JP7031097B2 - Charging / discharging method of lithium secondary battery - Google Patents

Charging / discharging method of lithium secondary battery Download PDF

Info

Publication number
JP7031097B2
JP7031097B2 JP2018140514A JP2018140514A JP7031097B2 JP 7031097 B2 JP7031097 B2 JP 7031097B2 JP 2018140514 A JP2018140514 A JP 2018140514A JP 2018140514 A JP2018140514 A JP 2018140514A JP 7031097 B2 JP7031097 B2 JP 7031097B2
Authority
JP
Japan
Prior art keywords
positive electrode
lithium
discharge
secondary battery
graphene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018140514A
Other languages
Japanese (ja)
Other versions
JP2020017438A (en
Inventor
冬 丁
昌明 久保田
雄太 前吉
聖志 金村
英俊 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2018140514A priority Critical patent/JP7031097B2/en
Publication of JP2020017438A publication Critical patent/JP2020017438A/en
Application granted granted Critical
Publication of JP7031097B2 publication Critical patent/JP7031097B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウム二次電池の充放電方法に関する。 The present invention relates to a charging / discharging method for a lithium secondary battery.

リチウム二次電池は、現在実用化されている二次電池において、最も高いエネルギー密度を有する高性能二次電池であり、携帯電話やノート型パーソナルコンピュータのような携帯電子機器、電気自動車等の電源として搭載されている。リチウム二次電池は、これらの電源として高容量化、高性能化、高安全性、長寿命化などが求められている。 The lithium secondary battery is a high-performance secondary battery having the highest energy density among the secondary batteries currently in practical use, and is a power source for portable electronic devices such as mobile phones and notebook personal computers, electric vehicles, and the like. It is installed as. Lithium secondary batteries are required to have high capacity, high performance, high safety, and long life as their power sources.

このようなリチウム二次電池は、正極と負極との間でリチウムイオンを移動させて充放電を行なう。正極及び負極は、それぞれ正極活物質、負極活物質を担持する集電体を備える。リチウム二次電池の正極活物質としては、現在、コバルト酸リチウム(LiCoO)、マンガン酸リチウム(LiMn)、ニッケル酸リチウム(LiNiO)、リン酸鉄リチウム(LiFePO)等のリチウムを含む金属酸化物又は金属リン酸化物が実用化され、又は商品化を目指して開発が進められている。負極活物質としては、グラファイトなどの炭素材料や、リチウムチタン酸化物(LiTi12)が用いられている。正極集電体は、アルミニウム箔が、負極集電体は、銅箔が一般的に用いられている。 In such a lithium secondary battery, lithium ions are transferred between the positive electrode and the negative electrode to charge and discharge. The positive electrode and the negative electrode include a current collector that supports the positive electrode active material and the negative electrode active material, respectively. Lithium as a positive electrode active material for a lithium secondary battery is currently lithium such as lithium cobalt oxide (LiCoO 2 ), lithium manganate (LiMn 2 O 4 ), lithium nickel oxide (LiNiO 2 ), and lithium iron phosphate (LiFePO 4 ). Metal oxides or metal phosphorus oxides containing lithium oxide have been put into practical use or are being developed with the aim of commercialization. As the negative electrode active material, a carbon material such as graphite or lithium titanium oxide (Li 4 Ti 5 O 12 ) is used. Aluminum foil is generally used for the positive electrode current collector, and copper foil is generally used for the negative electrode current collector.

前記リチウム二次電池は、さらに正極と負極の間にセパレータが介在されている。セパレータは、一般的にポリオレフィンからなる微孔性薄膜が使用されている。正極、負極及びセパレータを含む極板群は、電池容器内に非水電解質とともに収納されている。非水電解質は、非水溶媒にリチウム塩等の電解質を溶解した非水電解液が一般的に使用されている。その他の非水電解質としては、ゲル状電解液又は固体電解質も注目されている。 In the lithium secondary battery, a separator is further interposed between the positive electrode and the negative electrode. As the separator, a microporous thin film made of polyolefin is generally used. The electrode plate group including the positive electrode, the negative electrode and the separator is housed in the battery container together with the non-aqueous electrolyte. As the non-aqueous electrolyte, a non-aqueous electrolyte solution in which an electrolyte such as a lithium salt is dissolved in a non-aqueous solvent is generally used. As other non-aqueous electrolytes, gel-like electrolytes or solid electrolytes are also attracting attention.

ところで、負極活物質である金属リチウムは単位重量当たりの電気量が3.86Ah/gと大きい特徴を持つ。このため、高いエネルギー密度を持つ、高容量のリチウム二次電池の実現のために、金属リチウムを負極活物質として用いる研究が再び進められている。 By the way, metallic lithium, which is a negative electrode active material, has a large characteristic that the amount of electricity per unit weight is 3.86 Ah / g. Therefore, in order to realize a high-capacity lithium secondary battery having a high energy density, research on using metallic lithium as a negative electrode active material is being promoted again.

しかしながら、負極活物質に金属リチウムを用いるリチウム二次電池は、充放電の繰り返しにおいて負極の金属リチウム表面からリチウムがデンドライト状に成長し、デンドライト状のリチウムが正極と負極の間に介在したセパレータを貫通して正極に達し、内部短絡を起こす課題があった。 However, in a lithium secondary battery that uses metallic lithium as the negative electrode active material, lithium grows in a dendrite shape from the metallic lithium surface of the negative electrode during repeated charging and discharging, and dendrite-like lithium intervenes between the positive electrode and the negative electrode. There was a problem that it penetrated and reached the positive electrode, causing an internal short circuit.

このようなことから、例えば特許文献1には、正極活物質として主活物質であるリチウム含有化合物の他に、副活物質である、初回から放電可能な材料(例えば二酸化マンガン)を用いたリチウム二次電池が記載されている。このような特許文献1のリチウム二次電池は、組立後に初回から放電を行なうことができる。すなわち、初回放電時に負極から金属リチウムをリチウムイオンとして放出できる。このため、電池組立直後の負極の金属リチウム表面に形成された炭酸リチウム又は水酸化リチウムのような不活性被膜が除去される。その結果、初回放電後の充電時にはリチウムイオンが良好な表面状態を有する負極の金属リチウム表面に還元析出するため、負極の金属リチウム表面からリチウムがデンドライト状に成長するのを抑制することが可能になる。 For this reason, for example, in Patent Document 1, in addition to the lithium-containing compound which is the main active material as the positive electrode active material, lithium which is a side active material and can be discharged from the first time (for example, manganese dioxide) is used. Secondary batteries are listed. Such a lithium secondary battery of Patent Document 1 can be discharged from the first time after assembly. That is, metallic lithium can be released as lithium ions from the negative electrode at the time of initial discharge. Therefore, the inert film such as lithium carbonate or lithium hydroxide formed on the metallic lithium surface of the negative electrode immediately after battery assembly is removed. As a result, lithium ions are reduced and precipitated on the metallic lithium surface of the negative electrode, which has a good surface condition during charging after the initial discharge, so that it is possible to suppress the growth of lithium from the metallic lithium surface of the negative electrode in a dendrite manner. Become.

また、特許文献2には、正極活物質として副活物質である、初回から放電可能な材料、LiMn5-xM112(ここで、M1はCo、Ni、Fe、Cu、Mg、Zn、Al、Cr及びGaからなる群より選ばれる少なくとも1つ以上の元素、xは0≦x<5、である)、例えばLiMn12を用いたリチウム二次電池が記載されている。特許文献2のリチウム二次電池も、特許文献1のリチウム二次電池と同様、組立後に初回から放電を行なうことができる。さらに、非特許文献1には、上記LiMn12の単位重量当たりの電気量は250mAh/g程度であることが記載されている。 Further, in Patent Document 2, a material that can be discharged from the first time, which is a by-active material as a positive electrode active material, Li 4 Mn 5-x M1 x O 12 (where M1 is Co, Ni, Fe, Cu, Mg). , Zn, Al, Cr and at least one element selected from the group consisting of Ga, x is 0 ≦ x <5), for example lithium secondary batteries using Li 4 Mn 5 O 12 are described. ing. Like the lithium secondary battery of Patent Document 1, the lithium secondary battery of Patent Document 2 can be discharged from the first time after assembly. Further, Non-Patent Document 1 describes that the amount of electricity per unit weight of the above Li 4 Mn 5 O 12 is about 250 mAh / g.

特開2017-16905号公報Japanese Unexamined Patent Publication No. 2017-16905 特開2017-68966号公報Japanese Unexamined Patent Publication No. 2017-68966

岡田昌樹、阪口雄哉 「リチウムイオン二次電池用高容量LiMn酸化物正極材料に関する考察」 東ソー研究・技術報告 2016年 Vol.60 p.21~28Masaki Okada, Yuya Sakaguchi "Consideration on High Capacity LiMn Oxide Positive Electrode Materials for Lithium Ion Secondary Batteries" Tosoh Research and Technology Report 2016 Vol. 60 p. 21-28

しかしながら、上記特許文献1に開示された、副活物質として初回から放電可能な材料である二酸化マンガンは、初回放電以降の充放電には関与しない。そのため、副活物質として二酸化マンガンを含む正極活物質は、主活物質の割合が相対的に減少し、リチウム二次電池の放電容量を低下させる課題があった。 However, manganese dioxide, which is a material that can be discharged from the first time as a by-active substance disclosed in Patent Document 1, does not participate in the charge / discharge after the first discharge. Therefore, the positive electrode active material containing manganese dioxide as a side active material has a problem that the ratio of the main active material is relatively reduced and the discharge capacity of the lithium secondary battery is lowered.

また、上記特許文献2に開示された、副活物質として初回から放電可能な材料、LiMn12は、上述したように250mAh/g程度の単位重量当たりの電気量であり、当該数値は比較的低い値である。このような単位重量当たりの電気量を有するLiMn12を含む正極を備えるリチウム二次電池は、初回放電時において、負極の金属リチウム表面に形成された不活性被膜を除去するために必要な放電容量を確保するために、正極活物質に占める当該LiMn12の割合を多くしなければならない。そのため、副活物質としてLiMn12を含む正極活物質も、主活物質の割合が相対的に減少し、リチウム二次電池の放電容量を低下させる課題があった。 Further, the material Li 4 Mn 5 O 12 , which is disclosed in Patent Document 2 and can be discharged from the first time as a by-active substance, has an electric amount of about 250 mAh / g per unit weight as described above, and the value thereof. Is a relatively low value. A lithium secondary battery including a positive electrode containing Li 4 Mn 5 O 12 having such an amount of electricity per unit weight is used to remove the inert film formed on the metallic lithium surface of the negative electrode at the time of initial discharge. In order to secure the required discharge capacity, the proportion of the Li 4 Mn 5 O 12 in the positive electrode active material must be increased. Therefore, the positive electrode active material containing Li 4 Mn 5 O 12 as the side active material also has a problem that the ratio of the main active material is relatively reduced and the discharge capacity of the lithium secondary battery is lowered.

従って、本発明は前記課題を解決し、充放電時のリチウムのデンドライト状の成長を抑制ないし防止でき、さらに高出力化による充放電サイクル特性の向上及び高容量化を達成したリチウム二次電池の充放電方法を提供するものである。 Therefore, the present invention solves the above-mentioned problems, suppresses or prevents the dendrite-like growth of lithium during charging / discharging, and further improves the charge / discharge cycle characteristics and increases the capacity by increasing the output of the lithium secondary battery. It provides a charging / discharging method.

上記の課題を解決するために、本発明によると、正極、及び金属リチウムを含む負極を備えたリチウム二次電池の充放電方法であって、前記正極は、集電体と、当該集電体の一方又は両方の面に形成された正極層とを備え、前記正極層は、酸素の含有割合が30原子%以上50原子%以下のグラフェンと、正極活物質とを含み、前記リチウム二次電池の組立後の充放電を放電から始め、初回放電時の放電カットオフ電圧を、リチウムの酸化還元電位を基準にして1.0V以上2.0V以下に設定することを特徴とするリチウム二次電池の充放電方法が提供される。 In order to solve the above problems, according to the present invention, there is a charging / discharging method of a lithium secondary battery including a positive electrode and a negative electrode containing metallic lithium, wherein the positive electrode is a current collector and the current collector. The positive electrode layer includes a positive electrode layer formed on one or both surfaces, and the positive electrode layer contains graphene having an oxygen content of 30 atomic% or more and 50 atomic% or less, and a positive electrode active material, and the lithium secondary battery. The lithium secondary battery is characterized in that the charge / discharge after assembly is started from the discharge, and the discharge cutoff voltage at the time of the first discharge is set to 1.0 V or more and 2.0 V or less based on the oxidation-reduction potential of lithium. A charging / discharging method is provided.

本発明によれば、充放電時のリチウムのデンドライト状の成長を抑制ないし防止でき、さらに高出力化による充放電サイクル特性の向上及び高容量化を達成したリチウム二次電池の充放電方法を提供できる。 INDUSTRIAL APPLICABILITY According to the present invention, there is provided a charging / discharging method for a lithium secondary battery, which can suppress or prevent the dendrite-like growth of lithium during charging / discharging, and further improve the charging / discharging cycle characteristics and increase the capacity by increasing the output. can.

図1は、実施形態に係るコイン型のリチウム二次電池の一例を示す断面図である。FIG. 1 is a cross-sectional view showing an example of a coin-type lithium secondary battery according to an embodiment. 図2は、正極Aの正極層の一部の走査型電子顕微鏡写真である。FIG. 2 is a scanning electron micrograph of a part of the positive electrode layer of the positive electrode A. 図3は、正極Eの正極層の一部の走査型電子顕微鏡写真である。FIG. 3 is a scanning electron micrograph of a part of the positive electrode layer of the positive electrode E. 図4は、正極A~Dを有する各評価セルを1.5Vまで放電させた定電流放電曲線を示すグラフである。FIG. 4 is a graph showing a constant current discharge curve in which each evaluation cell having positive electrodes A to D is discharged to 1.5 V.

以下、実施形態に係るリチウム二次電池の充放電方法を詳細に説明する。 Hereinafter, the charging / discharging method of the lithium secondary battery according to the embodiment will be described in detail.

実施形態に係るリチウム二次電池の充放電方法は、正極、及び金属リチウムを含む負極を備え、正極は、集電体と、当該集電体の一方又は両方の面に形成された正極層とを備え、正極層は、酸素の含有割合が30原子%以上50原子%以下のグラフェンと、正極活物質とを含み、リチウム二次電池の組立後の充放電を放電から始め、初回放電時の放電カットオフ電圧を、リチウムの酸化還元電位を基準にして1.0V以上2.0V以下に設定することを特徴とする。このような実施形態に係るリチウム二次電池の充放電方法によれば、充放電時のリチウムのデンドライト状の成長を抑制ないし防止でき、さらに高出力化による充放電サイクル特性の向上及び高容量化を達成できる。 The method for charging and discharging a lithium secondary battery according to an embodiment includes a positive electrode and a negative electrode containing metallic lithium, and the positive electrode includes a current collector and a positive electrode layer formed on one or both surfaces of the current collector. The positive electrode layer contains graphene having an oxygen content of 30 atomic% or more and 50 atomic% or less, and a positive electrode active material. The discharge cutoff voltage is set to 1.0 V or more and 2.0 V or less with respect to the oxidation-reduction potential of lithium. According to the charging / discharging method of the lithium secondary battery according to such an embodiment, it is possible to suppress or prevent the dendrite-like growth of lithium during charging / discharging, and further improve the charging / discharging cycle characteristics and increase the capacity by increasing the output. Can be achieved.

すなわち、酸素の含有割合が30原子%以上50原子%以下のグラフェンは、1000mAh/gを超える放電容量を有する。そのため、当該グラフェンを含む正極を備えるリチウム二次電池は、当該電池組立後の充放電を放電から始めることが可能になり、初回放電時に、負極の金属リチウム表面からリチウムをイオンとして十分な量を放出するのに必要な放電容量を有する。また、初回放電時の放電カットオフ電圧を、リチウムの酸化還元電位を基準にして1.0V以上2.0V以下に設定してあるため、負極の金属リチウム表面からのリチウムイオンの放出量を増大できる。このように負極の金属リチウム表面からのリチウムイオンの放出量を増大できるため、負極の金属リチウム表面の炭酸リチウム又は水酸化リチウムのような不活性被膜を破壊して除去できる。その結果、初回放電後の充電において、正極活物質から放出されたリチウムイオンが負極の金属リチウム表面でリチウムを還元析出する際、金属リチウム表面は不活性被膜が除去されているため、リチウムは金属リチウム表面に偏って析出せず、金属リチウム表面に均一に析出する。それ故、充放電サイクルの繰り返しに伴って、負極に金属リチウム表面からリチウムがデンドライト状に成長するのを抑制ないし防止して、リチウムのデンドライト状の成長に伴う負極と正極間の内部短絡を防止できる。
前記初回放電では、負極の金属リチウム表面からリチウム(Li)がイオンとして非水電解質に放出され、セパレータを通して正極側に移動する。移動したリチウムイオンは、正極層に含まれるグラフェン中の酸素(例えば、グラフェンに結合している酸素原子を含む官能基)を還元する。正極層に含まれるグラフェンは、還元されると、還元前と比較して高い電気導電性を有するようになるため、初回放電後において、導電剤として機能する。また、酸素の含有割合が30原子%以上50原子%以下のグラフェンは、例えばN-メチル-2-ピロリドン(NMP)のような極性溶媒中において、当該グラフェン中の酸素(例えば、グラフェンに結合している酸素原子を含む官能基)がマイナスに帯電するため、当該グラフェン同士が互いに反発して分散する。すなわち、前記グラフェンは、極性溶媒中において凝集し難く、高い分散性を示す。このようなグラフェンを含む溶剤(溶媒)に正極活物質などと共に添加して正極スラリーを調製し、当該正極スラリーを、正極集電体の一方又は両方の面に塗布し、乾燥することにより、グラフェンが良好に分散した正極層を集電体に形成できる。その結果、初回放電時に還元された導電剤として機能するグラフェンは、正極層の一部に局在することなく、正極層全体の集電体と正極活物質との間、及び正極活物質の間に介在させることができる。また、当該グラフェンは、SP2結合で結合した炭素原子が平面的に並んだ層状構造であるため、隣接する他のグラフェン、及び正極層にさらに配合される導電助剤と容易に結合できる。従って、当該グラフェンによって、集電体と正極活物質との間、及び正極活物質同士をそれぞれ電気的に繋ぐ導電ネットワークを形成することができる。それ故、正極において、導電ネットワークによりイオンの拡散と電子伝導による電荷の授受を向上できるため、リチウム二次電池を高出力化することができる。
That is, graphene having an oxygen content of 30 atomic% or more and 50 atomic% or less has a discharge capacity of more than 1000 mAh / g. Therefore, a lithium secondary battery having a positive electrode containing the graphene can start charging / discharging after assembling the battery from a discharge, and at the time of the first discharge, a sufficient amount of lithium is used as ions from the metallic lithium surface of the negative electrode. Has the required discharge capacity to discharge. Further, since the discharge cutoff voltage at the time of initial discharge is set to 1.0 V or more and 2.0 V or less based on the redox potential of lithium, the amount of lithium ions released from the metallic lithium surface of the negative electrode is increased. can. Since the amount of lithium ions released from the metallic lithium surface of the negative electrode can be increased in this way, an inert film such as lithium carbonate or lithium hydroxide on the metallic lithium surface of the negative electrode can be destroyed and removed. As a result, in charging after the initial discharge, when lithium ions released from the positive electrode active material reduce and precipitate lithium on the metallic lithium surface of the negative electrode, the inert film is removed on the metallic lithium surface, so that lithium is a metal. It does not precipitate unevenly on the lithium surface, but uniformly precipitates on the surface of metallic lithium. Therefore, it suppresses or prevents the growth of lithium from the surface of metallic lithium on the negative electrode in a dendrite-like manner with the repetition of the charge / discharge cycle, and prevents the internal short circuit between the negative electrode and the positive electrode due to the dendrite-like growth of lithium. can.
In the initial discharge, lithium (Li) is released as ions from the metallic lithium surface of the negative electrode to the non-aqueous electrolyte and moves to the positive electrode side through the separator. The transferred lithium ions reduce oxygen in graphene contained in the positive electrode layer (for example, a functional group containing an oxygen atom bonded to graphene). When graphene contained in the positive electrode layer is reduced, it becomes highly electrically conductive as compared with that before reduction, and therefore functions as a conductive agent after the initial discharge. Further, graphene having an oxygen content of 30 atomic% or more and 50 atomic% or less binds to oxygen (for example, graphene) in the graphene in a polar solvent such as N-methyl-2-pyrrolidone (NMP). The graphenes (functional groups containing oxygen atoms) are negatively charged, so that the graphenes repel each other and disperse. That is, the graphene is less likely to aggregate in a polar solvent and exhibits high dispersibility. Graphene is prepared by adding it to a solvent containing graphene together with a positive electrode active material, applying the positive electrode slurry to one or both surfaces of the positive electrode current collector, and drying the graphene. Can form a well-dispersed positive electrode layer in the current collector. As a result, graphene, which functions as a conductive agent reduced during the initial discharge, does not localize to a part of the positive electrode layer, but is between the current collector and the positive electrode active material of the entire positive electrode layer, and between the positive electrode active material. Can be intervened in. Further, since the graphene has a layered structure in which carbon atoms bonded by SP2 bond are arranged in a plane, it can be easily bonded to other adjacent graphene and a conductive auxiliary agent further blended in the positive electrode layer. Therefore, the graphene can form a conductive network that electrically connects the current collector and the positive electrode active material and the positive electrode active materials, respectively. Therefore, in the positive electrode, the diffusion of ions and the transfer of electric charges by electron conduction can be improved by the conductive network, so that the output of the lithium secondary battery can be increased.

金属リチウムは、単位重量当たりの電気量が3.86Ah/gと大きい。そのため、負極活物質として金属リチウムを含む負極を備えるリチウム二次電池は、高容量化できる。 Metallic lithium has a large amount of electricity per unit weight of 3.86 Ah / g. Therefore, the capacity of a lithium secondary battery including a negative electrode containing metallic lithium as a negative electrode active material can be increased.

以上説明した実施形態に係るリチウム二次電池の充放電方法によれば、充放電時のリチウムのデンドライト状の成長を抑制ないし防止でき、さらに高出力化による充放電サイクル特性の向上及び高容量化を達成できる。 According to the charging / discharging method of the lithium secondary battery according to the above-described embodiment, it is possible to suppress or prevent the dendrite-like growth of lithium during charging / discharging, and further improve the charging / discharging cycle characteristics and increase the capacity by increasing the output. Can be achieved.

次に、実施形態に係る充放電方法に用いるリチウム二次電池の構成及び充放電条件について説明する。 Next, the configuration and charge / discharge conditions of the lithium secondary battery used in the charge / discharge method according to the embodiment will be described.

<正極>
正極は、正極集電体と、当該正極集電体の一方又は両方の面に形成された正極層とを備える。正極集電体は、特に限定されるものではなく、公知又は市販のものを使用することができる。正極集電体は、例えば、アルミニウムなどの金属箔、ラス加工又はエッチング処理された金属箔等である。
<Positive electrode>
The positive electrode includes a positive electrode current collector and a positive electrode layer formed on one or both surfaces of the positive electrode current collector. The positive electrode current collector is not particularly limited, and known or commercially available current collectors can be used. The positive electrode current collector is, for example, a metal foil such as aluminum, a lath-processed or etched metal foil, or the like.

正極層は、酸素の含有割合が30原子%以上50原子%以下のグラフェンと、正極活物質とを含む。このようなグラフェンに含まれる酸素の含有割合は、X線光電子分光法(X-ray photoelectron spectroscopy:XPS)を用いて測定される。酸素の含有割合が30原子%以上50原子%以下のグラフェンは、例えばエポキシ基、カルボニル基、カルボキシル基、又はヒドロキシル基等の酸素原子を含む官能基を有するグラフェンである。 The positive electrode layer contains graphene having an oxygen content of 30 atomic% or more and 50 atomic% or less, and a positive electrode active material. The content ratio of oxygen contained in such graphene is measured by using X-ray photoelectron spectroscopy (XPS). A graphene having an oxygen content of 30 atomic% or more and 50 atomic% or less is a graphene having a functional group containing an oxygen atom such as an epoxy group, a carbonyl group, a carboxyl group, or a hydroxyl group.

酸素の含有割合が30原子%以上50原子%以下のグラフェンは、上述したように、極性溶媒中において高い分散性を示すため、正極層に良好に分散し、初回放電時に還元されて、導電剤として機能し、正極層中に導電ネットワークを形成できる。
酸素の含有割合が30原子%未満のグラフェンは、極性溶媒中において、当該グラフェン中の酸素がマイナスに帯電するものの、グラフェン同士が互いに反発し分散するほど、十分に帯電していない。そのため、正極層にグラフェンが凝集し、初回放電後にグラフェンが導電剤として機能しても前述した導電ネットワークを形成することが困難になる。他方、酸素の含有割合が50原子%を超えるグラフェンは、初回放電時に、含有される酸素の全てが還元されずに残留するため、導電剤として機能させることが困難になる。
As described above, graphene having an oxygen content of 30 atomic% or more and 50 atomic% or less exhibits high dispersibility in a polar solvent, so that it is well dispersed in the positive electrode layer and is reduced at the time of initial discharge to be a conductive agent. And can form a conductive network in the positive electrode layer.
Graphene having an oxygen content of less than 30 atomic% is negatively charged in the polar solvent, but is not sufficiently charged so that the graphenes repel each other and disperse. Therefore, graphene aggregates on the positive electrode layer, and even if graphene functions as a conductive agent after the initial discharge, it becomes difficult to form the above-mentioned conductive network. On the other hand, graphene having an oxygen content of more than 50 atomic% is difficult to function as a conductive agent because all of the contained oxygen remains without being reduced at the time of initial discharge.

いくつかの実施形態において、酸素の含有割合が30原子%以上50原子%以下のグラフェンは、正極層の総量に対して1.0質量%以上10質量%以下の割合で含まれることが好ましい。より好ましい当該グラフェンの含有割合は、正極層の総量に対して1.0質量%以上5.0質量%以下、さらに好ましい当該グラフェンの含有割合は、正極層の総量に対して2.0質量%以上5.0質量%以下である。
正極層の総量に対して1.0質量%未満のグラフェンを含む正極層を備えるリチウム二次電池は、当該電池組立後の充放電を放電から始めることが困難になる。他方、正極層の総量に対して10質量%を超えるグラフェンを含む正極層を備えるリチウム二次電池は、正極層に占めるグラフェンの割合が多くなり、正極活物質の含有割合が相対的に少なくなるため、容量が低下する虞がある。
In some embodiments, graphene having an oxygen content of 30 atomic% or more and 50 atomic% or less is preferably contained in a proportion of 1.0% by mass or more and 10% by mass or less with respect to the total amount of the positive electrode layer. The more preferable content ratio of the graphene is 1.0% by mass or more and 5.0% by mass or less with respect to the total amount of the positive electrode layer, and the more preferable content ratio of the graphene is 2.0% by mass with respect to the total amount of the positive electrode layer. It is 5.0% by mass or less.
A lithium secondary battery including a positive electrode layer containing graphene in an amount of less than 1.0% by mass based on the total amount of the positive electrode layer makes it difficult to start charging / discharging after assembling the battery from discharging. On the other hand, a lithium secondary battery provided with a positive electrode layer containing graphene in an amount of more than 10% by mass with respect to the total amount of the positive electrode layer has a large proportion of graphene in the positive electrode layer and a relatively small proportion of the positive electrode active material. Therefore, the capacity may decrease.

このような酸素の含有割合が30原子%以上50原子%以下のグラフェンは、以下に説明する出発原料としてグラファイト粉末を用いて、例えばHummers法のような酸化法により製造することができる。
最初に、グラファイト粉末に過マンガン酸カリウム、濃硫酸溶液、過酸化水素水等を加え、当該グラファイト粉末を酸化し、酸化グラファイトを含む分散溶液を調製する。酸化グラファイトは、エポキシ基、カルボニル基、カルボキシル基、又はヒドロキシル基等の官能基を有するグラファイトである。
次に、酸化グラファイトを含む分散溶液に超音波を印加し、分散溶液中の酸化グラファイトを炭素原子層間で劈開し、酸化グラフェンを含む分散溶液を調製する。酸化グラファイトは、グラファイトと比較して炭素原子層間が大きいため、超音波の印加により容易に炭素原子層間を劈開できる。続いて、酸化グラフェンを含む分散溶液から溶媒を除去し、乾燥して酸化グラフェンを製造する。
Such graphene having an oxygen content of 30 atomic% or more and 50 atomic% or less can be produced by an oxidation method such as the Hummers method using graphite powder as a starting material described below.
First, potassium permanganate, a concentrated sulfuric acid solution, a hydrogen peroxide solution and the like are added to the graphite powder, and the graphite powder is oxidized to prepare a dispersion solution containing graphite oxide. Graphite oxide is a graphite having a functional group such as an epoxy group, a carbonyl group, a carboxyl group, or a hydroxyl group.
Next, ultrasonic waves are applied to the dispersion solution containing graphite oxide, and the graphite oxide in the dispersion solution is cleaved between the carbon atom layers to prepare a dispersion solution containing graphene oxide. Since graphite oxide has a larger carbon atom layer than graphite, the carbon atom layer can be easily cleaved by applying ultrasonic waves. Subsequently, the solvent is removed from the dispersion solution containing graphene oxide and dried to produce graphene oxide.

正極活物質は、例えばリチウムを吸蔵及び放出することが可能なリチウム含有化合物を用いることができる。リチウム含有化合物は、リチウム含有金属酸化物又はリチウム含有金属リン化合物等のリチウム二次電池の正極活物質として一般的に用いられる化合物であれば特に限定されない。
リチウム含有化合物は、例えば、コバルト酸リチウム(LiCoO)、マンガン酸リチウム(LiMnO、LiMn)、ニッケル酸リチウム(LiNiO)、コバルト鉄酸リチウム(LiCo0.5Fe0.5)、ニッケルコバルトマンガン酸リチウム(Li(NiCoMn1-x-y)O(0<x<1、0<y<1))、リン酸マンガン鉄リチウム(LiMnFe1-xPO)(0<x<1)、リン酸鉄リチウム(LiFePO)、リン酸コバルトリチウム(LiCoPO)、及びリン酸マンガンリチウム(LiMnPO)等である。
As the positive electrode active material, for example, a lithium-containing compound capable of occluding and releasing lithium can be used. The lithium-containing compound is not particularly limited as long as it is a compound generally used as a positive electrode active material for a lithium secondary battery, such as a lithium-containing metal oxide or a lithium-containing metal phosphorus compound.
Examples of the lithium-containing compound include lithium cobaltate (LiCoO 2 ), lithium manganate (LiMnO 2 , LiMn 2 O 4 ), lithium nickelate (LiNiO 2 ), and lithium cobalt ironate (LiCo 0.5 Fe 0.5 O). 2 ), Lithium nickel cobalt manganate (Li (Ni x Coy Mn 1-xy ) O 2 (0 <x <1, 0 <y <1)), Lithium manganese iron phosphate (LiMn x Fe 1- ) xPO 4 ) (0 <x <1), lithium iron phosphate (LiFePO 4 ), lithium cobalt phosphate (LiCoPO 4 ), lithium manganese phosphate (LiMnPO 4 ), and the like.

正極層は、さらに導電助剤と結着剤を含んでもよい。 The positive electrode layer may further contain a conductive auxiliary agent and a binder.

導電助剤は、特に限定されるものではなく、公知又は市販のものを使用することができる。導電助剤は、例えば、アセチレンブラック、ケッチェンブラックなどのカーボンブラック、カーボンナノチューブ、炭素繊維、活性炭、黒鉛等である。
なお、上述したグラフェンを正極層に適切な割合で配合すれば、当該導電剤の配合を省略することができ、正極層に占める正極活物質の量を増加することが可能になる。
The conductive auxiliary agent is not particularly limited, and known or commercially available ones can be used. Examples of the conductive auxiliary agent include carbon black such as acetylene black and Ketjen black, carbon nanotubes, carbon fibers, activated carbon, and graphite.
If the above-mentioned graphene is blended in the positive electrode layer at an appropriate ratio, the blending of the conductive agent can be omitted, and the amount of the positive electrode active material in the positive electrode layer can be increased.

結着剤は、特に限定されるものではなく、公知又は市販のものを使用することができる。結着剤は、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリビニルピロリドン(PVP)、ポリ塩化ビニル(PVC)、ポリエチレン(PE)、ポリプロピレン(PP)、エチレン-プロピレン共重合体、スチレンブタジエンゴム(SBR)、アクリル樹脂等である。 The binder is not particularly limited, and known or commercially available binders can be used. The binder is, for example, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyvinylpyrrolidone (PVP), polyvinyl chloride (PVC), polyethylene (PE), polypropylene (PP), ethylene-propylene co-weight. Combined, styrene-butadiene rubber (SBR), acrylic resin, etc.

正極は、例えば次に示す方法で作製することができる。最初に、前述した酸素の含有割合が30原子%以上50原子%以下のグラフェン、正極活物質、導電助剤及び結着剤を溶剤に分散させて正極スラリーを調製する。つづいて、正極集電体の一方又は両方の面に正極スラリーを塗布した後、例えば真空下、80℃で乾燥して正極層を形成することにより正極を作製する。 The positive electrode can be produced, for example, by the method shown below. First, the above-mentioned graphene having an oxygen content of 30 atomic% or more and 50 atomic% or less, a positive electrode active material, a conductive auxiliary agent and a binder are dispersed in a solvent to prepare a positive electrode slurry. Subsequently, after applying the positive electrode slurry to one or both surfaces of the positive electrode current collector, the positive electrode is produced by, for example, drying under vacuum at 80 ° C. to form a positive electrode layer.

溶剤は、特に限定されるものではなく、リチウム二次電池で一般に用いられる溶剤を用いることができる。溶剤は、例えば、N-メチル-2-ピロリドン(NMP)、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMA)等である。なお、結着剤としてポリフッ化ビニリデン(PVDF)を用いる場合には、N-メチル-2-ピロリドン(NMP)を溶剤に用いることが好ましい。 The solvent is not particularly limited, and a solvent generally used in a lithium secondary battery can be used. The solvent is, for example, N-methyl-2-pyrrolidone (NMP), N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMA) and the like. When polyvinylidene fluoride (PVDF) is used as the binder, it is preferable to use N-methyl-2-pyrrolidone (NMP) as the solvent.

<負極>
負極は、例えば、負極集電体と、当該負極集電体の一方又は両方の面に形成された負極活物質である金属リチウムとを備える。
<Negative electrode>
The negative electrode includes, for example, a negative electrode current collector and metallic lithium which is a negative electrode active material formed on one or both surfaces of the negative electrode current collector.

負極集電体は、特に限定されるものではなく、公知又は市販のものを使用することできる。負極集電体は、例えば、銅又は銅合金からなる圧延箔、電解箔等である。 The negative electrode current collector is not particularly limited, and known or commercially available current collectors can be used. The negative electrode current collector is, for example, a rolled foil made of copper or a copper alloy, an electrolytic foil, or the like.

<非水電解質>
非水電解質は、液体状である場合、非水溶媒及び電解質を含む。
<Non-water electrolyte>
Non-aqueous electrolytes, when in liquid form, include non-aqueous solvents and electrolytes.

非水溶媒は、主成分として環状カーボネート及び鎖状カーボネートを含有する。環状カーボネートは、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、及びブチレンカーボネート(BC)から選ばれる少なくとも一つであることが好ましい。鎖状カーボネートは、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、及びエチルメチルカーボネート(EMC)等から選ばれる少なくとも一つであることが好ましい。 The non-aqueous solvent contains a cyclic carbonate and a chain carbonate as main components. The cyclic carbonate is preferably at least one selected from ethylene carbonate (EC), propylene carbonate (PC), and butylene carbonate (BC). The chain carbonate is preferably at least one selected from dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC) and the like.

電解質は、特に限定されるものではなく、リチウム二次電池で一般に用いられるリチウム塩の電解質を用いることができる。電解質は、例えば、LiPF、LiAsF、LiBF、LiCFSO、LiN(C2m+1SO)(C2n+1SO)(m、nは1以上の整数)、LiC(C2p+1SO)(C2q+1SO)(C2r+1SO)(p、q、rは1以上の整数)、ジフルオロ(オキサラト)ホウ酸リチウム等である。これらの電解質は、一種類で使用してもよく、また二種類以上組み合わせて使用してもよい。また、この電解質は非水溶媒に対して0.1~1.5モル/L、好ましくは0.5~1.5モル/Lの濃度で溶解することが望ましい。 The electrolyte is not particularly limited, and a lithium salt electrolyte generally used in a lithium secondary battery can be used. The electrolytes are, for example, LiPF 6 , LiAsF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (Cm F 2m + 1 SO 2 ) (C n F 2n + 1 SO 2 ) (m, n are integers of 1 or more), LiC (C). p F 2p + 1 SO 2 ) (C q F 2q + 1 SO 2 ) (Cr F 2r + 1 SO 2 ) (p, q, r are integers of 1 or more), difluoro (oxalate) lithium borate, and the like. These electrolytes may be used alone or in combination of two or more. Further, it is desirable that this electrolyte is dissolved in a non-aqueous solvent at a concentration of 0.1 to 1.5 mol / L, preferably 0.5 to 1.5 mol / L.

<セパレータ>
セパレータは、ポリエチレン樹脂、ポリプロピレン樹脂などのポリオレフィン樹脂の微多孔膜又は不織布を用いることができる。微多孔膜又は不織布は単層であっても、多層構造であってもよい。特にセパレータは、微多孔質ポリプロピレン膜であることが好ましい。
<Separator>
As the separator, a microporous membrane of a polyolefin resin such as polyethylene resin or polypropylene resin or a non-woven fabric can be used. The microporous membrane or non-woven fabric may have a single layer or a multi-layer structure. In particular, the separator is preferably a microporous polypropylene film.

<充放電条件>
リチウム二次電池の組立後の充放電を放電から始め、初回放電時の放電カットオフ電圧を、リチウムの酸化還元電位を基準にして1.0V以上2.0V以下に設定する。
初回放電時の放電カットオフ電圧が、リチウムの酸化還元電位を基準にして2.0Vを超えると、初回放電時に、負極の金属リチウム表面の不活性被膜を除去するために必要な放電容量を得ることができない。
他方、初回放電時の放電カットオフ電圧が、リチウムの酸化還元電位を基準にして1.0V未満に設定すると、初回放電時に、正極活物質中の例えばFe2+又はMn2+が、負極から放出されたリチウムイオンにより還元され、初回放電後の充放電において、正極に含まれる利用可能な正極活物質の量が減少する虞がある。
<Charging / discharging conditions>
The charge / discharge after assembly of the lithium secondary battery is started from the discharge, and the discharge cutoff voltage at the time of the initial discharge is set to 1.0 V or more and 2.0 V or less based on the redox potential of lithium.
When the discharge cutoff voltage at the time of the first discharge exceeds 2.0 V with respect to the redox potential of lithium, the discharge capacity required for removing the inert film on the metallic lithium surface of the negative electrode is obtained at the time of the first discharge. Can't.
On the other hand, when the discharge cutoff voltage at the time of the first discharge is set to less than 1.0 V based on the oxidation-reduction potential of lithium, for example, Fe 2+ or Mn 2+ in the positive electrode active material is discharged from the negative electrode at the time of the first discharge. It is reduced by the lithium ions, and there is a risk that the amount of available positive electrode active material contained in the positive electrode will decrease in the charge and discharge after the initial discharge.

実施形態に係るリチウム二次電池の形状は特に限定されないが、例えばコイン型、ボタン型、シート型、積層型、円筒型、角形、扁平型等が挙げられる。 The shape of the lithium secondary battery according to the embodiment is not particularly limited, and examples thereof include a coin type, a button type, a sheet type, a laminated type, a cylindrical type, a square type, and a flat type.

以下、コイン型のリチウム二次電池を例にして、実施形態に係るリチウム二次電池の構造を、図面を参照して説明する。図1は、コイン型のリチウム二次電池の一例を示す断面図である。 Hereinafter, the structure of the lithium secondary battery according to the embodiment will be described with reference to the drawings, taking a coin-type lithium secondary battery as an example. FIG. 1 is a cross-sectional view showing an example of a coin-type lithium secondary battery.

コイン型のリチウム二次電池1は、正極2と、負極3と、それら正極2及び負極3の間に配置されたセパレータ4とを備える。これら正極2、負極3及びセパレータ4は、下部側に位置する第1外部端子5と上部側に位置する第2外部端子6の間に収納されている。当該第1外部端子5及び当該第2外部端子6の当接部位は、ガスケット7により絶縁されている。
正極2は、第1外部端子5の内面に位置してそれと接続される正極集電体21と、当該正極集電体21のセパレータ4と対向する面に設けられた正極層22とから構成されている。負極3は、第2外部端子6の内面に位置してそれと接続される負極集電体31と、当該負極集電体31のセパレータ4と対向する面に設けられた、金属リチウムからなる負極層32とから構成されている。セパレータ4は、例えば非水電解質に含浸されている。第2外部端子6は、その端部がその下端及び両側面をガスケット7で包んだ状態で第1外部端子5内に挿入され、下部側の第1外部端子5の開口端をガスケット7側に湾曲させて第2外部端子6を第1外部端子5にかしめ固定するとともに、第1外部端子5及び第2外部端子6の当接部位をガスケット7により絶縁している。
The coin-type lithium secondary battery 1 includes a positive electrode 2, a negative electrode 3, and a separator 4 arranged between the positive electrode 2 and the negative electrode 3. The positive electrode 2, the negative electrode 3, and the separator 4 are housed between the first external terminal 5 located on the lower side and the second external terminal 6 located on the upper side. The contact portion between the first external terminal 5 and the second external terminal 6 is insulated by a gasket 7.
The positive electrode 2 is composed of a positive electrode current collector 21 located on the inner surface of the first external terminal 5 and connected to the positive electrode current collector 21, and a positive electrode layer 22 provided on a surface of the positive electrode current collector 21 facing the separator 4. ing. The negative electrode 3 is a negative electrode layer made of metallic lithium provided on a surface facing the separator 4 of the negative electrode current collector 31 and a negative electrode current collector 31 located on the inner surface of the second external terminal 6 and connected to the negative electrode current collector 31. It is composed of 32 and. The separator 4 is impregnated with, for example, a non-aqueous electrolyte. The second external terminal 6 is inserted into the first external terminal 5 with its lower end and both side surfaces wrapped in the gasket 7, and the open end of the lower first external terminal 5 is on the gasket 7 side. The second external terminal 6 is curved and crimped and fixed to the first external terminal 5, and the contact portions of the first external terminal 5 and the second external terminal 6 are insulated by the gasket 7.

以下、本発明を、実施例を用いて詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to examples.

(実施例1~5及び比較例1~3)
[正極Aの作製]
酸素の含有割合が50原子%のグラフェン1.0質量%と、正極活物質であるリン酸マンガン鉄リチウム(LiMn0.7Fe0.3PO)80質量%とを混合して正極層材料を調製した。つづいて、当該正極層材料に導電助剤であるアセチレンブラック9.0質量%、結着剤であるポリフッ化ビニリデン(PVDF)10質量%をそれぞれ添加して混合した後、当該混合物に溶剤としてN-メチル-2-ピロリドン(NMP)を添加して正極スラリーを調製した。次に、集電体であるアルミニウム箔上に正極スラリーを塗布し、80℃で乾燥した。その後、電極密度が1.8g/ccになるまでプレス加工して正極Aを作製した。
(Examples 1 to 5 and Comparative Examples 1 to 3)
[Preparation of positive electrode A]
A positive electrode layer material in which 1.0% by mass of graphene having an oxygen content of 50 atomic% and 80% by mass of lithium manganese iron phosphate (LiMn 0.7 Fe 0.3 PO 4 ), which is a positive electrode active material, are mixed. Was prepared. Subsequently, 9.0% by mass of acetylene black, which is a conductive auxiliary agent, and 10% by mass of polyvinylidene fluoride (PVDF), which is a binder, were added to the positive electrode layer material and mixed, and then N was added to the mixture as a solvent. -Methyl-2-pyrrolidone (NMP) was added to prepare a positive electrode slurry. Next, the positive electrode slurry was applied onto the aluminum foil which is a current collector, and dried at 80 ° C. Then, the positive electrode A was produced by press working until the electrode density became 1.8 g / cc.

[正極Bの作製]
酸素の含有割合が50原子%のグラフェン2.0質量%と、正極活物質であるLiMn0.7Fe0.3PO80質量%と、導電助剤であるアセチレンブラック8.0質量%と、結着剤であるPVDF10質量%を用いた以外、前記正極Aの作製方法と同様な方法により正極Bを作製した。
[Preparation of positive electrode B]
Graphene with an oxygen content of 50 atomic% is 2.0% by mass, LiMn 0.7 Fe 0.3 PO 480 % by mass, which is a positive electrode active material, and acetylene black 8.0% by mass, which is a conductive auxiliary agent. The positive electrode B was produced by the same method as the method for producing the positive electrode A, except that 10% by mass of PVDF, which is a binder, was used.

[正極Cの作製]
酸素の含有割合が50原子%のグラフェン5.0質量%と、正極活物質であるLiMn0.7Fe0.3PO80質量%と、導電助剤であるアセチレンブラック5.0質量%と、結着剤であるPVDF10質量%を用いた以外、前記正極Aの作製方法と同様な方法により正極Cを作製した。
[Preparation of positive electrode C]
Graphene with an oxygen content of 50 atomic% 5.0% by mass, LiMn 0.7 Fe 0.3 PO 480 % by mass, which is a positive electrode active material, and acetylene black 5.0% by mass, which is a conductive auxiliary agent. The positive electrode C was produced by the same method as the method for producing the positive electrode A, except that 10% by mass of PVDF, which is a binder, was used.

[正極Dの作製]
正極活物質であるLiMn0.7Fe0.3PO80質量%と、導電助剤であるアセチレンブラック10質量%と、結着剤であるPVDF10質量%をそれぞれ添加して混合した後、当該混合物に溶剤としてN-メチル-2-ピロリドン(NMP)を添加して正極スラリーを調製した。なお、正極スラリー中にはグラフェンが含まれていない。次に、集電体としてのアルミニウム箔上に正極スラリーを塗布し、80℃で乾燥した。その後、電極密度が1.8g/ccになるまでプレス加工して正極Dを作製した。
[Preparation of positive electrode D]
LiMn 0.7 Fe 0.3 PO 480 % by mass, which is a positive electrode active material, 10% by mass of acetylene black, which is a conductive auxiliary agent, and 10% by mass of PVDF, which is a binder, are added and mixed, and then the mixture is used. N-Methyl-2-pyrrolidone (NMP) was added to the mixture as a solvent to prepare a positive electrode slurry. Graphene is not contained in the positive electrode slurry. Next, the positive electrode slurry was applied onto the aluminum foil as a current collector and dried at 80 ° C. Then, a positive electrode D was produced by press working until the electrode density reached 1.8 g / cc.

[正極Eの作製]
酸素の含有割合が28原子%(30原子%未満)のグラフェン5.0質量%と、正極活物質であるLiMn0.7Fe0.3PO80質量%と、導電助剤であるアセチレンブラック5.0質量%と、結着剤であるPVDF10質量%を用いた以外、前記正極Aの作製方法と同様な方法により正極Eを作製した。
[Preparation of positive electrode E]
Graphene with an oxygen content of 28 atomic% (less than 30 atomic%) is 5.0% by mass, LiMn 0.7 Fe 0.3 PO 480 % by mass, which is a positive electrode active material, and acetylene black, which is a conductive auxiliary agent. A positive electrode E was produced by the same method as that for producing the positive electrode A, except that 5.0% by mass and 10% by mass of PVDF as a binder were used.

[負極の作製]
負極集電体であるとして銅合金圧延箔の一方の面に負極活物質である金属リチウムを形成し、負極を作製した。
[Manufacturing of negative electrode]
As a negative electrode current collector, metallic lithium, which is a negative electrode active material, was formed on one surface of a rolled copper alloy foil to prepare a negative electrode.

[走査型電子顕微鏡による正極層の観察]
前記正極A及びEの各正極層を、JEOL社製:型番JSM-7500の走査型電子顕微鏡を用いて観察した。その結果、図2に示すように、正極Aの正極層では、酸素の含有割合50原子%のグラフェンが凝集せずに分散していることが観察された。一方、図3に示すように、正極Eの正極層では、酸素の含有割合が28原子%のグラフェンが凝集していることが観察された。
[Observation of the positive electrode layer with a scanning electron microscope]
Each of the positive electrode layers of the positive electrodes A and E was observed using a scanning electron microscope manufactured by JEOL Ltd .: model number JSM-7500. As a result, as shown in FIG. 2, it was observed that graphene having an oxygen content of 50 atomic% was dispersed in the positive electrode layer of the positive electrode A without agglomeration. On the other hand, as shown in FIG. 3, it was observed that graphene having an oxygen content of 28 atomic% was aggregated in the positive electrode layer of the positive electrode E.

[評価セルの組立]
前記正極A~E及び負極を、それぞれ円形に打ち抜いた。セパレータは、微多孔質ポリプロピレン膜からなる。非水電解液は、LiPFをエチレンカーボネート(EC)、ジエチルカーボネート(DEC)の混合非水溶媒(体積比、EC:DEC=1:2)に1.0モル/L溶解させて調製した。
これら正極A~E、負極、セパレータ及び混合非水溶媒を用いて、図1に示す構造で、正極A~Eを備える評価セル(コイン型リチウム)をそれぞれ組立てた。
[Assembly of evaluation cell]
The positive electrodes A to E and the negative electrode were punched out in a circular shape. The separator is made of a microporous polypropylene membrane. The non-aqueous electrolytic solution was prepared by dissolving LiPF 6 in a mixed non-aqueous solvent (volume ratio, EC: DEC = 1: 2) of ethylene carbonate (EC) and diethyl carbonate (DEC) at 1.0 mol / L.
Using these positive electrodes A to E, the negative electrode, the separator, and the mixed non-aqueous solvent, evaluation cells (coin-type lithium) having positive electrodes A to E with the structure shown in FIG. 1 were assembled.

[定電流放電試験]
酸素の含有割合が30原子%以上50原子%以下のグラフェンを1.0質量%、2.0質量%、5.0質量%を含む正極層を有する正極A~Cを備える評価セルと、グラフェンを含まない正極層を有する正極Dを備える評価セルを、それぞれ1.5Vまで定電流放電させた。その結果、図4に示すように、酸素の割合が30原子%以上50原子%以下のグラフェンを含む割合が大きくなることによって、初回放電時の放電容量が増加することが確認された。
[Constant current discharge test]
An evaluation cell having positive electrodes A to C having a positive electrode layer containing 1.0% by mass, 2.0% by mass, and 5.0% by mass of graphene having an oxygen content of 30 atomic% or more and 50 atomic% or less, and graphene. The evaluation cells having the positive electrode D having the positive electrode layer not containing the above-mentioned cells were discharged at a constant current up to 1.5 V, respectively. As a result, as shown in FIG. 4, it was confirmed that the discharge capacity at the time of the initial discharge increases as the ratio of oxygen containing graphene of 30 atomic% or more and 50 atomic% or less increases.

[充放電サイクル試験]
正極A~Eを備える評価セルを用い、以下の充放電条件1~4で充放電サイクル試験を行なった。また、試験温度は30℃で行なった。下記表1には、正極A~Eを備える評価セルと充放電条件1~4の組合せ、及び各評価セルの180サイクル目放電容量と放電容量維持率の測定結果を示す。
[Charge / discharge cycle test]
Using the evaluation cells provided with the positive electrodes A to E, the charge / discharge cycle test was performed under the following charge / discharge conditions 1 to 4. The test temperature was 30 ° C. Table 1 below shows the combinations of the evaluation cells provided with the positive electrodes A to E and the charge / discharge conditions 1 to 4, and the measurement results of the 180th cycle discharge capacity and the discharge capacity retention rate of each evaluation cell.

放電容量維持率の計算式を(1)式に示す。
放電容量維持率(%)=
(180サイクル目の放電容量/4サイクル目の放電容量)×100…(1)
(充放電条件1)
初回 :1.5Vまで0.1C放電 (1回)
活性化 :4.5Vまで0.1C充電、2.5Vまで0.1C放電 (3回)
サイクル:4.5Vまで1.0C充電、2.5Vまで1.0C放電 (180回)
(充放電条件2)
初回 :1.9Vまで0.1C放電 (1回)
活性化 :4.5Vまで0.1C充電、2.5Vまで0.1C放電 (3回)
サイクル:4.5Vまで1.0C充電、2.5Vまで1.0C放電 (180回)
(充放電条件3)
初回 :0.5Vまで0.1C放電 (1回)
活性化 :4.5Vまで0.1C充電、2.5Vまで0.1C放電 (3回)
サイクル:4.5Vまで1.0C充電、2.5Vまで1.0C放電 (180回)
(充放電条件4)
初回 :4.5Vまで0.1C充電、2.5Vまで0.1C放電 (1回)
活性化 :4.3Vまで0.1C充電、2.5Vまで0.1C放電 (2回)
サイクル:4.3Vまで1.0C充電、2.5Vまで1.0C放電 (180回)

Figure 0007031097000001
The calculation formula of the discharge capacity retention rate is shown in the formula (1).
Discharge capacity retention rate (%) =
(Discharge capacity at the 180th cycle / Discharge capacity at the 4th cycle) × 100 ... (1)
(Charging / discharging condition 1)
First time: 0.1C discharge up to 1.5V (once)
Activation: 0.1C charge up to 4.5V, 0.1C discharge up to 2.5V (3 times)
Cycle: 1.0C charge up to 4.5V, 1.0C discharge up to 2.5V (180 times)
(Charging / discharging condition 2)
First time: 0.1C discharge up to 1.9V (once)
Activation: 0.1C charge up to 4.5V, 0.1C discharge up to 2.5V (3 times)
Cycle: 1.0C charge up to 4.5V, 1.0C discharge up to 2.5V (180 times)
(Charging / discharging condition 3)
First time: 0.1C discharge up to 0.5V (once)
Activation: 0.1C charge up to 4.5V, 0.1C discharge up to 2.5V (3 times)
Cycle: 1.0C charge up to 4.5V, 1.0C discharge up to 2.5V (180 times)
(Charging / discharging condition 4)
First time: 0.1C charge up to 4.5V, 0.1C discharge up to 2.5V (once)
Activation: 0.1C charge up to 4.3V, 0.1C discharge up to 2.5V (twice)
Cycle: 1.0C charge up to 4.3V, 1.0C discharge up to 2.5V (180 times)
Figure 0007031097000001

前記表1から明らかなように、酸素の含有割合が30原子%以上50原子%以下のグラフェンを含む正極層を有する正極A~Cを備える評価セルを用い、各セルを充放電条件1(初回放電のカットオフ電圧を、リチウムの酸化還元電位を基準にして1.5Vに設定)で充放電を行なった実施例1~3は、充放電時のリチウムのデンドライト状の成長を抑制ないし防止され、かつ出力特性が向上されたため、180サイクル目において高い放電容量と、高い放電容量維持率の両方を示したこと、すなわち充放電サイクル特性が向上したことがわかる。 As is clear from Table 1, evaluation cells having positive electrodes A to C having a positive electrode layer containing graphene having an oxygen content of 30 atomic% or more and 50 atomic% or less are used, and each cell is charged / discharged under condition 1 (first time). In Examples 1 to 3 in which the discharge cutoff voltage is set to 1.5 V based on the oxidation-reduction potential of lithium), the dendrite-like growth of lithium during charge / discharge is suppressed or prevented. Moreover, since the output characteristics were improved, it can be seen that both the high discharge capacity and the high discharge capacity retention rate were shown at the 180th cycle, that is, the charge / discharge cycle characteristics were improved.

また、酸素の含有割合が30原子%以上50原子%以下のグラフェンを含む正極層を有する正極A、Bを備える評価セルを用い、各セルを充放電条件2(初回放電のカットオフ電圧を、リチウムの酸化還元電位を基準にして1.9Vに設定)で充放電を行なった実施例4、5も、充放電時のリチウムのデンドライト状の成長を抑制ないし防止され、かつ出力特性が向上されたため、180サイクル目において高い放電容量と、高い放電容量維持率の両方を示したこと、すなわち充放電サイクル特性が向上したことがわかる。 Further, using evaluation cells including positive electrodes A and B having a positive electrode layer containing graphene having an oxygen content of 30 atomic% or more and 50 atomic% or less, each cell is charged / discharged under the charge / discharge condition 2 (the cutoff voltage of the initial discharge is set. Examples 4 and 5 in which charging and discharging were performed at 1.9V based on the oxidation-reduction potential of lithium also suppressed or prevented the dendrite-like growth of lithium during charging and discharging, and improved the output characteristics. Therefore, it can be seen that both the high discharge capacity and the high discharge capacity retention rate were shown at the 180th cycle, that is, the charge / discharge cycle characteristics were improved.

これに対し、グラフェンを含まない正極層を有する正極Dを備える評価セルを用い、当該セルを充放電条件4(初回放電なし)で充放電を行なう比較例1は、180サイクル目において低い放電容量と、低い放電容量維持率の両方を示したことがわかる。これは、電池組立直後の初回放電がないために、負極の金属リチウム表面に形成された炭酸リチウム又は水酸化リチウムのような不活性被膜を破壊して除去できなかったためと推定される。 On the other hand, in Comparative Example 1 in which an evaluation cell including a positive electrode D having a positive electrode layer containing no graphene is used and the cell is charged / discharged under charge / discharge condition 4 (no initial discharge), the discharge capacity is low at the 180th cycle. It can be seen that both the low discharge capacity retention rate and the low discharge capacity retention rate were shown. It is presumed that this is because the inert film such as lithium carbonate or lithium hydroxide formed on the metallic lithium surface of the negative electrode could not be destroyed and removed because there was no initial discharge immediately after battery assembly.

また、酸素の含有割合が30原子%以上50原子%以下のグラフェンを含む正極層を有する正極A、Bを備える評価セルを用い、各セルを充放電条件2(初回放電のカットオフ電圧を、リチウムの酸化還元電位を基準にして0.5Vに設定)で充放電を行なう比較例2、3も、180サイクル目において低い放電容量と、低い放電容量維持率の両方を示したことがわかる。これは、初回放電時のカットオフ電圧が1.0V未満であるため、正極活物質中のFe2+又はMn2+が、負極から放出されたリチウムイオンにより還元され、初回放電後の充放電において、正極に含まれる利用可能な正極活物質の量が減少したためと推定される。 Further, using evaluation cells including positive electrodes A and B having a positive electrode layer containing a graphene having an oxygen content of 30 atomic% or more and 50 atomic% or less, each cell is charged / discharged under the charge / discharge condition 2 (the cutoff voltage of the initial discharge is set. It can be seen that Comparative Examples 2 and 3 in which charging / discharging is performed at 0.5 V based on the oxidation-reduction potential of lithium also show both a low discharge capacity and a low discharge capacity retention rate at the 180th cycle. This is because the cutoff voltage at the time of the initial discharge is less than 1.0 V, so that Fe 2+ or Mn 2+ in the positive electrode active material is reduced by the lithium ions released from the negative electrode, and in the charge / discharge after the initial discharge, It is presumed that the amount of available positive electrode active material contained in the positive electrode has decreased.

また、酸素の含有割合が28原子%(30原子%未満)のグラフェンを含む正極層を有する正極Eを備える評価セルを用い、当該セルを充放電条件1(初回放電のカットオフ電圧を、リチウムの酸化還元電位を基準にして1.5Vに設定)で充放電を行なう比較例4は、酸素の含有割合が50原子%のグラフェンを含む正極層を有する正極Cを備える評価セルを用い、当該セルを充放電条件1で充放電を行なう実施例3と比較して、180サイクル目において低い放電容量と、低い放電容量維持率の両方を示したことがわかる。これは、正極層にグラフェンが凝集し、初回放電後にグラフェンが導電剤として機能しても前述した導電ネットワークを形成することが困難になると推定される。 Further, using an evaluation cell having a positive electrode E having a positive electrode layer containing graphene having an oxygen content of 28 atomic% (less than 30 atomic%), the cell is charged / discharged under condition 1 (cutoff voltage of initial discharge is lithium). In Comparative Example 4 in which charging / discharging is performed at 1.5 V based on the oxidation-reduction potential of the above, an evaluation cell including a positive electrode C having a positive electrode layer containing graphene having an oxygen content of 50 atomic% is used. It can be seen that both the low discharge capacity and the low discharge capacity retention rate were shown in the 180th cycle as compared with Example 3 in which the cell was charged and discharged under the charge / discharge condition 1. It is presumed that this is because graphene aggregates on the positive electrode layer, and even if graphene functions as a conductive agent after the initial discharge, it becomes difficult to form the above-mentioned conductive network.

1…リチウム二次電池、2…正極、21…正極集電体、22…正極層、3…負極、31…負極集電体、32…負極層、4…セパレータ、5…第1外部端子、6…第2外部端子、7…ガスケット 1 ... Lithium secondary battery, 2 ... Positive electrode, 21 ... Positive electrode current collector, 22 ... Positive electrode layer, 3 ... Negative electrode, 31 ... Negative electrode current collector, 32 ... Negative electrode layer, 4 ... Separator, 5 ... First external terminal, 6 ... 2nd external terminal, 7 ... Gasket

Claims (3)

正極、及び金属リチウムを含む負極を備えたリチウム二次電池の充放電方法であって、
前記正極は、集電体と、当該集電体の一方又は両方の面に形成された正極層とを備え、
前記正極層は、酸素の含有割合が30原子%以上50原子%以下のグラフェンと、正極活物質とを含み、
前記リチウム二次電池の組立後の充放電を放電から始め、初回放電時の放電カットオフ電圧を、リチウムの酸化還元電位を基準にして1.0V以上2.0V以下に設定することを特徴とするリチウム二次電池の充放電方法。
A method for charging and discharging a lithium secondary battery including a positive electrode and a negative electrode containing metallic lithium.
The positive electrode includes a current collector and a positive electrode layer formed on one or both surfaces of the current collector.
The positive electrode layer contains graphene having an oxygen content of 30 atomic% or more and 50 atomic% or less, and a positive electrode active material.
The feature is that the charge / discharge after assembly of the lithium secondary battery is started from discharge, and the discharge cutoff voltage at the time of initial discharge is set to 1.0 V or more and 2.0 V or less based on the oxidation-reduction potential of lithium. How to charge and discharge the lithium secondary battery.
前記正極活物質は、コバルト酸リチウム、マンガン酸リチウム、ニッケルコバルトマンガン酸リチウム、及びリン酸鉄リチウムの群から選ばれる少なくとも1つのリチウム含有化合物であることを特徴とする請求項1に記載のリチウム二次電池の充放電方法。 The lithium according to claim 1, wherein the positive electrode active material is at least one lithium-containing compound selected from the group of lithium cobalt oxide, lithium manganate, lithium nickel cobalt manganate, and lithium iron phosphate. How to charge and discharge the secondary battery. 前記グラフェンは前記正極層の総量に対して1.0質量%以上10質量%以下の割合で含まれることを特徴とする請求項1又は2に記載のリチウム二次電池の充放電方法。 The charging / discharging method for a lithium secondary battery according to claim 1 or 2, wherein the graphene is contained in a proportion of 1.0% by mass or more and 10% by mass or less with respect to the total amount of the positive electrode layer.
JP2018140514A 2018-07-26 2018-07-26 Charging / discharging method of lithium secondary battery Active JP7031097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018140514A JP7031097B2 (en) 2018-07-26 2018-07-26 Charging / discharging method of lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018140514A JP7031097B2 (en) 2018-07-26 2018-07-26 Charging / discharging method of lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2020017438A JP2020017438A (en) 2020-01-30
JP7031097B2 true JP7031097B2 (en) 2022-03-08

Family

ID=69581600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018140514A Active JP7031097B2 (en) 2018-07-26 2018-07-26 Charging / discharging method of lithium secondary battery

Country Status (1)

Country Link
JP (1) JP7031097B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017016905A (en) 2015-07-01 2017-01-19 古河電池株式会社 Charging/discharging method for lithium secondary battery
JP2017199670A (en) 2016-04-21 2017-11-02 東レ株式会社 Positive electrode material for lithium ion battery, method for manufacturing the same, positive electrode for lithium ion battery, and lithium ion battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017016905A (en) 2015-07-01 2017-01-19 古河電池株式会社 Charging/discharging method for lithium secondary battery
JP2017199670A (en) 2016-04-21 2017-11-02 東レ株式会社 Positive electrode material for lithium ion battery, method for manufacturing the same, positive electrode for lithium ion battery, and lithium ion battery

Also Published As

Publication number Publication date
JP2020017438A (en) 2020-01-30

Similar Documents

Publication Publication Date Title
JP5882516B2 (en) Lithium secondary battery
JP4035760B2 (en) Nonaqueous electrolyte secondary battery
JP2012022794A (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP5505479B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
JP2014225326A (en) Nonaqueous electrolyte secondary battery
JP6077345B2 (en) Non-aqueous secondary battery positive electrode material, non-aqueous secondary battery positive electrode and non-aqueous secondary battery
CN110556521B (en) Silicon anode material
WO2019181278A1 (en) Lithium secondary battery
JP6051038B2 (en) Foil for positive electrode current collector of lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP3579280B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery provided with this negative electrode
JP5620499B2 (en) Non-aqueous electrolyte battery
JP2012084426A (en) Nonaqueous electrolyte secondary battery
JP2016177948A (en) Negative electrode and nonaqueous electrolyte battery
JP5668667B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
JP6646370B2 (en) Charge / discharge method of lithium secondary battery
JP3968772B2 (en) Non-aqueous electrolyte battery
JP7003775B2 (en) Lithium ion secondary battery
JP6668848B2 (en) Lithium ion secondary battery
JP6567442B2 (en) Lithium secondary battery charge / discharge method
JP2007172878A (en) Battery and its manufacturing method
JP2004296305A (en) Lithium ion secondary battery
JP7031097B2 (en) Charging / discharging method of lithium secondary battery
JP6961939B2 (en) Negative electrode agent for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2004273132A (en) Electrode and battery using the same
JP7484884B2 (en) Nonaqueous electrolyte storage element and storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220131

R150 Certificate of patent or registration of utility model

Ref document number: 7031097

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150