(PLL)110は、クロック信号(CLK)10を基にして、該クロック信号(CLK)10と同じ周波数のx1クロック信号111、該クロック信号(CLK)10の8倍(2=2倍)の周波数の8逓倍クロック信号112を生成する。シフトレジスタ120は、4段((n+1)段=(3+1)段)のフリップフロップからなり、入力データ信号(DATA IN)20を、位相同期回路(PLL)110からの8逓倍クロック信号112に同期させて順次取り込んでいく。
また、エッジ検出回路130は、シフトレジスタ120に順次取り込まれた前段側のフリップフロップと後段側のフリップフロップとの信号値を比較することにより、前段側と後段側との各組合せ毎の入力データ信号(DATA IN)20のデータ変化点をエッジとして検出する。3組(n組=3組)の組合せすべてにエッジを検出した場合の信号は、8逓倍クロック信号112の3(n=3)クロック幅の立ち上がりエッジ信号、立ち下がりエッジ信号として、出力信号生成回路140に出力される。
図1においては、エッジ検出回路130は、立ち上がりエッジを検出する場合には、第1番目の組合せとして、シフトレジスタ120の第2段目の第2シフトレジスタ信号122の信号値が“Lレベル(例えば論理レベル0)”の時点で第1段目の第1シフトレジスタ信号121の信号値が“Hレベル(例えば論理レベル1)”に変化したことを検出すると、“Hレベル(例えば論理レベル1)”の第1エッジ信号131を出力する。第1エッジ信号131は、8逓倍クロック信号112の1クロック幅の信号である。なお、以下の説明においては、説明を分かり易くするために、“Hレベル”の信号が論理レベル1の信号であり、“Lレベル”の信号が論理レベル0の信号であると仮定して説明することにする。
同様に、第2番目の組合せとして、第3段目の第3シフトレジスタ信号123の信号値が“Lレベル(論理レベル0)”の時点で第2段目の第2シフトレジスタ信号122の信号値が“Hレベル(論理レベル1)”に変化したことを検出すると、“Hレベル(論理レベル1)”の第2エッジ信号132を出力する。また、第3番目の組合せとして、第4段目の第4シフトレジスタ信号124の信号値が“Lレベル(論理レベル0)”の時点で第3段目の第3シフトレジスタ信号123の信号値が“Hレベル(論理レベル1)”に変化したことを検出すると、“Hレベル(論理レベル1)”の第3エッジ信号133を出力する。第2エッジ信号132、第3エッジ信号133も、第1エッジ信号131と同様、それぞれ、8逓倍クロック信号112の1クロック幅の信号である。
さらに、すべての組合せにおいて立ち上がりのエッジを検出したことを示すための信号として、第1エッジ信号131、第2エッジ信号132、第3エッジ信号133を論理和して合成することにより、8逓倍クロック信号112の3クロック幅からなる立ち上がりエッジ信号137として、出力信号生成回路140に出力する。
また、エッジ検出回路130は、立ち下がりエッジを検出する場合も同様であり、第1番目の組合せとして、シフトレジスタ120の第2段目の第2シフトレジスタ信号122の信号値が“Hレベル(論理レベル1)”の時点で第1段目の第1シフトレジスタ信号121の信号値が“Lレベル(論理レベル0)”に変化したことを検出すると、“Hレベル(論理レベル1)”の第4エッジ信号134を出力する。第4エッジ信号134も、8逓倍クロック信号112の1クロック幅の信号である。
同様に、第2番目の組合せとして、第3段目の第3シフトレジスタ信号123の信号値が“Hレベル(論理レベル1)”の時点で第2段目の第2シフトレジスタ信号122の信号値が“Lレベル(論理レベル0)”に変化したことを検出すると、“Hレベル(論理レベル1)”の第5エッジ信号135を出力する。そして、第3番目の組合せとして、第4段目の第4シフトレジスタ信号124の信号値が“Hレベル(論理レベル1)”の時点で第3段目の第3シフトレジスタ信号123の信号値が“Lレベル(論理レベル0)”に変化したことを検出すると、“Hレベル(論理レベル1)”の第6エッジ信号136を出力する。第5エッジ信号135、第6エッジ信号136も、第4エッジ信号134と同様、それぞれ、8逓倍クロック信号112の1クロック幅の信号である。
さらに、すべての組合せにおいて立ち下がりのエッジを検出したことを示すための信号として、第4エッジ信号134、第5エッジ信号135、第6エッジ信号136を論理和して合成することにより、8逓倍クロック信号112の3クロック幅からなる立ち下がりエッジ信号138として、出力信号生成回路140に出力する。
以上のように、エッジ検出回路130は、4段のシフトレジスタ120に順次取り込んだ入力データ信号(DATA IN)20それぞれのうち、互いに連接した3個の組合せからなる各組合せの前段と後段とのそれぞれに取り込んだ入力データ信号(DATA IN)20間の信号レベルを比較し、信号レベルの切り替わりがあった場合に、当該組合せにおける入力データ信号間のエッジとして検出する。
また、出力信号生成回路140は、8逓倍クロック信号112に同期して動作し、エッジ検出回路130からの立ち上がりエッジ信号137および立ち下がりエッジ信号138に基づいて、8逓倍クロック信号112同期における同期化処理後の出力データ信号141を生成する。すなわち、エッジ検出回路130からの立ち上がりエッジ信号137が“Hレベル(論理レベル1)”のタイミングにおいては、“Hレベル(論理レベル1)”の出力データ信号141を生成し、立ち下がりエッジ信号138が“Hレベル(論理レベル1)”のタイミングにおいては、“Lレベル(論理レベル0)”の出力データ信号141を生成する。
さらに説明すると、出力信号生成回路140は、8逓倍クロック信号に同期して動作し、エッジ検出回路130において検出したエッジの個数が、シフトレジスタ120の互いに連接したすべての組合せの個数を示す3個であった場合には、入力データ信号(DATA IN)20の信号レベルの切り替わりがあったものと判定して、入力データ信号(DATA IN)20の信号レベルの切り替わりに応じた信号レベルからなる8逓倍クロック信号による出力データ信号141を生成する。なお、出力信号生成回路140の内部構成については、図2として後述する。
また、出力最終段同期フリップフロップ150は、出力信号生成回路140が生成した出力データ信号141を最終的に必要とするクロック信号(CLK)10に同期するタイミングに乗せ換えるために一旦保持し、クロック信号(CLK)10すなわち位相同期回路(PLL)110からの×1クロック信号111に同期するタイミングで出力データ信号(DATA OUT)30として出力する。なお、出力最終段同期フリップフロップ150と出力信号生成回路140とが動作するクロック(×1クロック信号111と8逓倍クロック信号112)とは互いに同期関係にあるので、クロック信号(CLK)10に同期するタイミングに乗せ換えるために一旦保持する出力最終段同期フリップフロップ150は、単純な1段構成のフリップフロップとすることができる。
次に、図1のメタステーブル回避型同期化回路100内の出力信号生成回路140の内部構成について、図2を用いて、その一例を説明する。図2は、図1のメタステーブル回避型同期化回路100内の出力信号生成回路140の内部構成の一例を示す概略ブロック図である。
出力信号生成回路140は、8逓倍クロック信号112に同期して動作し、エッジ検出回路130からの出力信号(立ち上がりエッジ信号137、立ち下がりエッジ信号138)に基づいて、内部のカウンタ制御を行うことによって、出力の“Hレベル(論理レベル1)”、“Lレベル(論理レベル0)”の切り替えを行って、出力データ信号141として生成する回路であり、図2に示すように、立ち上がり検出カウンタ200、立ち上がり検出カウンタ値検出回路210、立ち上がり検出クリア信号生成カウンタ220、立ち下がり検出カウンタ230、立ち下がり検出カウンタ値検出回路240、立ち下がり検出クリア信号生成カウンタ250、出力信号保持フリップフロップ260を有して構成される。
立ち上がり検出カウンタ200は、エッジ検出回路130から出力された3クロック幅(8逓倍クロック信号112のクロック幅)の立ち上がりエッジ信号137の“Hレベル(論理レベル1)”の回数をカウントし、立ち上がりエッジ回数信号201として出力する。
また、立ち上がり検出カウンタ値検出回路210は、立ち上がり検出カウンタ200からの立ち上がりエッジ回数信号201が示す回数が、8逓倍クロック信号112の3クロックを示す“3”(すなわち、立ち上がりエッジ信号137を生成した第1エッジ信号131、第2エッジ信号132、第3エッジ信号133のすべて)であった場合、入力データ信号20の立ち上がりを検出したタイミングとして、8逓倍クロック信号112の1クロック幅の“Hレベル(論理レベル1)”の立ち上がり検出信号211を生成する。
また、立ち上がり検出クリア信号生成カウンタ220は、立ち上がり検出カウンタ値検出回路210が生成した立ち上がり検出信号211の出力タイミング(立ち上がりを検出した場合は“Hレベル(論理レベル1)”の 立ち上がり検出信号211の出力タイミング)を契機としてカウント動作を開始するカウンタであり、8逓倍クロック信号112の8クロック分をカウントすると、8逓倍クロック信号112の1クロック幅の“Hレベル(論理レベル1)”の立ち上がり検出クリア信号221を出力する。立ち上がり検出クリア信号221は、立ち上がり検出カウンタ200をクリアするために使用される。
また、立ち下がり検出カウンタ230、立ち下がり検出カウンタ値検出回路240、立ち下がり検出クリア信号生成カウンタ250のそれぞれは、立ち上がり検出カウンタ200、立ち上がり検出カウンタ値検出回路210、立ち上がり検出クリア信号生成カウンタ220それぞれと同様の機能を有している。
まず、立ち下がり検出カウンタ230は、エッジ検出回路130から出力された3クロック幅(8逓倍クロック信号112のクロック幅)の立ち下がりエッジ信号138の“Hレベル(論理レベル1)”の回数をカウントし、立ち下がりエッジ回数信号231として出力する。
また、立ち下がり検出カウンタ値検出回路240は、立ち下がり検出カウンタ230からの立ち下がりエッジ回数信号231が示す回数が、8逓倍クロック信号112の3クロックを示す“3”(すなわち、立ち下がりエッジ信号138を生成した第4エッジ信号134、第5エッジ信号135、第6エッジ信号136のすべて)であった場合、入力データ信号20の立ち下がりを検出したタイミングとして、8逓倍クロック信号112の1クロック幅の“Hレベル(論理レベル1)”の立ち下がり検出信号241を生成する。
また、立ち下がり検出クリア信号生成カウンタ250は、立ち下がり検出カウンタ値検出回路240が生成した立ち下がり検出信号241の出力タイミング(立ち下がりを検出した場合は“Hレベル(論理レベル1)”の 立ち下がり検出信号241の出力タイミング)を契機としてカウント動作を開始するカウンタであり、8逓倍クロック信号112の8クロック分をカウントすると、8逓倍クロック信号112の1クロック幅の“Hレベル(論理レベル1)”の立ち下がり検出クリア信号251を出力する。立ち下がり検出クリア信号251は、立ち下がり検出カウンタ230をクリアするために使用される。
最後に、出力信号保持フリップフロップ260は、立ち上がり検出カウンタ値検出回路210が生成した立ち上がり検出信号211の“Hレベル(論理レベル1)”を契機にして、“Hレベル(論理レベル1)”に設定され、立ち下がり検出カウンタ値検出回路240が生成した立ち下がり検出信号241の“Hレベル(論理レベル1)” を契機にして、“Lレベル(論理レベル0)”に設定されることにより、出力データ信号141を生成して出力する。
(本発明の実施形態の動作例の説明)
次に、本発明の実施形態の一例として図1、図2に示したメタステーブル回避型同期化回路100、出力信号生成回路140の動作について、その一例を、図3のタイムチャートを用いて詳細に説明する。図3は、図1、図2に示したメタステーブル回避型同期化回路100、出力信号生成回路140の各信号の動作タイミングの一例を示すタイムチャートである。
なお、図3のタイムチャートにおいて、時刻T1~時刻T2の間はエッジ検出時間を示し、時刻T3は、データ切り替わり確定時刻を示し、時刻T4は、同期化後の出力データ信号切り替わりタイミングを示し、時刻T5は、同期化処理終了タイミングを示し、時刻T6は、次回の入力データ信号(DATA IN)20のエッジ検出開始タイミングを示している。
また、以下に説明においては、エッジ検出を開始する時刻T1のタイミングにおいて、入力データ信号(DATA IN)20を8逓倍クロック信号112によってシフトレジスタ120の第1段目のフリップフロップに取り込む際に、図3の第1シフトレジスタ信号121の前後の信号波形に示すように、入力データ信号(DATA IN)20の前側のエッジと後側のエッジとは、非同期クロック間信号の影響によってメタステーブルが発生した後は、それぞれ、“Hレベル(論理レベル1)”側と“Lレベル(論理レベル0)”側とに安定したものと仮定して示している。
なお、シフトレジスタ120の第1段目のフリップフロップに取り込む際に、入力データ信号(DATA IN)20の前側のエッジと後側のエッジとが、メタステーブルが発生した後に、それぞれ、“Lレベル(論理レベル0)”側と“Hレベル(論理レベル1)”側とに安定した場合には、図3に示す第1シフトレジスタ信号121以降の各信号の信号レベルが変化するタイミングが、図3の場合よりも、1クロック(8逓倍クロック信号112)分右側にずれることになる。
図3のタイムチャートにおいて、時刻T1から時刻T2までの入力データ信号(DATA IN)20のエッジ検出時間に、入力データ信号(DATA IN)20が“Lレベル(論理レベル0)”から“Hレベル(論理レベル1)”に切り替わっていると、8逓倍クロック信号112に同期して動作するシフトレジスタ120の第1段目から第4段目のフリップフロップそれぞれにおいて、順次、第1シフトレジスタ信号121から第4シフトレジスタ信号124として、入力データ信号(DATA IN)20の立ち上がりを検出していく。
その結果、出力信号生成回路140の立ち上がり検出カウンタ値検出回路210において、データ切り替わり確定時刻を示す時刻T3のタイミングで、立ち上がり検出カウンタ200からの立ち上がりエッジ回数信号201が示す回数が、8逓倍クロック信号112の3クロック分の“3”(すなわち、立ち上がりエッジ信号137を生成した第1エッジ信号131、第2エッジ信号132、第3エッジ信号133のすべて)であることを検出して、8逓倍クロック信号112の1クロック幅の“Hレベル(論理レベル1)”の立ち上がり検出信号211を、入力データ信号20の立ち上がりを検出したタイミングとして出力する。
そして、データ切り替わり確定時刻を示す時刻T3のタイミングで、立ち上がり検出カウンタ値検出回路210が出力した立ち上がり検出信号211の“Hレベル(論理レベル1)”を契機にして、出力信号保持フリップフロップ260は、“Hレベル(論理レベル1)”に設定されて保持され、“Hレベル(論理レベル1)”の出力データ信号141を出力することにより、出力最終段同期フリップフロップ150を“Hレベル(論理レベル1)”に設定する。
しかる後、次回の×1クロック信号111が立ち上がる同期化後の出力データ信号切り替わりタイミングを示す時刻T4に達すると、出力最終段同期フリップフロップ150は、出力信号生成回路140が生成した出力データ信号141を、×1クロック信号111すなわち最終的に必要とするクロック信号(CLK)10に同期するタイミングで、出力データ信号(DATA OUT)30として出力することによって、クロック乗せ替え動作を完了する。
なお、データ切り替わり確定時刻を示す時刻T3のタイミングにおいては、図3のタイムチャートに示すように、立ち上がり検出クリア信号生成カウンタ220は、立ち上がり検出カウンタ値検出回路210が生成した立ち上がり検出信号211の出力タイミングを契機としてカウント動作を開始する。そして、同期化処理終了タイミングを示す時刻T5において、立ち上がり検出クリア信号生成カウンタ220が8逓倍クロック信号112の8クロック分をカウントすると、8逓倍クロック信号112の1クロック幅の“Hレベル(論理レベル1)”の立ち上がり検出クリア信号221を出力して、立ち上がり検出カウンタ200のカウンタ値をクリアする。
そして、入力データ信号(DATA IN)20のシフトレジスタ120への取り込みを開始した後、同期化処理終了タイミングを示す時刻T5を経過して、出力最終段同期フリップフロップ150から×1クロック信号111に同期した出力データ信号30を次段の回路に対して出力した時点に達した後において、クロック信号(CLK)10が次に“Hレベル(論理レベル1)”に立ち上がるタイミング、すなわち、次回の入力データ信号(DATA IN)20のエッジ検出開始タイミングを示す時刻T6に達するまでは、次回の入力データ信号(DATA IN)20のエッジ検出動作を開始しない。つまり、出力最終段同期フリップフロップ150からクロック信号(CLK)10に同期した出力データ信号30を出力し、かつ、自メタステーブル回避型同期化回路100の初期化が終了した後において、次の周期のクロック信号(CLK)10が立ち上がる時刻に達するまでの間、次の入力データ信号(DATA IN)20をシフトレジスタ120に取り込む動作を抑止する。
したがって、入力データ信号(DATA IN)20が、クロック(CLK)10毎に“Hレベル(論理レベル1)”と“Lレベル(論理レベル0)”とを繰り返すようなトグル状態が発生する信号であったとしても、図1に示すメタステーブル回避型同期化回路100としての動作を正常に維持することが可能である。つまり、次回に起こり得る入力データ信号(DATA IN)20の立ち上がりを最短に検出するタイミングは、時刻T6であり、たとえ、入力データ信号(DATA IN)20が“Hレベル(論理レベル1)”と“Lレベル(論理レベル0)”とを繰り返すトグル状態が発生していたとしても、図1に示すメタステーブル回避型同期化回路100が発振して動作が不安定になってしまうことはない。
以上の図3のタイムチャートの説明においては、入力データ信号(DATA IN)20が “Lレベル(論理レベル0)”から“Hレベル(論理レベル1)”に立ち上がる場合の動作について説明したが、逆に、入力データ信号(DATA IN)20が“Hレベル(論理レベル1)”から“Lレベル(論理レベル0)”に立ち下がる場合についても、全く同様である。
すなわち、図3のタイムチャートに示すように、入力データ信号(DATA IN)20が“Hレベル(論理レベル1)”から“Lレベル(論理レベル0)”に切り替わって、シフトレジスタ120において、第1シフトレジスタ信号121から第4シフトレジスタ信号124として、入力データ信号(DATA IN)20の立ち下がりが発生したことを検出して、出力信号生成回路140の立ち下がり検出カウンタ値検出回路240が、立ち下がり検出カウンタ230からの立ち下がりエッジ回数信号231が示す回数が‘3’になったことを検出すると、8逓倍クロック信号112の1クロック幅の“Hレベル(論理レベル1)”の立ち下がり検出信号241を出力する。
そして、立ち下がり検出カウンタ値検出回路240が出力した立ち下がり検出信号241の“Hレベル(論理レベル1)”を契機にして、出力信号保持フリップフロップ260は、“Lレベル(論理レベル0)”に設定されて保持され、“Lレベル(論理レベル0)”の出力データ信号141を出力することにより、出力最終段同期フリップフロップ150を“Lレベル(論理レベル0)”に設定する。
しかる後、次回の×1クロック信号111が立ち上がる同期化後の出力データ信号切り替わりタイミングに達すると、出力最終段同期フリップフロップ150は、出力信号生成回路140が生成した出力データ信号141を、×1クロック信号111すなわち最終的に必要とするクロック信号(CLK)10に同期するタイミングで、出力データ信号(DATA OUT)30として出力することによって、クロック乗せ替え動作を完了する。
なお、立ち下がり検出カウンタ値検出回路240が立ち下がり検出信号241を出力した出力タイミングを契機にして、立ち下がり検出クリア信号生成カウンタ250は、カウント動作を開始し、8逓倍クロック信号112の8クロック分をカウントすると、8逓倍クロック信号112の1クロック幅の“Hレベル(論理レベル1)”の立ち下がり検出クリア信号251を出力して、立ち下がり検出カウンタ230のカウンタ値をクリアする。
しかる後、クロック信号(CLK)10が次に“Hレベル(論理レベル1)”に立ち上がるタイミングに達するまでは、次回の入力データ信号(DATA IN)20の立下り検出動作は開始されない。
(本発明の実施形態の効果の説明)
以上に詳細に説明したように、本発明の実施形態においては、次のような効果が得られる
データ信号が同じ周波数のクロック信号にて動作する論理回路モジュール間を非同期転送する場合であっても、該論理回路モジュール間におけるデータ信号の転送動作を正確に行うことができる。その理由は、クロック信号(CLK)10の周波数を適切な値に逓倍した逓倍クロック信号(例えば8逓倍した8逓倍クロック信号112)を用いて、入力データ信号20に関する複数回(例えば3回)のエッジ検出動作を実施した結果に基づいて同期化を行うことを可能にすることにより、非同期転送の同期化に際して発生するメタステーブルの影響を確実に回避することができるからである。
(本発明の他の実施形態)
前述した実施形態においては、メタステーブル状態の影響を回避するために、位相同期回路(PLL)110において8(=2)逓倍クロック信号112を生成し、シフトレジスタ120として4段のフリップフロップを用いることにより、入力データ信号(DATA IN)20に関して3個のエッジを検出したか否かを出力信号生成回路140において確認する場合について説明したが、本発明は、8(=2)逓倍クロック信号112に限るものではなく、メタステーブル状態の影響を回避することが可能であれば、任意の逓倍数の逓倍クロック信号を用いても良い。
例えば、位相同期回路(PLL)110において2逓倍クロック信号(n:正整数)を生成し、シフトレジスタ120として(n+1)段のフリップフロップを用いることにより、シフトレジスタ120の前段と後段との連接したn個の組合せすべてにおいて入力データ信号(DATA IN)20のエッジを検出したか否かを出力信号生成回路140において確認するように構成しても良い。
また、前述した実施形態においては、入力データ信号(DATA IN)20、出力データ信号(DATA OUT)30が、それぞれ、単一のビット信号としての同期化を行う場合について説明したが、本発明はかかる場合に限るものではない。すなわち、入力データ信号(DATA IN)20、出力データ信号(DATA OUT)30それぞれが、多ビット信号であっても、同期化を行うことが可能である。
例えば、エッジ検出回路130の回路構成として、“Lレベル(論理レベル0)”から“Hレベル(論理レベル1)”へ変化するエッジ、または、“Hレベル(論理レベル1)”から“Lレベル(論理レベル0)” へ変化するエッジを検出した結果に基づいて、単一のビットのデータ切り替わりを検出している回路を、多ビットを構成する各ビット同士を比較する多ビット比較回路による一致、不一致に基づいて、多ビットの入力データ信号のエッジの有無を検出することにより、多ビットの入力データ信号の“Hレベル(論理レベル1)”、“Lレベル(論理レベル0)”の切り替わりを検出するような回路構成に変更する。そして、該多ビット信号に関するエッジ検出結果に基づいて、該多ビット信号に対する同期化を行った出力データ信号を生成して出力するようにすれば良い。
而して、現状の技術として一般的に行われている多ビット信号の受信側のフリップフロップを2段構成としてメタステーブルの除去を行うという構成方法の場合、ビット毎のメタステーブルの発生の有無によってビット間の新旧データの混在が発生することにより、データの差異が生じてしまうという問題があるが、前述したような多ビット信号に対する同期化を行うことにより、新旧データの混在が発生するという問題に関しても解消することができる。
以上、本発明の好適な実施形態の構成を説明した。しかし、かかる実施形態は、本発明の単なる例示に過ぎず、何ら本発明を限定するものではないことに留意されたい。本発明の要旨を逸脱することなく、特定用途に応じて種々の変形変更が可能であることが、当業者には容易に理解できよう。
10 クロック信号(CLK)
20 入力データ信号(DATA IN)
30 出力データ信号(DATA OUT)
100 メタステーブル回避型同期化回路
110 位相同期回路(PLL)
110A PLL1
111 x1クロック信号
112 8逓倍クロック信号
120 シフトレジスタ
120A PLL2
121 第1シフトレジスタ信号
122 第2シフトレジスタ信号
123 第3シフトレジスタ信号
124 第4シフトレジスタ信号
130 エッジ検出回路
130A 転送二重化回路
130a 転送同期化信号
130b 転送同期化信号
130c 入力データ信号
131 第1エッジ信号
132 第2エッジ信号
133 第3エッジ信号
134 第4エッジ信号
135 第5エッジ信号
136 第6エッジ信号
137 立ち上がりエッジ信号
138 立ち下がりエッジ信号
140 出力信号生成回路
140A メタステーブル検出回路
140a 検出信号
140c 検出信号
141 出力データ信号
150 出力最終段同期フリップフロップ
150A 転送選択回路
150a 同期化出力信号
200 立ち上がり検出カウンタ
201 立ち上がりエッジ回数信号
210 立ち上がり検出カウンタ値検出回路
211 立ち上がり検出信号
220 立ち上がり検出クリア信号生成カウンタ
221 立ち上がり検出クリア信号
230 立ち下がり検出カウンタ
231 立ち下がりエッジ回数信号
240 立ち下がり検出カウンタ値検出回路
241 立ち下がり検出信号
250 立ち下がり検出クリア信号生成カウンタ
251 立ち下がり検出クリア信号
260 出力信号保持フリップフロップ

Claims (6)

  1. 同じ周波数のクロック信号により動作する論理回路モジュール間で非同期転送データ信号の同期化を行うメタステーブル回避型同期化回路であって、
    前記クロック信号の周波数を2逓倍(n:正整数)した2逓倍クロック信号を生成する位相同期部と、
    入力データ信号を前記2逓倍クロック信号に同期して順次取り込む(n+1)段のシフトレジスタと、
    前記2逓倍クロック信号に同期して動作し、前記シフトレジスタに順次取り込んだ前記入力データ信号それぞれのうち、互いに連接したn個の組合せからなる各組合せの前段と後段とのそれぞれに取り込んだ前記入力データ信号間の信号レベルを比較し、信号レベルのLレベルからHレベルへの切り替わりがあった場合に、当該組合せにおける前記入力データ信号間の立ち上がりエッジとして検出し、且つ、信号レベルのHレベルからLレベルへの切り替わりがあった場合に、当該組合せにおける前記入力データ信号間の立ち下がりエッジとして検出するエッジ検出部と、
    前記2逓倍クロック信号に同期して動作し、前記エッジ検出部において検出した前記立ち上がりエッジの個数が、前記シフトレジスタの互いに連接したすべての組合せの個数を示すn個であった場合には、前記入力データ信号の信号レベルのLレベルからHレベルへの切り替わりがあったものと判定して、前記入力データ信号の信号レベルのLレベルからHレベルへの切り替わりに応じた信号レベルからなる前記2逓倍クロック信号による出力データ信号を生成し、且つ、前記エッジ検出部において検出した前記立ち下がりエッジの個数が、前記シフトレジスタの互いに連接したすべての組合せの個数を示すn個であった場合には、前記入力データ信号の信号レベルのHレベルからLレベルへの切り替わりがあったものと判定して、前記入力データ信号の信号レベルのHレベルからLレベルへの切り替わりに応じた信号レベルからなる前記2 逓倍クロック信号による出力データ信号を生成する出力信号生成部と、
    前記2逓倍クロック信号による出力データ信号を一旦保持し、前記クロック信号に同期するタイミングで出力データ信号として出力する出力最終段同期フリップフロップと、
    を有することを特徴とするメタステーブル回避型同期化回路。
  2. 正整数nを3として、前記位相同期部において生成する前記2逓倍クロック信号を8逓倍クロック信号とし、
    (n+1)段の前記シフトレジスタを、4段のシフトレジスタで構成し、
    かつ、
    前記出力信号生成部において、前記エッジ検出部にて検出した前記立ち上がりエッジの個数が、3個であった場合に、前記入力データ信号の信号レベルのLレベルからHレベルへの切り替わりがあったものと判定し、且つ、前記エッジ検出部にて検出した前記立ち下がりエッジの個数が、3個であった場合に、前記入力データ信号の信号レベルのHレベルからLレベルへの切り替わりがあったものと判定する、
    ことを特徴とする請求項1に記載のメタステーブル回避型同期化回路。
  3. 前記シフトレジスタへの前記入力データ信号の順次取り込み動作を開始した後、前記出力最終段同期フリップフロップから前記クロック信号に同期した前記出力データ信号を出力した後において次の周期の前記クロック信号が立ち上がる時刻に達するまでの間、次の前記入力データ信号を前記シフトレジスタに取り込む動作を抑止する、
    ことを特徴とする請求項1または2に記載のメタステーブル回避型同期化回路。
  4. 同じ周波数のクロック信号により動作する論理回路モジュール間で非同期転送データ信号の同期化を行う際に発生するメタステーブルの発生を回避するメタステーブル回避方法であって、
    前記クロック信号の周波数を2逓倍(n:正整数)した2逓倍クロック信号を生成する位相同期ステップと、
    入力データ信号を前記2逓倍クロック信号に同期して順次取り込む(n+1)段のシフトレジストステップと、
    前記2逓倍クロック信号に同期して動作し、前記シフトレジストステップとして順次取り込んだ前記入力データ信号それぞれのうち、互いに連接したn個の組合せからなる各組合せの前段と後段とのそれぞれに取り込んだ前記入力データ信号間の信号レベルを比較し、信号レベルのLレベルからHレベルへの切り替わりがあった場合に、当該組合せにおける前記入力データ信号間の立ち上がりエッジとして検出し、且つ、信号レベルのHレベルからLレベルへの切り替わりがあった場合に、当該組合せにおける前記入力データ信号間の立ち下がりエッジとして検出するエッジ検出ステップと、
    前記2逓倍クロック信号に同期して動作し、前記エッジ検出ステップにおいて検出した前記立ち上がりエッジの個数が、前記シフトレジストステップにおける互いに連接したすべての組合せの個数を示すn個であった場合には、前記入力データ信号の信号レベルのLレベルからHレベルへの切り替わりがあったものと判定して、前記入力データ信号の信号レベルのLレベルからHレベルへの切り替わりに応じた信号レベルからなる前記2逓倍クロック信号による出力データ信号を生成し、且つ、前記エッジ検出ステップにおいて検出した前記立ち下がりエッジの個数が、前記シフトレジストステップにおける互いに連接したすべての組合せの個数を示すn個であった場合には、前記入力データ信号の信号レベルのHレベルからLレベルへの切り替わりがあったものと判定して、前記入力データ信号の信号レベルのHレベルからLレベルへの切り替わりに応じた信号レベルからなる前記2 逓倍クロック信号による出力データ信号を生成する出力信号生成ステップと、
    前記2逓倍クロック信号による出力データ信号を一旦保持し、前記クロック信号に同期するタイミングで出力データ信号として出力するステップと、
    を有することを特徴とするメタステーブル回避方法。
  5. 正整数nを3として、前記位相同期ステップにおいて生成する前記2逓倍クロック信号を8逓倍クロック信号とし、
    (n+1)段の前記シフトレジストステップを、4段のシフトレジストステップとして構成し、
    かつ、
    前記出力信号生成ステップにおいて、前記エッジ検出ステップにて検出した前記立ち上がりエッジの個数が、3個であった場合に、前記入力データ信号の信号レベルのLレベルからHレベルへの切り替わりがあったものと判定し、且つ、前記エッジ検出ステップにて検出した前記立ち下がりエッジの個数が、3個であった場合に、前記入力データ信号の信号レベルのHレベルからLレベルへの切り替わりがあったものと判定する、
    ことを特徴とする請求項に記載のメタステーブル回避方法。
  6. 前記シフトレジストステップにおいて前記入力データ信号の順次取り込み動作を開始した後、前記クロック信号に同期した前記出力データ信号を出力した後において次の周期の前記クロック信号が立ち上がる時刻に達するまでの間、次の前記入力データ信号を前記シフトレジストステップに取り込む動作を抑止する、
    ことを特徴とする請求項4または5に記載のメタステーブル回避方法。
JP2020089426A 2020-05-22 2020-05-22 メタステーブル回避型同期化回路およびメタステーブル回避方法 Active JP7031936B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020089426A JP7031936B2 (ja) 2020-05-22 2020-05-22 メタステーブル回避型同期化回路およびメタステーブル回避方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020089426A JP7031936B2 (ja) 2020-05-22 2020-05-22 メタステーブル回避型同期化回路およびメタステーブル回避方法

Publications (2)

Publication Number Publication Date
JP2021184549A JP2021184549A (ja) 2021-12-02
JP7031936B2 true JP7031936B2 (ja) 2022-03-08

Family

ID=78767568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020089426A Active JP7031936B2 (ja) 2020-05-22 2020-05-22 メタステーブル回避型同期化回路およびメタステーブル回避方法

Country Status (1)

Country Link
JP (1) JP7031936B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220158644A1 (en) * 2020-11-18 2022-05-19 Nxp B.V. Pll jitter detection

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006345570A (ja) 2006-08-15 2006-12-21 Ricoh Co Ltd ビット同期回路
WO2018117005A1 (ja) 2016-12-19 2018-06-28 Hoya株式会社 データ処理装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006345570A (ja) 2006-08-15 2006-12-21 Ricoh Co Ltd ビット同期回路
WO2018117005A1 (ja) 2016-12-19 2018-06-28 Hoya株式会社 データ処理装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220158644A1 (en) * 2020-11-18 2022-05-19 Nxp B.V. Pll jitter detection
US11522551B2 (en) * 2020-11-18 2022-12-06 Nxp B.V. PLL jitter detection

Also Published As

Publication number Publication date
JP2021184549A (ja) 2021-12-02

Similar Documents

Publication Publication Date Title
US6963220B2 (en) Methods and circuitry for implementing first-in first-out structure
EP1538775B1 (en) Data recovery method and data recovery circuit
US6075392A (en) Circuit for the glitch-free changeover of digital signals
US7180336B2 (en) Glitch-free clock switching apparatus
US6549045B1 (en) Circuit for providing clock signals with low skew
KR100371300B1 (ko) 비트동기회로
US20230341891A1 (en) Glitch-free clock switching circuit with clock loss tolerance and operation method thereof and glitch-free clock switching device
JP2009219021A (ja) データリカバリ回路
JP7031936B2 (ja) メタステーブル回避型同期化回路およびメタステーブル回避方法
JP2005191877A (ja) クロック切り替え回路
KR20080101495A (ko) 클럭 스위칭 회로
US6667638B1 (en) Apparatus and method for a frequency divider with an asynchronous slip
US7696801B2 (en) Reset method for clock triggering digital circuit and related signal generating apparatus utilizing the reset method
CN114637369A (zh) 数据延迟补偿器电路
JP2570933B2 (ja) 同期クロック発生装置
EP1601131A1 (en) Asynchronous multi-clock system
KR101006843B1 (ko) 출력신호를 안정적으로 생성하는 동기화 회로
JP3039441B2 (ja) 異クロック間同期エッジ検出方法および異クロック間同期エッジ検出方式
JP2792759B2 (ja) 同期クロック発生回路
US6792061B1 (en) High-speed bit-pattern detector
JP2024124187A (ja) メタステーブル回避型同期化回路
JP5515920B2 (ja) Dpll回路
TW202318808A (zh) Pll電路及發送系統
JP6721340B2 (ja) 半導体集積回路
CN117411465A (zh) 一种时钟切换电路、芯片及电子设备

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220217

R150 Certificate of patent or registration of utility model

Ref document number: 7031936

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150