TW202324897A - 電源系統 - Google Patents

電源系統 Download PDF

Info

Publication number
TW202324897A
TW202324897A TW111139386A TW111139386A TW202324897A TW 202324897 A TW202324897 A TW 202324897A TW 111139386 A TW111139386 A TW 111139386A TW 111139386 A TW111139386 A TW 111139386A TW 202324897 A TW202324897 A TW 202324897A
Authority
TW
Taiwan
Prior art keywords
voltage
battery
converter
current
fet
Prior art date
Application number
TW111139386A
Other languages
English (en)
Inventor
艾列西 提弘斯基
羅伯特 麥爾斯
詹姆斯 諾瓦克
Original Assignee
美商立泰克實驗室公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/505,473 external-priority patent/US11695293B2/en
Application filed by 美商立泰克實驗室公司 filed Critical 美商立泰克實驗室公司
Publication of TW202324897A publication Critical patent/TW202324897A/zh

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

一種電源系統由電源經由配電匯流排提供電源給負載,並包含與耦接於電源的輸出終端與該配電匯流排間之切換元件網格並聯耦接的DC-DC轉換器。控制器被組態以選擇地作動或止動DC-DC轉換器及各個切換元件促成電源經由該配電匯流排供電該負載。切換元件可以為電晶體,及二極體可以是電晶體的寄生體二極體。該電源可以是電池,例如,可充電電池。來自該電池的輸出電壓位準可以為控制器所調整成為該DC-DC轉換器的操作與該作動或止動電晶體的數量的函數。

Description

電源系統
本揭露大致關係於電源技術,及更明確地說,關係於用以監視電池並控制當電池連接至配電匯流排時的放電的系統。 [相關申請案]
本案為申請於2020年4月30日的美國專利申請案號16/760,762的部分接續案,該案為申請於2017年12月22日的國際申請案號PCT/US2017/068301的國家階段申請案,該兩案在此併入參考。
本段落係想要介紹各種態樣的技術,其可以相關於本揭露的示範實施例。此討論被認為是協助提供一框架以促成對本揭露的特定態樣的較佳了解。因此,應了解的是,此段落應以此方針加以解讀,並且並不必然被承認作為先前技術。
現代資訊技術與電信系統包含配電匯流排,其操作於各式各樣的配電匯流排電壓。例如,電腦伺服器通常分配12伏(“V”)給其內部子系統,例如,記憶體、處理器、儲存器、冷卻風扇、及I/O(被由配電匯流排提供供應電壓的此等內部子系統在此稱為“負載電路”或簡稱為“負載”)。有線電信系統通常使用48V配電匯流排電壓位準,及無線電信及無線基地台系統經常使用24V作為其內部電源配電匯流排電壓位準。雖然配電匯流排電壓位準不同,但所有上述系統均共用幾個共同特徵,其中這些配電匯流排在一般操作期間可能承載幾十或幾百安培(“A”)的電流,並且,通常要求在這些匯流排上的電壓被調整,以確保在匯流排上的最大電壓偏移被限定至想要標稱值上或下的一固定值。調整配電匯流排將具有一特定電壓容許應用其標稱值上。例如,具有+/-10%容許度的12V配電匯流排將具有範圍由13.2V的最大位準下至10.8V的最小位準的操作包封。
這十年以來,電池系統已經發展以最佳化用以在短時間內配送很高電流。電池系統典型包含一或更多電池(在此,用語“電池(battery)”與“電池(cell)”可以交換使用)。因為它們尺寸很小,所以,對於用來替換傳統不斷電電源(“UPS”)為目的之一些設備類型,它們變得有吸引力,該傳統不斷電電源作為當交流主電源斷電時,設備的短期電力備用的角色。這些高電力電池系統於輸送很高放電電流的能力為獨特的,但具有只能很慢接受充電電流的缺點。以現行可商業獲得的技術看來,此放電電流對充電電流的比率可以高達30:1,或甚至40:1。
今日所用於短期備用應用的高電力電池系統典型利用以DC-DC轉換器形式的輸出調整器,該DC-DC轉換器能處理高能量(如,輸出DC-DC轉換器)以匹配電池系統的輸出電壓至配電匯流排電壓,並防止電流由配電匯流排回流至電池,這將造成不安全的充電電流並代表安全上的危害。在很多今日的系統中,充電電流係透過與放電電流不同的路徑提供,並且,可以由分開的低電力充電DC-DC轉換器所提供。因此,如果此高電力輸出DC-DC轉換器可以被免除或者以擁有較高電力效率及較低成本,同時,允許電池系統直接連接至經由此改良方案的配電匯流排的不同方案替換,則有成本降低與電力效率改良的機會存在。
今日現存用以將電池系統直接連接至電匯流排的先前技術,幾乎所有這些技術不是使用高側就是低側金屬氧化物半導體場效電晶體(“MOSFET”)對作為切換元件(在此也簡稱為“開關”)用於充電及放電電流的導通/關斷控制。MOSFET經常被用於這些應用中,因為其製造程序的本質,它們包含二極體(即,寄生體二極體),這允許即使MOSFET被切換關斷時,電流可以以一個方向流動通過該MOSFET。此體二極體在很多應用中代表了一個問題,但卻在本揭露的實施例中被實際利用成為有利點。
很多今日的電池系統利用兩個背對背定位的開關,各個開關包含與各個開關並聯的寄生體二極體或者跨過該開關的外部二極體。具有順向面向二極體的開關(由電池面向負載)的開關被認為是“充電”開關(在其關斷狀態,阻擋了任何充電電流),及另一開關則為“放電”開關(在其關斷狀態阻擋了任何放電電流)。此方案針對低功率配電匯流排有效,其中符合以下條件:(1)該匯流排的總電流容量(可在匯流排上取用或可以為耦接至該匯流排的負載所消耗)並未超出電池的安全充電或放電電流,(2)配電匯流排電壓係可控制,使得它可以當需要時上升足夠高,以供電池在放電後接收滿量充電,及(3)負載電路的可允許操作電壓範圍係在最小電池終端電壓與最大電池終端電壓之間或包含該最小電流終端電壓與最大電池終端電壓,該最小電池終端電壓為電池被完全放電(即,0%充電狀態),及最大電池終端電壓為當被滿量充電(即,100%的電荷)。然而,當為耦接至配電匯流排的負載電路需要電壓容許度需要緊密調整,使得供應至配電匯流排的電壓必須保持在電池的滿量充電壓以下時使用此手法並不實用;並且,當通常取自該匯流排的電流超出電池充電電流的安全位準時,也並不能使用該手法。
單或多電池系統的直接連接至配電匯流排的工業標準可以在低功率系統中看到,例如,實施用於筆記型電腦和平板電腦,及手機的系統。這些裝置使用單一電晶體開關的前述“背對背”組態作為充電與放電控制。圖2例示開關的“高側”組態,其中開關Q 1及Q 2(如,MOSFET)係被排列,使得這些開關被連接至該電池的高壓側(+側)。開關Q 1及Q 2被連接,使得電池可以取決於兩開關的哪個被切換導通(switch ON)而充電與放電。控制器被耦接至各個這些開關並對開關中之哪個被切換導通、在什麼樣的條件下、及持續多久施加控制。充電與放電控制係為控制器所施用。控制器可以根據電池的健康狀態、充電的位準、瞬間容量、電壓、電流、溫度、或設計者可以選擇的任何其他參數,允許或不允許充電或放電。開關、其寄生體二極體、及控制器的組合允許充電控制(禁止電荷由配電匯流排流動至電池)、放電控制(禁止電荷由電池流動至配電匯流排)、或電池終端自配電匯流排的完全電隔離(禁止電荷以任一方向流動)。
此雙開關控制方案在很多電池應用上可行,其中,可允許充電電流、放電電流、及可用匯流排電流在大小上接近,或者,其中可允許充電電流係遠高於可用匯流排電流。膝上型電腦電池具有充電率大約等於放電率的典型設計點,例如,接近1C(即,1乘以標稱電池電容C)。攜帶型手機電池可以被設計以具有較高充電率(如,多達4C),但典型具有很低的放電率。這允許手機被快速充電同時在單次充電中具有較長的操作壽命。在這些低充電與放電率中,這些開關的寄生體二極體具有適當的熱與電力能力,以在最小溫度上升與電力損失下,傳送必要的充電與放電電流。
然而,有愈來愈多的系統具有電池充電-放電非對稱性的真實案例,其中,可允許放電率遠超過可允許充電率。例如,作為電力備用工作的電池通常被設計以充電60-90分鐘,並具有高速率放電時間,其可以在60-90秒內完全放乾電池。此在一般充電與一般放電電流間之很大不均等(即,大充電-放電電流非對稱性)使得圖2的雙開關控制方案不實用。明確地說,如果此方案被使用的話,在充電控制開關Q 1所見的體二極體完全不適合承載它所見的放電電流,因為它的壓降及功率消耗將負面影響系統的操作。另外,在以鋰離子電池作為能量儲存裝置的緊密調整+12V配電匯流排的例子中,所選擇用於此一應用的電池將會需要儘可能接近+12V(如,3或4串聯連接電池被充電至每電池4.0V)。可以為熟習於本技藝者所了解,將不可能透過具有差順向電壓特徵的隔離二極體,而由+12V電源完全充電此電池(例如,通常可以由傳統MOSFET的寄生體二極體中了解)。
除了前述的隔離開關外,調整系統已經被設計以控制電輸出,當將來自一電壓位準的電池電壓轉換為另一電壓位準,以安全連接至電源匯流排。例如,線性調整器可以被用以提供有特定值或設定點的均勻電壓輸出。參考圖3,例示出一回授電路,其包含運算放大器(“OPAMP”),其驅動串聯通過元件(如,具有與二極體並聯的電晶體)。在此等調整系統中,圖3的電路基本上替換圖2的放電控制開關Q 2以在負載提供調整電壓輸出,直到跨越該串聯通過元件的最小壓降在線性調整器的輸入與其輸出間(即,在電池終端與負載終端間)所建立的壓降足以將在該負載終端的電壓帶下來至負載電路的指定操作電壓臨限(如,最小可接受操作電壓位準)內的交叉點為止。
當實施用於低功率裝置時,此一線性調整器可以滿意地動作。然而,當功率位準增加時,有很多缺失會顯現。首先,串聯通過元件係以其線性模式操作,其中在輸入與輸出電壓間之壓差係施加至該串聯通過元件上,如此當高電流時會建立很高功率損失及V*I為主的熱產生。所產生的熱必須被傳送至環境中或從該裝置處移除,否則,此熱量將集中在該串聯通過元件封裝內,並且,甚至高功率電晶體將快速過熱並故障。
可以處置由此功率損失所產生的熱的封裝將需要很大實體封裝,具有直接安裝散熱片與顯著氣流以冷卻該裝置。多數高功率電池系統具有實體空間限制及製造侷限,因此,不建議使用此類型的電晶體封裝。再者,也很難找到能夠實用以透過其印刷電路板(“PCB”)接觸而足夠散熱的表面黏著電晶體(“SMT”)。
開關調整器也可以用以將電池電壓轉換至一固定匯流排電壓,並且,由於開關調整器的操作模式,所以,它們能更有電效率。通常,下降或“降壓”轉換器需要輸入電壓高於操作用的輸出電壓,並且,不能建立輸出電壓等於或大於其輸入電壓。降壓轉換器的典型輸入-輸出電壓關係被顯示於圖4。這需要具有較高串聯電池計數的串聯連接電池組,以將到轉換器的輸入電壓提升至完成高效率與可管理切換工作週期所需的需要位準。然而,此較高電池計數可能增加成本、電路複雜度、總電路封裝體積、及電池管理系統(“BMS”)組件計數與複雜度。一個替代方案係如圖5所示,其中,DC-DC轉換器係被實施為“降壓-升壓”轉換器,其能夠建立固定輸出電壓,而不論輸入電壓是否低於、等於或高於該固定輸出電壓,其認知為如果輸入電壓下降至太低,則例如輸入電流的轉換器操作參數可以大量成長,以持續安全操作。為此理由,多數降壓-升壓轉換器包含輸入欠壓保護限制,或“UV關閉”限制,以防止對該轉換器的損壞。降壓-升壓轉換器允許以降壓轉換器仍可完成較低串聯電池計數,但形成用於降壓-升壓轉換器的控制電路的心臟的積體電路很難找到並且通常較用於降壓轉換器的控制積體電路(“IC”)昂貴。降壓-升壓轉換器的典型輸入-輸出電壓關係被顯示於圖5中。應了解的是,不論哪個DC-DC組態被使用於技藝組態的現行狀態中-線性、切換降壓、或切換降壓-升壓-DC-DC轉換器必須被設計以能電與熱處置電池系統的最大輸出功率。例如,額定用於1500瓦輸出功率的電池系統將需要DC-DC轉換器被設計以處置該電池所能輸送的滿1500瓦。這造成大與昂貴DC-DC轉換器必須耦接於該電池與負載電路之間。這是如圖6所描繪,顯示DC-DC轉換器被置放於電池(+)終端與輸出電壓終端V o之間。因為所有被由電池輸送至輸出電壓終端V o的電力必須透過DC-DC轉換器處理,所以DC-DC轉換器必須作成大小以安全地處置預期將被輸送的最大功率。
將了解的是,於此所述之特定實施例係被以例示方式加以顯示並不作為本揭露實施例的限定。本揭露的主要特性可以被利用於各種實施例中,而不脫離本揭露的範圍。
傳統上,在電路圖與方程式中之電流被以符號 i表示,並以安培或(“A”)的單位表示。
作為線性或切換調整器的替代方案,在美國公開專利申請案號2020/0350779所揭露的系統提供一組個別控制開關,其將電源(如,電池終端電壓)連接至輸出(如,配電匯流排),它可以被連接至負載電路(如,見圖7)。當MOSFET被使用作為開關時,MOSFET可以以預定(如,規劃)方式操作,以利用MOSFET的體二極體的固有順向壓降及/或與各個MOSFET串聯耦接的外部電阻(如,電阻性元件),以調整來自電池的輸出電壓與電流的輸送。此電路可以被組態以更換電池放電DC-DC轉換器、忍受高放電電流、及/或相較於操作於高功率的線性或切換調整器,以很多操作模式更有效率地操作。
為了了解放電控制開關的並聯連接如何對電池放電電壓的施加進行控制以及提供等值輸出電壓調整,現將討論示範電池的特徵操作。
例如,鋰離子(Li-離子)為主的可充電電池可以以不同內部材料及特定化學組成物建構,這些界定了各個電池的操作電壓範圍、最大放電電流、內部阻抗、及特定容量。各個這些參數界定各個類型電池所特有的一系列放電電壓對放電電流曲線(也稱為“V-I”曲線)。
電池可以如同在各個電池內所包含的活性化學材料的有限重量或體積所確定,而被建構有某化學能量容量。此容量係藉由以給定電流放電並作時間測量,直到完成某一最小電壓而加以測量。此容量典型以毫-安-時(“mAh”)或安-時(“Ah”)表達。此容量在此以對應於由該電池一個小時可得的連續電流的字母“C”表示,這造成電池由100%充電狀態(“SOC”)(即,滿充至最大允許電壓)的狀態放電至0% SOC(即,完全放電至最小允許電壓)的狀態。對於任何給定放電電流,電池的終端電壓將依據其SOC下降。當電池的化學容量耗盡時,SOC將由100%減量至0%。
圖8例示對於四個使用鎳錳鈷(“NMC”)化學品的串聯連接鋰離子可充電電池的示範電池,在不同可能負載電流(即,V-I曲線)的一系列電壓曲線對SOC的繪圖。這些曲線界定可以操作於各種情況的電池電流與SOC的電池電壓內的示範操作包封。更明確地說,在圖8的繪圖表示在不同負載電流下的電壓曲線對SOC,其中在10A、12A、15A、及20A的電流需求期間,電流擁有1Ah的容量。
可以迅速了解到,在任何給定SOC的電池的終端電壓將向下移動成為電流需求增加的函數。當電流需求增加時,在電壓標度的曲線間之距離係由於電池的內阻或阻抗之故。內部阻抗愈高,則對於出現在電池輸出終端的給定施用放電電流,電池終端電壓將愈低。因此,在給定SOC的電池終端電壓不只是取決於SOC,同時,也取決於放電電流需求,並存在於由特徵曲線所界定的操作包封內。
可以由圖8的例示迅速了解,典型電池的輸出(放電)電壓並不是恆定,而是隨著在電池輸出終端出現的放電電流及SOC改變,並且,因此,典型電池本身並不具有固有能力,而能電池由儲存能量到耗盡的時間內或隨著負載電流改變,調整或維持其放電電壓於特定電壓範圍內。然而,如在此之前所述,在電源系統中很常見的是任何饋送電力至配電匯流排的電源均需要調整供應用至配電匯流排的電壓,以確保進行於配電匯流排上的最大及最小電壓被限制到在想要標稱值上或下的一指定值,即,可以為耦接至配電匯流排的負載所容許的電壓的可允許範圍,以確保指定(如,無誤)操作(在此稱為“指定負載電壓容許範圍”)。這就是為何例如先前所述之電壓調整器或DC-DC轉換器已經被實施用來維持(由電池或其他電源)供應至配電匯流排的輸出電壓在此一指定負載電壓容許範圍內的原因之一。
再次參考圖8,為了描述本揭露的實施例的目的,有關於放電電池針對特定負載的操作包封可以被細分為幾個區,及在此例子中,有區1、2、3及4。區1範圍界定電池終端電壓對SOC曲線在負載的指定負載電壓容許範圍下的操作點。區2範圍界定電池終端電壓對SOC曲線在指定負載電壓容許範圍內的操作點。區3範圍界定電池終端電壓對SOC曲線在指定負載電壓容許範圍以上的操作點。如在此所進一步描述,雖然在此區3範圍內操作,但本揭露的實施例可以被組態以利用N FET/電阻對網格對提供給負載(如,見圖9)的輸出電壓提供更細微的控制。依據本揭露的示範實施例,區3範圍的上界在區2範圍的上界之上的低於負載電壓標稱值約5%(如,在12V標稱負載電壓為0.6V,在24V標稱負載電壓為1.2V,等等)處。區4範圍界定在電池終端電壓對SOC曲線的區3範圍上的操作點。用於有關圖10所述之示範電池的操作包封也被細分為類似區。
圖7例示如於美國公開專利案號2020/0350779所揭露的系統700的電路方塊圖。系統700利用被組態以透過界定切換組態以選擇耦接電池708的輸出終端至配電匯流排704的電池系統706,該界定切換組態包含一網格的N(其中N≧2)個並聯連接放電開關710a…710d(如MOSFET),各個串聯耦接一電阻750a…750d,以形成一網格的N FET/電阻對。
系統700可以被利用於具有電池終端電壓超過指定負載電壓容許範圍(如,為負載705所需求;例如,見示於圖8例子中的區2範圍)的電池。如於此所討論,典型電池具有在某些操作點的終端電壓,這些操作點將在此一由很多負載所需求的窄小指定負載電壓容許範圍外。因此,系統700可以被利用以調整到配電匯流排704的供應電壓在12V+/-5%的指定負載電壓容許範圍內,如同圖8的區2範圍所示,即使出現在電池708的終端的電壓係在此區2範圍之上。出現在電池708的終端的電壓可以被組態以在一些SOC及電池電流狀態下,置於配電匯流排704的指定負載電壓容許範圍之上(如,見於圖8的例子中之區3及區4範圍),而供應至負載705的電壓係在其他SOC或電池電流狀態下被調整以實質匹配配電匯流排704的該指定負載電壓容許範圍,如區2範圍。
各個電阻750a…750d可以被組態不同電阻值,並可以被組態以使得在串聯中的各個電阻750a…750d的電阻值低於先前串聯中之電阻(如,電阻750b具有電阻值低於電阻750a,電阻750c具有電阻值低於電阻750b,等)。FET/電阻對可以經由另一切換元件(如,MOSFET)711並聯連接於電池終端與配電匯流排704之間,防止電池直接由配電匯流排704充電,及其中各個N FET 710a…710d及其配對電阻與FET 711係為控制器702經由控制線721a…721e來獨立控制。然而,實施例可以以具有實質上相等電阻值的一或更多電阻750…750d加以實施。
並聯連接放電控制FET/電阻對的數量N可以範圍由2至可以為控制器702所實際控制的任意數量。放電控制FET/電阻對的數量N可以通常由若干因素加以確定,例如,由電池708可得之最小與最大電壓、最小與最大輸出電流的預期範圍、及所需求的最小與最大輸出電壓範圍(如,由指定負載電壓容許範圍所確定(如,見示於圖8的例子中的區2範圍))。
電池708可以藉由控制器702以預定方式(如,序向、二進制計數順序、或任何其他順序)作動(如,切換導通)一或更多N FET 710a…710d,而耦接至配電匯流排704,該預定方式係例如以FET 710a開始,其可以與最高電阻值電阻750a配對。於切換導通FET 710a時,電流將開始流入負載705,及電池708的終端電壓將開始依據電池阻抗特徵曲線(如,見圖8及圖10)下降。如果透過FET/電阻對710a/750a的串聯組合供給至負載705的電流足夠高,則跨過FET/電阻對710a/750a的串聯組合的壓降將增加,直到供給至負載705的電壓下降至預定臨限為止,該預定臨限可以依據負載705的最小調整點規格(如,指定負載電壓容許範圍的下限)加以設定(如,於控制器702內)。因為此臨限係透過輸出電壓感應器741為控制器702所到達與感應,所以,控制器702可以被組態以切換關斷FET/電阻710a/750a,並切換導通與電阻750b配對的FET,該電阻750b可能在該串聯電阻750a…750d間具有第二高的電阻值。與FET 710b串聯的電阻750b可以被組態以令電阻值遠小於電阻750a的電阻值,並且,因此,在該串聯組合FET 710b與電阻750b的壓降將低於跨越FET 710a與電阻750a的串聯組合間之壓降。此作用將是用以增加供給至負載705的輸出電壓至屬於負載705的最小調整點規格的前述臨限(如,指定負載電壓容許範圍的下限)之上,因此,保持供給至負載705的輸出電壓超出此最小預定臨限。以此方式,供給至負載705的輸出電壓可以在改變電池終端電壓與負載電流下被控制器702所維持在應用調整窗(如,指定負載電壓容許範圍(例如,見圖8所示的例子中的區2範圍))內,如同控制器702選擇地作動N FET 710a…710d(如,以向上二進制計數順序或其他適當順序)以增加供應至負載705的電壓,或者選擇地止動N FET 710a…710d(如,以向下二進制計數順序)以降低供應至負載705的電壓,並為控制器702所經由電池電壓感應器742、輸出電壓感應器741、及電流感應器707所感應者,其中FET 710a係相關於二進制序向計數器的最低有效位元,及FET 710d(或更高)係相關於最高有效位元。
可以被實施於控制器702內的調整方案的非限定例係被描繪於圖9中,其顯示在並聯連接FET/電阻對間之總壓降為控制器702選擇作動N FET 710a…710d的二進制計數順序的函數。可以看出,在FET/電阻對網格間之壓降可以為N 2分立步階(如,當N=4時,為16)所控制,以由基本0V到一些想要最大電壓(在此例中,大約3.0V)。由於其置放於電池708的輸出終端與負載705的輸入終端V o間之電池系統706之中,所以,負載705視其輸入電壓為電池708的終端電壓減去FET/電阻對網格間之壓降。藉由此技術,供應至負載705的電壓的調整(如,基本上在指定負載電壓容許範圍內)可以透過切換導通/斷開N FET 710a…710d而為控制器702完成與維持,以調整在FET/電阻對網格間之阻抗(即,因此,壓降)。
此N並聯放電切換元件(即,N FET/電阻對)的網格可以被組態以操作(如,回應於自控制器702接收的指令)成為高電流數位至類比轉換器,其中,電源電壓(即,來自電池708)在時間上並非恆定(如,見圖8),而是隨著負載電流與SOC改變。在此組態中,來自電壓感應器741、742與電流感應器707的資訊可以為控制器702所利用以補償在輸入與輸出電壓兩者(即,電池708與負載705)中之變化。
所得系統700因此被組態成為N個固定阻抗元件(即,N FET 710a…710d及相關電阻750a…750d)的網格,這些可以被控制器702所切換入或切換出網格,以補償在輸入(即,電池708)及輸出(即,負載705)電壓的變化。改變電阻750a…750d的電阻值將界定個別元件阻抗。各個FET/電阻對可以被組態以在預定應用電流下的特定壓降。結果,系統700可以被組態以控制界定在電池708與負載705間之可變、可控制阻抗的一網格的元件。當負載705的電壓增加時,網格被控制器702所調整,使得總阻抗增加及供應至負載705的電壓降低。當電池708的電壓降低時,網格為控制器702所調整,使得總阻抗降低,並且,因此,在網格間之電壓也降低,作用以將供應至負載705的電壓維持於想要範圍內(如,基本上在指定負載電壓容許範圍內)。由電池電壓減去的網格間之補償壓降可以然後被使用任意數量的不同控制技術的控制器702所控制,使得透過序向在系統700中之各種N FET/電阻對,而控制供應至負載705的所得電壓,以提供高解析電壓匹配,只要電池操作點存在(如,不論任何理由而漂移)在區1、2、或3操作範圍(如,圖8所示)內。
因為系統700可以只降低供應電池電壓至負載705所需的略低電壓,所以,將有電池特徵曲線的部分區域為不可使用,例如,對應於圖8所示的區1範圍。包含在區1範圍中的任何能量不能為系統700所使用,並且,基本上為無用。雖然區1範圍只包含此系列V-I曲線所代表的總電池能量的一小部分,但其他電池化學類型與組態可以造成更多能量困在不可用區1範圍內(如,見圖10)。
圖1例示依據本揭露的實施例組態的系統100的電路方塊圖。系統100可以被組態以當主電源故障時,由次電源經由配電匯流排提供電力至負載。雖然本揭露的實施例並未限制至此一組態,但主電源可以是耦接至交流電源的電源單元,而次電源可以是電池。
在有關於圖1所例示的非限定示範實施例中,系統100利用電池系統106,其被組態以在控制器102的控制下,選擇地透過DC-DC轉換器170及切換組態耦接電池108的輸出終端至配電匯流排104,該切換組態包含一網格的N個(其中N≧1)並聯連接放電開關110b…110d(如,MOSFET),各個開關串聯藕接一電阻150b…150d,以形成一網格的N個FET/電阻對(在此也稱為“N FET/電阻對網格”)。
各個電阻150b…150d可以被組態以不同電阻值,並且,可以被組態使得各個串聯中之電阻150b…150d的電阻值係低於前一串聯中之電阻的電阻值(例如,電阻150c的電阻值低於電阻150b的電阻值,及電阻150d的電阻值低於電阻150c的電阻值,等等)。然而,實施例也可以以具有基本上相等電阻值的一或更多電阻150b…150d加以實施。
N個FET/電阻對可以並聯連接並類似地透過另一切換元件(如,MOSFET)111配置於電池108的正端與配電匯流排104之間,該另一切換元件可以被實施以防止電池108直接由配電匯流排104充電電池108,及各個所述N個FET 110b…110d以及FET 111係被選擇與獨立地為控制器102所經由控制線121b…121e所加以控制。
並聯連接放電控制FET/電阻對的數目N可以由一至控制器102所實際控制的任何數目,並通常可以以一或更多因素加以確定,這些因素例如,由電池108可得之最小及最大電壓、最小及最大輸出電流的預期範圍、及(如,由指定負載電壓容許範圍所確定(如,見圖8的例子所示的區2範圍))的所需最小及最大輸出電壓範圍。電池108的終端電壓與負載電流中之變化可以為控制器102經由電池電壓感應器142及電流感應器107加以感應。
系統100可以被利用於具有電池端電壓的有效操作點超出指定負載電壓容許範圍(例如,如負載105所需;例如,見示於圖8的例子中的區2範圍,相較於包含在區2範圍外,例如,區1、3、及4所包含的區域的電池操作點的整個範圍)以上的電池。如於此所討論,典型電池或串聯連接電池具有在某些操作點的終端電壓,該等操作點係在幾乎所有實例中的由多數負載所要求的一較窄及緊密限定的指定負載電壓容許範圍外。因此,系統100可以被用以調整供應電池電壓基本上在此指定負載電壓容許範圍內。電池108的電壓可以在一些SOC與電池電流狀態下,被組態以置於該配電匯流排104的該指定負載電壓容許範圍之上(如,見圖8例子所示之區3及區4範圍),並且,在其他SOC或電池電流狀態下,實質匹配配電匯流排104的指定負載電壓容許範圍(見,圖8例子所示之區2範圍)。
系統100的操作係類似於系統700,具有依據實施於系統100內的DC-DC轉換器170的類型的V IN對V OUT與輸出電流限制特徵實施的DC-DC轉換器170(例如,圖11),並且,當負載105需求低電流(即,可能低於負載105所需的最大電流的約25%)及電池108正操作於高充電狀態(如,SOC值大於約70%),例如,對應於圖8或圖10所示的區4範圍中的系統100的操作,它可以被組態以能處置電流的輸送至負載105。
DC-DC轉換器170可以為在此所述之任一類型(如,線性調整器、切換降壓、切換降壓-升壓、或其他),包含但並不限於有關圖4、5及11所述者。DC-DC轉換器170並不需要如同先前技藝實施方式般被組態(如,作成大小)以處置電池的最大輸出功率,而是可以被組態以使得它可以處理電池的最大輸出功率的25%至30%,因為,在系統100中,輸出功率的餘額係如在此所進一步描述地為N FET/電阻對網格所輸送。這提供優於使用DC-DC轉換器的先前技藝實施方式的系統100的優點,因為DC-DC轉換器的相對成本與尺寸係實質高於類似功率輸送能力的FET/電阻對網格。
圖4例示適用以實施作為系統100內的DC-DC轉換器170的切換降壓轉換器的非限定例子的輸入對輸出電壓(V IN對V OUT)特徵。注意,對於V IN>V OUT設定點,DC-DC轉換器操作為一般降壓轉換器,維持輸出電壓V OUT為基本上與V OUT設定點相同。然而,當輸入電壓V IN下降至交叉V OUT設定點時,輸出電壓V OUT被允許以下降低至V OUT設定點下並基本上追蹤輸入電壓V IN,直到到達一些臨限為止,在此例子中被顯示為11V。這稱為“低壓差(dropout)”的特徵可經常在線性調整器設計中找到。V OUT設定點也在此被稱為電池DC-DC轉換器設定點(如,見圖12),並可以預先確定為一電壓位準,其中DC-DC轉換器170被組態以在PSU 101故障後,開始提供電流給負載105,例如,在此有關圖12及19的進一步描述。
圖5例示降壓-升壓轉換器的非限定例的輸入對輸出電壓(V IN對V OUT)特徵,它也適用以實施作為在系統100內的DC-DC轉換器170,其中,上述“低壓差”特徵並不需要,因為DC-DC轉換器自動由降壓模式(V IN>V OUT設定點)切換至升壓模式,當V IN<V OUT設定點時,因此,這維持輸出電壓V OUT等於V OUT設定點,而不管該輸入電壓V IN,直到到達UV關閉輸入電壓為止。
圖11例示實施在系統100內的DC-DC轉換器的電流限制特徵,其中, x軸代表時間。對於所有為輸出電流值或其以下的稱為電流限制轉移點的DC-DC轉換器輸出電流I o(其中,DC-DC轉換器的輸出電壓由恆定電壓改變至恆定電流),DC-DC轉換器被組態為維持DC-DC轉換器的輸出電壓V OUT恆定。當DC-DC轉換器的輸出電流I o(由圖11的虛線表示)到達電流限制轉移點(I limit(A))時,輸出電壓V OUT略微下降,或是說“下垂”。這代表DC-DC轉換器由“恆定電壓”模式轉移至“下垂電流限制”模式,其中,輸出電壓V OUT被允許以降低至V OUT設定點下,在I limit(A)與I limit(A)加上幾百分比之間的窄範圍之輸出電流值。換句話說,對於由0至I limit(A)的任意值,DC-DC轉換器的輸出電壓V OUT係被維持於V OUT設定點。當到達I limit(A)時,輸出電壓V OUT開始下垂,並且,當輸出電壓持續上升時,此下垂持續明顯(電流在I limit(A)的斜率轉平,但實際上仍略微正)。
在例如PSU 101硬體故障或交流電源斷電(通常在此稱為PSU 101故障),使得系統100操作,以使得電池108放電入配電匯流排104的事件期間,電池108的電壓將隨著放電電流增加而下降(如,於圖8及圖10所示),其中,為不同特徵曲線所追蹤的電流增量性的增加存在於愈來愈低的電壓。當電池放電電流增加時的電池108的電壓下降可能是各個電池的內部電阻或阻抗所造成。電池108的電壓下降量將取決於由電池108所供給至負載105的電流大小與在電池108中的各個電池的內部阻抗。電池108的電池的化學組成物可以針對其電壓、電流能力、及阻抗特徵加以選擇,以能夠支援它們所耦接的配電匯流排104的滿功率需求,同時,維持足夠小的壓降,以使得放電事件期間,配電匯流排104保持在其電壓限制內(例如,基本上在指定負載電壓容許範圍內)。
依據本揭露的實施例,系統100可以被組態以使得被輸送至負載105的電流值在DC-DC轉換器170的電流限制轉移點(見,圖11所繪之I limit(A))下並在電池108的高充電狀態,電流可以單獨為DC-DC轉換器170所供給至負載105,或取決於電池108的該系列V-I曲線的瞬時操作點配合上該N個FET/電阻對網格中之FET/電阻對的若干預定數量為該DC-DC轉換器170所供給至負載105。
本揭露的實施例現將參考系統100的非限定示範應用與操作加以描述,其中,控制器102被組態以在指定負載電壓容許範圍內,輸送電力至負載105。此指定負載電壓容許範圍也可以在此稱為應用調整窗,其界定與特定末端使用應用相關的負載所需的電壓範圍。此指定負載電壓容許範圍可以由標稱、或想要、輸出電壓V o及+/-百分比範圍構成。
圖12例示各種設定點與臨限的非限定例的圖形表示圖,這些可以在系統100內根據想要輸出電壓V o(如,12V)及指定負載電壓容許範圍(如,+/-5%)實施。單獨為了描述本揭露的實施例的原因,將參考圖8的非限定示範V-I曲線。指定負載電壓容許範圍係被顯示並由下調整限制(在此例中,12V-5%=11.4V)延伸至上調整限制(在此例中,12V+5%=12.6V)。依據本揭露的實施例,控制器102可以被組態以維持供應至負載105的電壓於界定指定負載電壓容許範圍的上與下調整限制之間。圖12同時也顯示在上與下調整限制內,一些可以被組態於系統100的設計內的其他臨限與設定點。其中可能有PSU 101的PSU輸出電壓設定點,其可以在系統100的設計期間被預定(如,成為負載的動態特徵的函數、PSU控制環路的回應等),在此例子中,可以被選擇為12.35V(如圖12的實線2所繪的指定)。PSU 101的PSU輸出電壓點的值可以被選擇成為由PSU 101所供給之一般操作輸出電壓,並將被選擇於該指定負載電壓容許範圍內。也可以有該DC-DC轉換器170的電池DC-DC轉換器設定點,其係被設定為低於PSU輸出電壓設定點,在此例子中,被選擇為12.0V(如同圖12所繪的虛線3所指定)。有兩種控制臨限設定點,即:被設定在PSU輸出電壓設定點與電池DC-DC轉換器設定點間之上控制臨限(“UCT”)(在此例子中被選擇為12.3V),及被設定在電池DC-DC轉換器設定點之下及在下調整限制之上的下控制臨限(“LCT”)(在此例子中,下控制臨限(“LCT”)被選擇為11.9V)。UCT及LCT值被進一步參考圖14及15加以描述。這些臨限與設定點的利用在此被進一步描述。
電池DC-DC轉換器設定點係被選擇於指定負載電壓容許範圍內,低於PSU輸出電壓設定點,及在LCT之上,並可以藉由分析系統100的動態特徵加以最佳化。上與下調整限制(即,指定負載電壓容許範圍)的選擇可以被確定為負載105之規格與需求的函數。UCT的值可以被選擇成為在PSU輸出電壓設定點下的一些適當值,使得監視輸出電壓V o的降低於UCT以下對電池系統106表示有PSU 101的故障,或者,為電池系統106所供給至負載105的輸出電壓V o增加太多,並且,可能增加在該指定負載電壓容許範圍外側。LCT的值可以被選擇為在電池DC-DC轉換器設定點下的一些適當值,使得監視輸出電壓V o的降低於LCT以下對電池系統106表示需要更多電流由電池108經由N個FET/電阻對網格供給至負載105。為系統100的設計者的選擇在指定負載電壓容許範圍內的UCT及LCT的值可以是電池108的特定特徵的函數(如,終端電壓、特徵曲線等)、負載105的動態特徵(如,動態負載電流的大小及上升與下降時間)、及系統100的動作電容C LOAD160。系統電容C LOAD160可以代表耦接至系統100內的輸出節點V o的電容總和(如,已經包含以協助穩定PSU 101的回授控制環路的出現在PSU 101中的任何輸出電容、出現在DC-DC轉換器170的輸出的任何輸出電容,以改良暫態反應或協助穩定DC-DC轉換器170的控制環路、與負載105相關的任何電容、及為電池系統106設計者所加入的任何其他電容)。
圖13例示系統100的簡化方塊圖,其係被表示為說明如何監視在輸出節點V o的電壓被控制器102所利用以依據本揭露的實施例,在此進一步描述作為調整插入在電池108與負載105間之阻抗數量。電池系統106與PSU 101係在輸出節點V o被耦接至配電匯流排104。同時,在輸出節點V o耦接至配電匯流排104的有負載105及系統電容C LOAD160。
依據已知電路理論,在系統中之任意節點之任何電流的總和必須為零。因此,在節點V o出現的電流總和為:
Figure 02_image001
解開 i Capacitance
Figure 02_image003
考量電容的特徵方程式:
Figure 02_image005
其中dV Capacitance/ dt= dV o/ dt
由以上方程式,可以得到如果( i Batt+i PSU )等於 i Load ,則 i Capacitance 相對於時間將為零,及 dV Capacitance/ dt也將為零。因此,在輸出節點V o的電壓將不變。如果( i Batt+i PSU )> i Load ,則 i Capacitance 將為正(即,系統電容C LOAD160將充電), dV Capacitance/ dt也將為正,及在輸出節點V o的電壓將隨著時間增加。對應地,如果( i Batt+i PSU )< i Load ,則 i Capacitance 將為負(即,系統電容C LOAD160將放電入負載105), dV Capacitance/ dt也將為負,及在輸出節點V o的電壓也將隨著時間下降。跨系統電容C LOAD160的電壓(即,V o)、及在系統電容C LOAD160中之電流(C* dV Capacitance/ dt)的這些變數表示系統100的一組狀態變數,其如在此所述地被利用於本揭露的實施例內。注意C* dV Capacitance/ dt可以為正或負並具有安培的單位(電流),同時, dV Capacitance/ dt可以為正或負,並具有伏/時間的單位。也應注意到, dV Capacitance/ dt也等於 dV o/ dt,並代表相同的狀態變數。
圖14例示狀態確定系統141(見圖1)的非限定實施方式的方塊圖,其可以被組態以確定代表系統100的狀態變數的值(即,V odV o/ dt)。臨限檢測器1401接收輸出電壓V o作為輸入並比較V o與UCT及LCT限制(見圖12)。臨限檢測器1401操作的真值表係被顯示於圖16的表16a。如果輸出電壓V o係在UCT以上的電壓位準,則信號上控制臨限超出(“UCTE”)信號係被設定為邏輯位準1,及當輸出電壓V o下降低於UCT時,則UCTE將被重設至邏輯位準0。如果輸出電壓V o為低於LCT的電壓位準,則下控制臨限超出“LCTE”)信號被設定至邏輯位準1,及當輸出信號V o上升超出LCT時,LCTE信號將被重設至邏輯位準0。
微分器1402接收輸出電壓V o作為輸入並確定 dV o/ dt的符號,產生 dV o/ dt正信號,並只要 dV o/ dt>0,它就被設定為邏輯位準1,並產生 dV o/ dt負信號,並只要 dV o/ dt>0,它就被設定為邏輯位準1,因而提供狀態變數 dV o/ dt的瞬時符號給控制器102。微分器1402操作的真值表係被顯示於圖16的表16b中。UCTE、LCTE、 dV o/ dt負、及 dV / dt正信號(在此也一起被稱為“狀態確定信號”)係由狀態確定系統141經由信號線180輸送至控制器102。注意,真值表16a及表16b包含登錄項,被顯示為未允許或不可能。例如,對於輸出電壓V o不可能同時超出UCT並在LCT之下,並且,為此原因,條件UTCE=1及LTCE=1的情況不能同時發生。
控制器102被組態以由狀態確定系統141接收狀態確定信號並如同有關圖18的系統與處理1800所進一步描述地依據在圖16的表16c中描述之真值表執行操作。圖15例示狀態確定系統141可以如何以運算放大器(OP1)及電壓比較器(CMP1…CMP4)實施,以產生圖16的表16c中所示的真值表的非限定例的簡化示意圖,其中,比較器參考值屬於有關於圖12所提供的例子。
考量如有關於圖8所述之以電池108實施的系統100的非限定例,當操作於區4範圍時,包含DC-DC轉換器170相較先前有關圖7的系統700可得的大範圍電流、下至零(0)電池放電電路電流,對準確輸入/輸出壓差的控制,提供較高電效率與較高準確。這可以藉由檢測圖9看出。如於此所述,對於任意數量N的FET/電阻對,有N 2分立控制步階可用。由於系統700中之電阻710a…710d的降低電阻值的本質,控制步階的粒度在整個操作範圍內並非固定,並且,可以看出在操作於區3範圍中時(見圖8),可得細微控制(注意,在圖9中,在0.5V或更少的V BAT-V o差異範圍下,存在有70%的可用控制步階),但當操作於區4範圍,則V BAT-V o差異範圍由0.5V至3.0V,由於可用控制步階數量較少,只有很粗及不準確控制可用。區4範圍為差電效率的操作範圍,因為當在此範圍內,電阻性元件將有較高V-I損失。因此,區4範圍的輸出電壓V o的粗控制係為加入DC-DC轉換器170所提供,因為DC-DC轉換器免除此等效率問題,因為它們明確地想要在此範圍中具有高效率。因此,系統700在區4範圍中具有較差效率與控制,同時,系統100藉由加入DC-DC轉換器170,而免除這些問題,這些顯著改良在區4範圍中之效能,同時,可以藉由控制N FET/電阻對網格的總阻抗,而提供輸出電壓V o的更細微控制,並將參考圖18作進一步描述。
使用標準降壓DC-DC轉換器或降壓-升壓DC-DC轉換器的選擇可以藉由為系統100所供電的負載105的需求及電池108的特定化學品及組態的V-I曲線所確定。如在此參考圖7所述,系統700只能在低於電池電壓的電壓下,輸送電流至負載705。結果,在很多情況下,會有電池708能量不能被利用的情形。參考圖8,區1範圍指明電池操作點,其在用於負載的指定負載電壓容許範圍下。每當電池操作點存在於該系列V-I曲線的區1範圍中時,電池能量不能被利用。V-I曲線中的在此區1範圍內的所得部分因此很小並只存在很低電荷狀態,其中,SOC係接近零。對於很多末端使用者應用,此不可用區1能量可以被簡單忽略。然而,相較於示於圖8的V-I曲線與示於圖10的不同電池組態的操作,它代表四個磷酸鐵電池的操作於1A與60A間之電流的串聯電池組態。可以看出,對於圖10的磷酸鐵電池系統的區4範圍操作係遠小於圖8的鎳錳鈷系統。注意這對於12V系統可能有利。然而,注意到存在於圖10的磷酸鐵電池系統的區1範圍的曲線的面積係遠大於圖8的鎳錳鈷系統(例如,當操作於60A的最大負載時,多達約40%的SOC)。這代表如前所述大量的不能使用能量被綁在區1範圍中,並且,對於想要為此電池系統所供電的特定應用可能無法接受的。可能的解決方案為以對DC-DC轉換器170具有適當最大功率與電流限制設定的實施DC-DC轉換器設計的圖1電池系統106(如,降壓-升壓DC-DC轉換器),來替換圖7中之電池系統706,因此,此類型的轉換器能將低於指定負載電壓容許範圍的電壓之電池電壓升壓至與指定負載電壓容許範圍相容的輸出電壓。注意,當使用降壓-升壓轉換器時,當DC-DC轉換器170正升壓輸出電壓超出電池108所供給的電壓時,必須小心考量,DC-DC轉換器170防止電力由輸出循環至電池(輸入)。為了防止如此,DC-DC轉換器170的輸出的連接點可以被移動至電晶體111的汲極側(相較於FET/電阻對110b…110d及150b…150d,這些被耦接至電晶體111的源極側)。當操作於升壓模式時,電晶體111被切換關斷,因此,阻止任何電力由DC-DC轉換器170的輸出循環至電池108。在升壓模式中DC-DC轉換器170的操作結果為當電池108係在區4範圍中被放電時,被輸送的輸出功率的100%應透過DC-DC轉換器170被輸送,而不是透過N FET/電阻對網格。這表示在區4範圍中的系統100的操作應以DC-DC轉換器170的功率限制及電流限制轉移點(I limit(A))的功率位準或以下的功率位準進行。然而,有時,在系統100被利用以低SOC的電池108作為此“降低功率”操作的電腦伺服器時,這些應用也被特別允許。
圖17例示取決特定電池與負載特徵及需求的可以實施在控制器102內的FET/電阻作動/止動順序的幾個非限定例。表17a表示類似有關圖9所述之可以實施在控制器102內的二進制計數順序。FET 110b、110c、及110d可以在二進制上數順序中被切換導通,其中FET 110b代表最低有效位元及FET 110d代表最高有效位元,及其中各個後續二進制數字代表N FET/電阻對網格的下降總阻抗。因此,一次上數一二進制數字造成N FET/電阻對網格的總阻抗降低,及一次下數一數字造成N FET/電阻對網格的總阻抗的增加。表17b代表一序向順序,其中FET可以被序向地切換導通/關斷,而不同於二進制計數模式,使得為了降低N FET/電阻對網格的總阻抗,第一FET 110b被切換導通,則FET 110c被切換導通(而不必首先關斷FET 110b),及最終FET 110d被切換導通。同樣地,為了增加N FET/電阻對網格的阻抗,控制器102可以被組態以切換關斷在最高有效位元位置的FET,然後,切換關斷在次一最高有效位元位置的FET,並以此類推,直到所有FET被切換關斷為止。此序向順序造成較少的分立阻抗步階,但當由任何給定阻抗值開始時,較快到達最小或最大阻抗值。
依據本揭露的實施例,當電池108係由例如圖8所表示的NMC電池構成時,在表17a中表示的二進制計數順序可以被實施於控制器102內,其中,只有約20%的為最小電流V-I曲線及最大電流V-I曲線所追蹤的範圍係在區2範圍內,及區2範圍外側的主要範圍係位在區3及4中之區2範圍之上。依據本揭露的實施例,當電池108係由例如圖10所表示的磷酸鐵電池構成,則表17b的序向順序可以實施於控制器102內。於此,由最小與最大電流V-I曲線所追蹤的範圍約60%在區2範圍內,及只有約30%在區3及4中之區2範圍之上。
交替二進制/序向或“混合”計數手法被顯示於表17c,其中二進制計數順序與序向順序被組合,FET 110b及110c操作於二進制順序及FET 110d在FET 110b及110c到達最大二進制值後被加入序向順序中。
本揭露的實施例更以以下例子進一步例示,此例子係用以例示本揭露標的並非建構為限定用。
現將描述系統100的實施方式的非限定例。在此12V例子(V o=12V)中,上調整限制為12.6V及下調整限制為11.4V,界定該指定負載電壓容許範圍。示範電池108係根據如圖10所示之四個串聯磷酸鐵電池,具有60安培的最大負載電流,及1安培的最小負載電流。DC-DC轉換器170係被組態為適當降壓DC-DC轉換器(具有如圖4所示之特徵),具有如圖11中被選擇為15安培,或負載105的最大電流的25%的電流限制轉移點I limit(A)。如於圖12所繪,電池DC-DC轉換器設定點被設定為12.0V,PSU輸出電壓設定點被設定為12.35V,UCT被設定為12.3V,及LCT被設定為11.9V。控制器102被組態以如圖17的表17b所表示的序向方式,步階向上與向下N FET/電阻對網格的阻抗。電阻150b可以被組態以所有電阻150b…150d間之最高電阻值。依據本揭露的實施例,此電阻150b的電阻值可以由被允許V-I曲線的最小與最大負載電流設計點所追蹤的電池180的最大值電壓所確定。在此例子中,此電阻值可以為示於圖10中之點A(13.4V)並減去電池DC-DC轉換器設定點的值(其係為12.0V並在圖10所示之點B所表示)所指明。然後,結果為DC-DC轉換器170的電流限制轉移點(I limit(A),或15A)所除,這提供電阻150b的想要電阻值。使用這些值,結果為: 元件150b的電阻值=(13.4V-12.0V)/15A 元件150b的電阻值=93毫-歐姆 電阻150c可以被組態以具有在順序中的下一個最低電阻值,並且,可以被組態以令電阻值等於或略小於電阻150b的電阻值的十分之一(如,9毫-歐姆)。電阻150d可以被組態以令電阻值等於或略小於電阻150c的電阻值的十分之一(如,0.9毫-歐姆)。結果,當所有FET被切換導通時,N FET/電阻對網格的總電阻為0.8毫-歐姆。這在60A的最大負載時,在N FET/電阻對網格間提供48毫-伏的總壓降。
因為,如於圖10所示,磷酸鐵電池特徵V-I曲線大部分地置放於15A的電流限制轉移點I limit(A)以上及60A的最大界定負載電流以下的電流值的區2操作範圍內,所以系統100可以被組態有相對較少數量的並聯FET/電阻對序向FET作動順序、及針對各個前述序向對,相對主動降低電阻值。如果系統100被組態有由如圖8所表示之NMC電池構成的電池108,則系統100可以被組態有較大數量的並聯FET/電阻對、二進制計數順序、及針對各個序向對,更逐步降低電阻值,因為,如圖8所示,V-I曲線的相對較大部分係存在於區2操作範圍(即,指定負載電壓容許範圍)之上。
再次參考圖1,當適當操作(即,交流輸入電源出現並在指定值內,及/或在PSU 101內並沒有硬體故障)時,PSU 101被設計以具有足夠輸出電流容量以供給滿載電流至負載105。如果至PSU 101的交流輸入故障或者在PSU 101內有硬體故障,則PSU 101將停止提供電流給負載105,及電池系統106將由電池108放電,以供給電流至負載105。
依據本揭露的實施例,電池系統106係被組態以將來自電池108的電流供給於由DC-DC轉換器170配合上N FET/電阻對網格所提供的電流路徑間,以將輸出節點V o的電壓維持於如圖12所示之上及較低調整限制所限定的指定負載電壓容許範圍內的方式進行。取決於符合負載105需求所需的電流,電流可以流動通過DC-DC轉換器170與N FET/電阻對網格的元件的任意組合。控制器102可以被組態以控制來自放電電池108的輸出電流的平衡,在DC-DC轉換器170與N FET/電阻對網格之間,使得供給至負載105的電壓被調整於上與下調整限制之間(即,在指定負載電壓容許範圍內)。以下說明表示例示轉移,其發生於作為電流平衡與電壓調整程序的一部分。
依據本揭露的實施例,一個非限定示範處理,用以由電池系統106提供來自由電池108的電流至負載105,現將配合圖18的系統與處理1800加以描述,該系統與處理可以被實施以操作於控制器102內。在此例子中,DC-DC轉換器170依據圖4操作,狀態確定系統141被組態以依據圖16的表16a及16b中所述之真值表操作,及控制器102被組態以依據圖16的表16c中所述之真值表與圖17的表17b中所述之FET順序操作。由狀態確定系統141所依據表16a及16b中所述之真值表產生的信號係為控制器102經由信號線180接收。
圖19-20例示顯示系統100的示範操作的時域分析,用以將輸出電壓由電池108及PSU 101供給至輸出節點V o,及將由狀態確定系統141提供的信號對應轉換至控制器102。圖19例示在時間間隔t 0-t 10期間的示範時域分析,而圖20則例示在時間間隔t 10-t 21的示範時域分析。系統與處理1800的示範操作係參考圖19及圖20的時間實例加以描述,描述在各個時間實例間的瞬間,及在各個時間實例間之時間間隔期間發生了什麼。注意圖19及20並未依規格描述,及所示某些時間間隔可以以微秒量測,而其他則以秒或分量測。
在處理方塊1801,PSU 101正適當操作,並且在先前某些時段已經導通。在此例子中,PSU 101輸出電壓設定點為12.35V,供給滿載電流至負載105。同時,在先前某些時段中,電池系統106的組件被初始化(由處理方塊1802-1805旁的虛線所表示)。控制器102可以在處理方塊1802中初始化(如,當它接收AC_OK信號)。在處理方塊1803,控制器102分別經由信號線171及121b…121d切換關斷DC-DC轉換器170及所有FET 110b…110d。在處理方塊1804中,控制器102可以被組態以驗證出現在輸出節點V o的電壓是否等於PSU輸出電壓設定點(如,藉由實施於狀態確定系統141中實施之電壓感應器,例如,以電池電壓感應器142的類似方式進行,其感應經由信號線180提供至控制器102的輸出電壓V o的位準),及是否在信號線112上出現有AC_OK信號(如,接收到邏輯位準1)。
在處理方塊1805中,DC-DC轉換器170經由控制信號171被導通,藉以DC-DC轉換器170穩定其輸出至其電池DC-DC轉換器設定點(在此例子中,12.0V)。然而,因為在輸出節點V o的電壓為PSU 101所保持於12.35V,所以,並沒有電流由DC-DC轉換器170流出,及所有進入負載105的電流係為PSU 101所提供。在DC-DC轉換器170已經穩定其輸出後的一些時間點,系統與處理1800進行至處理方塊1806,並等待來自狀態確定系統141經由信號線180所為控制器102所接收的UCTE或LCTE信號的上升緣轉移所產生的中斷。此等待情況代表穩定情況,其出現在此例子中作為在圖19中之時間瞬間t 0所示的系統狀態。如將進一步描述,控制器102可以被組態以於接收UCTE信號(如,見圖19中之1901)或LCTE信號(如,見圖10及圖20中之1902)的上升緣(邏輯位準0至邏輯位準1的轉移)時,產生中斷。此中斷將系統與處理1800由處理方塊1806轉移至處理方塊1807,其中,來自狀態確定系統141的狀態確定信號係被評估,以確定是否任何FET控制動作需要來調整N FET/電阻對網格的阻抗向上或向下,並將如於此所進一步描述。
在時間間隔t 0至t 1期間,此穩定狀態在處理方塊1806中繼續。控制器102維持FET 110b…110d切換關斷。所有負載電流被持續由PSU 101供給,PSU 101調整供給至輸出節點V o的電壓至DC-DC轉換器170的電池DC-DC轉換器設定點之上的一個點。供給至輸出節點V o的電壓係在UCT之上,使得UCTE信號係在邏輯位準1(見圖16的表16a),及因為電壓V o並未改變,所以,狀態確定系統141維持 dV o/ dt正與 dV o/ dt負信號於邏輯位準0值(見圖16的表16b)。在處理方塊1806中並未產生中斷,因為控制器102正等待UCTE或LCTE信號的上升緣。
考量此例子中,在一些後續時段中,當發生AC線路故障或PSU 101的硬體故障(其將經由AC_OK信號112發信給控制器102)。這是在圖19中被指定為時間瞬間t 1。最後,PSU 101的輸出電壓開始由12.35V下降。電壓V o的下降造成C LOAD160現在放電並提供部分電流給負載105,及PSU 101供給剩餘的電流。當電壓V o開始在時間瞬間t 1下降時,這將為狀態確定系統141所感應,造成 dV o/ dt負信號由邏輯位準0轉移至邏輯位準1(見圖16的表16b)。在時間瞬間t 1後,電壓V o足夠降低至UCT以下,造成狀態確定系統141將UCTE信號由邏輯位準1轉移至邏輯位準0。處理方塊1806仍將等待由(UCTE或LCTE信號)邏輯位準0轉移至邏輯位準1所造成的中斷。在時間間隔t 1至t 2期間,因為愈來愈多能量由C LOAD160輸送至負載105,所以電壓V o持續下降。
在時間瞬間t 2,電壓V o現已下降,直到它到達DC-DC轉換器170的電池DC-DC轉換器設定點為止,該設定點已經被設定為12.0V。在時間間隔t 2至t 3,電流被由電池108經由DC-DC轉換器170供給,當為DC-DC轉換器170所供給的電流在時間瞬間t 2由零電流上升至時間瞬間t 3的電流限制轉移點I limit(A)時,該DC-DC轉換器170保持電壓V o平穩。回應於在時間間隔t 2至t 3的輸出電壓V o的不變值,為控制器102所接收自狀態確定系統141的 dV o/ dt負信號被恢復至邏輯0值(見圖16表16b)。
在時間瞬間t 3到達電流限制轉移點I limit(A)時,DC-DC轉換器170將進入其電壓“下垂”模式(見圖11),當C LOAD160再次開始供給能量至負載105時,輸出電壓V o將開始下降,這可以為在圖19的時間間隔t 3至t 4期間看到。被由狀態確定系統141所輸送至控制器102的 dV o/ dt負信號在此時間間隔被轉移至邏輯位準1。然而,在處理方塊1806中,尚未產生中斷。因此,控制器102依據圖16的表16C的真值表維持FET 110b…110d切換關斷(對應於圖17之表17b中所述之阻抗順序0)。
在時間間隔t 4,輸出電壓V o從下穿過LCT,使得狀態確定系統141將LCTE信號由邏輯位準0轉移至邏輯位準1(如同在圖19的1902之時間瞬間t 4所示),及中斷係為處理方塊1806產生。系統及處理1800進行至處理方塊1807,及從狀態確定系統141接收的狀態確定信號的位準係為控制器102所讀取。依據圖16的表16a及16b的真值表,信號的位準為UCTE=0,LCTE=1, dV o / dt正=0,及 dV o/ dt負=1。系統及處理1800然後進行至處理方塊1808,以確定這些信號位準是否對應於圖16的表16c之真值表中所述的情況2b或3c。因為在此例子中,在時間瞬間t 4,狀態確定信號的位準係被確定以對應於在表16c中之情況3c,系統與處理1800進行至處理方塊1810,其中控制器102確定N FET/電阻對網格的阻抗需要被降低。因為N FET/電阻對網格現為阻抗順序0(即,所有FET都被切換關斷),在圖17的表17b的下一步代表下降的阻抗係被指明為阻抗順序1。在處理方塊1810中,控制器102透過控制信號121b切換導通FET 110b,以將N FET/電阻對網格組態成為阻抗順序1的組態。
時間間隔t 4至t 5代表沿著切換導通信號送至FET 110b的控制線121b可能存在有傳遞延遲。此傳遞延遲可能由處理方塊1806在時間瞬間t 4處理中斷的處理時間、處理方塊1807、1808、及1810的執行時間、導通信號由控制器102行進至FET 110b所需的信號傳遞時間、及FET 110b的切換時間構成。此傳遞時間可能相當短(如,在大約幾微秒),但在阻抗改變需要先識別的時間瞬間t 4及N FET/電阻對網格的阻抗狀態實際改變及系統狀態變數回應的時間瞬間t 5間可能有可量測的時間延遲。為了防止N FET/電阻對網格過校正,處理方塊1811可以選用地包含,以在系統與處理1800回到處理方塊1807前,插入時間延遲(如,等於傳遞延遲的最長可能值),以再次重設狀態確定信號的狀態。時間瞬間t 5代表傳遞延遲期間的結束,及在此瞬間,可以看出系統狀態已經對在時間瞬間t 4所採的控制行動作出反應(即,增加電壓V o)。因此,在時間瞬間t 5後,系統與處理1800回到處理方塊1807。
在時間瞬間t 5,處理方塊1811的選用傳遞延遲已經完成,及FET 110b現在被切換導通。先前專門通過DC-DC轉換器170流入負載105的由電池108所產生的電流現在具有到負載105的第二路徑,即通過FET 110b與電阻150b。結果為DC-DC轉換器170的電流現在下降低於電流限制轉移點,因為電流現被轉移開DC-DC轉換器170,及DC-DC轉換器170的輸出電壓並且因此輸出電壓V o上升回到其12.0V設定點。
在時間瞬間t 5後,在處理方塊1807,控制器102再次讀取狀態確定信號並傳送控制至處理方塊1808。如由圖19例示的例子所表示,在時間間隔t 5至t 6期間,電壓V o係低於LCT,同時,電壓V o正上升,及由狀態確定系統141接收的狀態確定信號將造成控制器102在處理方塊1808中確定N FET/電阻對網格正依據情況3b(見圖16的表16c)操作,這對應於由處理方塊1808離開的“兩者都沒有”路徑。在處理方塊1812中,信號UCTE與LCTE各個為控制器102所評估邏輯位準1。因為LCTE信號被保留在邏輯位準1,所以,系統與處理1800將持續由處理方塊1812迴圈至處理方塊1807至處理方塊1808並回到處理方塊1812,直到上升輸出電壓V o跨越LCT臨限(被表示為發生在時間瞬間t 6)為止,造成LCTE信號由邏輯位準1轉移至邏輯位準0。
在時間瞬間t 6,輸出電壓V o持續上升,因為來自DC-DC轉換器170的輸出電流持續增加。在LCTE信號完成轉移至邏輯位準0後的第一次調用處理方塊1812時,系統與處理1800將離開處理方塊1812並回到處理方塊1806並重新回到藉由UCTE或LCTE信號的上升邊緣所觸發的中斷的等待狀態。
再次回到圖19,在第一部分的時間間隔t 6至t 7期間,因為在DC-DC轉換器170中之輸出電流上升,所以輸出電壓V o將持續其增加朝向12.0伏的電池DC-DC轉換器設定點。最後,將到達顯示大約在時間瞬間t 6與t 7間的中點的電流限制轉移點。在此瞬間,DC-DC轉換器170將再次進入其“下垂”模式,及輸出電壓V o將開始下降(見圖11)。 dV o/ dt的反轉係被顯示於在 dV o/ dt正與 dV o/ dt負的信號位準中之改變,其係發生在時間瞬間t 6及t 7間之半路。在時間間隔t 6至t 期間,UCTE或LCTE信號均沒有上升邊緣,因此,並未產生中斷,及系統與處理1800保持在處理方塊1806。
在時間瞬間t 7,輸出電壓V o越過並落於LCT下,這在LCTE信號產生上升邊緣(如圖19之時間瞬間t 7的1902所示)及一中斷,其中,系統與處理1800由處理方塊1806進行至處理方塊1807,其中控制器102讀取自狀態確定系統141接收的狀態確定信號。系統與處理1800然後進行至處理方塊1808,以評估狀態確定信號,其將指示UCTE=0,LCTE=1, dV o/ dt正=0,及 dV o/ dt負=1的組合對應於表16c中之情況3c。結果,系統與處理1800然後進行至處理方塊1810,其中確定因為N FET/電阻對網格係依據表17b的真值表被組態為阻抗順序1,所以,在對應於情況3c的阻抗順序的下一步驟為阻抗順序2。為了完成如此,控制器102維持FET 110b為切換導通,經由控制信號121c切換導通FET 110c,並且,然後離開處理方塊1810並進行至處理方塊1811。在時間間隔t 7至t 8期間,系統與處理1800可以保持在處理方塊1811中,等待FET 110c切換導通。
在時間瞬間t 8,當FET 110c切換導通時,由電池108所產生的電流現有通過DC-DC轉換器170、FET 110b/電阻150b對、及FET 110c/電阻150c對的導通路徑。通過FET 110c/電阻150c對的導通路徑的加入以及此新導通路徑的超低阻抗由DC-DC轉換器170移開更多電流,使得其電流才降至低於I limit(A)的位準,並且,因此,輸出電壓V o將再次開始增加,因為現正操作於降低電流的DC-DC轉換器170將想要調整其輸出作為其電池DC-DC轉換器設定點(在此例子中,為12.0V)。系統與處理1800將然後進行至處理方塊1807,藉以控制器102讀取狀態確定信號。在處理方塊1808中,控制器102評估狀態確定信號的位準,其係被確定為UCTE=0,LCTE=1, dV o/ dt正=1,及 dV o/ dt負=0。狀態確定信號的位準的此組合對應於在表116c中所述之情況3b,其中阻抗動作需求為“無”。系統與處理1800然後進行至處理方塊1812,及因為電壓V o係低於LCT,LCTE=1,及系統與處理1800將由處理方塊1812到處理方塊1807,至處理方塊1808,並然後至處理方塊1812作迴圈,並保持在此迴圈中,直到電壓V o增加超過LCT。
參考圖19,時間瞬間t 9表示輸出電壓V o已經上升並越過LCT,造成LCTE信號重設置邏輯位準0(見表16a)。在LCTE信號轉移至邏輯位準0以後,系統與處理1800將在其下一通過處理方塊1812中,進行至處理方塊1806。系統與處理1800將保留在處理方塊1806,直到UCTE或LCTE信號之任一的上升邊緣造成下一中斷為止。
如圖19所表示,包含t 8至t 10的時間間隔表示一穩態情況,到負載105的電流保持在固定位準,及電池108緩慢放電。控制器102保持N FET/電阻對網格為阻抗狀況2組態。
在此例子中,時間瞬間t 10顯示輸出電壓V o發生軌跡的不連續,其中 dV o/ dt突然由相對小正值增加至相對較大正值。造成此類型的不連續的一情況為進入負載105的電流的突然降低,造成正電流流入C LOAD160及在 dV o/ dt的對應改變(增加)。
參考圖20,在時間間隔t 10至t 11期間,輸出電壓V o的值上升,及系統與處理1800在處理方塊1806中,等待中斷。
時間瞬間t 11表示一狀況,當輸出電壓V o越過UCT造成在UCTE信號之上升緣(在時間瞬間t 11中,如圖20中指示為1901)並在處理方塊1806中,產生中斷。系統與處理1800然後進行至處理方塊1807,及由狀態確定系統141接收的狀態確定信號係為控制器102所接收。在處理方塊1808中,控制器102評估所接收信號,其在此狀態中已經為狀態確定系統141產生(見圖16的表16a及16b)為UCTE=1,LCTE=0, dV o/ dt正=1,及 dV o/ dt負=0。依據表16c,控制器102確定在情況2b中信號之組合。系統與處理1800因此進行至處理方塊1809,其中控制器102確定N FET/電阻對網格的阻抗需要增加。因為N FET/電阻對網格正被組態於阻抗順序2(即,FET 110b切換導通,FET 110c切換導通,及FET 110d切換關斷),所以,控制器102由表17b確定阻抗的增加將造成N FET/電阻對網格被組態於阻抗順序1。因此,控制器102經由控制線121c切換關斷FET 110c,以組態N FET/電阻對網格成為阻抗順序1的組態。系統與處理1800然後進行至處理方塊1811並進入選用等於最大傳遞延遲的等待狀態,如同在此所先前所述。
再次參考圖20,時間瞬間t 12顯示阻抗增加的作用,這造成 dV o/ dt改變符號及 dV o/ dt正與 dV o/ dt負信號的邏輯位準反相。系統與處理1800進行至處理方塊1807,其中由狀態確定系統141接收的狀態確定信號的位準係為控制器102所接收與讀取。在處理方塊1808中,控制器102評估接收信號,在此狀況中,這些信號係已為狀態確定系統141所產生(見圖16的表16a及16b)為UCTE=1,LCTE=0, dV o/ dt正=0,及 dV o/ dt負=1。依據表16c,控制器102確定這些信號的組合為情況2c。處理方塊1808為“兩者都沒有”路徑離開,及系統與處理1800進行至處理方塊1812。因為UCTE信號保持在邏輯位準1,所以系統與處理1800然後將透過處理方塊1807、1808,並回到處理方塊1812進行迴圈,直到輸出電壓Vo下降低於UCT(在圖20指示為時間瞬間t 13),使得UCTE信號由邏輯位準1轉移至邏輯位準0(見表16a)。當處理方塊1812被下個處理時,因為UCTE或LCTE信號都不是邏輯位準1,所以,系統與處理1800將離開處理方塊1812並進行至處理方塊1806,其中,系統與處理1800將再次等待中斷。
時間瞬間t 14表示一狀況,當輸出電壓V o落在LCT之下,造成LCTE信號由邏輯位準0轉移至邏輯位準1(如圖20之時間瞬間t 14處的1902所示),造成在處理方塊1806產生中斷。系統與處理1800將然後進至處理方塊1807,其中由狀態確定系統141所接收的狀態確定信號的位準係為控制器102所接收與讀取。在處理方塊1808中,控制器102評估所接收信號,其在此狀況中,已經為狀態確定系統141所產生(見圖16的表16a及16b)為UCTE=0,LCTE=1, dV o/ dt正=0,及 dV o/ dt負=1。依據表16c,控制器102確定信號的組合為情況3c。系統與處理1800然後進行至處理方塊1810,其中確定因為N FET/電阻對網格被依據表17b的真值表組態為阻抗順序1,所以,在阻抗順序中對應情況3c的下一步驟為阻抗順序2。為了完成如此,控制器102維持FET 110b為切換導通,及控制器102經由控制信號121c切換導通FET 110c,及然後,離開處理方塊1810並進行至處理方塊1811。在處理方塊1811中,可能發生有選用適當傳遞延遲時間。
在處理方塊1807中,控制器102在時間瞬間t 15後隨即讀取自狀態確定系統141接收的狀態確定信號。在處理方塊1808,控制器102評估所接收信號,其在此狀況中已經為狀態確定系統141中產生(見圖16的表16a及16b)並確定狀態確定信號已經保持如同它們在時間瞬間t 14一般的組態,其係UCTE=0,LCTE=1, dV o/ dt正=0,及 dV o/ dt負=1。依據表16c,控制器102確定信號的組合保持於情況3c。系統與處理1800然後進行至處理方塊1810,其中確定因為N FET/電阻對網格被組態為阻抗順序2,所以在對應於情況3c的阻抗順序中的下一步驟為阻抗順序3。為完成如此,控制器102維持FET 110b及110c為切換導通,及控制器102經由控制信號121d切換導通FET 110d。N FET/電阻對網格現依據此非限定例為在其最低阻抗狀態。系統與處理1800然後離開處理方塊1810並進行至處理方塊1811,其中,它可選用地等待一或更多傳遞延遲時間間隔到時間瞬間t 16
在時間瞬間t 16後,系統與處理1800由處理方塊1811進行至處理方塊1807,及由狀態確定系統141所產生的狀態確定信號係為控制器102所接收。在處理方塊1808中,控制器102評估所接收信號,並確定狀態確定信號為UCTE=0,LCTE=1, dV o/ dt正=1,及 dV o/ dt負=0。依據表16c,控制器102確定信號的組合為情況3b。系統與處理1800採無阻抗動作並透過標示為“兩者都沒有”的路徑離開處理方塊1808並進行至處理方塊1812,其中LCTE信號被評估與確定在邏輯位準1。系統與處理1800然後持續通過處理方塊1807、1808,並回到處理方塊1812迴圈,直到輸出電壓V o越過LCT,如同在時間瞬間t 17所示。在此點,LCTE與UCTE信號兩者都是邏輯位準0,及在下一通過處理流程1812時,系統與處理1800離開至處理方塊1806,等待下一中斷。
時間瞬間t 18表示在 dV o/ dt的改變,其可以有利於例如增加負載電流的事件。因為輸出電壓V o係在UCT及LCT設定的範圍內,所以在處理方塊1806中不會產生中斷,及系統與處理1800保持在處理方塊1806中。時間瞬間t 19代表可能在系統100操作期間當輸送至負載105的電流減少時發生的另一事件。因為輸出電壓V o仍在UCT及LCT所設定範圍內,所以,在處理方塊1806中並未產生中斷。系統與處理1800保持於處理方塊1806等待中斷。
時間瞬間t 20代表當輸出電壓V o越過UCT,造成UCTE信號的上升邊緣(如在圖20的時間瞬間t 20的1901),造成在處理方塊1806中產生中斷。系統與處理1800然後進行至處理方塊1807,其中從狀態確定系統141所接收的狀態確定信號的位準係為控制器102所接收與讀取。在處理方塊1808,控制器102評估所接收信號,其在此狀況中已經為狀態確定系統141所產生(見圖16的表16a及16b)為UCTE=1,LCTE=0, dV o/ dt正=1,及 dV o/ dt負=0。依據表16c,控制器102確定信號的組合係在情況2b。處理方塊1808經由路徑2b離開,及處理方塊1809執行。在處理方塊1809,控制器102確定N FET/電阻對網格的阻抗需要增加,及因為N FET/電阻對網格現正被依據阻抗順序3組態,所以,在圖17中之表17b中的下一步驟表示增加阻抗被確定為阻抗順序2。因此,控制器102將經由控制線121d切換關斷FET 110d,以依據阻抗順序2組態N FET/電阻對網格。系統與處理1800然後進行至處理方塊1811,以進入選用等待狀態,等於在此先前所述之最大傳遞延遲(被表示為時間間隔t 20至t 21)。
當依據系統與處理1800調整輸出電壓V o的同時,電池系統106可以持續放電電池108,直到電池108能量耗盡及電池系統106關斷,或直到AC電力重開及PSU 101重回操作為止。依據本揭露的實施例,在此一狀況中,控制器102可以被組態以增量地(例如,依據圖17的表17b逐步地)增加N FET/電阻對網格的阻抗,直到所有FET切換關斷為止。在此點,DC-DC轉換器170可以也被切換關斷。另外,在一些時點,可以經由充電器103對電池108恢復充電。在電池108能量耗盡(如,當電池108的終端電壓透過電壓感應器147被感應下降至等於圖10的區2及區1的邊界電壓的位準時)的狀況中,控制器102可以被組態以關斷電池系統,例如,藉由切換關斷在N FET/電阻對網格中所有的FET,並切換關斷DC-DC轉換器170。
如同有關於圖18的示範操作所述,N FET/電阻對網格可以依據一對終端組態加以操作。在一組態中,所有在N FET/電阻對網格內的FET/電阻對被切換關斷,造成沒有電流流通過N FET/電阻對網格。例如,這可能發生在系統100的初始狀態中,當沒有來自電池108通過N FET/電阻對網格的電流被供給至負載105。在此情況中,來自電池108的電流將只通過DC-DC轉換器170供給,DC-DC轉換器170將調整輸出電壓V o在UCT及LCT間之範圍內,直到被供給至負載105的電流增加到達電流限制轉移點I limit(A),及DC-DC轉換器170的輸出電壓下垂。當DC-DC轉換器170的輸出電壓下垂低於LCT以下,控制器102將減少N FET/電阻對網格的阻抗,及因為在N FET/電阻對網格內的所有FET/電阻對被切換關斷,所以N FET/電阻對網格具有可為控制器102所用的全範圍阻抗降低動作(如,見圖17的表17a、17b、17c)。當控制器102需要增加N FET/電阻對網格的阻抗時,(如,回應於在需求負載電流中之降低)及UCTE被觸發足夠次數,使得所有FET/電阻對都被切換關斷時,至負載105的剩餘電流可以為DC-DC轉換器170所供給,因為至負載105的電流足夠下降,使得DC-DC轉換器170可以再次調整輸出電壓V o,而沒有額外導通路徑提供用於經由N FET/電阻對網格的電流。
在另一終端組態中,當在N FET/電阻對網格內的所有FET/電阻對被切換導通及控制器不能進一步降低N FET/電阻對網格的阻抗時(如,依據圖17的表17a、17b、17c所述之任一阻抗順序),一狀況可能發生。例如,這可能發生在高負載電流及/或低電池充電狀態的狀況中,例如,當電池108操作於V-I曲線的點在區2的下限制(如,見圖8及10)。在此等狀態中,當使用線性調整器或降壓轉換器作為DC-DC轉換器170,及電池108的放電已經造成其操作點到達區2與區1範圍間之邊界線時,控制器102可能需要降低供給至負載105的電流或者系統100停止操作以避免輸出電壓V o下降低於下調整限制(例如,見圖12)下。如果降壓-升壓轉換器被使用作為DC-DC轉換器170,則如果供給至負載105的電流被降低至低於電流限制轉移點下的一值,則有額外選項。如果完成如此,則系統100的操作可以經由DC-DC轉換器170持續電池108的放電,直到電池108的操作點到達區1範圍的底邊界為止,該底邊界代表所允許的最小電池電壓。另一可能發生的狀況為在負載105的短路或者超過系統100的設計點的其他過載,使得電池操作點存在於電池108的允許特徵V-I曲線外側的電流位準。如果此狀況將要發生,則系統100可以被組態以例如藉由終止在電池108與負載105間之所有電流路徑而保護它自已(如,藉由切換關斷在N FET/電阻對網格內的所有FET/電阻對)。DC-DC轉換器170也可以經由其控制線171切換關斷,但因為DC-DC轉換器170可以藉由其電流限制特徵保護,所以,這並不嚴格必要。
由於前述說明的結果,可以迅速了解系統100可以被組態以當電池108放電同時,保持由電池108所提供至負載105的輸出電壓於想要的電壓範圍內,所以包含保持此一輸出電壓於想要的操作電壓範圍內(如,基本上在指定負載電壓容許範圍內),以便能實施系統100為電壓調整器(如,利用為電池備用單元或直流UPS)。
雖然本揭露的實施例係在此揭露為利用電池作為電源(如,電池備用目的),但本揭露的實施例可以被組態以利用任何適當類型的電源。相應地,系統100係適用於任何類型的電源(而不是電池),其具有未調整輸出電壓(如,此電源的輸出電壓用於特定配電匯流排或其相關負載的指定負載電壓容許範圍外改變)。
將可以為熟習於技藝者所了解,本揭露的態樣(如,系統與處理1800)可以被實施為一系統、方法及/或程式產品。因此,本揭露的態樣(如,系統與處理1800)與示於圖14的臨限檢測與微分器方塊可以採整個硬體實施例、整個軟體實施例(包含韌體、常駐軟體、微碼等)、或組合軟體與硬體態樣的實施例的形式,這些可以在此大致稱為“電路”、“電路群”、“模組”、或“系統”。再者,本揭露的態樣可以採實施於一或更多電腦可讀儲存媒體內的程式產品的形式,儲存媒體具有電腦可讀程式碼實施於其上。(然而,一或更多電腦可讀媒體的任何組合可以被利用。電腦可讀媒體可以是電腦可讀信號媒體或電腦可讀儲存媒體)。
將注意到,電路方塊圖的各個方塊及/或在圖1及18中之圖中代表的功能,及在電路方塊圖之方塊及/或圖14及15之圖中代表的功能的組合可以為特殊目的硬體為主系統加以實施,其實行特定功能或動作,或特殊目的硬體及電腦指令的組合。例如,模組(如,控制器102)可以被實施為包含客製VLSI電路或閘陣列的硬體電路、例如邏輯晶片、電晶體、控制器的現有半導體、或其他分立組件。模組(如,控制器102)也可以被實施為可程式硬體裝置,例如,場可程式閘陣列、可程式陣列邏輯、可程式邏輯裝置、或類似物。
除非特別界定,於此所用的所有技術及科學用語具有為熟習於本技藝者所公共了解的與本揭露標的所屬相同意義。當在本案包含申請專利範圍中所用,用語“一”包含“一或更多”。
於此所用,用語“大約”係被用以藉由提供給定值可以“略高”或“略低”於該端點,而對該端點的數值範圍提供彈性。
如於此所用,用語“實質上”表示動作、特徵、特性、性質、狀態、結構、項目、或結果的完整或接近完整的範圍或程度。例如,對於一被“實質”包圍的物件將表示該物件被完整包圍或幾乎完整包圍。在一些情況中,偏離開絕對完成的準確允許程度取決於特定上下文 然而,大致來說,完全的接近度將具有如同絕對及全部完成所取得的相同整體結果。當使用於負面含意時,“實質上”的使用等於可應用表示完全或接近完全欠缺動作、特徵、特性、狀態、結構、項目或結果。
如於此所用,當用於列出項目的上下文時,在兩字間之用語“及/或”及“/”符號的使用表示實體被單獨或組合出現。因此,例如,片語“A、B、C、及/或D”包含個別A、B、C、及D,但同時也包含A、B、C、及D的任一或所有的組合與次組合。
如於此所用,當用以描述在電或電子路徑中之路徑時,用語“電耦接”或用語“耦接”表示在這些組件間之至少一方向的電能量(即,電流)的導通路徑之組件。電流並不需要沿著組件被耦接或電耦接的導通路徑流動。這些組件可以直接耦接一導通路徑,包含只有低阻抗線等,或者,它們可以間接耦接半導體或較高阻抗組件,其允許電能沿著導通路徑流動。
[圖1]例示依據本揭露實施例組態之電路方塊圖。
[圖2]例示一系統,代表用於耦接至電源與負載的電池的充電與放電控制系統的先前技藝例子。
[圖3]例示用以調整連接至負載的電池的輸出的線性調整器DC-DC轉換器的先前技藝實施方式。
[圖4]例示適用於本揭露的實施例之下降(降壓)轉換器的輸入電壓對輸出電壓特徵。
[圖5]例示適用於本揭露的實施例的上升/下降(降壓-升壓)轉換器的輸入電壓對輸出電壓特徵。
[圖6]例示使用DC-DC轉換器組合上電池與用以提供調整輸出電壓至負載的控制器的先前技藝系統。
[圖7]例示在美國公開專利案號2020/0350779所揭露的系統的電路方塊圖。
[圖8]例示用於示範鋰離子可充電電池的不同可能負載電流的電壓曲線對電荷狀態(“SOC”)的系列繪圖,其中,四個電池以串聯連接及這些電池係由鋰錳鈷化學品構成。
[圖9]例示在美國公開專利案號2020/0350779所揭露的系統中可取得的使用二進制序向方案的控制步驟的非限定表示圖。
[圖10]例示用於例示鋰離子可充電電池的不同可能負載電流的電壓曲線對電荷狀態(“SOC”)的系列繪圖,其中,四個電池被串聯連接及電池係由磷酸鐵鋰(“LFP”)化學品構成。
[圖11]例示適用於本揭露的實施例中之DC-DC轉換器的輸出電流限制特徵。
[圖12]例示用以控制依據本揭露實施例的系統的指定負載電壓容許範圍與各種控制臨限與設定點。
[圖13]例示依據本揭露實施例組態的示於圖1的系統的簡化方塊圖。
[圖14]例示用於本揭露實施例之控制元件的非限定例的方塊圖,其實施系統狀態確定功能、輸入信號進入控制元件、及控制元件的輸出信號。
[圖15]例示實施依據本揭露實施例的狀態確定功能的電子電路的非限定例的簡化示意圖。
[圖16a、16b及16c]例示實施為用於本揭露實施例之狀態確定元件的非限定例的一組真值表,顯示根據輸入信號的不同狀態的來自控制元件的輸出信號位準,及界定輸出信號位準的哪個組合將觸發控制動作的真值表。
[圖17a、17b及17c]例示展現出造成例示於圖1的網格的FET/電阻對的總阻抗步階增加或降低的導通/斷開控制的幾個非限定順序的一組表格。
[圖18]例示依據本揭露實施例組態的處理的流程圖。
[圖19-20]例示一時域分析,顯示可能在系統操作期間發生的各種示範狀態的在圖1所例示的系統的輸出節點V o的瞬時電壓位準、在輸出節點V o的電壓斜率(上升或下降)、及控制信號的所得瞬時狀態。
VIN:輸入電壓
VOUT:輸出電壓

Claims (18)

  1. 一種用以調整供給至配電匯流排的電力的方法,包含: 監視輸送至該配電匯流排的輸出電壓,其中該輸出電壓係由第一電源輸送電流至該配電匯流排造成;及 當該被監視的輸出電壓降低至等於DC-DC轉換器的電壓調整設定點的位準時,經由該DC-DC轉換器,將電流由第二電源輸送至該配電匯流排,其中該DC-DC轉換器與在該第二電源與該配電匯流排間之一網格的N FET/電阻對(其中N≧1)並聯耦接。
  2. 如請求項1的方法,更包含:當該被監視輸出電壓降低至低於第一預定臨限時,經由該網格的N FET/電阻對,將電流由該第二電源輸送至該配電匯流排。
  3. 如請求項2的方法,其中當該電流正為該DC-DC轉換器所輸送時,在該被監視輸出電壓降低至低於該第一預定臨限之前,該網格的N FET/電阻對內的該等N FET被切換關斷,使得在該被監視輸出電壓降低至低於該第一預定臨限前的第一時段期間,沒有電流被由該第二電源輸送至該配電匯流排。
  4. 如請求項2的方法,其中在該被監視輸出電壓降低至低於該第一預定臨限之後的第二時段期間,將該電流由該第二電源輸送至該配電匯流排電流係該DC-DC轉換器與該網格的N FET/電阻對以分享的方式輸送。
  5. 如請求項1的方法,其中該第二電源為放電電池。
  6. 如請求項5的方法,其中該被監視輸出電壓的降低係由該第一電源的故障造成。
  7. 如請求項4的方法,其中在該被監視輸出電壓降低至低於第一預定臨限時,將該電流由該第二電源經由該網格的N FET/電阻對輸送至該配電匯流排包含切換導通在該網格的N FET/電阻對內的一或更多所述N FET。
  8. 一種調整經由配電匯流排輸送來自電源的電流至負載的方法,包含: 監視供給至該配電匯流排的電壓供給;及 藉由控制多少電流透過並聯耦接於該電源與該配電匯流排間之各個第一與第二導通路徑,由該電源輸送至該配電匯流排,而將該電壓維持在一指定負載電壓容許範圍內,其中該第一導通路徑包含DC-DC轉換器,及其中該第二導通路徑包含一網格的N FET/電阻對並聯耦接於該電源與該配電匯流排之間,其中各個該N FET/電阻對包含一FET與一電阻串聯耦接。
  9. 如請求項8的方法,其中將該電壓維持於該指定負載電壓容許範圍內包含藉由依據一預定順序,選擇地切換導通與關斷各個所述N FET,而修改該網格的N FET/電阻對的總阻抗。
  10. 如請求項9的方法,其中,該N個電阻各個具有不同電阻值。
  11. 如請求項9的方法,其中修改該網格的N FET/電阻對的總阻抗包含: 當該電壓低於第一預定臨限及該電壓隨時間降低時,降低該總阻抗;及 當該電壓高於第二預定臨限及該電壓隨時間增加時,增加該總阻抗,其中該第一與第二預定臨限係在該指定負載電壓容許範圍內。
  12. 一種用以經由配電匯流排提供電力至負載的電源系統,該系統包含: 電源; 一網格的N(其中N>1)個電晶體耦接於該電源的輸出終端與該配電匯流排之間,其中各個所述N個電晶體係與一電阻串聯耦接; DC-DC轉換器,並聯耦接在該電源的該輸出終端與該配電匯流排間的該網格的N個電晶體;及 控制器,被組態以選擇及獨立地作動/止動該DC-DC轉換器與該網格的N個電晶體,以促使該電源以調整為該DC-DC轉換器與該網格的N個電晶體的作動/止動的函數的輸出電壓位準,經由該配電匯流排供電該負載。
  13. 如請求項12的系統,其中該電源為包含一或更多串聯連接電池的電池。
  14. 如請求項12的系統,其中該控制器被組態以藉由依據預定順序作動/止動特定數量的該N個並聯連接電晶體/電阻對,而調整在該網格間之壓降。
  15. 如請求項14的系統,其中該輸出電壓位準被調整為在指定負載電壓容許範圍內。
  16. 如請求項15的系統,更包含:狀態確定系統包含: 微分器,被組態以確定是否該輸出電壓位準隨著時間增加或減少;及 臨限檢測器,被組態以確定何時該輸出電壓位準大於第一預定臨限與小於第二預定臨限,其中該控制器被組態以藉由依據該預定順序,選擇與獨立地作動/止動一特定數量的所述N個並聯連接的電晶體/電阻對,而調整該輸出電壓位準於該指定負載電壓容許範圍內。
  17. 如請求項16的系統,其中該控制器包含: 電路,被組態以當該輸出電壓位準低於該第二預定臨限及該輸出電壓位準隨時間降低時,降低該網格的總阻抗;及 電路,被組態以當該輸出電壓位準大於該第一預定臨限及該輸出電壓位準隨時間增加時,增加該總阻抗。
  18. 如請求項12的系統,其中與該網格的N個電晶體並聯耦接的該DC-DC轉換器係被組態以處理少於或等於該電源的最大輸出功率的約30%。
TW111139386A 2021-10-19 2022-10-18 電源系統 TW202324897A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/505,473 US11695293B2 (en) 2017-12-22 2021-10-19 Power system
US17/505,473 2021-10-19

Publications (1)

Publication Number Publication Date
TW202324897A true TW202324897A (zh) 2023-06-16

Family

ID=87803686

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111139386A TW202324897A (zh) 2021-10-19 2022-10-18 電源系統

Country Status (1)

Country Link
TW (1) TW202324897A (zh)

Similar Documents

Publication Publication Date Title
KR102506467B1 (ko) 전기적 분배 버스로의 배터리 시스템의 연결
US11695293B2 (en) Power system
US6329796B1 (en) Power management circuit for battery systems
US6163086A (en) Power supply circuit and a voltage level adjusting circuit and method for a portable battery-powered electronic device
US7042197B2 (en) Control circuit
US7492130B2 (en) Power processing unit and related method for regulating a voltage despite voltage fluctuations across an energy storage device
US7402986B2 (en) Power supply circuit for portable battery powered device
TWI336158B (en) Method for protecting a battery pack from a large current overdrawn condition
US20130187468A1 (en) Uninterruptible power supply control in distributed power architecture
US20190280491A1 (en) Systems and methods for controlling battery current
KR101102731B1 (ko) 배터리의 충방전 장치 및 방법
GB2416606A (en) Power supply circuit for portable battery powered device
JP2008220167A (ja) 直列接続されたエネルギー蓄積装置のための等化システムおよび方法
KR20120101108A (ko) 최소 출력 전압 배터리 충전기 방법 및 시스템
US11424629B1 (en) Battery charging and discharging circuit and terminal devices
US6949912B2 (en) Enabling circuit for avoiding negative voltage transients
KR20220058280A (ko) 배터리 장치를 충전하는 충전 집적 회로 및 이를 포함하는 전자 장치
US20210408822A1 (en) Method and apparatus for efficient power delivery in power supply system
US10236694B2 (en) Systems and methods for management of asymmetrical multi-tapped battery packs
EP4197075A1 (en) Power system
US10305278B2 (en) Voltage control system
TW202324897A (zh) 電源系統
US6597153B1 (en) Fast transient charging circuit
JP2009118683A (ja) 充電器とその充電方法および電源システム
JP2010124597A (ja) エネルギー蓄積装置