JP2020017438A - Method for charging/discharging lithium secondary battery - Google Patents

Method for charging/discharging lithium secondary battery Download PDF

Info

Publication number
JP2020017438A
JP2020017438A JP2018140514A JP2018140514A JP2020017438A JP 2020017438 A JP2020017438 A JP 2020017438A JP 2018140514 A JP2018140514 A JP 2018140514A JP 2018140514 A JP2018140514 A JP 2018140514A JP 2020017438 A JP2020017438 A JP 2020017438A
Authority
JP
Japan
Prior art keywords
positive electrode
lithium
discharge
secondary battery
discharging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018140514A
Other languages
Japanese (ja)
Other versions
JP7031097B2 (en
Inventor
冬 丁
Dong Ding
冬 丁
昌明 久保田
Masaaki Kubota
昌明 久保田
雄太 前吉
Yuta Maeyoshi
雄太 前吉
聖志 金村
Kiyoshi Kanemura
聖志 金村
阿部 英俊
Hidetoshi Abe
英俊 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABRI Co Ltd Advanced Battery Research Institute
Original Assignee
ABRI Co Ltd Advanced Battery Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABRI Co Ltd Advanced Battery Research Institute filed Critical ABRI Co Ltd Advanced Battery Research Institute
Priority to JP2018140514A priority Critical patent/JP7031097B2/en
Publication of JP2020017438A publication Critical patent/JP2020017438A/en
Application granted granted Critical
Publication of JP7031097B2 publication Critical patent/JP7031097B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

To provide a method for charging/discharging a lithium secondary battery, capable of suppressing or preventing a dendrite growth in lithium during charge/discharge, and further achieving an improvement in charge/discharge cycle characteristics and high capacity by increasing output.SOLUTION: A lithium secondary battery includes a positive electrode, and a negative electrode containing metal lithium. The positive electrode includes a current collector and a positive electrode layer formed on one side or both sides of the current collector. The positive electrode layer contains a positive electrode active material and graphene having an oxygen content of 30 atom% or more and 50 atom% or less. In a method for charging/discharging the lithium secondary battery, charge/discharge after the lithium secondary battery has been assembled is started from discharge, and a discharge cut-off voltage in initial discharge is set to 1.0 V or more and 2.0 V or less based on the oxidation-reduction potential of lithium.SELECTED DRAWING: Figure 1

Description

本発明は、リチウム二次電池の充放電方法に関する。   The present invention relates to a method for charging and discharging a lithium secondary battery.

リチウム二次電池は、現在実用化されている二次電池において、最も高いエネルギー密度を有する高性能二次電池であり、携帯電話やノート型パーソナルコンピュータのような携帯電子機器、電気自動車等の電源として搭載されている。リチウム二次電池は、これらの電源として高容量化、高性能化、高安全性、長寿命化などが求められている。   A lithium secondary battery is a high-performance secondary battery having the highest energy density among secondary batteries currently in practical use, and is used as a power source for portable electronic devices such as mobile phones and notebook personal computers, electric vehicles, and the like. It is installed as. Lithium secondary batteries are required to have high capacity, high performance, high safety, long life, etc. as these power supplies.

このようなリチウム二次電池は、正極と負極との間でリチウムイオンを移動させて充放電を行なう。正極及び負極は、それぞれ正極活物質、負極活物質を担持する集電体を備える。リチウム二次電池の正極活物質としては、現在、コバルト酸リチウム(LiCoO)、マンガン酸リチウム(LiMn)、ニッケル酸リチウム(LiNiO)、リン酸鉄リチウム(LiFePO)等のリチウムを含む金属酸化物又は金属リン酸化物が実用化され、又は商品化を目指して開発が進められている。負極活物質としては、グラファイトなどの炭素材料や、リチウムチタン酸化物(LiTi12)が用いられている。正極集電体は、アルミニウム箔が、負極集電体は、銅箔が一般的に用いられている。 Such a lithium secondary battery performs charge and discharge by moving lithium ions between a positive electrode and a negative electrode. Each of the positive electrode and the negative electrode includes a current collector that supports a positive electrode active material and a negative electrode active material. As a positive electrode active material of a lithium secondary battery, at present, lithium cobalt oxide (LiCoO 2 ), lithium manganate (LiMn 2 O 4 ), lithium nickelate (LiNiO 2 ), lithium iron phosphate (LiFePO 4 ) and the like are used. Metal oxides or metal phosphorus oxides containing are commercially available or are being developed for commercialization. As the negative electrode active material, a carbon material such as graphite, or lithium titanium oxide (Li 4 Ti 5 O 12 ) is used. Aluminum foil is generally used for the positive electrode current collector, and copper foil is generally used for the negative electrode current collector.

前記リチウム二次電池は、さらに正極と負極の間にセパレータが介在されている。セパレータは、一般的にポリオレフィンからなる微孔性薄膜が使用されている。正極、負極及びセパレータを含む極板群は、電池容器内に非水電解質とともに収納されている。非水電解質は、非水溶媒にリチウム塩等の電解質を溶解した非水電解液が一般的に使用されている。その他の非水電解質としては、ゲル状電解液又は固体電解質も注目されている。   In the lithium secondary battery, a separator is further interposed between a positive electrode and a negative electrode. Generally, a microporous thin film made of polyolefin is used for the separator. An electrode group including a positive electrode, a negative electrode, and a separator is housed in a battery container together with a nonaqueous electrolyte. As the non-aqueous electrolyte, a non-aqueous electrolyte in which an electrolyte such as a lithium salt is dissolved in a non-aqueous solvent is generally used. As other non-aqueous electrolytes, gel electrolytes or solid electrolytes have also attracted attention.

ところで、負極活物質である金属リチウムは単位重量当たりの電気量が3.86Ah/gと大きい特徴を持つ。このため、高いエネルギー密度を持つ、高容量のリチウム二次電池の実現のために、金属リチウムを負極活物質として用いる研究が再び進められている。   By the way, metallic lithium, which is a negative electrode active material, has such a feature that the amount of electricity per unit weight is as large as 3.86 Ah / g. For this reason, in order to realize a high-capacity lithium secondary battery having a high energy density, research using metal lithium as a negative electrode active material is being promoted again.

しかしながら、負極活物質に金属リチウムを用いるリチウム二次電池は、充放電の繰り返しにおいて負極の金属リチウム表面からリチウムがデンドライト状に成長し、デンドライト状のリチウムが正極と負極の間に介在したセパレータを貫通して正極に達し、内部短絡を起こす課題があった。   However, in a lithium secondary battery using metal lithium as the negative electrode active material, lithium grows in a dendrite shape from the metal lithium surface of the negative electrode during repeated charging and discharging, and the dendritic lithium forms a separator interposed between the positive electrode and the negative electrode. There was a problem that the electrode penetrated to the positive electrode to cause an internal short circuit.

このようなことから、例えば特許文献1には、正極活物質として主活物質であるリチウム含有化合物の他に、副活物質である、初回から放電可能な材料(例えば二酸化マンガン)を用いたリチウム二次電池が記載されている。このような特許文献1のリチウム二次電池は、組立後に初回から放電を行なうことができる。すなわち、初回放電時に負極から金属リチウムをリチウムイオンとして放出できる。このため、電池組立直後の負極の金属リチウム表面に形成された炭酸リチウム又は水酸化リチウムのような不活性被膜が除去される。その結果、初回放電後の充電時にはリチウムイオンが良好な表面状態を有する負極の金属リチウム表面に還元析出するため、負極の金属リチウム表面からリチウムがデンドライト状に成長するのを抑制することが可能になる。   For this reason, for example, Patent Literature 1 discloses that a lithium-containing compound (eg, manganese dioxide), which is a secondary active material and can be discharged from the beginning, in addition to a lithium-containing compound that is a main active material, is used as a positive electrode active material. A secondary battery is described. Such a lithium secondary battery of Patent Document 1 can be discharged from the first time after assembly. That is, metal lithium can be released as lithium ions from the negative electrode during the first discharge. Therefore, an inert coating such as lithium carbonate or lithium hydroxide formed on the surface of the lithium metal of the negative electrode immediately after the battery is assembled is removed. As a result, at the time of charging after the initial discharge, lithium ions are reduced and deposited on the metal lithium surface of the negative electrode having a favorable surface state, so that it is possible to suppress the lithium from growing in a dendritic form from the metal lithium surface of the negative electrode. Become.

また、特許文献2には、正極活物質として副活物質である、初回から放電可能な材料、LiMn5−xM112(ここで、M1はCo、Ni、Fe、Cu、Mg、Zn、Al、Cr及びGaからなる群より選ばれる少なくとも1つ以上の元素、xは0≦x<5、である)、例えばLiMn12を用いたリチウム二次電池が記載されている。特許文献2のリチウム二次電池も、特許文献1のリチウム二次電池と同様、組立後に初回から放電を行なうことができる。さらに、非特許文献1には、上記LiMn12の単位重量当たりの電気量は250mAh/g程度であることが記載されている。 Further, Patent Document 2 discloses a material which can be discharged from the beginning, Li 4 Mn 5-x M1 x O 12 (where M1 is Co, Ni, Fe, Cu, Mg) , Zn, Al, Cr and Ga, x is 0 ≦ x <5), for example, a lithium secondary battery using Li 4 Mn 5 O 12 is described. ing. Similarly to the lithium secondary battery of Patent Literature 1, the lithium secondary battery of Patent Literature 2 can discharge electricity from the first time after assembly. Further, Non-Patent Document 1 describes that the amount of electricity per unit weight of the Li 4 Mn 5 O 12 is about 250 mAh / g.

特開2017−16905号公報JP 2017-16905 A 特開2017−68966号公報JP-A-2017-68966

岡田昌樹、阪口雄哉 「リチウムイオン二次電池用高容量LiMn酸化物正極材料に関する考察」 東ソー研究・技術報告 2016年 Vol.60 p.21〜28Masaki Okada, Yuya Sakaguchi “Study on High-Capacity LiMn Oxide Cathode Materials for Lithium-Ion Secondary Batteries” Tosoh Research and Technical Report 2016 Vol. 60 p. 21-28

しかしながら、上記特許文献1に開示された、副活物質として初回から放電可能な材料である二酸化マンガンは、初回放電以降の充放電には関与しない。そのため、副活物質として二酸化マンガンを含む正極活物質は、主活物質の割合が相対的に減少し、リチウム二次電池の放電容量を低下させる課題があった。   However, manganese dioxide, which is a material that can be discharged from the first time as a sub-active material, disclosed in Patent Document 1, does not participate in charge and discharge after the first discharge. Therefore, in the positive electrode active material containing manganese dioxide as a secondary active material, the ratio of the main active material is relatively reduced, and there is a problem that the discharge capacity of the lithium secondary battery is reduced.

また、上記特許文献2に開示された、副活物質として初回から放電可能な材料、LiMn12は、上述したように250mAh/g程度の単位重量当たりの電気量であり、当該数値は比較的低い値である。このような単位重量当たりの電気量を有するLiMn12を含む正極を備えるリチウム二次電池は、初回放電時において、負極の金属リチウム表面に形成された不活性被膜を除去するために必要な放電容量を確保するために、正極活物質に占める当該LiMn12の割合を多くしなければならない。そのため、副活物質としてLiMn12を含む正極活物質も、主活物質の割合が相対的に減少し、リチウム二次電池の放電容量を低下させる課題があった。 Further, Li 4 Mn 5 O 12, which is a material that can be discharged from the first time as a sub-active material and is disclosed in Patent Document 2, has a quantity of electricity per unit weight of about 250 mAh / g as described above. Is a relatively low value. A lithium secondary battery provided with a positive electrode containing Li 4 Mn 5 O 12 having such an amount of electricity per unit weight has a function of removing an inert film formed on the surface of lithium metal of the negative electrode during the first discharge. In order to secure a necessary discharge capacity, the proportion of the Li 4 Mn 5 O 12 in the positive electrode active material must be increased. Therefore, also in the positive electrode active material containing Li 4 Mn 5 O 12 as a secondary active material, the ratio of the main active material is relatively reduced, and there is a problem that the discharge capacity of the lithium secondary battery is reduced.

従って、本発明は前記課題を解決し、充放電時のリチウムのデンドライト状の成長を抑制ないし防止でき、さらに高出力化による充放電サイクル特性の向上及び高容量化を達成したリチウム二次電池の充放電方法を提供するものである。   Therefore, the present invention solves the above-mentioned problems, and can suppress or prevent the dendrite-like growth of lithium during charge / discharge, and further improve the charge / discharge cycle characteristics and increase the capacity of the lithium secondary battery by increasing the output. A charge / discharge method is provided.

上記の課題を解決するために、本発明によると、正極、及び金属リチウムを含む負極を備えたリチウム二次電池の充放電方法であって、前記正極は、集電体と、当該集電体の一方又は両方の面に形成された正極層とを備え、前記正極層は、酸素の含有割合が30原子%以上50原子%以下のグラフェンと、正極活物質とを含み、前記リチウム二次電池の組立後の充放電を放電から始め、初回放電時の放電カットオフ電圧を、リチウムの酸化還元電位を基準にして1.0V以上2.0V以下に設定することを特徴とするリチウム二次電池の充放電方法が提供される。   According to the present invention, there is provided a method for charging and discharging a lithium secondary battery including a positive electrode and a negative electrode including metallic lithium, wherein the positive electrode includes a current collector and the current collector. A positive electrode layer formed on one or both surfaces of the lithium secondary battery, wherein the positive electrode layer includes graphene having an oxygen content of 30 atomic% or more and 50 atomic% or less, and a positive electrode active material; A rechargeable lithium battery comprising: starting charging / discharging after assembling from a discharge, and setting a discharge cutoff voltage at the time of an initial discharge to 1.0 V or more and 2.0 V or less based on a redox potential of lithium. Is provided.

本発明によれば、充放電時のリチウムのデンドライト状の成長を抑制ないし防止でき、さらに高出力化による充放電サイクル特性の向上及び高容量化を達成したリチウム二次電池の充放電方法を提供できる。   According to the present invention, there is provided a charge / discharge method for a lithium secondary battery which can suppress or prevent the dendrite-like growth of lithium during charge / discharge, and further achieve improvement in charge / discharge cycle characteristics and high capacity by increasing output. it can.

図1は、実施形態に係るコイン型のリチウム二次電池の一例を示す断面図である。FIG. 1 is a cross-sectional view illustrating an example of a coin-type lithium secondary battery according to the embodiment. 図2は、正極Aの正極層の一部の走査型電子顕微鏡写真である。FIG. 2 is a scanning electron micrograph of a part of the positive electrode layer of the positive electrode A. 図3は、正極Eの正極層の一部の走査型電子顕微鏡写真である。FIG. 3 is a scanning electron micrograph of a part of the positive electrode layer of the positive electrode E. 図4は、正極A〜Dを有する各評価セルを1.5Vまで放電させた定電流放電曲線を示すグラフである。FIG. 4 is a graph showing a constant current discharge curve in which each evaluation cell having positive electrodes A to D was discharged to 1.5V.

以下、実施形態に係るリチウム二次電池の充放電方法を詳細に説明する。   Hereinafter, a method for charging and discharging the lithium secondary battery according to the embodiment will be described in detail.

実施形態に係るリチウム二次電池の充放電方法は、正極、及び金属リチウムを含む負極を備え、正極は、集電体と、当該集電体の一方又は両方の面に形成された正極層とを備え、正極層は、酸素の含有割合が30原子%以上50原子%以下のグラフェンと、正極活物質とを含み、リチウム二次電池の組立後の充放電を放電から始め、初回放電時の放電カットオフ電圧を、リチウムの酸化還元電位を基準にして1.0V以上2.0V以下に設定することを特徴とする。このような実施形態に係るリチウム二次電池の充放電方法によれば、充放電時のリチウムのデンドライト状の成長を抑制ないし防止でき、さらに高出力化による充放電サイクル特性の向上及び高容量化を達成できる。   The method for charging and discharging a lithium secondary battery according to the embodiment includes a positive electrode, and a negative electrode including lithium metal.The positive electrode includes a current collector and a positive electrode layer formed on one or both surfaces of the current collector. The positive electrode layer includes graphene having an oxygen content of 30 atomic% or more and 50 atomic% or less, and a positive electrode active material, and starts charging and discharging after assembling a lithium secondary battery from discharge, and at the time of initial discharge. The discharge cutoff voltage is set to 1.0 V or more and 2.0 V or less based on the oxidation-reduction potential of lithium. According to the method of charging / discharging a lithium secondary battery according to such an embodiment, it is possible to suppress or prevent the dendrite-like growth of lithium during charging / discharging, and further improve the charge / discharge cycle characteristics and increase the capacity by increasing the output. Can be achieved.

すなわち、酸素の含有割合が30原子%以上50原子%以下のグラフェンは、1000mAh/gを超える放電容量を有する。そのため、当該グラフェンを含む正極を備えるリチウム二次電池は、当該電池組立後の充放電を放電から始めることが可能になり、初回放電時に、負極の金属リチウム表面からリチウムをイオンとして十分な量を放出するのに必要な放電容量を有する。また、初回放電時の放電カットオフ電圧を、リチウムの酸化還元電位を基準にして1.0V以上2.0V以下に設定してあるため、負極の金属リチウム表面からのリチウムイオンの放出量を増大できる。このように負極の金属リチウム表面からのリチウムイオンの放出量を増大できるため、負極の金属リチウム表面の炭酸リチウム又は水酸化リチウムのような不活性被膜を破壊して除去できる。その結果、初回放電後の充電において、正極活物質から放出されたリチウムイオンが負極の金属リチウム表面でリチウムを還元析出する際、金属リチウム表面は不活性被膜が除去されているため、リチウムは金属リチウム表面に偏って析出せず、金属リチウム表面に均一に析出する。それ故、充放電サイクルの繰り返しに伴って、負極に金属リチウム表面からリチウムがデンドライト状に成長するのを抑制ないし防止して、リチウムのデンドライト状の成長に伴う負極と正極間の内部短絡を防止できる。
前記初回放電では、負極の金属リチウム表面からリチウム(Li)がイオンとして非水電解質に放出され、セパレータを通して正極側に移動する。移動したリチウムイオンは、正極層に含まれるグラフェン中の酸素(例えば、グラフェンに結合している酸素原子を含む官能基)を還元する。正極層に含まれるグラフェンは、還元されると、還元前と比較して高い電気導電性を有するようになるため、初回放電後において、導電剤として機能する。また、酸素の含有割合が30原子%以上50原子%以下のグラフェンは、例えばN−メチル−2−ピロリドン(NMP)のような極性溶媒中において、当該グラフェン中の酸素(例えば、グラフェンに結合している酸素原子を含む官能基)がマイナスに帯電するため、当該グラフェン同士が互いに反発して分散する。すなわち、前記グラフェンは、極性溶媒中において凝集し難く、高い分散性を示す。このようなグラフェンを含む溶剤(溶媒)に正極活物質などと共に添加して正極スラリーを調製し、当該正極スラリーを、正極集電体の一方又は両方の面に塗布し、乾燥することにより、グラフェンが良好に分散した正極層を集電体に形成できる。その結果、初回放電時に還元された導電剤として機能するグラフェンは、正極層の一部に局在することなく、正極層全体の集電体と正極活物質との間、及び正極活物質の間に介在させることができる。また、当該グラフェンは、SP2結合で結合した炭素原子が平面的に並んだ層状構造であるため、隣接する他のグラフェン、及び正極層にさらに配合される導電助剤と容易に結合できる。従って、当該グラフェンによって、集電体と正極活物質との間、及び正極活物質同士をそれぞれ電気的に繋ぐ導電ネットワークを形成することができる。それ故、正極において、導電ネットワークによりイオンの拡散と電子伝導による電荷の授受を向上できるため、リチウム二次電池を高出力化することができる。
That is, graphene having an oxygen content of 30 atomic% or more and 50 atomic% or less has a discharge capacity of more than 1000 mAh / g. Therefore, a lithium secondary battery including the graphene-containing positive electrode can start charging and discharging after the battery assembling from discharge, and at the time of initial discharge, a sufficient amount of lithium as ions from the surface of the metal lithium of the negative electrode. Has the necessary discharge capacity to release. In addition, since the discharge cutoff voltage at the time of the first discharge is set to be 1.0 V or more and 2.0 V or less based on the oxidation-reduction potential of lithium, the amount of lithium ions released from the metal lithium surface of the negative electrode is increased. it can. Since the amount of lithium ions released from the surface of the lithium metal of the negative electrode can be increased in this manner, an inactive coating such as lithium carbonate or lithium hydroxide on the surface of the lithium metal of the negative electrode can be broken and removed. As a result, in the charging after the initial discharge, when the lithium ions released from the positive electrode active material reduce and deposit lithium on the metal lithium surface of the negative electrode, the inactive film is removed from the metal lithium surface, so that lithium is It is not uniformly deposited on the lithium surface but is uniformly deposited on the metallic lithium surface. Therefore, with the repetition of the charge / discharge cycle, lithium is suppressed or prevented from growing on the negative electrode from the lithium metal surface in the form of dendrite, and an internal short circuit between the negative electrode and the positive electrode due to the dendritic growth of lithium is prevented. it can.
In the initial discharge, lithium (Li) is released as ions from the surface of the metallic lithium of the negative electrode to the nonaqueous electrolyte, and moves to the positive electrode side through the separator. The transferred lithium ions reduce oxygen in graphene contained in the positive electrode layer (for example, a functional group containing an oxygen atom bonded to graphene). When reduced, the graphene included in the positive electrode layer has higher electrical conductivity than before reduction, and thus functions as a conductive agent after the initial discharge. Graphene having an oxygen content of 30 atomic% or more and 50 atomic% or less can be combined with oxygen (e.g., bonded to graphene) in the graphene in a polar solvent such as N-methyl-2-pyrrolidone (NMP). Is charged negatively, the graphenes are repelled and dispersed. That is, the graphene hardly aggregates in a polar solvent and exhibits high dispersibility. A positive electrode slurry is prepared by adding a positive electrode active material or the like to such a solvent containing graphene, and the positive electrode slurry is applied to one or both surfaces of a positive electrode current collector and dried to obtain graphene. Can be formed on the current collector. As a result, graphene functioning as a conductive agent reduced at the time of the first discharge is not localized in a part of the positive electrode layer, but between the current collector of the entire positive electrode layer and the positive electrode active material, and between the positive electrode active material. Can be interposed. In addition, since the graphene has a layered structure in which carbon atoms bonded by an SP2 bond are arranged in a plane, the graphene can be easily bonded to another adjacent graphene and a conductive additive further mixed in the positive electrode layer. Therefore, a conductive network that electrically connects the current collector and the positive electrode active material and between the positive electrode active materials can be formed using the graphene. Therefore, in the positive electrode, the diffusion of ions and the transfer of electric charges by electronic conduction can be improved by the conductive network, so that the output of the lithium secondary battery can be increased.

金属リチウムは、単位重量当たりの電気量が3.86Ah/gと大きい。そのため、負極活物質として金属リチウムを含む負極を備えるリチウム二次電池は、高容量化できる。   Metal lithium has a large amount of electricity per unit weight of 3.86 Ah / g. Therefore, a lithium secondary battery including a negative electrode containing lithium metal as a negative electrode active material can have a high capacity.

以上説明した実施形態に係るリチウム二次電池の充放電方法によれば、充放電時のリチウムのデンドライト状の成長を抑制ないし防止でき、さらに高出力化による充放電サイクル特性の向上及び高容量化を達成できる。   According to the method of charging / discharging a lithium secondary battery according to the embodiment described above, it is possible to suppress or prevent lithium dendrite-like growth during charging / discharging, and to further improve charge / discharge cycle characteristics and increase capacity by increasing output. Can be achieved.

次に、実施形態に係る充放電方法に用いるリチウム二次電池の構成及び充放電条件について説明する。   Next, the configuration and charge / discharge conditions of the lithium secondary battery used in the charge / discharge method according to the embodiment will be described.

<正極>
正極は、正極集電体と、当該正極集電体の一方又は両方の面に形成された正極層とを備える。正極集電体は、特に限定されるものではなく、公知又は市販のものを使用することができる。正極集電体は、例えば、アルミニウムなどの金属箔、ラス加工又はエッチング処理された金属箔等である。
<Positive electrode>
The positive electrode includes a positive electrode current collector and a positive electrode layer formed on one or both surfaces of the positive electrode current collector. The positive electrode current collector is not particularly limited, and a known or commercially available positive electrode current collector can be used. The positive electrode current collector is, for example, a metal foil of aluminum or the like, a lath-processed or etched metal foil, or the like.

正極層は、酸素の含有割合が30原子%以上50原子%以下のグラフェンと、正極活物質とを含む。このようなグラフェンに含まれる酸素の含有割合は、X線光電子分光法(X−ray photoelectron spectroscopy:XPS)を用いて測定される。酸素の含有割合が30原子%以上50原子%以下のグラフェンは、例えばエポキシ基、カルボニル基、カルボキシル基、又はヒドロキシル基等の酸素原子を含む官能基を有するグラフェンである。   The positive electrode layer includes graphene having an oxygen content of 30 atomic% or more and 50 atomic% or less, and a positive electrode active material. The content ratio of oxygen contained in such graphene is measured using X-ray photoelectron spectroscopy (X-ray photoelectron spectroscopy: XPS). Graphene having an oxygen content of 30 atomic% or more and 50 atomic% or less is, for example, graphene having a functional group containing an oxygen atom such as an epoxy group, a carbonyl group, a carboxyl group, or a hydroxyl group.

酸素の含有割合が30原子%以上50原子%以下のグラフェンは、上述したように、極性溶媒中において高い分散性を示すため、正極層に良好に分散し、初回放電時に還元されて、導電剤として機能し、正極層中に導電ネットワークを形成できる。
酸素の含有割合が30原子%未満のグラフェンは、極性溶媒中において、当該グラフェン中の酸素がマイナスに帯電するものの、グラフェン同士が互いに反発し分散するほど、十分に帯電していない。そのため、正極層にグラフェンが凝集し、初回放電後にグラフェンが導電剤として機能しても前述した導電ネットワークを形成することが困難になる。他方、酸素の含有割合が50原子%を超えるグラフェンは、初回放電時に、含有される酸素の全てが還元されずに残留するため、導電剤として機能させることが困難になる。
As described above, graphene having an oxygen content of 30 atomic% or more and 50 atomic% or less has high dispersibility in a polar solvent, and thus is well dispersed in the positive electrode layer, is reduced at the time of the first discharge, and has a conductive agent. And a conductive network can be formed in the positive electrode layer.
Graphene having an oxygen content of less than 30 atomic% is not sufficiently charged in a polar solvent such that the oxygen in the graphene is negatively charged but the graphenes repel each other and disperse. Therefore, graphene aggregates in the positive electrode layer, and it becomes difficult to form the above-described conductive network even if graphene functions as a conductive agent after the first discharge. On the other hand, in graphene having an oxygen content of more than 50 atomic%, it is difficult to function as a conductive agent because all of the oxygen contained therein remains without being reduced during the initial discharge.

いくつかの実施形態において、酸素の含有割合が30原子%以上50原子%以下のグラフェンは、正極層の総量に対して1.0質量%以上10質量%以下の割合で含まれることが好ましい。より好ましい当該グラフェンの含有割合は、正極層の総量に対して1.0質量%以上5.0質量%以下、さらに好ましい当該グラフェンの含有割合は、正極層の総量に対して2.0質量%以上5.0質量%以下である。
正極層の総量に対して1.0質量%未満のグラフェンを含む正極層を備えるリチウム二次電池は、当該電池組立後の充放電を放電から始めることが困難になる。他方、正極層の総量に対して10質量%を超えるグラフェンを含む正極層を備えるリチウム二次電池は、正極層に占めるグラフェンの割合が多くなり、正極活物質の含有割合が相対的に少なくなるため、容量が低下する虞がある。
In some embodiments, graphene having an oxygen content of 30 atomic% or more and 50 atomic% or less is preferably contained in a ratio of 1.0 mass% to 10 mass% based on the total amount of the positive electrode layer. A more preferable content ratio of the graphene is 1.0% by mass or more and 5.0% by mass or less based on the total amount of the positive electrode layer, and a more preferable content ratio of the graphene is 2.0% by mass based on the total amount of the positive electrode layer. Not less than 5.0% by mass.
In a lithium secondary battery including a positive electrode layer containing less than 1.0% by mass of graphene based on the total amount of the positive electrode layer, it is difficult to start charging and discharging after the battery assembly from discharging. On the other hand, in a lithium secondary battery including a positive electrode layer containing graphene exceeding 10% by mass with respect to the total amount of the positive electrode layer, the ratio of graphene in the positive electrode layer increases and the content ratio of the positive electrode active material decreases relatively. Therefore, the capacity may be reduced.

このような酸素の含有割合が30原子%以上50原子%以下のグラフェンは、以下に説明する出発原料としてグラファイト粉末を用いて、例えばHummers法のような酸化法により製造することができる。
最初に、グラファイト粉末に過マンガン酸カリウム、濃硫酸溶液、過酸化水素水等を加え、当該グラファイト粉末を酸化し、酸化グラファイトを含む分散溶液を調製する。酸化グラファイトは、エポキシ基、カルボニル基、カルボキシル基、又はヒドロキシル基等の官能基を有するグラファイトである。
次に、酸化グラファイトを含む分散溶液に超音波を印加し、分散溶液中の酸化グラファイトを炭素原子層間で劈開し、酸化グラフェンを含む分散溶液を調製する。酸化グラファイトは、グラファイトと比較して炭素原子層間が大きいため、超音波の印加により容易に炭素原子層間を劈開できる。続いて、酸化グラフェンを含む分散溶液から溶媒を除去し、乾燥して酸化グラフェンを製造する。
Such graphene having an oxygen content of 30 atomic% or more and 50 atomic% or less can be produced by an oxidation method such as the Hummers method using graphite powder as a starting material described below.
First, potassium permanganate, concentrated sulfuric acid solution, hydrogen peroxide solution and the like are added to the graphite powder to oxidize the graphite powder to prepare a dispersion solution containing graphite oxide. Graphite oxide is graphite having a functional group such as an epoxy group, a carbonyl group, a carboxyl group, or a hydroxyl group.
Next, ultrasonic waves are applied to the dispersion solution containing graphite oxide, and the graphite oxide in the dispersion solution is cleaved between carbon atom layers to prepare a dispersion solution containing graphene oxide. Since graphite oxide has a larger interlayer between carbon atoms than graphite, it can be easily cleaved between layers of carbon by applying ultrasonic waves. Subsequently, the solvent is removed from the dispersion solution containing graphene oxide, and dried to produce graphene oxide.

正極活物質は、例えばリチウムを吸蔵及び放出することが可能なリチウム含有化合物を用いることができる。リチウム含有化合物は、リチウム含有金属酸化物又はリチウム含有金属リン化合物等のリチウム二次電池の正極活物質として一般的に用いられる化合物であれば特に限定されない。
リチウム含有化合物は、例えば、コバルト酸リチウム(LiCoO)、マンガン酸リチウム(LiMnO、LiMn)、ニッケル酸リチウム(LiNiO)、コバルト鉄酸リチウム(LiCo0.5Fe0.5)、ニッケルコバルトマンガン酸リチウム(Li(NiCoMn1−x−y)O(0<x<1、0<y<1))、リン酸マンガン鉄リチウム(LiMnFe1−xPO)(0<x<1)、リン酸鉄リチウム(LiFePO)、リン酸コバルトリチウム(LiCoPO)、及びリン酸マンガンリチウム(LiMnPO)等である。
As the positive electrode active material, for example, a lithium-containing compound capable of inserting and extracting lithium can be used. The lithium-containing compound is not particularly limited as long as it is a compound generally used as a positive electrode active material of a lithium secondary battery, such as a lithium-containing metal oxide or a lithium-containing metal phosphorus compound.
Examples of the lithium-containing compound include lithium cobaltate (LiCoO 2 ), lithium manganate (LiMnO 2 , LiMn 2 O 4 ), lithium nickelate (LiNiO 2 ), and lithium cobalt ferrate (LiCo 0.5 Fe 0.5 O). 2), lithium nickel cobalt manganese oxide (Li (Ni x Co y Mn 1-x-y) O 2 (0 <x <1,0 <y <1)), lithium manganese iron phosphate (LiMn x Fe 1- x PO 4) (0 <x <1), lithium iron phosphate (LiFePO 4), lithium cobalt phosphate (LiCoPO 4), and a lithium manganese phosphate (LiMnPO 4) or the like.

正極層は、さらに導電助剤と結着剤を含んでもよい。   The positive electrode layer may further include a conductive auxiliary and a binder.

導電助剤は、特に限定されるものではなく、公知又は市販のものを使用することができる。導電助剤は、例えば、アセチレンブラック、ケッチェンブラックなどのカーボンブラック、カーボンナノチューブ、炭素繊維、活性炭、黒鉛等である。
なお、上述したグラフェンを正極層に適切な割合で配合すれば、当該導電剤の配合を省略することができ、正極層に占める正極活物質の量を増加することが可能になる。
The conductive agent is not particularly limited, and a known or commercially available conductive agent can be used. Examples of the conductive assistant include carbon black such as acetylene black and Ketjen black, carbon nanotubes, carbon fibers, activated carbon, and graphite.
Note that if the above-described graphene is added to the positive electrode layer in an appropriate ratio, the addition of the conductive agent can be omitted, and the amount of the positive electrode active material in the positive electrode layer can be increased.

結着剤は、特に限定されるものではなく、公知又は市販のものを使用することができる。結着剤は、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリビニルピロリドン(PVP)、ポリ塩化ビニル(PVC)、ポリエチレン(PE)、ポリプロピレン(PP)、エチレン−プロピレン共重合体、スチレンブタジエンゴム(SBR)、アクリル樹脂等である。   The binder is not particularly limited, and a known or commercially available binder can be used. Examples of the binder include polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyvinylpyrrolidone (PVP), polyvinyl chloride (PVC), polyethylene (PE), polypropylene (PP), and ethylene-propylene copolymer. Coal, styrene butadiene rubber (SBR), acrylic resin, and the like.

正極は、例えば次に示す方法で作製することができる。最初に、前述した酸素の含有割合が30原子%以上50原子%以下のグラフェン、正極活物質、導電助剤及び結着剤を溶剤に分散させて正極スラリーを調製する。つづいて、正極集電体の一方又は両方の面に正極スラリーを塗布した後、例えば真空下、80℃で乾燥して正極層を形成することにより正極を作製する。   The positive electrode can be manufactured, for example, by the following method. First, a positive electrode slurry is prepared by dispersing the above-described graphene having an oxygen content of 30 atomic% or more and 50 atomic% or less, a positive electrode active material, a conductive additive, and a binder in a solvent. Subsequently, after applying the positive electrode slurry to one or both surfaces of the positive electrode current collector, the positive electrode is manufactured by drying at 80 ° C., for example, under vacuum to form a positive electrode layer.

溶剤は、特に限定されるものではなく、リチウム二次電池で一般に用いられる溶剤を用いることができる。溶剤は、例えば、N−メチル−2−ピロリドン(NMP)、N,N−ジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミド(DMA)等である。なお、結着剤としてポリフッ化ビニリデン(PVDF)を用いる場合には、N−メチル−2−ピロリドン(NMP)を溶剤に用いることが好ましい。   The solvent is not particularly limited, and a solvent generally used in a lithium secondary battery can be used. The solvent is, for example, N-methyl-2-pyrrolidone (NMP), N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMA) and the like. In addition, when using polyvinylidene fluoride (PVDF) as a binder, it is preferable to use N-methyl-2-pyrrolidone (NMP) as a solvent.

<負極>
負極は、例えば、負極集電体と、当該負極集電体の一方又は両方の面に形成された負極活物質である金属リチウムとを備える。
<Negative electrode>
The negative electrode includes, for example, a negative electrode current collector and lithium metal as a negative electrode active material formed on one or both surfaces of the negative electrode current collector.

負極集電体は、特に限定されるものではなく、公知又は市販のものを使用することできる。負極集電体は、例えば、銅又は銅合金からなる圧延箔、電解箔等である。   The negative electrode current collector is not particularly limited, and a known or commercially available negative electrode current collector can be used. The negative electrode current collector is, for example, a rolled foil or an electrolytic foil made of copper or a copper alloy.

<非水電解質>
非水電解質は、液体状である場合、非水溶媒及び電解質を含む。
<Non-aqueous electrolyte>
When the non-aqueous electrolyte is in a liquid state, it includes a non-aqueous solvent and an electrolyte.

非水溶媒は、主成分として環状カーボネート及び鎖状カーボネートを含有する。環状カーボネートは、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、及びブチレンカーボネート(BC)から選ばれる少なくとも一つであることが好ましい。鎖状カーボネートは、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、及びエチルメチルカーボネート(EMC)等から選ばれる少なくとも一つであることが好ましい。   The non-aqueous solvent contains a cyclic carbonate and a chain carbonate as main components. The cyclic carbonate is preferably at least one selected from ethylene carbonate (EC), propylene carbonate (PC), and butylene carbonate (BC). The chain carbonate is preferably at least one selected from dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), and the like.

電解質は、特に限定されるものではなく、リチウム二次電池で一般に用いられるリチウム塩の電解質を用いることができる。電解質は、例えば、LiPF、LiAsF、LiBF、LiCFSO、LiN(C2m+1SO)(C2n+1SO)(m、nは1以上の整数)、LiC(C2p+1SO)(C2q+1SO)(C2r+1SO)(p、q、rは1以上の整数)、ジフルオロ(オキサラト)ホウ酸リチウム等である。これらの電解質は、一種類で使用してもよく、また二種類以上組み合わせて使用してもよい。また、この電解質は非水溶媒に対して0.1〜1.5モル/L、好ましくは0.5〜1.5モル/Lの濃度で溶解することが望ましい。 The electrolyte is not particularly limited, and a lithium salt electrolyte generally used in a lithium secondary battery can be used. The electrolyte includes, for example, LiPF 6 , LiAsF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (C m F 2m + 1 SO 2 ) (C n F 2n + 1 SO 2 ) (m and n are integers of 1 or more), and LiC (C p F 2p + 1 SO 2) (C q F 2q + 1 SO 2) (C r F 2r + 1 SO 2) (p, q, r is an integer of 1 or more), a lithium difluoro (oxalato) borate. These electrolytes may be used alone or in combination of two or more. It is desirable that this electrolyte be dissolved in the non-aqueous solvent at a concentration of 0.1 to 1.5 mol / L, preferably 0.5 to 1.5 mol / L.

<セパレータ>
セパレータは、ポリエチレン樹脂、ポリプロピレン樹脂などのポリオレフィン樹脂の微多孔膜又は不織布を用いることができる。微多孔膜又は不織布は単層であっても、多層構造であってもよい。特にセパレータは、微多孔質ポリプロピレン膜であることが好ましい。
<Separator>
As the separator, a microporous film or a nonwoven fabric of a polyolefin resin such as a polyethylene resin or a polypropylene resin can be used. The microporous membrane or nonwoven fabric may have a single layer or a multilayer structure. In particular, the separator is preferably a microporous polypropylene membrane.

<充放電条件>
リチウム二次電池の組立後の充放電を放電から始め、初回放電時の放電カットオフ電圧を、リチウムの酸化還元電位を基準にして1.0V以上2.0V以下に設定する。
初回放電時の放電カットオフ電圧が、リチウムの酸化還元電位を基準にして2.0Vを超えると、初回放電時に、負極の金属リチウム表面の不活性被膜を除去するために必要な放電容量を得ることができない。
他方、初回放電時の放電カットオフ電圧が、リチウムの酸化還元電位を基準にして1.0V未満に設定すると、初回放電時に、正極活物質中の例えばFe2+又はMn2+が、負極から放出されたリチウムイオンにより還元され、初回放電後の充放電において、正極に含まれる利用可能な正極活物質の量が減少する虞がある。
<Charging and discharging conditions>
The charge / discharge after the assembly of the lithium secondary battery is started from the discharge, and the discharge cutoff voltage at the time of the first discharge is set to 1.0 V or more and 2.0 V or less based on the oxidation-reduction potential of lithium.
When the discharge cutoff voltage at the time of the first discharge exceeds 2.0 V based on the oxidation-reduction potential of lithium, at the time of the first discharge, a discharge capacity necessary for removing the inactive film on the metal lithium surface of the negative electrode is obtained. Can not do.
On the other hand, when the discharge cutoff voltage at the time of the first discharge is set to less than 1.0 V based on the oxidation-reduction potential of lithium, for example, Fe 2+ or Mn 2+ in the positive electrode active material is released from the negative electrode at the time of the first discharge. In the charge and discharge after the initial discharge, the amount of the available positive electrode active material contained in the positive electrode may be reduced by the reduced lithium ions.

実施形態に係るリチウム二次電池の形状は特に限定されないが、例えばコイン型、ボタン型、シート型、積層型、円筒型、角形、扁平型等が挙げられる。   The shape of the lithium secondary battery according to the embodiment is not particularly limited, and examples thereof include a coin type, a button type, a sheet type, a stacked type, a cylindrical type, a rectangular shape, a flat type, and the like.

以下、コイン型のリチウム二次電池を例にして、実施形態に係るリチウム二次電池の構造を、図面を参照して説明する。図1は、コイン型のリチウム二次電池の一例を示す断面図である。   Hereinafter, the structure of the lithium secondary battery according to the embodiment will be described with reference to the drawings, taking a coin-type lithium secondary battery as an example. FIG. 1 is a cross-sectional view illustrating an example of a coin-type lithium secondary battery.

コイン型のリチウム二次電池1は、正極2と、負極3と、それら正極2及び負極3の間に配置されたセパレータ4とを備える。これら正極2、負極3及びセパレータ4は、下部側に位置する第1外部端子5と上部側に位置する第2外部端子6の間に収納されている。当該第1外部端子5及び当該第2外部端子6の当接部位は、ガスケット7により絶縁されている。
正極2は、第1外部端子5の内面に位置してそれと接続される正極集電体21と、当該正極集電体21のセパレータ4と対向する面に設けられた正極層22とから構成されている。負極3は、第2外部端子6の内面に位置してそれと接続される負極集電体31と、当該負極集電体31のセパレータ4と対向する面に設けられた、金属リチウムからなる負極層32とから構成されている。セパレータ4は、例えば非水電解質に含浸されている。第2外部端子6は、その端部がその下端及び両側面をガスケット7で包んだ状態で第1外部端子5内に挿入され、下部側の第1外部端子5の開口端をガスケット7側に湾曲させて第2外部端子6を第1外部端子5にかしめ固定するとともに、第1外部端子5及び第2外部端子6の当接部位をガスケット7により絶縁している。
The coin-type lithium secondary battery 1 includes a positive electrode 2, a negative electrode 3, and a separator 4 disposed between the positive electrode 2 and the negative electrode 3. The positive electrode 2, the negative electrode 3 and the separator 4 are housed between a first external terminal 5 located on the lower side and a second external terminal 6 located on the upper side. The contact portions of the first external terminal 5 and the second external terminal 6 are insulated by a gasket 7.
The positive electrode 2 includes a positive electrode current collector 21 located on the inner surface of the first external terminal 5 and connected thereto, and a positive electrode layer 22 provided on a surface of the positive electrode current collector 21 facing the separator 4. ing. The negative electrode 3 includes a negative electrode current collector 31 located on the inner surface of the second external terminal 6 and connected thereto, and a negative electrode layer made of metallic lithium provided on a surface of the negative electrode current collector 31 facing the separator 4. 32. The separator 4 is impregnated with, for example, a non-aqueous electrolyte. The second external terminal 6 is inserted into the first external terminal 5 with its end wrapped at its lower end and both side surfaces by the gasket 7, and the open end of the lower first external terminal 5 is placed on the gasket 7 side. The second external terminal 6 is caulked and fixed to the first external terminal 5 by bending, and a contact portion between the first external terminal 5 and the second external terminal 6 is insulated by the gasket 7.

以下、本発明を、実施例を用いて詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to Examples.

(実施例1〜5及び比較例1〜3)
[正極Aの作製]
酸素の含有割合が50原子%のグラフェン1.0質量%と、正極活物質であるリン酸マンガン鉄リチウム(LiMn0.7Fe0.3PO)80質量%とを混合して正極層材料を調製した。つづいて、当該正極層材料に導電助剤であるアセチレンブラック9.0質量%、結着剤であるポリフッ化ビニリデン(PVDF)10質量%をそれぞれ添加して混合した後、当該混合物に溶剤としてN−メチル−2−ピロリドン(NMP)を添加して正極スラリーを調製した。次に、集電体であるアルミニウム箔上に正極スラリーを塗布し、80℃で乾燥した。その後、電極密度が1.8g/ccになるまでプレス加工して正極Aを作製した。
(Examples 1 to 5 and Comparative Examples 1 to 3)
[Production of Positive Electrode A]
A mixture of 1.0 mass% of graphene having an oxygen content of 50 atomic% and 80 mass% of lithium iron manganese phosphate (LiMn 0.7 Fe 0.3 PO 4 ) as a positive electrode active material is mixed. Was prepared. Subsequently, 9.0% by mass of acetylene black as a conductive additive and 10% by mass of polyvinylidene fluoride (PVDF) as a binder were added to the positive electrode layer material and mixed, and then N 2 was added to the mixture as a solvent. -Methyl-2-pyrrolidone (NMP) was added to prepare a positive electrode slurry. Next, the positive electrode slurry was applied on an aluminum foil as a current collector, and dried at 80 ° C. Thereafter, a positive electrode A was produced by press working until the electrode density became 1.8 g / cc.

[正極Bの作製]
酸素の含有割合が50原子%のグラフェン2.0質量%と、正極活物質であるLiMn0.7Fe0.3PO80質量%と、導電助剤であるアセチレンブラック8.0質量%と、結着剤であるPVDF10質量%を用いた以外、前記正極Aの作製方法と同様な方法により正極Bを作製した。
[Production of Positive Electrode B]
2.0 mass% of graphene having an oxygen content of 50 atomic%, 80 mass% of LiMn 0.7 Fe 0.3 PO 4 as a positive electrode active material, and 8.0 mass% of acetylene black as a conductive additive. A positive electrode B was prepared in the same manner as the positive electrode A except that 10% by mass of PVDF as a binder was used.

[正極Cの作製]
酸素の含有割合が50原子%のグラフェン5.0質量%と、正極活物質であるLiMn0.7Fe0.3PO80質量%と、導電助剤であるアセチレンブラック5.0質量%と、結着剤であるPVDF10質量%を用いた以外、前記正極Aの作製方法と同様な方法により正極Cを作製した。
[Preparation of positive electrode C]
5.0 mass% of graphene having an oxygen content of 50 atomic%, 80 mass% of LiMn 0.7 Fe 0.3 PO 4 as a positive electrode active material, and 5.0 mass% of acetylene black as a conductive additive. A positive electrode C was prepared in the same manner as in the positive electrode A except that 10% by mass of PVDF as a binder was used.

[正極Dの作製]
正極活物質であるLiMn0.7Fe0.3PO80質量%と、導電助剤であるアセチレンブラック10質量%と、結着剤であるPVDF10質量%をそれぞれ添加して混合した後、当該混合物に溶剤としてN−メチル−2−ピロリドン(NMP)を添加して正極スラリーを調製した。なお、正極スラリー中にはグラフェンが含まれていない。次に、集電体としてのアルミニウム箔上に正極スラリーを塗布し、80℃で乾燥した。その後、電極密度が1.8g/ccになるまでプレス加工して正極Dを作製した。
[Production of positive electrode D]
After adding and mixing 80% by mass of LiMn 0.7 Fe 0.3 PO 4 as a positive electrode active material, 10% by mass of acetylene black as a conductive additive, and 10% by mass of PVDF as a binder, N-methyl-2-pyrrolidone (NMP) was added as a solvent to the mixture to prepare a positive electrode slurry. The positive electrode slurry does not contain graphene. Next, the positive electrode slurry was applied on an aluminum foil as a current collector, and dried at 80 ° C. Then, the positive electrode D was produced by press working until the electrode density became 1.8 g / cc.

[正極Eの作製]
酸素の含有割合が28原子%(30原子%未満)のグラフェン5.0質量%と、正極活物質であるLiMn0.7Fe0.3PO80質量%と、導電助剤であるアセチレンブラック5.0質量%と、結着剤であるPVDF10質量%を用いた以外、前記正極Aの作製方法と同様な方法により正極Eを作製した。
[Preparation of positive electrode E]
5.0 mass% of graphene having an oxygen content of 28 atomic% (less than 30 atomic%), 80 mass% of LiMn 0.7 Fe 0.3 PO 4 as a positive electrode active material, and acetylene black as a conductive auxiliary agent Positive electrode E was produced by the same method as that for producing positive electrode A, except that 5.0% by mass and 10% by mass of PVDF as a binder were used.

[負極の作製]
負極集電体であるとして銅合金圧延箔の一方の面に負極活物質である金属リチウムを形成し、負極を作製した。
[Preparation of negative electrode]
As one of the negative electrode current collectors, metal lithium as a negative electrode active material was formed on one surface of a rolled copper alloy foil to produce a negative electrode.

[走査型電子顕微鏡による正極層の観察]
前記正極A及びEの各正極層を、JEOL社製:型番JSM−7500の走査型電子顕微鏡を用いて観察した。その結果、図2に示すように、正極Aの正極層では、酸素の含有割合50原子%のグラフェンが凝集せずに分散していることが観察された。一方、図3に示すように、正極Eの正極層では、酸素の含有割合が28原子%のグラフェンが凝集していることが観察された。
[Observation of positive electrode layer by scanning electron microscope]
Each positive electrode layer of the positive electrodes A and E was observed using a scanning electron microscope of JEOL, model number JSM-7500. As a result, as shown in FIG. 2, in the positive electrode layer of the positive electrode A, it was observed that graphene having an oxygen content of 50 atomic% was dispersed without agglomeration. On the other hand, as shown in FIG. 3, in the positive electrode layer of the positive electrode E, it was observed that graphene having an oxygen content of 28 atomic% was aggregated.

[評価セルの組立]
前記正極A〜E及び負極を、それぞれ円形に打ち抜いた。セパレータは、微多孔質ポリプロピレン膜からなる。非水電解液は、LiPFをエチレンカーボネート(EC)、ジエチルカーボネート(DEC)の混合非水溶媒(体積比、EC:DEC=1:2)に1.0モル/L溶解させて調製した。
これら正極A〜E、負極、セパレータ及び混合非水溶媒を用いて、図1に示す構造で、正極A〜Eを備える評価セル(コイン型リチウム)をそれぞれ組立てた。
[Assembly of evaluation cell]
The positive electrodes A to E and the negative electrode were each punched into a circle. The separator is made of a microporous polypropylene membrane. The non-aqueous electrolyte was prepared by dissolving LiPF 6 in a mixed non-aqueous solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) (volume ratio, EC: DEC = 1: 2) at 1.0 mol / L.
Using these positive electrodes A to E, the negative electrode, the separator, and the mixed nonaqueous solvent, evaluation cells (coin-type lithium) having the structures shown in FIG.

[定電流放電試験]
酸素の含有割合が30原子%以上50原子%以下のグラフェンを1.0質量%、2.0質量%、5.0質量%を含む正極層を有する正極A〜Cを備える評価セルと、グラフェンを含まない正極層を有する正極Dを備える評価セルを、それぞれ1.5Vまで定電流放電させた。その結果、図4に示すように、酸素の割合が30原子%以上50原子%以下のグラフェンを含む割合が大きくなることによって、初回放電時の放電容量が増加することが確認された。
[Constant current discharge test]
An evaluation cell including positive electrodes A to C having a positive electrode layer containing 1.0 mass%, 2.0 mass%, and 5.0 mass% of graphene having an oxygen content of 30 atomic% to 50 atomic%; Each of the evaluation cells provided with the positive electrode D having the positive electrode layer containing no was discharged at a constant current to 1.5 V. As a result, as shown in FIG. 4, it was confirmed that the discharge capacity at the time of the first discharge was increased by increasing the proportion of graphene containing 30 atomic% or more and 50 atomic% or less of oxygen.

[充放電サイクル試験]
正極A〜Eを備える評価セルを用い、以下の充放電条件1〜4で充放電サイクル試験を行なった。また、試験温度は30℃で行なった。下記表1には、正極A〜Eを備える評価セルと充放電条件1〜4の組合せ、及び各評価セルの180サイクル目放電容量と放電容量維持率の測定結果を示す。
[Charge / discharge cycle test]
Using the evaluation cells having the positive electrodes A to E, a charge / discharge cycle test was performed under the following charge / discharge conditions 1 to 4. The test was performed at 30 ° C. Table 1 below shows combinations of the evaluation cells including the positive electrodes A to E and the charge / discharge conditions 1 to 4, and the measurement results of the discharge capacity and the discharge capacity retention at the 180th cycle of each evaluation cell.

放電容量維持率の計算式を(1)式に示す。
放電容量維持率(%)=
(180サイクル目の放電容量/4サイクル目の放電容量)×100…(1)
(充放電条件1)
初回 :1.5Vまで0.1C放電 (1回)
活性化 :4.5Vまで0.1C充電、2.5Vまで0.1C放電 (3回)
サイクル:4.5Vまで1.0C充電、2.5Vまで1.0C放電 (180回)
(充放電条件2)
初回 :1.9Vまで0.1C放電 (1回)
活性化 :4.5Vまで0.1C充電、2.5Vまで0.1C放電 (3回)
サイクル:4.5Vまで1.0C充電、2.5Vまで1.0C放電 (180回)
(充放電条件3)
初回 :0.5Vまで0.1C放電 (1回)
活性化 :4.5Vまで0.1C充電、2.5Vまで0.1C放電 (3回)
サイクル:4.5Vまで1.0C充電、2.5Vまで1.0C放電 (180回)
(充放電条件4)
初回 :4.5Vまで0.1C充電、2.5Vまで0.1C放電 (1回)
活性化 :4.3Vまで0.1C充電、2.5Vまで0.1C放電 (2回)
サイクル:4.3Vまで1.0C充電、2.5Vまで1.0C放電 (180回)

Figure 2020017438
The equation for calculating the discharge capacity retention ratio is shown in equation (1).
Discharge capacity maintenance rate (%) =
(Discharge capacity at 180th cycle / discharge capacity at fourth cycle) × 100 (1)
(Charging and discharging conditions 1)
First time: 0.1 C discharge to 1.5 V (1 time)
Activation: 0.1C charge to 4.5V, 0.1C discharge to 2.5V (3 times)
Cycle: 1.0C charge to 4.5V, 1.0C discharge to 2.5V (180 times)
(Charging and discharging conditions 2)
First time: 0.1C discharge to 1.9V (1 time)
Activation: 0.1C charge to 4.5V, 0.1C discharge to 2.5V (3 times)
Cycle: 1.0C charge to 4.5V, 1.0C discharge to 2.5V (180 times)
(Charging and discharging conditions 3)
First time: 0.1C discharge to 0.5V (1 time)
Activation: 0.1C charge to 4.5V, 0.1C discharge to 2.5V (3 times)
Cycle: 1.0C charge to 4.5V, 1.0C discharge to 2.5V (180 times)
(Charging and discharging conditions 4)
First time: 0.1C charge to 4.5V, 0.1C discharge to 2.5V (1 time)
Activation: 0.1 C charge to 4.3 V, 0.1 C discharge to 2.5 V (twice)
Cycle: 1.0C charge to 4.3V, 1.0C discharge to 2.5V (180 times)
Figure 2020017438

前記表1から明らかなように、酸素の含有割合が30原子%以上50原子%以下のグラフェンを含む正極層を有する正極A〜Cを備える評価セルを用い、各セルを充放電条件1(初回放電のカットオフ電圧を、リチウムの酸化還元電位を基準にして1.5Vに設定)で充放電を行なった実施例1〜3は、充放電時のリチウムのデンドライト状の成長を抑制ないし防止され、かつ出力特性が向上されたため、180サイクル目において高い放電容量と、高い放電容量維持率の両方を示したこと、すなわち充放電サイクル特性が向上したことがわかる。   As is clear from Table 1, the evaluation cells including the positive electrodes A to C having the positive electrode layers containing graphene having an oxygen content of 30 atomic% or more and 50 atomic% or less were used, and each cell was charged and discharged under the first charging / discharging condition 1 (first time). In Examples 1 to 3 in which charging and discharging were performed at a discharge cutoff voltage of 1.5 V with reference to the oxidation-reduction potential of lithium, the dendritic growth of lithium during charging and discharging was suppressed or prevented. Further, since the output characteristics were improved, it was found that both the high discharge capacity and the high discharge capacity maintenance ratio were exhibited at the 180th cycle, that is, the charge / discharge cycle characteristics were improved.

また、酸素の含有割合が30原子%以上50原子%以下のグラフェンを含む正極層を有する正極A、Bを備える評価セルを用い、各セルを充放電条件2(初回放電のカットオフ電圧を、リチウムの酸化還元電位を基準にして1.9Vに設定)で充放電を行なった実施例4、5も、充放電時のリチウムのデンドライト状の成長を抑制ないし防止され、かつ出力特性が向上されたため、180サイクル目において高い放電容量と、高い放電容量維持率の両方を示したこと、すなわち充放電サイクル特性が向上したことがわかる。   Further, an evaluation cell including positive electrodes A and B having a positive electrode layer containing graphene having an oxygen content of 30 atomic% or more and 50 atomic% or less was used, and each cell was charged and discharged under condition 2 (the cut-off voltage of the first discharge was changed to In Examples 4 and 5, in which charging and discharging were performed at 1.9 V with reference to the oxidation-reduction potential of lithium), dendrite-like growth of lithium during charging and discharging was suppressed or prevented, and output characteristics were improved. Therefore, it can be seen that both the high discharge capacity and the high discharge capacity maintenance ratio were exhibited at the 180th cycle, that is, the charge / discharge cycle characteristics were improved.

これに対し、グラフェンを含まない正極層を有する正極Dを備える評価セルを用い、当該セルを充放電条件4(初回放電なし)で充放電を行なう比較例1は、180サイクル目において低い放電容量と、低い放電容量維持率の両方を示したことがわかる。これは、電池組立直後の初回放電がないために、負極の金属リチウム表面に形成された炭酸リチウム又は水酸化リチウムのような不活性被膜を破壊して除去できなかったためと推定される。   On the other hand, Comparative Example 1 in which the evaluation cell including the positive electrode D having the positive electrode layer containing no graphene is used and the cell is charged and discharged under the charging and discharging condition 4 (no initial discharge), the low discharge capacity at the 180th cycle It can be seen that both the low and high discharge capacity retention rates were exhibited. This is presumably because there was no first discharge immediately after the battery assembly, so that an inactive coating such as lithium carbonate or lithium hydroxide formed on the surface of the lithium metal of the negative electrode was destroyed and could not be removed.

また、酸素の含有割合が30原子%以上50原子%以下のグラフェンを含む正極層を有する正極A、Bを備える評価セルを用い、各セルを充放電条件2(初回放電のカットオフ電圧を、リチウムの酸化還元電位を基準にして0.5Vに設定)で充放電を行なう比較例2、3も、180サイクル目において低い放電容量と、低い放電容量維持率の両方を示したことがわかる。これは、初回放電時のカットオフ電圧が1.0V未満であるため、正極活物質中のFe2+又はMn2+が、負極から放出されたリチウムイオンにより還元され、初回放電後の充放電において、正極に含まれる利用可能な正極活物質の量が減少したためと推定される。 Further, an evaluation cell including positive electrodes A and B having a positive electrode layer containing graphene having an oxygen content of 30 atomic% or more and 50 atomic% or less was used, and each cell was charged and discharged under condition 2 (the cut-off voltage of the first discharge was changed to It can be seen that Comparative Examples 2 and 3 in which charging and discharging were performed at a voltage of 0.5 V with reference to the oxidation-reduction potential of lithium also exhibited both a low discharge capacity and a low discharge capacity retention ratio at the 180th cycle. This is because, since the cut-off voltage at the time of the first discharge is less than 1.0 V, Fe 2+ or Mn 2+ in the positive electrode active material is reduced by lithium ions released from the negative electrode, and in charge and discharge after the first discharge, It is estimated that the amount of the available positive electrode active material contained in the positive electrode decreased.

また、酸素の含有割合が28原子%(30原子%未満)のグラフェンを含む正極層を有する正極Eを備える評価セルを用い、当該セルを充放電条件1(初回放電のカットオフ電圧を、リチウムの酸化還元電位を基準にして1.5Vに設定)で充放電を行なう比較例4は、酸素の含有割合が50原子%のグラフェンを含む正極層を有する正極Cを備える評価セルを用い、当該セルを充放電条件1で充放電を行なう実施例3と比較して、180サイクル目において低い放電容量と、低い放電容量維持率の両方を示したことがわかる。これは、正極層にグラフェンが凝集し、初回放電後にグラフェンが導電剤として機能しても前述した導電ネットワークを形成することが困難になると推定される。   Further, an evaluation cell including a positive electrode E having a positive electrode layer containing graphene having an oxygen content of 28 atomic% (less than 30 atomic%) was used, and the cell was charged and discharged under the first charging / discharging condition 1 (the cut-off voltage of the first discharge was changed to lithium. Comparative Example 4 in which charge / discharge is performed at 1.5 V with reference to the oxidation-reduction potential of) is performed using an evaluation cell including a positive electrode C having a positive electrode layer including graphene having an oxygen content of 50 atomic%. It can be seen that both the low discharge capacity and the low discharge capacity maintenance ratio were exhibited at the 180th cycle as compared with Example 3 in which the cell was charged and discharged under the charge and discharge condition 1. This is presumably because graphene aggregates in the positive electrode layer and it becomes difficult to form the above-described conductive network even if graphene functions as a conductive agent after the first discharge.

1…リチウム二次電池、2…正極、21…正極集電体、22…正極層、3…負極、31…負極集電体、32…負極層、4…セパレータ、5…第1外部端子、6…第2外部端子、7…ガスケット   DESCRIPTION OF SYMBOLS 1 ... Lithium secondary battery, 2 ... Positive electrode, 21 ... Positive electrode collector, 22 ... Positive electrode layer, 3 ... Negative electrode, 31 ... Negative electrode current collector, 32 ... Negative electrode layer, 4 ... Separator, 5 ... 1st external terminal, 6 second external terminal, 7 gasket

Claims (3)

正極、及び金属リチウムを含む負極を備えたリチウム二次電池の充放電方法であって、
前記正極は、集電体と、当該集電体の一方又は両方の面に形成された正極層とを備え、
前記正極層は、酸素の含有割合が30原子%以上50原子%以下のグラフェンと、正極活物質とを含み、
前記リチウム二次電池の組立後の充放電を放電から始め、初回放電時の放電カットオフ電圧を、リチウムの酸化還元電位を基準にして1.0V以上2.0V以下に設定することを特徴とするリチウム二次電池の充放電方法。
A positive electrode, and a method for charging and discharging a lithium secondary battery including a negative electrode including lithium metal,
The positive electrode includes a current collector and a positive electrode layer formed on one or both surfaces of the current collector,
The positive electrode layer includes graphene having an oxygen content of 30 atomic% or more and 50 atomic% or less, and a positive electrode active material,
Charging and discharging after assembling the lithium secondary battery is started from discharging, and a discharge cutoff voltage at the time of initial discharging is set to 1.0 V or more and 2.0 V or less based on the oxidation-reduction potential of lithium. Method for charging and discharging lithium secondary batteries.
前記正極活物質は、コバルト酸リチウム、マンガン酸リチウム、ニッケルコバルトマンガン酸リチウム、及びリン酸鉄リチウムの群から選ばれる少なくとも1つのリチウム含有化合物であることを特徴とする請求項1に記載のリチウム二次電池の充放電方法。   The lithium according to claim 1, wherein the positive electrode active material is at least one lithium-containing compound selected from the group consisting of lithium cobaltate, lithium manganate, lithium nickel cobalt manganate, and lithium iron phosphate. A method for charging and discharging a secondary battery. 前記グラフェンは前記正極層の総量に対して1.0質量%以上10質量%以下の割合で含まれることを特徴とする請求項1又は2に記載のリチウム二次電池の充放電方法。   3. The method according to claim 1, wherein the graphene is contained in a ratio of 1.0% by mass to 10% by mass with respect to a total amount of the positive electrode layer. 4.
JP2018140514A 2018-07-26 2018-07-26 Charging / discharging method of lithium secondary battery Active JP7031097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018140514A JP7031097B2 (en) 2018-07-26 2018-07-26 Charging / discharging method of lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018140514A JP7031097B2 (en) 2018-07-26 2018-07-26 Charging / discharging method of lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2020017438A true JP2020017438A (en) 2020-01-30
JP7031097B2 JP7031097B2 (en) 2022-03-08

Family

ID=69581600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018140514A Active JP7031097B2 (en) 2018-07-26 2018-07-26 Charging / discharging method of lithium secondary battery

Country Status (1)

Country Link
JP (1) JP7031097B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017016905A (en) * 2015-07-01 2017-01-19 古河電池株式会社 Charging/discharging method for lithium secondary battery
JP2017199670A (en) * 2016-04-21 2017-11-02 東レ株式会社 Positive electrode material for lithium ion battery, method for manufacturing the same, positive electrode for lithium ion battery, and lithium ion battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017016905A (en) * 2015-07-01 2017-01-19 古河電池株式会社 Charging/discharging method for lithium secondary battery
JP2017199670A (en) * 2016-04-21 2017-11-02 東レ株式会社 Positive electrode material for lithium ion battery, method for manufacturing the same, positive electrode for lithium ion battery, and lithium ion battery

Also Published As

Publication number Publication date
JP7031097B2 (en) 2022-03-08

Similar Documents

Publication Publication Date Title
JP5882516B2 (en) Lithium secondary battery
CN112313819A (en) Method of manufacturing negative electrode for lithium secondary battery and method of manufacturing lithium secondary battery
JP2012022794A (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
US10249874B2 (en) Composite negative active material, negative electrode including composite negative active material, and lithium secondary battery including negative electrode
JP5505479B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
CN112397694A (en) Rechargeable lithium battery
CN110556521B (en) Silicon anode material
JP6077345B2 (en) Non-aqueous secondary battery positive electrode material, non-aqueous secondary battery positive electrode and non-aqueous secondary battery
JP2013077424A (en) Lithium ion secondary battery
JP3670938B2 (en) Lithium secondary battery
JP6051038B2 (en) Foil for positive electrode current collector of lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP5279567B2 (en) Nonaqueous electrolyte secondary battery
JP5620499B2 (en) Non-aqueous electrolyte battery
JP2012084426A (en) Nonaqueous electrolyte secondary battery
JP2020017437A (en) Sheet-shaped positive electrode composite material for lithium ion secondary battery, manufacturing method thereof, and lithium ion secondary battery
KR20220046267A (en) Anodeless lithium secondary battery and preparing method thereof
JP6646370B2 (en) Charge / discharge method of lithium secondary battery
JP2013197052A (en) Lithium ion power storage device
JP2017134923A (en) Negative electrode for lithium secondary battery, lithium secondary battery and manufacturing methods thereof
JP5668667B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
JP2003168427A (en) Nonaqueous electrolyte battery
JP6567442B2 (en) Lithium secondary battery charge / discharge method
JP7031097B2 (en) Charging / discharging method of lithium secondary battery
JP2004273132A (en) Electrode and battery using the same
JP2018190679A (en) Method for charging/discharging lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220131

R150 Certificate of patent or registration of utility model

Ref document number: 7031097

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150