JP7031191B2 - 投影装置、投影方法及びプログラム - Google Patents

投影装置、投影方法及びプログラム Download PDF

Info

Publication number
JP7031191B2
JP7031191B2 JP2017183738A JP2017183738A JP7031191B2 JP 7031191 B2 JP7031191 B2 JP 7031191B2 JP 2017183738 A JP2017183738 A JP 2017183738A JP 2017183738 A JP2017183738 A JP 2017183738A JP 7031191 B2 JP7031191 B2 JP 7031191B2
Authority
JP
Japan
Prior art keywords
projection
unit
image
projected
variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017183738A
Other languages
English (en)
Other versions
JP2019009762A (ja
Inventor
敦 中河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to US15/982,767 priority Critical patent/US10437139B2/en
Priority to CN201810631990.7A priority patent/CN109104597B/zh
Publication of JP2019009762A publication Critical patent/JP2019009762A/ja
Application granted granted Critical
Publication of JP7031191B2 publication Critical patent/JP7031191B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Controls And Circuits For Display Device (AREA)
  • Projection Apparatus (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Description

本発明は、投影装置、投影方法及びプログラムに関する。
投影レンズのレンズシフトの量を検知して最適なむら補正を投影画面に施し、品位の高い投影画像を得るようにした投射型表示装置の技術が提案されている。(例えば、特許文献1)
特開2003-018502号公報
上記特許文献に記載された技術は、投影するための画像を表示する液晶パネルの光軸に対して投影レンズの光軸の向きを変えるようなレンズシフト機能を有する投射型表示装置において、投影光学系の部品の位置ズレ等に起因する色むらや照度むらを補正するべく提案されたものであり、投影する画像の部分領域毎に補正データを作成している。
ところで、専用のスクリーンではなく、一般家屋の壁面やカーテンを被投影対象として投影を行なう環境を想定した場合、画像が投影される面は必ずしも白色で平滑な平面であるとは限らない。そのような何らかの模様がある面、凹凸がある面等に画像を投影する場合では、被投影対象となる面の影響によって投影画像の画質が大幅に低減することが考えられる。このような被投影対象側の環境に関する点について、上記特許文献に記載された技術では考えられていない。
本発明は上記のような実情に鑑みてなされたもので、その目的とするところは、被投影対象となる面の影響を考慮して、できるだけ高い画質の画像を投影する環境を設定することが可能な投影装置、投影方法及びプログラムを提供することにある。
本発明の一態様は、画像を投影する投影部と、上記投影部が投影する画像の方向を所定の範囲内で機械的に可変する投影方向可変部と、上記投影部が投影した被投影対象における投影方向が互いに異なる複数の投影画像を初期設定時に取得する取得部と、上記取得部により取得した複数の投影画像の情報に基づいて上記投影方向可変部による通常投影時の投影方向を決定する制御部と、を備え、上記制御部により決定される投影方向は、上記取得した複数の投影画像のうち、補正時に必要な色補正量及び画像領域の削減量の少なくとも一方が最も少なくなる投影画像に対応する投影方向である。
本発明によれば、被投影対象となる面の影響を考慮して、できるだけ高い画質の画像を投影する環境を設定することが可能となる。
本発明の第1の実施形態に係るプロジェクタの主として電子回路の機能構成を示すブロック図。 同実施形態に係る投影動作前の初期設定の処理内容を示すフローチャート。 同実施形態に係る第1の動作例における投影ユニットシフタによるシフト範囲を例示する図。 同実施形態に係る第1の動作例における投影環境を例示する図。 同実施形態に係る第1の動作例における有効投影領域と実投影領域を設定した場合を例示する図。 同実施形態に係る第2の動作例でプロジェクタを直立した壁面に向けて設置した場合のチルト角と投影領域の変化を示す図。 同実施形態に係る第2の動作例におけるチルト角に応じた有効投影領域の位置、メッセージ、及び形状を重ねて例示する図。 同実施形態に係る第2の動作例におけるチルト角に応じた有効投影領域と矩形の実投影領域を設定した場合を比較して示す図。 本発明の第2の実施形態に係る自律型ロボット10′を用いた投影装置を示す図。 同実施形態に係る動作例を示す図。 同実施形態に係る動作例において、実際に画像を投影する際に得られた空間イメージから最適な投影面を選択して画像を自動的に投影する図。
以下、本発明をプロジェクタに適用した場合の一実施形態について、図面を参照して詳細に説明する。
[構成]
図1は、本実施形態に係るプロジェクタ10の主として電子回路の機能構成を示すブロック図である。同図中、画像入力部11は、例えばピンジャック(RCA)タイプのビデオ入力端子、D-sub15タイプのRGB入力端子、HDMI(登録商標)(High-Definition Multimedia Interface)端子、USB(Universal Serial Bus)端子等により構成される。画像入力部11に入力され、あるいはUSBメモリに記憶されて選択的に読出される、各種規格のアナログまたはデジタルの画像信号は、画像入力部11で必要に応じてデジタル化された後に、バスBを介して投影画像駆動部12に送られる。
投影画像駆動部12は、送られてきた画像データに応じて、所定のフォーマットに従ったフレームレート、例えば入力される画像データが60[Hz]であれば120[フレーム/秒]と色成分の分割数、及び表示階調数を乗算したより高速な時分割駆動により、表示素子であるマイクロミラー素子13を表示駆動する。
マイクロミラー素子13は、アレイ状に配列された複数、例えば横1280画素×縦960画素分の微小ミラーの各傾斜角度を個々に高速でオン/オフ動作して表示動作することで、その反射光により光像を形成する。
一方で、光源部14から時分割でR,G,Bの原色光が循環的に出射される。光源部14は、半導体発光素子であるLEDを有し、R,G,Bの原色光を時分割で繰返し出射する。光源部14が有するLEDは、広義でのLEDとして、LD(半導体レーザ)や有機EL素子を含むものとしても良い。この光源部14からの原色光が、ミラー15で全反射して上記マイクロミラー素子13に照射される。
そして、マイクロミラー素子13での反射光で光像が形成され、形成された光像が投影レンズ部16を介し、外部に投射して表示が行なわれる。
上記投影レンズ部16は、内部のレンズ光学系中に、フォーカス位置を移動するためのフォーカスレンズ及びズーム(投影)画角を可変するためのズームレンズを含む。
上記マイクロミラー素子13、光源部14、ミラー15、及び投影レンズ部16により、光学部材を内部筐体内に一体化した投影部17を構成する。この投影部17に対して、ステッピングモータとそのドライバ回路、及びモータの回転駆動を伝導するギア機構を含む投影ユニットシフタ(投影方向可変部)18が設けられる。
この投影ユニットシフタ18により投影部17を機械的に駆動することで、例えばプロジェクタ10の筐体を水平に載置した状態で、上記投影レンズ部16が出射する投影光の方向を天地方向に沿ってして範囲内でシフトさせることができる。
一方で本実施形態では、上記投影レンズ部16での投射方向を撮影する撮影部(取得部)23を設けている。この撮影部23は、撮影レンズ部19を有する。この撮影レンズ部19は、撮影画角を可変するためのズームレンズ、及びフォーカス位置を移動するためのフォーカスレンズを含み、上記投影部17で投影される画像を投影方向のシフト範囲を包含して撮影できるよう、上記投影レンズ部16を最広角とした場合に出射される投影画角より大きな撮影画角を有する。撮影レンズ部19に入光する外部の光像は、固体撮像素子であるCMOSイメージセンサ、または産業用カメラ等で用いられるCCD等の撮像素子20上に結像される。
撮像素子20での結像により得られる画像信号は、A/D変換器21でデジタル化された後、撮影画像処理部22に送られる。
この撮影画像処理部22は、上記撮像素子20を走査駆動して撮影動作を実行させ、撮影により得た画像データに対する輪郭抽出等の画像認識処理により投影画像領域の抽出と、当該投影画像領域内のフォーカスレンズ合焦位置に基づく距離分布、及び色分布をそれぞれ取得する処理を実施する。
上記各回路の動作すべてをCPU(制御部)24が制御する。このCPU24は、メインメモリ25及びプログラムメモリ26と直接接続される。メインメモリ25は、例えばSRAMで構成され、CPU24のワークメモリとして機能する。プログラムメモリ35は、電気的書換可能な不揮発性メモリ、例えばフラッシュROMで構成され、CPU24が実行する動作プログラムやベースとなる画像上に重畳するOSD(On Screen Display)用画像等の各種定型データ等を記憶する。
CPU24は、上記プログラムメモリ26に記憶されている動作プログラムや定型データ等を読出し、メインメモリ25に展開して記憶させた上で当該プログラムを実行することにより、このプロジェクタ10を統括して制御する。
上記CPU24は、操作部27からの操作信号に応じて各種投影動作を実行する。この操作部27は、プロジェクタ10の本体筐体に備える操作キー、あるいは図示しないこのプロジェクタ10専用のリモートコントローラからの赤外線変調信号を受信する受光部を含み、キー操作信号を受付けて、受付けたキー操作信号に応じた信号を上記CPU24へ送出する。
上記CPU24は更に、上記バスBを介して音声処理部28、チルト脚ドライバ29と接続される。
音声処理部28は、PCM音源等の音源回路を備え、投影動作時に与えられる音声信号をアナログ化し、スピーカ部30を駆動して放音させ、あるいは必要によりビープ音等を発生させる。
チルト脚ドライバ29は、このプロジェクタ10筐体の下面前端側に設けられた1対2本の脚部の脚長を可変するためのモータ(不図示)を、上記脚長を伸長または短縮するべく駆動する。
[第1の動作例]
次に上記実施形態の第1の動作例について説明する。
ここでは、プロジェクタ10による実際の投影動作を開始する前のシフト量調整に基づく初期設定時の動作について説明する。初期設定時には、投影ユニットシフタ18により投影部17の投影方向を所定範囲内で上下にシフトさせて、それらシフト範囲内で最も必要な色補正量が少なく、被投影対象となる面で違和感なく画像を投影できる位置を選択する。
図2は、CPU24による処理内容を示すフローチャートである。その当初にCPU24は、操作部27からのキー操作により、投影ユニットシフタ18によるシフト範囲の上限及び下限の位置を設定する場合の操作を受付ける(ステップS101)。
この場合、投影部17では、その時点で設定されている投影ズーム画角に基づいて、全面白色となる画像を投影する。このプロジェクタ10のユーザは、被投影対象となる面の状況等に応じて、例えばシフト上限位置の近傍に空調機の室内器等の障害物がある場合にはその障害物を避けるように予め投影画像の位置を下げるような操作を行なうことにより、プロジェクタ10側ではシフト範囲の上限値を認識できる。
なお、このステップS101の処理は、不要であれば省略するものとしても良い。
その後にCPU24は、投影ユニットシフタ18によるシフト範囲内で、必要回数に渡って有効投影領域を撮影部23により撮影する(ステップS102)。
図3は、投影ユニットシフタ18によるシフト範囲を例示する。この実施形態では、図3(B)に示すシフト量ゼロの基準となる有効投影範囲IA0の領域から、図3(A)に示すように上方(+)に40[%]シフトした有効投影領域IA1まで、また図3(C)に示すように下方(-)に40[%]シフトした有効投影領域IA2までの範囲内で、無段階にシフト位置を選択して設定することが可能であるものとする。
投影ユニットシフタ18による最大のシフト量が±50[%]以下である場合には、2回の撮影により全シフト範囲をカバーすることができる。一方で、該シフト量が±50[%]を越える場合には、全シフト範囲をカバーするために3回以上の撮影が必要となる。
図4は、左側の壁LWと右側の壁RWとに挟まれたコーナ部CNを中心に、プロジェクタ10による有効投影領域をシフトさせた場合を例示する。ここでは、上述した如く最大のシフト量が上下各40[%]であるものとして、上方に40[%]シフトした有効投影領域IA1と、下方に40[%]シフトした有効投影領域IA2とを示している。
こうしてCPU24は、シフト可能な範囲をカバーするような複数の有効投影領域IA1,IA2を撮影した結果に基づいて、撮影した画像データ中のRGB各成分のヒストグラムの比較等の処理により、被投影対象となる面内で違和感なく画像を投影できる領域として、最も必要な色補正量が少ない画像に対応する有効投影領域のシフト量を選択する(ステップS103)。
CPU24は、選択したシフト量での画像投影を投影ユニットシフタ18に設定する(ステップS104)。次いでCPU24は、当該有効投影領域における投影画像が、被投影対象となる壁面等の色や模様等の影響を打ち消すように画素毎の色補正情報を算出し(ステップS105)、算出した色補正情報を投影画像駆動部12に設定する(ステップS106)。
更にCPU24は、その時点で予め設定されている、マイクロミラー素子13で表示する画像の範囲の削減を含む、例えば自動台形補正等のデジタル補正を設定する(ステップS107)。
例えば上記図4に示したような投影環境では、プロジェクタ10の投影レンズ部16から被投影対象となる壁面までの距離が一定ではなく、左右端が最も近く、略中央のコーナ部CNが最も長い投影距離となる。
したがって、プロジェクタ10から矩形の画像を投影した場合、コーナ部CNが最も広がった変形6角形の画像が投影されることになる。そのためCPU24は、撮影部23での撮影画像により有効投影領域を認識した上で、コーナ部CNを共通した上底とし、矩形の左右の辺をそれぞれ下底とする、2つの台形を合成した形状となるようにマイクロミラー素子13で表示する画像領域の形状を変形設定することで、有効投影領域内の実投影領域を設定することができる。
図5は、選択したシフト量での有効投影領域IAn中に、実投影領域RAnを設定した場合を例示している。上述した如く、有効投影領域IAnが、略中央のコーナ部CNが最も広がった変形6角形となっている。
そのため、コーナ部CNを共通の上底、矩形の左右の辺をそれぞれ下底とする、2つの台形を合成した形状とする複合台形補正による実投影領域RAnを設定することで、このプロジェクタ10のユーザにとっては、見かけ上、正しい矩形の投影画像を観賞することができる。
以上で図2の初期設定の処理を終了すると共に、任意の入力画像を用いた実際の投影動作に移行する。
なお上記第1の実施形態では、投影ユニットシフタ18が投影部17による投影方向を上下方向にシフトさせることが可能であるものとして説明したが、上下方向のみならず、左右方向にシフトさせることが可能な構成とすることも考えられる。
その場合、左右方向それぞれへの最大のシフト量が例えば±50[%](左右の一方を+、他方を-とする)以下である場合には、上下のシフトと合わせて計4回の撮影により全シフト範囲をカバーすることができる。一方で、上下と左右それぞれの該シフト量が共に±50[%]を越える場合には、全シフト範囲をカバーするために9回以上の撮影が必要となる。
[第2の動作例]
次に上記実施形態の第2の動作例について説明する。
ここでは、プロジェクタ10による実際の投影動作を開始する前のチルト量調整に基づく初期設定時の動作について説明する。初期設定時には、チルト脚ドライバ29によりプロジェクタ10のチルト脚を所定範囲内で伸縮させて、投影レンズ部16から出射する投影光の仰角(チルト角)を可変設定し、それらチルトさせた範囲内で最も必要な色補正量が少なく、被投影対象となる面で違和感なく画像を投影できる位置を選択する。
図2のフローチャートにおいて、その当初にCPU24は、操作部27からのキー操作により、チルト脚ドライバ29によるチルト範囲の上限及び下限の位置を設定する場合の操作を受付ける(ステップS101)。
この場合、投影部17では、その時点で設定されている投影ズーム画角に基づいて、全面白色となる画像を投影する。このプロジェクタ10のユーザは、被投影対象となる面の状況等に応じて、例えばチルト上限位置の近傍に空調機の室内器等の障害物がある場合にはその障害物を避けるように予め投影領域がその障害物にかからないぎりぎりの位置となるまでチルト角を上げておくような操作を行なうことにより、プロジェクタ10側ではチルト範囲の上限値を認識できる。
なお、このステップS101の処理は、不要であれば省略するものとしても良い。
その後にCPU24は、チルト脚ドライバ29によるチルト範囲内で、必要回数に渡って有効投影領域を撮影部23により撮影する(ステップS102)。
図6は、プロジェクタ10を直立した壁面WLに向けて設置した場合の、チルト角と投影領域の変化を示す。
図6(A)は、プロジェクタ10のチルト脚の脚長が最小となるようにした、チルト角0°での投影状態を例示している。この時点での有効投影領域IA11と投影光軸PA1を示すように、投影光軸PA1はプロジェクタ10の筐体上天板の平面に対して上方に向けてオフセット設定されているが、この状態で有効投影領域IA11は予め設定されたアスペクト比、例えば4:3の正確な矩形となるように投影レンズ部16を含む光学系による補正設定がなされている。
このオフセット設定により、例えばプロジェクタ10を床面に載置した状態でも、床平面と直交する壁面WL上に有効投影領域IA11を設定できるものとしている。
図6(B)は、プロジェクタ10のチルト脚を最長となるようにチルト脚ドライバ29による駆動を実行させた、最大のチルト角X°での投影状態を例示している。この時点での有効投影領域IA13と投影光軸PA1を示すように、投影領域全体が上方移動すると共に、プロジェクタ10のチルト脚の脚長が最小の場合と比較してプロジェクタ10からの投影距離が長くなっているため、上記有効投影領域IA11よりも広い有効投影領域IA13となる。
加えて、このようにチルト角を設けることで、単に投影位置が上がって領域の面積が大きくなるだけでなく、投影領域の上辺が下辺に対して長くなる、逆台形の形状となる。
図7は、チルト角に応じた有効投影領域の位置、メッセージ、及び形状を重ねて例示する図である。同図では、上記図6(A)でも示したチルト角0°のときの有効投影領域IA11、最大チルト角X°の半分「X/2」°のときの有効投影領域IA12、及び最大チルト角X°のときの有効投影領域IA13を示している。
再び図2のフローチャートに戻って説明する。例えば、上記3段階のチルト角度でそれぞれ有効投影領域を撮影部23により撮影したものとする。CPU(制御部)24は、チルト角度に応じた複数の有効投影領域を撮影した結果に基づいて、撮影した画像データ中のRGB各成分のヒストグラムの比較等の処理により、被投影対象となる面内で違和感なく画像を投影できる領域として、必要な色補正量が最も少ない画像に対応する有効投影領域となるチルト角度を選択する(ステップS103)。
即ち、CPU24は、チルト脚ドライバ(投影方向可変部)29により所定の範囲内で可変した複数の投影方向での投影画像を撮影部23により撮影させ、得られた複数の投影画像の情報に基づいてチルト脚ドライバ(投影方向可変部)29による投影方向を決定する。
CPU24は、選択したチルト角度での画像投影を行なうべく、チルト脚ドライバ(投影方向可変部)29による駆動を実行する(ステップS104)。次いでCPU24は、当該有効投影領域における投影画像が、被投影対象となる壁面等の色や模様等の影響を打ち消すように画素毎の色補正情報を算出する(ステップS105)。次いで、算出した色補正情報を投影画像駆動部12に設定する(ステップS106)。
更にCPU24は、その時点で予め設定されている、マイクロミラー素子13で表示する画像の範囲の削減を含む、例えば自動台形補正等のデジタル補正を設定する(ステップS107)。
図8は、上記3段階のチルト角それぞれの有効投影領域と、その有効投影領域内で自動台形補正処理により所定のアスペクト比となる矩形の実投影領域を設定した場合を比較して示す図である。図8(A)は、上記図7と同様に、チルト角に応じた有効投影領域の位置、メッセージ、及び形状を重ねて例示している。図8(B)に示すチルト角0°の場合の有効投影領域IA11は、アスペクト比の正しい矩形であるので、そのまま全域が実投影領域となる。
図8(C)に示すチルト角「X/2」°の場合の有効投影領域IA12は、そのチルト角に応じて上方が広がった逆台形状となる。そのため、アスペクト比の正しい矩形を投影するべく下辺に合わせて自動台形補正を行なうと、有効投影領域IA12より若干面積の少ない実投影領域となるので、特に投影画像上方の解像度、明るさがその分不足することになる。
図8(D)に示す最大チルト角X°の場合の有効投影領域IA13は、そのチルト角に応じて上方が大きく広がった逆台形状となる。そのため、アスペクト比の正しい矩形を投影するべく下辺に合わせて自動台形補正を行なうと、有効投影領域IA13よりも面積の少ない実投影領域となるので、投影画像上方の解像度、明るさが更に不足することになる。
このように、自動台形補正等によるデジタル補正の設定を行なった時点で、図2の初期設定の処理を終了すると共に、任意の入力画像を用いた実際の投影動作に移行する。
なお、上述した如く、チルト角が大きくなるに連れて、自動台形補正等のデジタル補正処理により解像度、明るさが低下する割合が増えるため、画質を優先する投影モードが選択されている場合等においては、チルト脚ドライバ29の駆動によるチルト角の範囲を制限するような動作制御を行なうものとしても良い。
図9は、本発明の第2の実施形態に係る自律型ロボット10′を用いた投影装置を示す図である。この自律型ロボット10′は、上記第1の実施形態に係るプロジェクタ10と異なり、投影部17が投影する画像の方向を機械的に可変する投影方向可変部として、回転駆動部36を備えている。自律型ロボット10′は、上記プロジェクタ10の構成と同じように、投影部17を備える。さらに、形状補正を行うために赤外線の反射光を検出する赤外線センサ32、色補正を行うためにカラーセンサ33を搭載している。なお、色補正を行なわずに形状補正のみを行なうのであれば、カラーセンサ33は不要となり、投影面の凹凸は赤外線センサ32のみで認識することができる。
表示素子は、マイクロミラー素子13で構成されるDLP方式、または小型の組み込みに適し、フォーカス調整が不要なLBS(レーザビームスキャニング)方式を適用できる。LBS方式では考慮する必要はないが、DLP、LCD(Liquid Crystal Display)またはLCOS(Liquid Crystal On Silicon)方式では、自律型ロボット10′の本体を可動式のプロジェクタとした場合、常に投影レンズ部16と投影面との距離が一定とはならないため、フォーカスを自動的に調整するために、自律型ロボット10′と投影面との距離の計測が必要である。そのため、赤外光の照射部と、投影面で反射した赤外光を受光し電気信号に変換して、必要な情報を読み取る赤外線イメージセンサが搭載されている。
次に、距離に応じた最適なフォーカスポジションを画像処理・演算部34で処理し、投影レンズ部16のフォーカスポジションを電動制御する。画像処理・演算部34は、画像と空間情報を管理する。外部入力または、内部の画像ジェネレータから画像が再生され、自律型ロボット10′(投影装置)を通して所望の投影面へ画像が投影される。自律型ロボット10′の本体には、所定の空間内を動き回ることができる自走駆動部35、自走駆動部35に対して上方を回転させる回転駆動部36、投影部17を有する領域を上下に移動させる若しくは上下に角度を回転させる上下駆動部を備える。
図10は、上記自律型ロボット10′を用いた投影装置の動作例3を示す。自律型ロボット10′は、所定の位置において、360°の投影面の情報を得るために、回転駆動部36により所定角度回転する毎に、投影部17からの投影と、撮像部23による撮影を行い計測する。例えば、投影画角を左右25°ずつ合計50°とする。特定のポイントから360°の投影面情報を得るために、投影部17と撮像部23のモジュールを最低8回計測する。
50°×8回=400°>360°
具体的には、自律型ロボット10′の投影部17から縞模様等の特定のパターンを照射し、反射した画像特性を基に、投影面の形状や色を算出する。得られた情報は空間情報として自律型ロボット10′に記録する。補正手段については先の動作例と同様である。なお、投影レンズ部16として120°の広角レンズを用いれば、3回の投影と撮影によって、360°の範囲全ての表面を認識することができ、少ない回数で最適な投影面を探し出すことが可能となる。
図11は、実際に画像を投影する際に、得られた空間イメージから最適な投影面を選択して画像を自動的に投影する図である。自律型ロボット10′の投影部17を有する領域が上下駆動部37によって上下移動する場合には、上下の空間情報を取得することができる。自律型ロボット10′の投影部17の移動量と連携することで、最適な投影する位置を紐づけることができる。さらに、顔検出、熱検出、近在するスマートフォンとの通信を行なう近距離通信技術であるBluetooth(登録商標)等を活用した位置情報を利用することで、視聴者の位置や顔の向きを認識することが可能となり、アテンション効果や、視認性を高めることができる。このように、動作例3においては、予め投影面の特性を自律型ロボット10′が備える回転駆動部36を用いることによって、周囲360°の全周を最低限の測定回数で計測することができ、これにより最適な投影領域を検出することができる。
以上詳述した如く本実施形態によれば、被投影対象となる面の影響を考慮して、できるだけ高い画質の画像を投影する環境を設定することが可能となる。
また上記実施形態では、色補正を行なう量が最も少ない投影方向を選択する場合について説明したが、これに加えて、その時点で設定されているデジタル補正による画像領域の削減量についても各投影方向毎に算出し、画質や明るさ、投影領域の大きさなどのうち何を優先する投影モードが選定されているかに応じて、適切と思われる投影方向を自動で選択するものとしても良い。
さらに上記実施形態では、第1及び第2の動作例でも示した如く、デジタル補正として自動台形補正を行なう場合について説明した。投影方向のシフト/チルトにより、投影光軸が被投影対象の面と直交せずに斜めから画像を投影する環境下で、その角度に応じて投影領域が台形となる場合を確実に補正することにより、投影する画像本来のアスペクト比に応じた矩形の画像領域を実現できる。
また上記実施形態では、投影部17が投影した被投影対象における画像を取得する取得部は、投影部17が投影した被投影対象における画像を撮影する撮影部23であるとしたが、本発明はこの構成に限らない。投影部17が投影した被投影対象における画像を撮影する外部の撮影部が撮影した画像を、プロジェクタ10の取得部が、有線または無線の通信媒体、あるいは記憶媒体を介して直接取得する、パソコンを介して取得する、のいずれかの構成であっても良い。
なお上記実施形態は、半導体発光素子を光源としたDLP(登録商標)(Digital Light Processing)方式のプロジェクタに適用した場合について説明したが、本発明は光源の素子やプロジェクタの方式等を限定するものではなく、例えば高圧水銀灯を光源とし、カラー液晶パネルを用いたプロジェクタ等にも適用可能となる。
その他、本発明は、上記実施形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。また、各実施形態は適宜組み合わせて実施してもよく、その場合組み合わせた効果が得られる。更に、上記実施形態には種々の発明が含まれており、開示される複数の構成要件から選択された組み合わせにより種々の発明が抽出され得る。例えば、実施形態に示される全構成要件からいくつかの構成要件が削除されても、課題が解決でき、効果が得られる場合には、この構成要件が削除された構成が発明として抽出され得る。
以下に、本願出願の当初の特許請求の範囲に記載された発明を付記する。
[請求項1]
画像を投影する投影部と、
上記投影部が投影する画像の方向を機械的に可変する投影方向可変部と、
上記投影部が投影した被投影対象における画像を取得する取得部と、
上記取得部により取得した複数の投影画像の情報に基づいて上記投影方向可変部による投影方向を決定する制御部と、
を備える投影装置。
[請求項2]
上記制御部は、上記投影方向可変部により可変した複数の投影方向における投影画像を上記取得部により取得させる、請求項1記載の投影装置。
[請求項3]
上記取得部は、上記投影部が投影した被投影対象における画像を撮影する撮影部であるか、または上記投影部が投影した被投影対象における画像を撮影する外部の撮影部が撮影した画像を、有線または無線の通信媒体あるいは記憶媒体を介して直接取得する、パソコンを介して取得する、のいずれかの構成である、請求項1または2記載の投影装置。
[請求項4]
上記投影方向可変部は、装置に対する上記投影部の投影方向をシフトする投影ユニットシフタ、または装置の脚長を可変して装置の設置角度を可変するチルト脚ドライバである、請求項1乃至3いずれか記載の投影装置。
[請求項5]
上記制御部は、決定された投影方向となるように上記投影方向可変部を設定すると共に、上記投影部で投影する画像の領域及び色情報の少なくとも一方を補正設定する、請求項1乃至4いずれか記載の投影装置。
[請求項6]
上記制御部は、上記取得した複数の投影画像により、画像の領域の削減量及び色補正量の少なくとも一方が最も少ない投影方向を算出して、対応する上記投影方向可変部による投影方向を決定する、請求項5記載の投影装置。
[請求項7]
上記制御部は、上記投影部で投影する画像の領域を台形補正処理により補正設定する、請求項5または6記載の投影装置。
[請求項8]
画像を投影する投影部と、上記投影部が投影する画像の方向を機械的に可変する投影方向可変部と、上記投影部が投影した被投影対象における画像を取得する取得部とを備える装置での投影方法であって、
上記取得部により取得した複数の投影画像の情報に基づいて上記投影方向可変部による投影方向を決定する制御工程を有する投影方法。
[請求項9]
画像を投影する投影部と、上記投影部が投影する画像の方向を所定の範囲内で機械的に可変する投影方向可変部と、上記投影部が投影した被投影対象における画像を取得する取得部とを備える装置が内蔵したコンピュータが実行するプログラムであって、上記コンピュータを、
上記取得部により取得した複数の投影画像の情報に基づいて上記投影方向可変部による投影方向を決定する制御部として機能させるプログラム。
10…プロジェクタ
11…画像入力部
12…投影画像駆動部
13…マイクロミラー素子
14…光源部
15…ミラー
16…投影レンズ部
17…投影部
18…投影ユニットシフタ
19…撮影レンズ部
20…撮像素子
21…A/D変換器
22…撮影画像処理部
23…撮影部
24…CPU
25…メインメモリ
26…プログラムメモリ
27…操作部
28…音声処理部
29…チルト脚ドライバ
30…スピーカ部

Claims (8)

  1. 画像を投影する投影部と、
    上記投影部が投影する画像の方向を所定の範囲内で機械的に可変する投影方向可変部と、
    上記投影部が投影した被投影対象における投影方向が互いに異なる複数の投影画像を初期設定時に取得する取得部と、
    上記取得部により取得した複数の投影画像の情報に基づいて上記投影方向可変部による通常投影時の投影方向を決定する制御部と、
    を備え
    上記制御部により決定される投影方向は、上記取得した複数の投影画像のうち、補正時に必要な色補正量及び画像領域の削減量の少なくとも一方が最も少なくなる投影画像に対応する投影方向である投影装置。
  2. 上記制御部は、上記投影方向可変部により可変した複数の投影方向における投影画像を上記取得部により取得させる、請求項1記載の投影装置。
  3. 上記取得部は、上記投影部が投影した被投影対象における投影画像を撮影する撮影部であるか、または上記投影部が投影した被投影対象における投影画像を撮影する外部の撮影部が撮影した画像を、有線または無線の通信媒体あるいは記憶媒体を介して直接取得する、パソコンを介して取得する、のいずれかの構成である、請求項1または2記載の投影装置。
  4. 上記投影方向可変部は、投影装置に対する上記投影部の投影方向をシフトする投影ユニットシフタ、または投影装置の脚長を可変して投影装置の設置角度を可変するチルト脚ドライバである、請求項1乃至3いずれか記載の投影装置。
  5. 上記制御部は、決定された投影方向となるように上記投影方向可変部を設定すると共に、上記投影部で投影する画像の領域及び色情報の少なくとも一方を補正設定する、請求項1乃至4いずれか記載の投影装置。
  6. 上記制御部は、上記投影部で投影する画像の領域を台形補正処理により補正設定する、請求項記載の投影装置。
  7. 画像を投影する投影部と、上記投影部が投影する画像の方向を所定の範囲内で機械的に可変する投影方向可変部と、上記投影部が投影した被投影対象における投影方向が互いに異なる複数の投影画像を初期設定時に取得する取得部とを備える投影装置での投影方法であって、
    上記取得部により取得した複数の投影画像の情報に基づいて上記投影方向可変部による通常投影時の投影方向を決定する制御工程を有し、
    上記制御工程により決定される投影方向は、上記取得した複数の投影画像のうち、補正時に必要な色補正量及び画像領域の削減量の少なくとも一方が最も少なくなる投影画像に対応する投影方向である投影方法。
  8. 画像を投影する投影部と、上記投影部が投影する画像の方向を所定の範囲内で機械的に可変する投影方向可変部と、上記投影部が投影した被投影対象における投影方向が互いに異なる複数の投影画像を初期設定時に取得する取得部とを備える投影装置が内蔵したコンピュータが実行するプログラムであって、上記コンピュータを、
    上記投影方向可変部により上記範囲内で可変した複数の投影方向における投影画像を上記取得部により取得させ、得られた複数の投影画像の情報に基づいて上記投影方向可変部による通常投影時の投影方向を決定する制御部として機能させ
    上記制御部により決定される投影方向は、上記取得した複数の投影画像のうち、補正時に必要な色補正量及び画像領域の削減量の少なくとも一方が最も少なくなる投影画像に対応する投影方向であるプログラム。
JP2017183738A 2017-06-20 2017-09-25 投影装置、投影方法及びプログラム Active JP7031191B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/982,767 US10437139B2 (en) 2017-06-20 2018-05-17 Projector apparatus, projection method, and storage medium
CN201810631990.7A CN109104597B (zh) 2017-06-20 2018-06-19 投影装置、投影方法以及记录介质

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017120588 2017-06-20
JP2017120588 2017-06-20

Publications (2)

Publication Number Publication Date
JP2019009762A JP2019009762A (ja) 2019-01-17
JP7031191B2 true JP7031191B2 (ja) 2022-03-08

Family

ID=65029205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017183738A Active JP7031191B2 (ja) 2017-06-20 2017-09-25 投影装置、投影方法及びプログラム

Country Status (1)

Country Link
JP (1) JP7031191B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7356802B2 (ja) * 2019-02-12 2023-10-05 株式会社フジタ 投影装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003283964A (ja) 2002-03-26 2003-10-03 Olympus Optical Co Ltd 映像表示装置
JP2004048695A (ja) 2002-05-20 2004-02-12 Seiko Epson Corp 投写型画像表示システム、プロジェクタ、プログラム、情報記憶媒体および画像投写方法
JP2006121231A (ja) 2004-10-19 2006-05-11 Olympus Corp プロジェクタ
JP2006201673A (ja) 2005-01-24 2006-08-03 Seiko Epson Corp プロジェクタ
JP2010020215A (ja) 2008-07-14 2010-01-28 Sony Computer Entertainment Inc 画像投影装置、その制御方法、プログラム及び情報記憶媒体
JP2012068363A (ja) 2010-09-22 2012-04-05 Konica Minolta Opto Inc 投影装置
JP2014030897A (ja) 2012-08-03 2014-02-20 Toyota Motor Engineering & Manufacturing North America Inc 識別された投影表面に像を投影するためのプロジェクターを具備するロボット
JP2016122182A (ja) 2014-12-25 2016-07-07 パナソニックIpマネジメント株式会社 投影装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003283964A (ja) 2002-03-26 2003-10-03 Olympus Optical Co Ltd 映像表示装置
JP2004048695A (ja) 2002-05-20 2004-02-12 Seiko Epson Corp 投写型画像表示システム、プロジェクタ、プログラム、情報記憶媒体および画像投写方法
JP2006121231A (ja) 2004-10-19 2006-05-11 Olympus Corp プロジェクタ
JP2006201673A (ja) 2005-01-24 2006-08-03 Seiko Epson Corp プロジェクタ
JP2010020215A (ja) 2008-07-14 2010-01-28 Sony Computer Entertainment Inc 画像投影装置、その制御方法、プログラム及び情報記憶媒体
JP2012068363A (ja) 2010-09-22 2012-04-05 Konica Minolta Opto Inc 投影装置
JP2014030897A (ja) 2012-08-03 2014-02-20 Toyota Motor Engineering & Manufacturing North America Inc 識別された投影表面に像を投影するためのプロジェクターを具備するロボット
JP2016122182A (ja) 2014-12-25 2016-07-07 パナソニックIpマネジメント株式会社 投影装置

Also Published As

Publication number Publication date
JP2019009762A (ja) 2019-01-17

Similar Documents

Publication Publication Date Title
JP6244638B2 (ja) 投影装置、投影方法及び投影プログラム
JP4196951B2 (ja) プロジェクタ、投写画像調整方法
US8104899B2 (en) Beam projection apparatus and method with automatic image adjustment
JP6201359B2 (ja) 投影システム、投影方法及び投影プログラム
CN105372916B (zh) 图像投影设备及其控制方法
JP2019168546A (ja) 投影制御装置、投影装置、投影制御方法及びプログラム
JP2007078821A (ja) 投影装置、投影方法及びプログラム
CN107193172B (zh) 投影装置、投影控制方法以及记录介质
US20170061575A1 (en) Display apparatus and control method
JP3741119B2 (ja) 投射型画像表示装置の設置調整システム
JP2013076923A (ja) 投影装置、投影制御方法及びプログラム
JP2019008015A (ja) 投影装置、投影方法及びプログラム
CN109104597B (zh) 投影装置、投影方法以及记录介质
JP7031191B2 (ja) 投影装置、投影方法及びプログラム
JP5206081B2 (ja) プロジェクタ、プログラム及び記憶媒体
JP6846618B2 (ja) 投影システム及びキャリブレーション装置
JP6776619B2 (ja) 投影装置、投影制御方法及びプログラム
JP4471793B2 (ja) プロジェクタ
JP6347126B2 (ja) プロジェクター、及び、プロジェクターの制御方法
JP2018142856A (ja) プロジェクター、及び、プロジェクターの制御方法
JP4661161B2 (ja) 投影装置、投影方法及びプログラム
JP2019168545A (ja) 投影制御装置、投影装置、投影制御方法及びプログラム
JP3772885B2 (ja) 台形歪補正手段を備えたプロジェクタ
JP6119902B2 (ja) プロジェクター、及び、プロジェクターの制御方法
JP6197832B2 (ja) 投影装置、投影方法及びプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220207

R150 Certificate of patent or registration of utility model

Ref document number: 7031191

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150