JP7030993B2 - 電池システムの配電バスへの接続 - Google Patents

電池システムの配電バスへの接続 Download PDF

Info

Publication number
JP7030993B2
JP7030993B2 JP2020534541A JP2020534541A JP7030993B2 JP 7030993 B2 JP7030993 B2 JP 7030993B2 JP 2020534541 A JP2020534541 A JP 2020534541A JP 2020534541 A JP2020534541 A JP 2020534541A JP 7030993 B2 JP7030993 B2 JP 7030993B2
Authority
JP
Japan
Prior art keywords
battery
voltage
transistor
transistors
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020534541A
Other languages
English (en)
Other versions
JP2021509003A (ja
Inventor
アレクセイ・ティコンスキー
ロバート・エル・マイヤーズ
ジェームズ・ピー・ノバク
Original Assignee
ライテック・ラボラトリーズ・エルエルシー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ライテック・ラボラトリーズ・エルエルシー filed Critical ライテック・ラボラトリーズ・エルエルシー
Publication of JP2021509003A publication Critical patent/JP2021509003A/ja
Application granted granted Critical
Publication of JP7030993B2 publication Critical patent/JP7030993B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/061Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/068Electronic means for switching from one power supply to another power supply, e.g. to avoid parallel connection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/08Three-wire systems; Systems having more than three wires
    • H02J1/084Three-wire systems; Systems having more than three wires for selectively connecting the load or loads to one or several among a plurality of power lines or power sources
    • H02J1/086Three-wire systems; Systems having more than three wires for selectively connecting the load or loads to one or several among a plurality of power lines or power sources for providing alternative feeding paths between load or loads and source or sources when the main path fails
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Stand-By Power Supply Arrangements (AREA)

Description

本発明は、概して、電池技術に関し、詳細には、配電バスに接続されたときに電池セルを監視し、電池セルの放電を制御するためのシステムに関する。
このセクションは、本開示の例示的な実施形態と関係付けられ得る、本技術の様々な態様を紹介することを意図している。この説明は、本開示の特定の態様のより良い理解を容易にするためのフレームワークの提供を支援するものと考えられる。したがって、このセクションは、この観点から解釈されるべきであって、必ずしも従来技術の承認と解釈されるべきでないことを理解されたい。
近代的な情報技術および電気通信システムは、多様な分配バス電圧において動作する配電バスを含む。たとえば、コンピュータサーバは、通常、メモリ、プロセッサ、ストレージ、冷却ファン、およびI/Oなど、コンピュータサーバの内部サブシステムに12ボルト(「V」)を分配する(分配バスが電源電圧を供給するそのような内部サブシステムは、本明細書では「負荷回路」または単に「負荷」と呼ばれる)。有線電気通信システムは、48V分配を使用し、ワイヤレス電気通信システムおよびセルサイトシステムは、しばしば、24Vを使用する。上記のシステムはすべて、これらの分配バスが、通常動作の下で数十アンペアまたはさらには数百アンペアの電流を伝達し得、一般に、これらのバス上の電圧は、バス上の最大電圧偏位が所望の公称値の上または下の固定値に限定されることを確保するように調節されるという要件を有するという点において、いくつかの共通の特徴を共有する。調節される分配バスは、その公称値に適用される特定の電圧許容範囲を有することになる。たとえば、+/-10%の許容範囲を有する12Vの分配バスは、13.2Vから10.8Vまでに及ぶ動作範囲を有することになる。
最近の5年間に、短い持続時間の間にきわめて高い電流を配送するように最適化された電池システムが開発されてきた。電池システムは、一般的に、1つまたは複数の電池セル(本明細書では、「電池」および「セル」という用語は互換的に使用され得る)を含む。これらのサイズは小さいので、これらは、AC主電力が停止した場合に機器を短期的に電気的にバックアップする役割を果たす従来の無停電電源装置(「UPS」)を置き換えるために、いくつかの機器種別において魅力的になってきた。これらの高電力電池システムは、きわめて高い放電電流を配送するそれらの能力において固有であるが、充填電流をゆっくりと受けることしかできないという欠点を有する。放電電流の充電電流に対するこの比は、今日市販されている技術において、30対1またはさらには40対1の高さであり得る。
短い持続時間のバックアップ用途のために今日使用されている高電力電池システムは、一般的に、電池システムの出力電圧を分配バス電圧に適合させるため、および電流が分配バスから電池内に逆流するのを防止するために、高エネルギー(たとえば、DC-DCコンバータ出力)を処理することができるDC-DCコンバータの形態の出力レギュレータを採用しており、そのことが、安全でない充電電流をもたらして、安全上の問題を表すことになる。多く今日のシステムでは、充電電流は、放電電流とは別の経路を通って供給され、別個の低電力充電のDC-DCコンバータによって供給され得る。したがって、そのような高エネルギー出力のDC-DCコンバータが除去され得るか、または、より高い電気的効率および低コストを有しながら、電池システムをこの改善された方式を介して分配バスに直接接続することを可能にする、異なる方式と交換され得るならば、コスト低減および電気的効率改善の機会が存在する。
今日、電池システムを電気的バスに直接接続するための従来技術が存在し、それらのほぼすべては、充電および放電の電流をオン/オフ制御するための切り替え素子(本明細書ではまた、単に「スイッチ」と呼ぶ)として働くハイサイドまたはローサイドのいずれかの金属酸化物半導体電解効果トランジスタ(「MOSFET」)ペアを使用する。MOSFETは、通常、これらの用途で使用される。なぜならば、MOSFETは、それらの製造工程の性質によってダイオード(すなわち、ボディダイオード)を含み、ダイオードは、MOSFETがオフにされるときでも、電流がMOSFETを通って一方向に流れることを可能にするからである。このボディダイオードは、多くの用途において問題を表すが、本発明の実施形態では、利点として実際に利用される。
多くの今日の電池システムは、背中合わせに位置する2つのスイッチを利用し、それらの各々は、各スイッチと並列の寄生ボディダイオードかまたはスイッチにわたる外部ダイオードのいずれかを含む。前向きのダイオード(電池から負荷に面する)を有するスイッチは、「充電」スイッチ(そのオフ状態において、それは充電電流を遮断する)と見なされ、他方のスイッチは、「放電」スイッチ(そのオフ状態において、それは放電電流を遮断する)である。この方式は、以下の条件、(1)バスの全電流容量(バス上で利用可能であるかまたはバスに結合される負荷によって消費されるかのいずれか)は、電池の安全な充電電流または放電電流のいずれかを超えない、(2)分配バス電圧は、電池が放電になった後に満充電を受けるために、必要なときに電圧を十分高く引き上げることができるように制御可能である、および(3)負荷回路の許容可能な動作電圧が、電池が完全に放電される(すなわち、0%の充電状態)ときの最小電池端子電圧と、電池が完全に充電される(すなわち、100%の充電状態)ときの最大電池端子電圧との間で変動するかまたはそれらの端子電圧を含む、が満足される場合に、低電力分配バスのために役立つ。しかしながら、バス上の電圧は、それが電池の満充電電圧より下に留まらなければならないような(負荷によって必要とされる)厳しい調節を必要とするときにこの手法を使用することは実用的ではなく、通常、バスから利用可能な電流が電池に対する安全レベルの充電電流を超えるときは、この手法を使用することができない。
単一のまたは複数セルの電池システムを分配バスに直接接続するための業界標準は、ノートブックまたはタブレットコンピュータならびに携帯電話に対して実装されるような低電力システムにおいて見られる。これらのデバイスは、充電および放電制御のために、単一のトランジスタスイッチの前述の「背中合わせ」構成を使用する。図1は、スイッチの「ハイサイド」構成を示しており、そこにおいて、スイッチQ1およびQ2(たとえば、MOSFET)は、スイッチが電池の高電圧側(+側)に接続されるように配列される。スイッチQ1およびQ2は、電池が2つのスイッチのうちのどちらがオンにされるかに応じて充電および放電され得るように、接続される。コントローラは、スイッチの各々に結合され、どのような条件下でどのような持続時間の間、スイッチのうちのどちらがオンにされるかに対する制御を行う。したがって、充電および放電制御は、コントローラによって行われる。コントローラは、電池の健康状態、充電レベル、瞬時容量、電圧、電流、温度、または設計者が選択し得る任意の他のパラメータに基づいて充電または放電を許可してもよく、しなくてもよい。スイッチ、それらの寄生ボディダイオード、およびコントローラの組合せによって、充電制御、放電制御、または電池の出力端子の完全な電気的絶縁が可能になる。
このデュアルスイッチ制御方式は、充電電流、放電電流および利用可能なバス電流の大きさが接近しているか、または許容可能な充電電流が利用可能なバス電流よりかなり高い、多くの電池用途において役立つ。ラップトップコンピュータ電池は、充電率が放電率にほぼ等しい、たとえば、1C(すなわち、公称電池容量Cの1倍)に近い、典型的な設計ポイントを有する。携帯電話電池は、より高い充電率(たとえば、4Cまで)を有するように設計され得るが、一般的に、きわめて低い放電率を有する。これは、電話が速やかに充電される一方で同時に、一回の充電で長い動作寿命を有することを可能にする。これらの低い充電率および放電率において、スイッチの寄生ボディダイオードは、最小の温度上昇および電力損失のもとで必要な充電および放電電流を通すのに十分な温度および電力の能力を有する。
しかしながら、許容可能な放電率が許容可能な充電率をはるかに超える、電池の充電-放電非対称を有するシステムの実世界の例の数は増加している。たとえば、電気的バックアップ業務を担う電池は、通常、60~90分の充電時間に対して、電池を60~90秒間に完全に使い尽くすことができる高速放電時間を有するように設計される。通常充電電流と通常放電電流との間のこのきわめて大きい不均衡(すなわち、大きい充電-放電電流非対称)は、図1のデュアルスイッチ制御方式の実現を困難にする。具体的には、充電スイッチ内に見られるボディダイオードは、そのような方式が使用される場合にボディダイオードが経験することになる放電電流を搬送するためにはまったく不適当である。なぜならば、その電圧降下および電力消散は、システムの動作に悪影響を及ぼすことになるからである。加えて、エネルギー貯蔵デバイスとしてリチウムイオン電池を有する厳密に調節された+12V分配バスの例では、そのような用途のために選択された電池は、可能な限り+12V(たとえば、セルごとに4.0Vに充電された3つまたは4つの直列接続されたセル)に近いことが必要となる。当業者には理解されるように、(従来のMOSFETの寄生ボディダイオードにおいて通常見られるような)不十分な順方向電圧特性を有する分離ダイオードを通して+12V電源からこの電池を完全に充電することは不可能である。
前述の分離スイッチに加えて、システムを調節することは、電力バスに接続するために電池電圧を変換するときに電気出力を制御するために設計されてきた。たとえば、リニアレギュレータが、特定の値またはセットポイントにおいて均一な電圧出力を供給するために使用され得る。図2を参照すると、直列パス素子(たとえば、並列のダイオードを有するトランジスタ)を駆動する演算増幅器(「OPAMP」)を含むフィードバック回路が示されている。そのような調節システムでは、図2の回路は、直列パス素子にわたる最小の電圧降下が、リニアレギュレータへの入力と、負荷回路の最小動作電圧しきい値(たとえば、最小の容認可能動作電圧レベル)以下の電圧を負荷端子にもたらすのに十分な(すなわち、電池端子と負荷端子との間の)その出力との間に電圧降下を発生する交差点まで、調節された電圧出力を負荷において供給するために、図1の放電制御スイッチQ2を基本的に置き換える。
そのようなリニアレギュレータは、低電力デバイスのために実装されるときに役立つ場合がある。しかしながら、電力レベルが増大するにつれて生じる多くの欠陥がある。第1は、直列パス素子は、入力電圧と出力電圧との間の電圧差が直列パス素子に与えられるそのリニアモードにおいて動作され、そのことで、高電流の場合にきわめて高い電力損失およびV-Iベースの熱発生が生じることである。この発生した熱は、環境に移されるかさもなければデバイスから除去されなければならない。そうでないと、この熱は直列パス素子のパッケージ内部に集積して、高電力トランジスタでさえもすぐにオーバーヒートして故障することになる。この電力損失から発生する熱を処理することができるパッケージは、直付けヒートシンクを有するきわめて大きい物理的パッケージを必要とする。大部分の高電力電池システムは、このタイプのトランジスタパッケージングの使用を思いとどまらせる、物理的空間制限および製造上の制約を有する。そのうえ、そのプリント回路基板(「PCB」)接点を通して十分な熱を消散させることができる、実用的な表面実装トランジスタ(「SMT」)を発見することは困難である。
スイッチングレギュレータは、電池電圧を、固定されたバス電圧に変換するためにも使用される。一般に、降圧型コンバータまたは「バック」コンバータは、その最高効率を達成するために、その出力電圧より高い入力電圧を必要とする。これは、高効率および管理可能なスイッチングデューティサイクルを達成するために必要な、より高い入力電圧をコンバータに与えるために、より高い直列セル数を有する直列接続電池スタックをもたらす。しかしながら、そのようなより高いセル数は、コスト、回路の複雑さ、総回路パッケージング容積、および電池管理システム(「BMS」)構成要素の数および複雑さを増大させることがある。
分配バスを介して電力を負荷に供給する電源ユニットのためのバックアップシステムであって、電力源と、前記電力源の出力端子と前記分配バスとの間に直列に接続された第1および第2のトランジスタと、前記第2のトランジスタと並列に結合された第1のダイオードと、前記電力源が前記分配バスを介して前記負荷に電力供給することを可能にするために、前記第1および第2のトランジスタを選択的にオンおよびオフにするように構成された回路と、を備え、前記回路が、前記電源ユニットが故障を経験したとの信号に応答して、前記第2のトランジスタをオフに維持しながら前記第1のトランジスタをオンにするように構成される、システムを提供する。
電池システムを分配バスに接続するための従来技術のシステムを示す図である。 電池システムを分配バスに接続するための従来技術のシステムを示す図である。 本発明の実施形態によって構成されたシステムを示す図である。 電源ユニットが電力を負荷に供給する状態から電池が電力を負荷に供給する状態へのシステムの遷移を示す、図3のシステムの例示的な動作を示す図である。 電池が電力を負荷に供給する状態から電源ユニットが電力を負荷に供給する状態へのシステムの遷移を示す、図3のシステムの例示的な動作を示す図である。 直列接続スイッチのセットが図3のスイッチのうちの1つの代わりに利用される、本発明の実施形態によって構成されたシステムの回路ブロック図である。 並列接続スイッチのセットが図3のスイッチのうちの1つの代わりに利用される、本発明の実施形態によって構成されたシステムの回路ブロック図である。 単一の例示的なリチウムイオン充電式電池セルに対する種々の可能な負荷電流における、一群の電圧曲線対充電状態(「SOC」)のプロットを示す図である。 異なる数の図8で説明する直列接続の例示的なリチウムイオン充電式電池セルから結果として生じる、一群の電圧曲線対SOCのプロットを示す図である。 異なる数の図8で説明する直列接続の例示的なリチウムイオン充電式電池セルから結果として生じる、一群の電圧曲線対SOCのプロットを示す図である。 異なる数の図8で説明する直列接続の例示的なリチウムイオン充電式電池セルから結果として生じる、一群の電圧曲線対SOCのプロットを示す図である。 図6のシステム内に実装され得る調節方式の非限定的な例を示す図である。 図7のシステム内に実装され得る調節方式の非限定的な例を示す図である。
本明細書で説明する特定の実施形態は、例示の目的で示されており、本発明の実施形態の制限として示されるものではないことが理解されよう。本発明の主たる特徴は、本発明の範囲を逸脱することなく様々な実施形態において採用され得る。
前に開示したリニアレギュレータまたはスイッチングレギュレータの代替として、本発明の実施形態は、負荷回路を接続することができる出力(たとえば、分配バス)に電力源(たとえば、電池端子電圧)を接続する、個別に制御されるスイッチ(たとえば、MOSFET)のセットを提供する。本発明の実施形態によれば、MOSFETがスイッチとして利用されるとき、MOSFETは、電池スタックからの出力電圧の配送を調節するために、MOSFETのボディダイオードの固有の順方向電圧降下および/または各MOSFETと直列に結合された外部抵抗(たとえば、抵抗素子)を利用するために、所定の(たとえば、プログラムされた)方式で動作される。そのような回路は、電池放電DC-DCコンバータを置き換えること、高い放電電流に耐えること、および/または高電力で動作するリニアレギュレータまたはスイッチングレギュレータと比較して、動作モードの多くにおいてより効率的に動作することを行うように構成され得る。
本発明の実施形態は、プログラム制御の下で動作される、プログラム可能にアクティブ化される(たとえば、順次の、二進カウントの、または任意の他のシーケンスの)充電および/または放電制御スイッチ(たとえば、MOSFET)を利用して分配バスに電池システムを接続するためのシステムを提供し、そのことで、前に開示したフィードバック制御のリニアまたはスイッチングDC-DCコンバータレギュレータを置き換えることができる。本明細書で開示する実施形態は、N(ここでN≧1)個の直列接続充電制御スイッチ(たとえば、図3および図6参照)および/またはN(ここでN≧1)個の並列接続放電制御スイッチ(たとえば、図7参照)のいずれかを実装し得る。
図8を参照すると、直列接続の充電制御スイッチまたは並列接続の放電制御スイッチのいずれかが、どのようにして、電池放電電圧の印加を制御し、ならびに同等の出力電圧調節を提供することができるかを理解するために、典型的な電池の特徴的な動作について次に説明する。図8は、単一の例示的なリチウムイオン充電式電池セルに対する種々の可能な負荷電流における、一群の電圧曲線対充電状態(「SOC」)のプロットを示す。これらの曲線は、電池電圧が電池電流およびSOCの様々な組合せに対してその中で動作し得る動作範囲を規定する。
リチウムイオン(「Li-ion」)ベースの充電式電池などの充電式電池は、動作電圧範囲、最大放電電流、内部インピーダンス、および各電池セルの特定の容量を規定する、種々の内部材料および特定の化学組成を用いて構築され得る。これらのパラメータの各々は、各タイプのセルに特有の一群の放電電圧対放電電流曲線を規定する。
電池は、電池内の有限量のアクティブな化学材料によって与えられる所与の化学容量を用いて構築される。容量は、所与の電流における放電によって測定され、時間は、一定の最小電圧が達成されるまで測定される。容量は、一般的に、ミリアンペア時(「mAh」)またはアンペア時(「Ah」)で報告される。この容量は、本明細書では「C」という文字で表され、電池が100%SOC(満充電)の状態から0%SOC(完全放電)の状態まで放電することをもたらす1時間の間に、電池から利用可能な連続電流に対応する。
任意の所与の放電電流に対して、電池の端子電圧は、その充電状態(「SOC」)に従って降下する。100%満SOCは、セルの最大充電電圧によって表される。0%満SOCまたは100%空SOCは、セルの最小放電電圧によって表される。SOCは、電池の化学容量が消耗するにつれて100%から0%に減少する。
10A(「amps」)、12A、15Aおよび20Aの電流需要の間の1Ahの容量を有する例示的なLi-ion電池セルを表す、種々の負荷電流における電圧曲線対SOCが、図8に示されている。容易にわかるように、所与のSOCに対する電池の端子電圧は、電流需要の増加に応じて下方にシフトする。電流需要が増加するときの電圧尺度上の曲線間の間隔は、セルの内部抵抗または内部インピーダンスによるものである。内部インピーダンスが高いほど、所与の印加された電流負荷に対して、電池端子電圧は低くなる。したがって、所与のSOCにおける電池端子電圧は、SOCのみならず、負荷電流需要にも依存し、特性曲線によって規定される動作範囲内に存在する。
図8の図から理解され得るように、典型的な電池の出力(放電)電圧は一定ではなく、負荷電流およびSOCによって可変であり、したがって、典型的な電池は、貯蔵されたエネルギーが電池から消耗するのにかかる時間にわたって、または変化する負荷電流に対して、その放電電圧を特定の電圧範囲内に調節または維持するために固有の能力を保有していない。しかしながら、前述のように、分配バス上の最大電圧偏位が、所望の公称値の上または下の特定の固定値、すなわち、たとえばエラーフリー動作を確実にするために負荷によって許容され得る電圧の許容可能範囲(本明細書では、「特定の負荷電圧許容範囲」と呼ぶ)、に制限されることを確実にするために、分配バスに電力を供給する任意のソースが、分配バスに供給される電圧を調節する必要があることは、電力システムにおいてきわめて一般的である。これは、前述のような電圧レギュレータがなぜ、分配バスに(たとえば、電池または他のソースによって)供給される出力電圧をそのような特定の負荷電圧許容範囲内に維持するために実装されてきたかの理由の1つである。
図9~図11は、異なる数の、図8に示す直列接続の例示的なリチウムイオン充電式電池セルから結果として生じる、一群の電圧曲線対SOCのプロットを示す。異なる数の直列接続されたセルは、種々の一般的に実装される分配バス電圧と互換性のある特定の電池スタック電圧を達成するために必要であり得る。
図9~図11に示す例を参照すると、分配バスを介して負荷に配送される必要がある特定の負荷電圧許容範囲に対する3つの電圧領域が、本明細書で規定される。特定の負荷電圧許容範囲に対応する灰色の色調の領域が、曲線の各セットの上に重ね合わせられている。この重ね合わせの結果、各プロットは、3つの領域に分割される。領域1は、(たとえば、電池などの電力源によって供給される)電源電圧が特定の負荷電圧許容範囲の上(灰色の色調の領域の上の領域)に存在するすべての動作ポイントとして規定される。これは、特定の負荷電圧許容範囲内の最大電圧より高い電源電圧に相当する。領域2は、電源電圧が特定の負荷電圧許容範囲内(灰色の色調の領域内)に存在するすべての動作ポイントとして規定される。領域3は、電源電圧が特定の負荷電圧許容範囲の下(灰色の色調の領域の下の領域)に存在するすべての動作ポイントとして規定される。領域3は、特定の負荷電圧許容範囲内の最小電圧より低い電源電圧に相当する。
図9は、図8に関して説明する電池セルなど、14個の直列接続電池セルの例示的な48V電池スタックに対する種々の可能な負荷電流における一群の電圧曲線対SOCのプロットを示す。この例では、特定の負荷電圧許容範囲(領域2として示される)は、放電の一番端(たとえば、約7%より小さいSOC)を除いて、電池電流およびSOCの実質的にすべての値に対する全電池スタック電圧に等しく、すなわち、電池動作特性は、電池内に貯蔵されたエネルギーのほぼすべてが消耗するまでは、実質的に領域2の中に存在することに留意されたい。
図10は、図8に関して説明する電池セルなど、3個の直列接続電池セルの例示的な12V電池パックに対する種々の可能な負荷電流における一群の電圧曲線対SOCのプロットを示す。図9におけるように、特定の負荷電圧許容範囲(領域2として示される)は、放電の一番端(たとえば、約5%より小さいSOC)を除いて、電池電流およびSOCの実質的にすべての値に対する全電池スタック電圧に等しく、すなわち、電池動作特性は、電池内に貯蔵されたエネルギーのほぼすべてが消耗するまでは、実質的に領域2の中に存在することに留意されたい。
図11は、図8に関して説明した電池セルなど、4個の直列接続電池セルの12V電池パックに対する種々の負荷電流における例示的な一群の電圧曲線対SOCを示す。この例では、高いSOCにおける電池動作特性曲線は、特定の負荷電圧許容範囲(領域2として示される)より上にある、プロットの領域1内に存在することに留意されたい。電池が領域1内で動作しているとき、電池から分配バスに供給される電圧の電圧調節(たとえば、低減)は、負荷に供給される電圧が特定の負荷電圧許容範囲(領域2として示される)の外に存在するレベルにまで変動するのを防ぐために、得られた低減された電圧が負荷に配送される前に実装されなければならない。
たとえば、図11に示すように(および、図6および図7に関してさらに説明するように)、特定の負荷電圧許容範囲(図11において領域2として示される)は、バックアップの目的で実装された電池スタックの全放電電圧範囲より狭くなり得る。それにもかかわらず、本発明の実施形態は、従来の電圧レギュレータを利用しないが、それでも電池スタックから分配バスに供給される出力電圧を実質的に特定の負荷電圧許容範囲内に維持(調節)することが可能であるように実装することができる。
図3は、本発明の実施形態によって構成されたシステム300の回路ブロック図を示す。システム300は、電池308の出力端子を規定されたスイッチ構成を介して分配バス304に選択的に結合するように構成された電池システム306を含む。この例では、電池308の端子電圧特性は、図10に示す特性と同様であり、図10では、すべての動作ポイント(電流とSOCとの組合せ)に対応する電池電圧は、特定の負荷電圧許容範囲内に存在する(すなわち、すべての電池動作ポイントは、特性曲線の領域2のエリア内に存在する)。本発明の実施形態によれば、この規定されたスイッチング構成は、電池308と分配バス304との間に結合された直列接続スイッチ(この非限定的な例示的実施形態では、放電制御スイッチの数Nは1(図3に311とラベル付けられている)である)を含み、分配バス304は、よく知られているACライン入力電圧を介して電力供給されるよく知られている電源ユニット(「PSU」)301に結合される。PSU301は、ACライン入力電圧をDC出力電圧に変換し、DC出力電圧は、1つまたは複数の負荷回路(本明細書では単に「負荷」とも呼ぶ)305が接続される分配バス304に給電する。
本発明の実施形態によれば、電池システム306、規定されたスイッチ構成およびPSU301は結合してマルチスイッチ電池バックアップユニット(「BBU」)を形成する。BBUは、ACライン入力電圧が存在して通常動作限界内にあるとき、通常電源として機能するように構成され得る。PSU301の出力が(たとえば、ACライン入力電圧損失またはPSU301の内部故障によって)降下する場合、システム300は、(たとえば、発電機バックアップに切り替えるかまたは適切なシャットダウン手順を完了するのに十分に長い)所定の最小持続時間の間、負荷305を動作させるのに十分な電力を電池308から供給するように構成され得る。したがって、電池システム306は、PSU301へのACライン入力電圧が機能しない(または通常のまたは要求される動作範囲内にない)場合、あるいはPSU301が内部構成要素故障を経験するかまたは不意に動作を止める場合、バックアップ電力源として機能するように構成され得る。本発明の実施形態によれば、電池システム306は、電池308とコントローラ302とを含む。コントローラ302は、本明細書で説明する機能を実行するように構成された任意の回路を含み得るか、あるいはコントローラ302に関して本明細書で説明する機能を実行することができる任意の他の回路、集積回路(「IC」)モジュール、またはマイクロプロセッサとして実装され得る。電池308は、1つまたは複数の電池セル(たとえば、電池スタック内に構成された1つまたは複数のLi-ionセル)として実装され得る。
本発明の実施形態によれば、スイッチ309~311のうちの任意の1つまたは複数は、p型またはn型のMOSFETなどのFETとして実装され得、コントローラ302内の回路は、本明細書で説明する様々な機能を実装するために必要に応じて、(たとえば、ゲート駆動線320~322それぞれを介して)FET309~311の各々を適切に別個にオンおよびオフにするように構成され得る。代替として、スイッチ309~311のうちの任意の1つまたは複数は、本明細書で説明するそれらのそれぞれの機能を実行するのに好適な任意の回路と置き換えられ得る。本発明の実施形態によれば、FET310~311のうちの1つまたは複数は、寄生ボディダイオードを含むように実装され得、寄生ボディダイオードは、それらのそれぞれのFET310~311の導通チャネルがそれらのオフ状態にあるとき、一方向のみの電流フローを可能にするように働く。本発明のいくつかの実施形態によれば、スイッチング素子311は、寄生ボディダイオードなしに構成され得る。
PSU301は、PSU301が分配バス304を介して十分な電力を負荷305に供給しているか否かを示す(たとえば、PSU301が適切に機能しているかまたは故障したか、あるいはACライン入力電圧が通常の(たとえば、要求される)動作範囲内にあることを示す)、デジタル論理レベルまたはアナログ信号(AC_OKとして示される)などの出力信号を信号線312上で送るように構成された、よく知られている内部電子機器(図示せず)を含み得る。コントローラ302は、ACライン入力電圧を監視するために、この入力信号(AC_OK)をPSU301から信号線312上で供給される。本発明の実施形態によれば、1つまたは複数の電源(PSU)301は、電力を負荷305に供給するために分配バス304に接続され得ることに留意されたい。
本発明のいくつかの実施形態によれば、電池システム306は、電池308に流入するかまたはそこから流出する電流を検出して測定するように構成された電流センサ307をさらに含み得る。電流センサ307は、図3に示すような、増幅器に結合された感知抵抗器として構成され得る。本発明のいくつかの実施形態によれば、コントローラ302は、電流センサ307を介して電池308から抽出されるかまたは電池308に配送される電流の大きさ(たとえば、アンペアにおける)と方向(負または正のいずれか)の両方を測定する構成され得る。電流センサ307の利用について、図4および図5に関してさらに説明する。
放電スイッチの数Nが1に等しい、図3に関して説明する例示的な実施形態では、電池308の特性動作電圧範囲は、図10および図11に領域2として示すような、(たとえば、負荷305によって要求される)分配バス304に供給される特定の負荷電圧許容範囲に実質的に適合するように構成され得る。
本発明のいくつかの実施形態によれば、コントローラ302は、別個の充電回路(「充電器」)303によって電池308の充電を可能にするために、充電制御FET309(または任意の好適なスイッチング素子)をオンに切り替えるように構成され得る。FET309は、図3に示す寄生ボディダイオードも含み得る。さらに、本発明の実施形態は、電池308からの電力が充電器303まで通過するのを防ぐように構成されたダイオード330(または同様の回路素子)をさらに含み得る。
マルチスイッチ電池動作-PSUから電池への電力切り替え
図3および図4を参照すると、PSU301へのACライン入力電力の喪失またはPSU301の故障の間など、分配バス304を介する電池308の負荷305へのマルチスイッチ接続の例示的で非限定的なプログラム可能な構成について以下で説明する。本発明の実施形態によれば、システム300は、分配バス304に給電するPSU301からの電圧が、何らかの理由でしきい値レベル以下(たとえば、特定の負荷電圧許容範囲の許容可能な下限以下)に低下するとき、電池308が電力を負荷305に供給するように構成され得る。一例として、何らかの時点において、PSU301へのACライン入力電圧が除去されること、またはPSU301が適切に動作することができなくなること(本明細書では「PSU故障イベント」と呼ぶ)を考察する。たとえば、これは、外部AC電力がACライン入力電圧を供給するのを停止することに起因する場合がある。
PSU301内の回路が故障するか、またはPSU301の内部電子機器によって検出されるACライン入力電圧が降下するとき、PSU301がPSU故障イベントを経験したことの全システムへの警告として、PSU301は、信号線312上にAC_OK信号の状態変化を生じさせ(たとえば、AC_OK=0)、電力遮断が発生し得るように構成され得る。図4では、負荷305に供給される電圧(「負荷における電圧」と呼ばれる)は点線で表され、PSU301によって供給される電圧(「PSU電圧」と呼ばれる)は隣接する実線で表され、電池308によって供給される電圧は破線で表される。
本発明の実施形態によれば、PSU301は、ACラインから受けたエネルギーを貯蔵するように構成された1つまたは複数のよく知られているエネルギー貯蔵素子(たとえば、キャパシタ、図示せず)を含み得、そのことで、図4において「PSUホールドアップ時間」と呼ばれる、AC入力電力がない場合にも短い時間期間の間、バス304上のPSU電圧が実質的に一定のままであることが可能になる。本発明の実施形態によれば、このPSUホールドアップ時間は、一般的に、2ミリ秒から20ミリ秒の時間スケールに及ぶ場合があるが、PSUホールドアップ時間の正確な持続時間は、そのようなエネルギー貯蔵素子のエネルギー貯蔵容量に依存する。PSU301内部のエネルギー貯蔵素子がこの貯蔵されたエネルギーを消耗し始めると、バス304上のPSU電圧は、PSU301の内部回路および外部負荷(たとえば、エネルギー貯蔵素子)ならびに(たとえば、負荷305による)PSU301からの瞬間的出力電力引き出しによって決定される何らかの特定の減衰速度でドループまたは下がり始める。電圧ドループは、デバイスが制約された電力配送の条件の下で負荷を駆動するときにデバイスからの出力電圧が徐々に減少することとして、当技術分野でよく知られている。この電圧ドループは、「PSU出力電圧ドループ」として図4のPSU電圧曲線の中に示されている。
コントローラ302は、信号線312上のAC_OK信号の状態変化(たとえば、AC_OK=0)を受けることに応答して、FET311を(たとえば、Q2ゲート駆動線322上に適切な電圧をアサートする(図4において「Q2ゲート信号ハイ」と呼ばれる)ことによって)オンにするように構成され得る。これは、電池308からの電圧がFET310のボディダイオードを通ってバス304に接続されることをもたらす。なぜならば、FET310の導通チャネルは、オフのままであるからである(なぜならば、コントローラ302は、この時点では、FET310の導通チャネルをオンにするには不十分な電圧信号をQ1ゲート駆動線321上に出力するように構成されるからである)。分配バス304から逆方向に(すなわち、電池308の中に)流れようとする任意の電流は、FET310のボディダイオードによって阻止されるが、バス304上の電圧が、電池308からの電圧からFET310のボディダイオードの順方向電圧を引いた電圧(Vbatt-VfQ1)以下に降下した瞬間に、電力が電池308から分配バス304の中に流れることができる。この条件は、図4において「電池放電レディ状態」と呼ばれる。
PSU301内部のエネルギー貯蔵素子がエネルギーを消耗し始めると、バス304上の電圧は、その電圧が、電池308からの電圧からFET310のボディダイオードの順方向電圧を引いた電圧(Vbatt-VfQ1)に等しいポイントに達するまで降下する。このポイントにおいて、電池308は、FET310のボディダイオードを通して分配バス304(およびしたがって同じく負荷305)に電流を配送し始め(Q1ボディダイオード導通期間)、電池308およびPSU301は、分配バス304上で電流を共有している(図3に「電池電流」および「PSU電流」によって示される)。これは、本明細書では、図4において電池308の放電期間の「PSUから電池への電力切り替え」と呼ばれる。本発明の実施形態によれば、FET310のボディダイオードが導通を開始すると、コントローラ302は、分配バス304上で電池308から流出する非ゼロ電流を検出するように構成され得、それは、電流センサ307内の瞬時電流に比例する信号(たとえば、アナログ)の送信によって達成され得、信号は、電池電流測定線325上でコントローラ302に送られる。
このポイントにおいて、FET310のボディダイオード内のさらなる電力消散(および対応する熱発生)を防ぐために、コントローラ302は、FET310を(たとえば、Q1ゲート駆動線321上に適切な電圧をアサートする(図4において「Q1ゲート信号ハイ」と呼ばれる)ことによって)オンにするように構成され得、導通チャネルがQ1内に確立されることがもたらされ、そのことで、電流は高消散(high-dissipation)のボディダイオードから低消散の導通チャネルに転換され、したがって、FET310内の全電力消散が低減される。FET310と311の両方がオンにされている状態は、本明細書では、図4において、「Q1およびQ2の導通チャネルを通る電池放電電流」と呼ばれる。FET310と311の両方が「オン」状態にありかつ電池308がPSU301と負荷電流を共有するこの状態は、PSU301内のエネルギー貯蔵素子の低エネルギーしきい値が到達されるまで継続し、その時点において、PSU301は動作を止めるかまたはスイッチをオフにする。PSU301のスイッチオフにおいて、電池308は、負荷305に電力を供給することを引き継ぐ。この状態は、電池308がバス304を介して負荷305に接続される図9および図10に示すように、電池308の放電の領域2のエリア内の動作に対応する。一般的な負荷305は、通常、一定の電力特性を提示し得、それゆえ、電池308の電流は、図4に示すように、電池308の電圧が降下している速度と同等にゆっくりと上昇する。電池308は、通常、その貯蔵されたエネルギーが消費されるにつれて放電し、コントローラ302は、電池端子電圧が最小許容可能バス電圧に達したか、または図9および図10に示す、本明細書で電池308の放電の領域3のエリアと呼ばれるものの中に入ったことを検出したとき、電池の放電を終了する。このポイントは、用途、または最小許容可能負荷電圧に対する負荷回路限界(たとえば、特定の負荷電圧許容範囲の下限)によって規定された所定の下方電圧限界によって決定され得る。電池308内に残存するエネルギーは、領域3のエリアに到達すると、バス304のために利用することができなくなる。
電池308が化学エネルギーを消耗すると、コントローラ302は、それに応じて、FET310と311の両方を(たとえば、Q1ゲート駆動線321およびQ2ゲート駆動線322を介して)オフにし、したがって、電池308を分配バス304から分離し、負荷から電力を除去してその動作を終了するように構成され得る。図4に示す全動作時間は、負荷305および電池308内のセルの全エネルギー貯蔵能力によって決定され得る。
マルチスイッチ動作-電池からPSUへの電力切り替え
図5を参照すると、電池308のセルはまだ完全には消耗していないものと仮定して、ACライン電力がPSU301に対して回復したとき(またはさもなければ、PSU301の通常動作が回復したとき)電池308は依然として分配バス304に電流を配送しており、PSU301は、その起動シーケンスを開始し、信号線312上のAC_OK信号の状態を変更し(たとえば、AC_OK=1)、分配バス304に接続されたPSU出力電圧(図5に「PSU電圧」線として示す)が上昇し始める(「PSU出力電圧傾斜」)。上昇するPSU電圧が分配バス304の電圧と一致したとき、PSU301は、負荷305に配送される電流の一部を引き継ぐことを開始する。その後、PSU電圧が電池308の電圧より上に上昇し始めるとき、逆電流(充電電流)が電池308の出力端子に現れ(図5において「電池への負電流」と呼ばれる)、その電流は電流センサ307によって感知され得る。PSU301からの有効なAC_OK=1信号と「電池への負電流」の両方が検出されたとき、コントローラ302は、FET311へのQ2ゲート駆動信号322の状態を変更し、FET311のQ2導通チャネルが閉じられることをもたらす。PSU301の出力電圧が安定してからしばらくすると、コントローラ302は、そのQ1ゲート駆動信号321を介してFET310をオフにし、そのことが、電池308を分配バス304から分離する役目を果たすように構成され得る。ついで、PSU電圧は、PSU301がその通常動作電圧調節レベルを達成するまで上昇を継続し得、PSU301は、別の電力供給停止イベントが発生するまで、この状態を継続し得る。
図6は、本発明の実施形態によって構成されたシステム600の回路ブロック図を示す。システム600内の素子の各々は、システム300に関して前に説明した、対応してラベル付けられた素子と同じように動作し得る。システム600は、電池608の出力端子を規定されたスイッチング構成(すなわち、いくつかの直列接続スイッチ)を介して分配バス604に選択的に結合するように構成された電池システム606を採用する。本発明の実施形態によれば、この規定されたスイッチング構成は、電池608と分配バス604との間に直列に接続されたN(ここでN≧2)個の充電制御スイッチ(たとえば、FET、それはMOSFETであり得る)のシリーズを含み、ここで各FETは、コントローラ602によって別個に制御される。
システム600は、特定の負荷電圧許容範囲の上に延びる電池端子電圧動作ポイントを有する電池システムのために利用され得る(たとえば、負荷605によって必要とされる、図11の例に示す領域2のエリア参照)。本明細書の他の場所で説明するように、一般的な電池は、多くの負荷によって必要とされるそのようなより狭い特定の負荷電圧許容範囲の外に存在する動作ポイントを有する。それゆえ、システム600は、供給される電池電圧を実質的にこの特定の負荷電圧許容範囲内に調節するために採用され得る。本発明のいくつかの実施形態によれば、電池608の電圧は、いくつかのSOCおよび電池電流状態において分配バス604の特定の負荷電圧許容範囲の上に存在し、他のSOCまたは電池電流状態の下で分配バス604の特定の負荷電圧許容範囲に実質的に一致するように構成され得る。
システム600は、よく知られているACライン入力電圧を介して電力供給される、よく知られている電源ユニット(「PSU」)601を含む。PSU601は、ACライン入力電圧をDC出力電圧に変換し、DC出力電圧は、負荷605が接続される分配バス604に給電する。本発明の実施形態によれば、電池システム606、規定されたスイッチング構成、およびPSU601は結合してマルチスイッチ電池バックアップユニット(「BBU」)を形成する。BBUは、ACライン入力電圧が存在して通常動作限界内にあるとき、通常電源として機能するように構成され得る。PSU601の出力が(たとえば、ACライン入力電圧損失またはPSU601の内部故障によって)降下する場合、システム600は、(たとえば、発電機バックアップに切り替えるかまたは適切なシャットダウン手順を完了するのに十分に長い)最小の規定された持続時間の間、負荷605を動作させるのに十分な電力を、適切なサイズの電池608から供給するように構成され得る。したがって、電池システム606は、PSU601へのACライン入力電圧が機能しない(またはPSU601の出力が通常のまたは要求される動作範囲の外に降下する)場合、またはPSU601が故障するかまたは不意に動作を止める場合、バックアップ電力源として機能するように構成され得る。
本発明の実施形態によれば、電池システム606は、電池608とコントローラ602とを含む。電池608は、1つまたは複数の電池セル(たとえば、Li-ionセル)として実装され得る。コントローラ602は、本明細書で説明する機能を実行するように構成された任意の回路を含み得るか、あるいはコントローラ602に関して本明細書で説明する機能を実行することができる任意の他の回路、ICモジュール、またはマイクロプロセッサとして実装され得る。
図6に示す非限定的な例示的実施形態では、システム600は、図3のFET310の代わりに、N(ここでN≧2)個の充電制御スイッチ(たとえば、N個のMOSFET610a...610c)の回路網を実装する。直列接続充電制御FETの数は、2から、実装されたコントローラ602によって実質的に制御され得る任意のより大きい数まで及ぶことができる。FETの数Nは、最大電池スタック電圧と、要求される出力電圧(たとえば、特定の負荷電圧許容範囲(たとえば、図11の領域2参照)によって決定される)との差によって決定され得る。本発明の実施形態によれば、コントローラ602内の回路は、本明細書で説明する本発明の実施形態の機能を実装するために必要に応じて、FET609、610a...610cおよび611の各々を(たとえば、ゲート駆動線620、621a...621cおよび622それぞれを介して)適切にオンおよびオフにするように構成され得る。代替として、FET609、610a...610cおよび611のうちの任意の1つまたは複数は、本明細書で説明するそれらのそれぞれの機能を実行するのに好適な任意の回路と置き換えられ得る。
コントローラ602は、FET610a...610cおよび611の各々を別個にオンおよびオフにするように構成され得る。本発明の実施形態によれば、FET610a...610cおよび611のうちの1つまたは複数は、寄生ボディダイオードを含むように実装され得、寄生ボディダイオードは、各FET610a...610cがオフ状態にあるときに電流が電池に流入(充電電流)するのを防止し、FET611がオフ状態にあるときに放電電流が負荷に流入するのを防止するように働く。本発明のいくつかの実施形態によれば、スイッチング素子611は、寄生ボディダイオードなしに構成され得る。本発明の代替実施形態によれば、電流がボディダイオードを通って導通しているときに、FETパッケージ(すなわち、N個の充電制御FET610a...610cおよび放電制御FET611)内の電力損失(およびその結果の熱発生)を最小化するために、外部ショットキーダイオード(図示せず)が、充電制御スイッチのいずれかまたはすべてと並列に接続されてもよい(またはそれらのパッケージの中に作られてもよい)。
PSU601は、PSU601が分配バス604を介して十分な電力を負荷605に供給しているか否かを示す(たとえば、PSU601が適切に機能しているかまたは故障したか、あるいはACライン入力電圧が通常の(たとえば、要求される)動作範囲内にあることを示す)、デジタル論理レベルまたはアナログ信号(AC_OKとして示される)などの出力信号を信号線612上で送るように構成された内部電子機器(図示せず)を含み得る。コントローラ601は、ACライン入力電圧を監視するために、この入力(AC_OK)をPSU601から信号線612上で供給される。本発明の実施形態によれば、1つまたは複数の電源(PSU)601は、電力を負荷605に供給するために分配バス604に接続され得ることに留意されたい。
本発明のいくつかの実施形態によれば、電池システム606は、電池608に流入するかまたはそこから流出する電流を検出して測定するように構成された電流センサ607をさらに含み得る。電流センサ607は、電池電流センサ線625上に信号を出力する増幅器(たとえば、OPAMP)に結合された感知抵抗器Rとして構成され得る。本発明のいくつかの実施形態によれば、コントローラ602は、電流センサ607を介して電池608から抽出されるかまたは電池608に配送される電流の大きさ(たとえば、アンペアにおける)と方向の両方を測定するように構成され得る。システム600は、電池608の電圧レベルおよび負荷605における出力電圧レベルを決定するために電圧センサとして機能するように構成された、電池電圧フィードバック回路642および負荷電圧フィードバック回路641をさらに含み得る。
本発明のいくつかの実施形態によれば、コントローラ602は、充電回路(「充電器」)603によって電池608の充電を可能にするために、充電制御FET609(または任意の好適なスイッチング素子)をオンに切り替えるように構成され得る。FET609は、図6に示す寄生ボディダイオードも含み得る。さらに、本発明の実施形態は、電池608からの電力が充電器603まで通過するのを防ぐように構成されたダイオード630(または同様の回路素子)をさらに含み得る。
電池接続時に、および(FET611をオンにすることに対応して)電池608から負荷605に電流を配送し始めるのと実質的に同時に、電池端子電圧は、電池608の特性インピーダンス曲線に従ってプルダウンまたは降下し、分配バス604に供給される電圧は、各ボディダイオードの全順方向電圧降下の合計に、オフ状態(コントローラ602によって決定される)にあるN個のFET610a...610cの数を乗じた値だけ減じられた、結果の電池端子電圧となる。コントローラ602は、電圧センサ642を介して電池電圧を、および電圧センサ641を介して(負荷605への)出力電圧を感知し、それに応じて、負荷605における電圧を所望の動作範囲(たとえば、特定の負荷電圧許容範囲(たとえば、図11に示す領域2参照))内に維持するために、オンまたはオフである必要がある充電制御スイッチ(たとえば、N個のFET610a...610c)の数を決定するように構成され得る。電池電圧が、電流の増加(インピーダンス曲線効果)またはその充電状態の低減(SOCベースの電圧降下)のいずれかの結果として降下し続けるとき、N個のFET610a...610cは、電池608によって負荷605に供給される電圧を調節するために、電池端子と出力(負荷)端子との間の直列順方向ダイオード電圧降下の総数を低減するために、電圧センサ642および641によって感知されるにつれて変化する電圧状態に応答して、コントローラ602によって(たとえば、順次の、二進カウントの、または任意の他のシーケンスの)所定のプログラムされた方式でオンにされ得る。同様に、特性インピーダンス効果によって電池端子電圧増加を生じる、負荷605によって引き出される電流の突然の低減は、コントローラ602がN個のFET610a...610cのうちの1つまたは複数をオフにすることによって補償され得、したがって、1つまたは複数の順方向ダイオード電圧降下がN個のFET610a...610cの直列回路の中に戻して加えられる。
コントローラ602内に実装され得る調節方式の非限定的な例が図12に示され、図12は、オンまたはオフにされるFET(0...N)の数の関数としてN(ここでN=3)個の直列接続FET610a...610cにわたる全電圧降下を示す。理解されるように、N個のFET610a...610cの回路網にわたる全電圧降下は、基本的に0Vから、要求される負荷電圧(およびその許容範囲)と電池608の端子における最大電圧(N=3のこの例では約2.4V)との間の差によって決定されるFETの数Nによって規定される電圧まで、離散ステップでコントローラ602によって制御され得る。電池608の出力端子と負荷605の入力端子との間の回路内に上記の回路網を設置することによって、負荷605は、その入力電圧が、電池608の端子電圧からFET回路網にわたる電圧降下を引いたものであるものと見なす。この技法によって、負荷605に供給される電圧の調節(たとえば、実質的に特定の負荷電圧許容範囲内)が達成され、FET回路網にわたる電圧降下を調整するためにコントローラ602によってN個のFET610a...610cのオン/オフを切り替えることによって維持され得る。本発明の実施形態によれば、コントローラ602はまた、任意の個別のFETのボディダイオード内の電力消散を最小化するために、FET610a...610cおよび611のうちの任意の1つまたは複数をオン/オフするように構成され得る。
本発明の実施形態によれば、センサ642および641によってもたらされる電圧感知およびセンサ607によってもたらされる電流感知に応答して、任意の特定のFET(たとえば、N個のFET610a...610c)をオンまたはオフにすることのシーケンスおよびタイミングを決定するために、コントローラ602内に実装され得る誤差増幅器、状態空間制御、またはヒステリシス制御方法の実装形態など、いくつかの広く知られている制御技法が存在する。
図7は、本発明の実施形態によって構成されたシステム700の回路ブロック図を示す。システム700内の素子の各々は、システム300および600に関して前に説明した、対応してラベル付けられた素子と同じように動作し得る。システム700は、電池708の出力端子を規定されたスイッチング構成を介して分配バス704に選択的に結合するように構成された電池システム706を採用する。本発明の実施形態によれば、この規定されたスイッチング構成は、N(ここでN≧2)個の並列接続放電スイッチ710a...710d(たとえば、MOSFET)の回路網を含み、スイッチの各々は、抵抗器750a...750dと直列に結合されて、N個のFET/抵抗器ペアの回路網を形成する。
システム700は、(たとえば、負荷705によって必要とされる、たとえば、図11の例に示す領域2のエリア参照)特定の負荷電圧許容範囲の上に延びる電池端子電圧を有する電池システムのために利用され得る。本明細書の他の場所で説明するように、一般的な電池は、多くの負荷によって必要とされるそのようなより狭い特定の負荷電圧許容範囲の外に存在するいくつかの動作ポイントにおける端子電圧を有する。それゆえ、システム700は、供給される電池電圧を実質的にこの特定の負荷電圧許容範囲内に調節するために採用され得る。本発明のいくつかの実施形態によれば、電池708の電圧は、いくつかのSOCおよび電池電流状態において分配バス704の特定の負荷電圧許容範囲の上に存在して、他のSOCおよび電池電流状態の下で分配バス704の特定の負荷電圧許容範囲に実質的に一致するように構成され得る。
抵抗器750a...750dの各々は、異なる抵抗値によって構成され得、シリーズ750a...750d内の各抵抗器の抵抗値が、シリーズ内の前の抵抗器より低くなるように構成され得る(たとえば、抵抗器750bは抵抗器750aより低い抵抗値を有し、抵抗器750cは抵抗器750bより低い抵抗値を有する、等々)。FET/抵抗器ペアは、電池が分配バス704から直接充電されるのを防ぐ別のスイッチング素子(たとえば、MOSFET)711を介して電池端子と分配バス704との間で並列に接続され得、ここで、N個のFET710a...710dおよびそれとペアを成す抵抗器の各々ならびにFET711は、制御線721a...721eを介してコントローラ702によって別個に制御される。しかしながら、本発明の実施形態は、実質的に同等の抵抗値を有する抵抗器750a...750dのうちの1つまたは複数によって実装され得る。
並列接続放電制御FET/抵抗器ペアの数Nは、2から、コントローラ702によって実際に制御され得る任意の数までに及ぶことができる。放電制御FET/抵抗器ペアの数Nは、一般に、電池スタックから利用可能な最小および最大の電圧、最小および最大の出力電流の予測範囲、および(たとえば、特定の負荷電圧許容範囲(たとえば、図11の領域2参照)によって決定される)要求される最小および最大の出力電圧範囲など、いくつかの要因によって決定され得る。
本発明の実施形態によれば、電池708は、最高の抵抗値の抵抗器750aとペアを成し得るFET710aによって開始するなど、(たとえば、順次の、二進カウントシーケンスの、または任意の他のシーケンスの)プログラムされた方式で、N個のFET710a...710dのうちの1つまたは複数をコントローラ702によってアクティブ化する(たとえば、オンにする)ことによって、分配バス704に接続され得る。FET710aをオンにすると、電流が、負荷705の方に流れ始め、電池708の端子電圧が、電池のインピーダンス特性曲線に従って降下し始める。直列結合のFET/抵抗器ペア710a/750aを通る負荷705の電流が十分に高い場合、直列結合のFET/抵抗器ペア710a/750aにわたる電圧降下は、負荷705における電圧が所定のしきい値まで降下するまで増加し、そのしきい値は、負荷705の最小調節ポイント仕様(たとえば、特定の負荷電圧許容範囲の下限)に従って(たとえば、コントローラ702内で)設定され得る。このしきい値が到達され、出力電圧センサ741を介してコントローラ702によって感知されると、コントローラ702は、FET/抵抗器ペア710a/750aをオフにし、抵抗器750bとペアを成すFETをオンにするように構成され得、抵抗器750bは、シリーズの抵抗器750a...750dの中で2番目に高い抵抗値を有し得る。本発明の実施形態によれば、FET710bと直列の抵抗器750bは、抵抗器750aの抵抗値よりかなり小さい抵抗値を有し、したがって、直列結合のFET710bおよび抵抗器750bにわたる電圧降下は、直列結合のFET710aおよび抵抗器750aにわたる電圧降下より低くなるように構成され得る。これの効果は、負荷705の最小調節ポイント仕様(たとえば、特定の負荷電圧許容範囲の下限)に関する前述のしきい値の上に負荷705への出力電圧を上昇させ、したがって、負荷705への出力電圧をこの最小の所定のしきい値の上に保持することである。このようにして、負荷705への出力電圧は、コントローラ702が、負荷電圧を上げるためにN個のFET710a...710dを(たとえば、上方2進カウントシーケンスで)選択的にアクティブ化し、負荷電圧を下げるためにN個のFET710a...710dを(たとえば、下方2進カウントシーケンスで)選択的に非アクティブ化するによって、電池電圧センサ742、出力電圧センサ741および電流センサ707を介してコントローラ702によって感知されるにつれて変化する電池端子電圧および負荷電流の下で、コントローラ702によって調節窓(たとえば、特定の負荷電圧許容範囲(たとえば、図11の領域2参照))内に維持され得、ここでFET710aは2進順次カウンタの最下位ビットと関係付けられ、FET710d(またはより高い)は最上位ビットと関係付けられる。
コントローラ702内に実装され得る調節方式の非限定的な例が図13に示されており、図13は、コントローラ702によるN個のFET710a...710dの選択的アクティブ化に対する2進カウントシーケンスの関数とする、並列接続FET/抵抗器ペアにわたる全電圧降下を示す。図に示すように、FET/抵抗器ペア回路網にわたる電圧降下は、基本的に0Vから、何らかの所望の最大電圧(この例では約3.0V)までに及ぶ、N2の離散ステップ(たとえば、N=4のときは16)で制御され得る。電池708の出力端子と負荷705の入力端子との間の回路内に上記の回路網を設置することによって、負荷705は、その入力電圧が、電池708の端子電圧からFET/抵抗器ペア回路網にわたる電圧降下を引いたものであるものと見なす。この技法によって、負荷605に供給される電圧の(たとえば、実質的に特定の負荷電圧許容範囲内への)調節が達成され得、FET/抵抗器ペア回路網にわたる電圧降下を調整するためにコントローラ702によってN個のFET710a...710cのオン/オフを切り替えることによって維持され得る。
本発明の実施形態によれば、N個の並列放電スイッチング素子(すなわち、N個のFET/抵抗器ペア)のそのような回路網は、高電流デジタルアナログ変換器として(たとえば、コントローラ702から受信された命令に応答して)動作するように構成され得、ここで(すなわち、電池708からの)ソース電圧は、経時的に一定ではない(たとえば、図8参照)。この構成では、電圧センサ741、742および電流センサ707からの情報は、入力電圧と出力電圧(すなわち、電池708と負荷705)の両方における変動を補償するためにコントローラ702によって利用され得る。
したがって、結果のシステム700は、入力(すなわち、電池708)および出力(すなわち、負荷705)上の電圧における変化を補償するために、コントローラ702によって回路網の中および外で切り替えられ得るN個の固定インピーダンス素子(すなわち、N個のFET710a...710dおよび関連する抵抗器750a...750d)の回路網として構成される。抵抗器750a...750dの抵抗値を変動させることで、個々の素子インピーダンスが規定される。本発明の実施形態によれば、各FET/抵抗器ペアは、所定の印加される電流における特定の電圧降下によって構成され得る。その結果、システム700は、電池708と負荷705との間の可変で制御可能なインピーダンスを規定する素子の回路網を制御するように構成され得る。負荷705の電圧が増加するにつれて、回路網は、全インピーダンスが増加し、負荷705に配送される電圧が減少するように、コントローラ702によって調整される。電池708の電圧が減少するにつれて、回路網は、全インピーダンスが低減され、したがって、回路網にわたる電圧もまた低減され、負荷705に配送される電圧を所望の範囲内に(たとえば、実質的に特定の負荷電圧許容範囲内に)維持する役目を果たすように、コントローラ702によって再構成される。ついで、電池電圧から引かれる、回路網にわたる電圧降下を補償することは、電池動作ポイントが領域1の動作範囲(たとえば、図11に示す)内に存在する(たとえば、理由が何であれドリフトする)ときはいつでも、高解像度の電圧整合を提供するために、負荷705に配送される結果の電圧が、システム700内に様々なN個のFET/抵抗器ペアを配列することによって制御されるように、任意の数の種々の制御技法を使用して、コントローラ702によって制御され得る。
本発明の実施形態によれば、電圧センサ741および742によってもたらされる電圧感知および電流センサ707によってもたらされる電流感知に応答して、特定のFET/抵抗器ペアをオンまたはオフにすることのシーケンスおよびタイミングを決定するために、コントローラ702内に実装され得る誤差増幅器、状態空間制御、またはヒステリシス制御方法の実装形態など、いくつかの広く知られている制御技法が存在する。
前述の説明の結果として、システム600もしくはシステム700またはシステム600と700の両方のFET回路網を組み合わせるシステムは、電池が放電しているときに電池から負荷回路に供給される出力電圧を所望の電圧範囲内に維持することを、システム600および/またはシステム700を(たとえば、BBUとして利用するために)電圧レギュレータとして実装することができるように、そのような出力電圧を要求される動作電圧範囲内に(たとえば、実質的に特定の負荷電圧許容範囲内に)維持することを含めて行うように構成され得ることが容易に理解され得る。
図3を再度参照すると、例示的な非限定的実施形態では、PSU301は、+/-15%の分散を有する分配バス304に対する公称48Vである、40.8V~55.2Vの出力電圧範囲を有するように構成され得る。PSU301は、14S構成を規定するために、14個の個々の電池セルが直列に接続されたLi-ion電池スタック308に結合され得る。電池セルごとに3.95Vに充電されるとき、電池308は、55.3Vの完全充電電圧および39.2Vの完全放電電圧を有し、したがって、最後の4%~5%の残留容量を除いて、すべての充電および負荷の状態に対して、そのような48V分配バス304に対して要求される仕様内(たとえば、実質的に特定の負荷電圧許容範囲内)にあることになる。この14Sセル構成は、電池電圧の低減を必要とすることなく分配バス304に直接接続することを可能にする完全充電および通常放電電圧を有する(すなわち、図9に示すように、電池電圧は、そのSOC範囲の95%以上に対して領域2動作エリアに制約される)。したがって、これは、そのような放電スイッチング素子の数が、図3に示すように1である(すなわち、N=1)本発明の実施形態に対する好適な用途環境である。
電池308に分配バス304内に放電させるイベント(たとえば、PSU故障イベント、図4参照)の間、電池308の電圧は、印加された負荷305より下に降下することになる。電池308の電圧降下の量は、印加された負荷305の大きさおよび電池308内の電池セルの各々の内部インピーダンスに依存する。電池308の電池セルは、放電イベントの間にその電圧限界(たとえば、前述の+/-15%の分散を有する公称48V出力)内に(たとえば、実質的に特定の負荷電圧許容範囲内に)分配バス304を保持するために十分に小さい電圧降下を維持しながら、電池セルの電圧、電流およびインピーダンス特性が、電池セルが接続される分配バス304の全電力要件をサポートすることができるように注意深く選択され得る。
図11を参照すると、本発明のさらに別の非限定的な例示的実施形態では、4セル電池パックは、12V電気バスに直接接続するように構成され得る。前の例と比較すると、電池のV-I-SOC曲線は、この4セル電池が、領域2のエリア内に移動する前に、その放電のかなりの部分を領域1の動作エリア内で動作することを示している。この非限定的な例示的実施形態によれば、図6および/または図7に示すような回路構成を利用することができ、電池端子電圧が電池と負荷との間に実装された切り替え回路網を介して低減されることが可能になる。
本発明の実施形態が、本明細書では、電池を(たとえば、電池バックアップのための)電力源として利用するように開示されているが、本発明の実施形態は、任意の適切なタイプの電力源を利用するように構成されてもよい。それに応じて、システム300、600および/または700は、調節されない出力電圧(たとえば、そのような電力源の出力電圧は、分配バスの電圧許容範囲の外に変動する)を有する(電池ではない)任意のタイプの電力源を伴う利用に対して好適である。
当業者には理解されるように、本発明(たとえば、コントローラ302、602および/または702)の態様は、システム、方法および/またはプログラム製品として具体化され得る。したがって、本発明(たとえば、コントローラ302、602および/または702)の態様は、全ハードウェア実施形態、全ソフトウェア実施形態(ファームウェア、常駐ソフトウェア、マイクロコードなどを含む)、または本明細書ではすべて一般的に「回路(circuit)」、「回路(circuitry)」、「モジュール」、または「システム」と呼ばれ得るソフトウェアとハードウェアの態様を組み合わせた実施形態の形態をとることができる。さらに、本発明の態様は、コンピュータ可読プログラムコードが具体化された1つまたは複数のコンピュータ可読記憶媒体の中に具体化されたプログラム製品の形態をとることができる。(しかしながら、1つまたは複数のコンピュータ可読媒体の任意の組合せが利用されてもよい。コンピュータ可読媒体は、コンピュータ可読信号媒体またはコンピュータ可読記憶媒体であってもよい。)
回路ブロック図の各ブロックおよび/または図4および図5の図に表される機能、ならびに回路ブロック図内のブロックおよび/または図4および図5の図に表される機能の組合せは、特定の機能または活動を実行する専用ハードウェアベースシステム、あるいは専用ハードウェアとコンピュータ命令の組合せによって実装され得ることにも留意されたい。たとえば、モジュール(たとえば、コントローラ302、602および/または702)は、カスタムVLSI回路もしくはゲートアレイ、論理チップなどの市販の半導体、トランジスタ、コントローラ、または他の個別部品を含むハードウェア回路として実装され得る。モジュール(たとえば、コントローラ302、602および/または702)は、フィールドプログラマブルゲートアレイ、プログラム可能アレイ論理、プログラム可能論理デバイスなどのプログラム可能ハードウェアデバイス内でも実装され得る。
別段に規定されていない限り、本明細書で使用されるすべての専門用語および科学用語は、ここで開示する主題が属する当業者に一般的に理解されるものと同じ意味を有する。「1つ(a)」および「1つ(an)」という用語は、特許請求の範囲を含めて、本明細書で使用されるときは「1つまたは複数」を意味する。
本明細書で使用する「約」という用語は、所与の値が端点の「少し上」または「少し下」であり得ることを提供することによって、数値範囲の端点に柔軟性を与えるために使用される。
本明細書で使用する「実質的に」という用語は、行動、特性、属性、状態、構造、項目、または結果の完全なまたはほぼ完全な範囲または程度を指す。たとえば、「実質的に」包囲される物体は、その物体が、完全に包囲されるかまたはほぼ完全に包囲されるかのいずれかを意味する。絶対的な完全性からの逸脱の正確に許容可能な程度は、場合によっては、特定のコンテキストに依存する場合がある。しかしながら、一般的に言えば、完全性に近づくことは、絶対的かつ全体的完全性が得られるかのような、同等の総合的な結果を有するためである。「実質的に」の使用は、行動、特性、属性、状態、構造、項目、または結果の完全なまたはほぼ完全な欠落を指すために否定的な意味合いで使用されるときに、同様に適用可能である。
本明細書で使用する「および/または」という用語、および実在物を列挙するコンテキストにおいて使用されるときの2語の間のキャラクタ「/」の使用は、実在物が単独でまたは組合せで存在することを指す。したがって、たとえば、「A、B、Cおよび/またはD」の句は、A、B、CおよびDを個別に含むばかりでなく、A、B、CおよびDの任意のすべての組合せおよび副組合せをも含む。
300 システム
301 電源ユニット(「PSU」)
302 コントローラ
303 充電回路(「充電器」)
304 分配バス
305 負荷
306 電池システム
307 電流センサ
308 電池
309 FET
310 FET
311 FET
312 信号線
320 ゲート駆動線
321 ゲート駆動線
322 ゲート駆動線
325 電池電流測定線
330 ダイオード
600 システム
601 電源ユニット(「PSU」)
602 コントローラ
603 充電回路(「充電器」)
604 分配バス
605 負荷
606 電池システム
607 電流センサ
608 電池
609 FET
610a FET
610b FET
610c FET
611 FET
612 信号線
620 ゲート駆動線
621a ゲート駆動線
621b ゲート駆動線
621c ゲート駆動線
622 ゲート駆動線
625 電池電流センサ線
630 ダイオード
641 負荷電圧フィードバック回路
642 電池電圧フィードバック回路
700 システム
701 PSU
702 コントローラ
703 充電器
704 分配バス
705 負荷
706 電池システム
707 電流センサ
708 電池
709 FET
710a FET
710b FET
710c FET
710d FET
711 FET
712 信号線
720 ゲート駆動線
721a ゲート駆動線
721b ゲート駆動線
721c ゲート駆動線
721d ゲート駆動線
721e ゲート駆動線
725 電池電流センサ線
730 ダイオード
741 出力電圧センサ
742 電池電圧センサ
750a 抵抗器
750b 抵抗器
750c 抵抗器
750d 抵抗器

Claims (17)

  1. 分配バスを介して電力を負荷に供給する電源ユニットのためのバックアップシステムであって、
    電力源と、
    前記電力源の出力端子と前記分配バスとの間に直列に接続された第1および第2のトランジスタと、
    前記第2のトランジスタと並列に結合された第1のダイオードと、
    前記電力源が前記分配バスを介して前記負荷に電力供給することを可能にするために、前記第1および第2のトランジスタを選択的にオンおよびオフにするように構成された回路と、を備え、前記回路が、前記電源ユニットが故障を経験したとの信号に応答して、前記第2のトランジスタをオフに維持しながら前記第1のトランジスタをオンにするように構成され
    前記電力源が、1つまたは複数の直列接続されたセルを備える電池であり、
    前記システムが、前記電池と電池充電器との間に結合された第3のトランジスタをさらに備え、前記回路が、前記電池を前記電池充電器を用いて充電するために前記第3のトランジスタをオンにするように構成される、システム。
  2. 前記第1のダイオードが寄生ボディダイオードとして前記第2のトランジスタに結合され、前記第1のトランジスタをオンにすることが、前記第1のトランジスタと前記第2のトランジスタの前記寄生ボディダイオードとを介して、前記電力源から供給される第1の電圧を前記分配バスに結合することをもたらす、請求項1に記載のシステム。
  3. 前記回路は、前記電源ユニットから供給される第2の電圧が、前記電力源から供給される前記第1の電圧から前記第1のダイオードの順方向電圧を引いた電圧より下に降下するときに、前記第2のトランジスタをオンにするように構成される、請求項2に記載のシステム。
  4. 前記回路は、前記電源ユニットが前記故障を経験した後、前記電源ユニットから前記分配バスへの十分な電圧が回復したとの信号に応答して、前記第1および第2のトランジスタをオフにするように構成される、請求項3に記載のシステム。
  5. 前記回路は、非ゼロ電流が前記電力源から流出していることの検出に応答して、前記第2のトランジスタをオンにするように構成される、請求項2に記載のシステム。
  6. 前記電力源に結合された電流センサをさらに備え、前記電流センサが、前記非ゼロ電流が前記電力源から流出していることが検出されたとのデータ信号を前記回路に送るように構成される、請求項5に記載のシステム。
  7. 分配バスを介して電力を負荷に供給する電源ユニットのためのバックアップシステムであって、
    電力源と、
    前記電力源の出力端子と前記分配バスとの間に直列に接続された第1および第2のトランジスタと、
    前記第2のトランジスタと並列に結合された第1のダイオードと、
    前記電力源が前記分配バスを介して前記負荷に電力供給することを可能にするために、前記第1および第2のトランジスタを選択的にオンおよびオフにするように構成された回路と、を備え、前記回路が、前記電源ユニットが故障を経験したとの信号に応答して、前記第2のトランジスタをオフに維持しながら前記第1のトランジスタをオンにするように構成され、
    前記電力源が、1つまたは複数の直列接続されたセルを備える電池であり、
    前記回路が、充電電流が前記電池に流入していることの検出に応答して、前記第1および第2のトランジスタをオフにするように構成される、システム。
  8. 前記電源ユニットによって経験された前記故障は、前記電源ユニットがACライン入力電圧を受けないことの結果である、請求項1に記載のシステム。
  9. 前記第1および第2のトランジスタと直列に結合された第3のトランジスタと、
    前記第3のトランジスタと並列に結合された第2のダイオードと、をさらに備え、前記第1のダイオードが第1の寄生ボディダイオードとして前記第2のトランジスタに結合され、前記第2のダイオードが第2の寄生ボディダイオードとして前記第3のトランジスタに結合され、前記第1のトランジスタをオンにすることが、前記第1のトランジスタ、前記第2のトランジスタの前記第1の寄生ボディダイオード、および前記第3のトランジスタの前記第2の寄生ボディダイオードを介して、前記電力源から供給される第1の電圧を前記分配バスに結合することをもたらし、前記回路が、前記第1および第2の寄生ボディダイオードにわたる順方向電圧降下の関数として前記負荷に供給される第2の電圧を調節するために前記第2および第3のトランジスタを選択的かつ別個にオン/オフするように構成される、請求項1に記載のシステム。
  10. 分配バスを介して電力を負荷に供給する電源ユニットのためのバックアップシステムであって、
    電力源と、
    前記電力源の出力端子と前記分配バスとの間に結合されたN個(N>1)のトランジスタの回路網であって、前記N個のトランジスタの各々がダイオードと並列に結合される、回路網と、
    アクティブ化/非アクティブ化される前記N個のトランジスタの数の関数として調節された出力電圧レベルを用いて前記分配バスを介して前記電力源が前記負荷に電力供給することを可能にするために前記N個のトランジスタを選択的かつ別個にアクティブ化/非アクティブ化するように構成されたコントローラと、を備え
    前記電力源が、1つまたは複数の直列接続されたセルを備える電池であり、
    前記システムが、前記電池と電池充電器との間に結合されたトランジスタをさらに備え、前記コントローラが、前記電池を前記電池充電器を用いて充電するために前記電池と前記電池充電器との間に結合された前記トランジスタをオンにするように構成される、システム。
  11. 前記N個のトランジスタに結合された前記ダイオードが、寄生ボディダイオードであり、前記出力電圧レベルが、前記アクティブ化/非アクティブ化されるトランジスタに関する前記寄生ボディダイオードのうちの1つまたは複数にわたる順方向電圧降下の量の関数として調節される、請求項10に記載のシステム。
  12. N個のトランジスタの前記回路網が、N個の直列接続されたトランジスタを備え、前記出力電圧レベルが、前記コントローラによってアクティブ化/非アクティブ化される前記N個のトランジスタの数に関する前記ダイオードのうちの1つまたは複数にわたる順方向電圧降下の量の関数として調節される、請求項10に記載のシステム。
  13. N個のトランジスタの前記回路網がN個の並列接続されたトランジスタ/抵抗器ペアを備え、前記コントローラが、前記回路網を通る瞬時電流および前記回路網への入力電圧の関数として、前記N個の並列接続されたトランジスタ/抵抗器ペアのうちの特定の数をアクティブ化/非アクティブ化することによって、前記回路網にわたる電圧降下を調整するように構成される、請求項10に記載のシステム。
  14. 前記N個のトランジスタの各々と直列に結合された抵抗器をさらに備え、N個のトランジスタの前記回路網が、N個の並列接続されたトランジスタを備え、前記出力電圧レベルが、前記コントローラによってアクティブ化/非アクティブ化される前記N個のトランジスタの数に関する前記抵抗器のうちの1つまたは複数にわたる電圧降下の量の関数として調節される、請求項10に記載のシステム。
  15. 前記出力電圧レベルがまた、前記コントローラによってアクティブ化/非アクティブ化される前記N個のトランジスタの数に関する前記ダイオードのうちの1つまたは複数にわたる順方向電圧降下の量の関数として調節される、請求項14に記載のシステム。
  16. 前記出力電圧レベルが、前記電池の初期放電電圧より低い最大レベルを有する電圧範囲内にあるように調節される、請求項10に記載のシステム。
  17. 前記出力電圧レベルが、特定の負荷電圧許容範囲内にあるように調節される、請求項10に記載のシステム。
JP2020534541A 2017-12-22 2017-12-22 電池システムの配電バスへの接続 Active JP7030993B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2017/068301 WO2019125495A1 (en) 2017-12-22 2017-12-22 Connection of battery system to electrical distribution bus

Publications (2)

Publication Number Publication Date
JP2021509003A JP2021509003A (ja) 2021-03-11
JP7030993B2 true JP7030993B2 (ja) 2022-03-07

Family

ID=66994961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020534541A Active JP7030993B2 (ja) 2017-12-22 2017-12-22 電池システムの配電バスへの接続

Country Status (7)

Country Link
US (1) US11171507B2 (ja)
EP (1) EP3701616A4 (ja)
JP (1) JP7030993B2 (ja)
KR (1) KR102506467B1 (ja)
CN (1) CN111434002A (ja)
TW (1) TWI750432B (ja)
WO (1) WO2019125495A1 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10971935B2 (en) * 2017-07-24 2021-04-06 Clark Equipment Company Can bus terminating resistor arrangement
JP2021509567A (ja) * 2017-12-27 2021-03-25 ニックスラボ ピーティーワイ リミテッドNicslab Pty Ltd マルチチャネル電力制御装置
CN110797925B (zh) * 2018-08-01 2021-08-03 Oppo广东移动通信有限公司 电池控制系统和方法、电子设备
CN114207982A (zh) * 2019-08-05 2022-03-18 锂泰克实验室有限责任公司 能量递送系统
US11211785B2 (en) 2019-10-02 2021-12-28 Motorola Solutions, Inc. Dynamic battery voltage restriction for hazardous environments
TWI733211B (zh) * 2019-10-07 2021-07-11 應能科技股份有限公司 不斷電系統
US11056728B2 (en) * 2019-10-31 2021-07-06 Sion Power Corporation System and method for operating a rechargeable electrochemical cell or battery
US11424492B2 (en) 2019-10-31 2022-08-23 Sion Power Corporation System and method for operating a rechargeable electrochemical cell or battery
JP7469110B2 (ja) 2020-04-01 2024-04-16 Fdk株式会社 無停電電源装置
US11836027B2 (en) * 2020-07-06 2023-12-05 Baidu Usa Llc Enhanced battery backup unit battery management system
CN111987791B (zh) 2020-08-18 2024-05-24 百度在线网络技术(北京)有限公司 电池模组控制装置和方法、电源设备和系统
US10992149B1 (en) * 2020-10-08 2021-04-27 Element Energy, Inc. Safe battery energy management systems, battery management system nodes, and methods
US11791642B2 (en) 2020-10-08 2023-10-17 Element Energy, Inc. Safe battery energy management systems, battery management system nodes, and methods
TWI755926B (zh) * 2020-11-06 2022-02-21 精英電腦股份有限公司 不斷電系統及不斷電系統運作方法
TWI779423B (zh) 2020-12-15 2022-10-01 瑞昱半導體股份有限公司 電源切換電路以及電源切換方法
US11831192B2 (en) 2021-07-07 2023-11-28 Element Energy, Inc. Battery management controllers and associated methods
US11269012B1 (en) 2021-07-19 2022-03-08 Element Energy, Inc. Battery modules for determining temperature and voltage characteristics of electrochemical cells, and associated methods
TWI786877B (zh) * 2021-10-12 2022-12-11 國立勤益科技大學 快速供電系統
KR20240078602A (ko) * 2021-10-19 2024-06-04 라이테크 래보러토리즈 엘엘씨 전력 시스템
US11699909B1 (en) 2022-02-09 2023-07-11 Element Energy, Inc. Controllers for managing a plurality of stacks of electrochemical cells, and associated methods
US11664670B1 (en) 2022-08-21 2023-05-30 Element Energy, Inc. Methods and systems for updating state of charge estimates of individual cells in battery packs

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004096857A (ja) 2002-08-30 2004-03-25 Sanyo Electric Co Ltd 電源バックアップ装置
JP2005253220A (ja) 2004-03-05 2005-09-15 Fujikura Ltd 電源切換回路
JP2008283743A (ja) 2007-05-08 2008-11-20 Fuji Electric Device Technology Co Ltd 二次電池保護装置及び半導体集積回路装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5598041A (en) * 1995-11-16 1997-01-28 Lockheed Martin Corporation Efficient fault tolerant switching circuit for redundant d. c. power supplies
JPH1023678A (ja) 1996-07-04 1998-01-23 Sony Corp 電力供給方法および電子機器
US5764032A (en) * 1997-03-06 1998-06-09 Maxim Integrated Products, Inc. Multiple battery switchover circuits
US7038522B2 (en) * 2001-11-13 2006-05-02 International Business Machines Corporation System and method for redundant power supply connection
JP2004297851A (ja) 2003-03-25 2004-10-21 Sansha Electric Mfg Co Ltd モータ制御用電源装置
JP2006524980A (ja) 2003-04-25 2006-11-02 マックスウェル テクノロジーズ, インク 2重層キャパシタ用電荷平衡回路
US7202631B2 (en) * 2003-06-24 2007-04-10 Dell Products L.P. Battery and system power selector integration scheme
JP5189343B2 (ja) * 2007-10-23 2013-04-24 ローム株式会社 セレクタ回路およびそれを用いた電子機器
US7893560B2 (en) * 2008-09-12 2011-02-22 Nellcor Puritan Bennett Llc Low power isolation design for a multiple sourced power bus
CN202103477U (zh) * 2011-06-14 2012-01-04 深圳市盈九州实业有限公司 直流电源控制电路
CN202121506U (zh) * 2011-07-04 2012-01-18 珠海瓦特电力设备有限公司 一种采用多权位控制技术的硅链调压装置
RU2487392C2 (ru) * 2011-07-08 2013-07-10 Открытое акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнева" Резервированный стабилизатор напряжения на мдп-транзисторах
US9207735B2 (en) 2011-08-02 2015-12-08 Gram Power, Inc. Power management device and system
US9065277B1 (en) 2012-02-29 2015-06-23 Google Inc. Battery backup system for uninterrupted power supply
DE102012103904B4 (de) * 2012-05-03 2016-08-04 Phoenix Contact Gmbh & Co. Kg Energieversorgungsmodul als Zweitor und Verfahren zum Betrieb eines solchen Energieversorgungsmoduls
US9490662B2 (en) * 2012-10-19 2016-11-08 Sun Medical Technology Research Corporation Power supply switching circuit and artificial heart system
CN104571238B (zh) * 2013-10-25 2016-04-13 珠海格力电器股份有限公司 电压调节电路
CN105429280A (zh) 2014-08-15 2016-03-23 光宝电子(广州)有限公司 不断电系统及其供应方法
US20160134160A1 (en) 2014-11-07 2016-05-12 Schneider Electric It Corporation Systems and methods for battery management
WO2016085460A1 (en) * 2014-11-25 2016-06-02 Hewlett Packard Enterprise Development Lp Switch between first power source and second power source
CN105790423B (zh) 2014-12-16 2019-03-15 康舒科技股份有限公司 交替式电池备援模组与电池备援系统
CN107534314B (zh) 2015-07-17 2021-06-08 慧与发展有限责任合伙企业 用于电流限制的系统及方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004096857A (ja) 2002-08-30 2004-03-25 Sanyo Electric Co Ltd 電源バックアップ装置
JP2005253220A (ja) 2004-03-05 2005-09-15 Fujikura Ltd 電源切換回路
JP2008283743A (ja) 2007-05-08 2008-11-20 Fuji Electric Device Technology Co Ltd 二次電池保護装置及び半導体集積回路装置

Also Published As

Publication number Publication date
JP2021509003A (ja) 2021-03-11
KR102506467B1 (ko) 2023-03-03
EP3701616A1 (en) 2020-09-02
TWI750432B (zh) 2021-12-21
CN111434002A (zh) 2020-07-17
US11171507B2 (en) 2021-11-09
KR20200104857A (ko) 2020-09-04
EP3701616A4 (en) 2020-11-04
US20200350779A1 (en) 2020-11-05
TW201931721A (zh) 2019-08-01
WO2019125495A1 (en) 2019-06-27

Similar Documents

Publication Publication Date Title
JP7030993B2 (ja) 電池システムの配電バスへの接続
TWI389421B (zh) 電子系統及其對電子系統進行電源管理之方法
US8575898B2 (en) Charging circuit, charging apparatus, electronic equipment and charging method
US6163086A (en) Power supply circuit and a voltage level adjusting circuit and method for a portable battery-powered electronic device
EP2807719B1 (en) Battery leakage current elimination in ups units
US7391184B2 (en) Systems and methods for integration of charger regulation within a battery system
US6268711B1 (en) Battery manager
JP5189343B2 (ja) セレクタ回路およびそれを用いた電子機器
KR101594925B1 (ko) 배터리 팩
US9502918B2 (en) Battery pulse charging method and apparatus
US11695293B2 (en) Power system
US9634512B1 (en) Battery backup with bi-directional converter
US20070262748A1 (en) Power source apparatus
US9300203B2 (en) Battery power supply with automatic load sensing
US20170310126A1 (en) Voltage regulation for battery strings
US10305278B2 (en) Voltage control system
US20230055357A1 (en) Method and device for paralleling energy sources
CN116267028A (zh) 电力系统
JP2011182479A (ja) リチウムイオン組電池の充電システムおよび充電方法
KR101060141B1 (ko) 전지 보호 방법 및 그의 구조
TW202324897A (zh) 電源系統
CN112671054A (zh) 对放电超过至少一个操作阈值的电池充电的装置和方法
JP2010124597A (ja) エネルギー蓄積装置
JP2012100517A (ja) バックアップ電源装置及び計算機システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220222

R150 Certificate of patent or registration of utility model

Ref document number: 7030993

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150