TWI336158B - Method for protecting a battery pack from a large current overdrawn condition - Google Patents
Method for protecting a battery pack from a large current overdrawn condition Download PDFInfo
- Publication number
- TWI336158B TWI336158B TW096136105A TW96136105A TWI336158B TW I336158 B TWI336158 B TW I336158B TW 096136105 A TW096136105 A TW 096136105A TW 96136105 A TW96136105 A TW 96136105A TW I336158 B TWI336158 B TW I336158B
- Authority
- TW
- Taiwan
- Prior art keywords
- current
- discharge
- voltage
- fet
- control signal
- Prior art date
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Secondary Cells (AREA)
Description
1336158 九、發明說明: 【發明所屬之技術領域】 本發明係關於電池充/放電電路和電池組保護方法,更具體而 言,係指一種能夠進行涓流預先充電和/或涓流放電的電池充/放電 電路和保護方法。本發明的實用性可在用於可攜式電子設備中的以 放電/保護系統中發現,例如:膝上型電腦、個人數位助理(Pers〇nal Digital Assistant,PDA)、手機、和/或具有可再充電電池的任意 類型的電子設備。 【先前技術】 可再充電電池’尤其是鐘離子電池’必須在電量耗盡之狀態下 方能進行預先充電(恢復充電)以避免損壞電池。當可再充電電池 之電量被耗盡並且其電池電壓變得低於臨界電壓Vuv時,不能使用 大的充電電流對電池進行直接充電。相反地,需要利用預先充電模 式對電池充電。在預先充電模式,使用小充電電流對電池充電,直 到電池電壓被充電到大於臨界電壓Vuv,然後它方能以正常模式被充 電’也就是,利用較大的充電電流進行充電。對於經離子電池,一 個電芯(cell)的臨界電壓Vuv接近2.4V〜3] 0V,取決於電池類型和 製程。預充電電流大約10mA〜100mA。然而,正常的充電電流可以 是幾百毫安培至幾安培,取決於電池容量。 圖1A示出了鐘離子可再充電電池的充電分佈圖5〇。當電池電 壓高於Vuv ’則電池進入定電流(Constant Current, OC)充電模式, —大的定電流用對電池進行快速充電(電池電壓也隨著電池電量增 加而增加)。當電池電壓增加到V〇v,其代表過電壓(對裡離子電池 5 25 1336158 正常的過電壓約為4.2V左右),則電池進入定電壓⑹耶触 Voltage, CV)充電模式。在這種模式中,充電器保持在電壓v〇v。當 充電電流減少到預疋最小值,例如〖ο—,充電程式程序終止。在cv 充電模式中,充電器必須將電廢精確地調整到Vov (誤差在 5 +Λ0. 005V),否則充電電流將無法隨著增大之電池電量而逐漸減 少。如果,充電輸出大於Vov,那麼將會發生對電池過度充電,這會 導致裡離子電池的安全問題。 圖1B中示出了實現預先充電的傳統電路ι〇。與電阻(Rpre) ►串聯的預先充電金屬氧化物半導體場效電晶體(Metal 〇^如 ίο Semiconductor Field Effect Transistor,m〇SFET)12 係用於預先 充電。在預先充電的時刻,充電場效電晶體(Field Effect1336158 IX. Description of the Invention: [Technical Field] The present invention relates to a battery charging/discharging circuit and a battery pack protection method, and more particularly to a battery capable of performing trickle precharge and/or turbulent discharge Charge/discharge circuit and protection method. The utility of the present invention can be found in a discharge/protection system for use in a portable electronic device, such as a laptop, a Personal Digital Assistant (PDA), a cell phone, and/or Any type of electronic device that can recharge a battery. [Prior Art] A rechargeable battery 'especially a clock-ion battery' must be precharged (recharged) in an exhausted state to avoid damaging the battery. When the rechargeable battery is depleted and its battery voltage becomes lower than the threshold voltage Vuv, the battery cannot be directly charged with a large charging current. Conversely, the battery needs to be charged using a pre-charge mode. In the pre-charge mode, the battery is charged with a small charging current until the battery voltage is charged to a voltage greater than the threshold voltage Vuv, and then it can be charged in the normal mode', i.e., charged with a larger charging current. For an ion battery, the threshold voltage Vuv of a cell is close to 2.4V~3] 0V, depending on the battery type and process. The precharge current is approximately 10 mA to 100 mA. However, the normal charging current can range from a few hundred milliamps to several amps, depending on the battery capacity. Fig. 1A shows a charge distribution diagram of a clock-ion rechargeable battery. When the battery voltage is higher than Vuv ’, the battery enters the Constant Current (OC) charging mode. — A large constant current is used to quickly charge the battery (the battery voltage also increases as the battery power increases). When the battery voltage increases to V〇v, which represents the overvoltage (the normal overvoltage of the internal ion battery 5 25 1336158 is about 4.2V), the battery enters the constant voltage (6), and the voltage is charged, CV). In this mode, the charger remains at voltage v〇v. When the charging current is reduced to the minimum value, for example, ο—, the charging program terminates. In the cv charging mode, the charger must accurately adjust the electrical waste to Vov (error is 5 + Λ 0. 005V), otherwise the charging current will not gradually decrease with increasing battery power. If the charge output is greater than Vov, then overcharging of the battery will occur, which can cause safety problems in the ion battery. A conventional circuit that implements pre-charging is shown in FIG. 1B. A pre-charged metal oxide semiconductor field effect transistor (Metal), which is connected in series with a resistor (Rpre), is used for pre-charging. Charge field effect transistor at the moment of pre-charging
Transistor’ FET) 16關閉’預先充電fet 12開啟。因此,預充電 電流大致是由充電器輸入電壓ypACK+和總電芯電壓VceU之間的電 壓差除以串聯電阻(Rpre) 14決定。當存在AC轉壓器(圖中未示) 15 且猶服高於電芯電壓Vce11時,充電或預先充電將根據每-電怎 的初始電壓而開始。如果任意電芯中的電壓低於臨界電壓Vw,電池 組將進入預先充電模式。反之,將開始正常充電。 本領域技術人貝將或'同圖1B中的電路1〇包括一電池監視器ic 20,其包括監視電池組2中每一電芯(Celll,Cell2...Cell4)的電 20 壓和電流的電路。這樣的電路可以包括用以取樣每一電芯電壓的一 開關網路24。為了控制預先充電M0SFET 12的操作,傳統電路1〇 包括一比較器26,其可以透過開關30比較一定電壓參考源沈(νυν) 與每一電芯電壓。 然而,圖1B中所示電路的缺陷是需要一額外的功率M〇SFET(也 25 就是’ M0SFKT 12)和電阻(Rpre) 14,它們會增加額外的成本並且 6 增加了印刷電路板(Printed Circuit Board, PCB)的面積。另外, 這種電路拓撲中,較低的電芯電壓導致更大的預充電電流。而且, 預充電電流隨著電芯電壓的增加而減少,這意味著需要更長的時間 方能完成預先充電。 另外’電阻(Rpre) 14的值通常是固定的,預充電電流的最大 值和最小值通常也是固定的’因此不能被調整用以提供不同的電池 組需要。 該電路拓撲的另一缺陷是電池組22和MOSFETs容易在異常情況 下被損壞’例如VPACK+端與VPACK-端短接’或者外部的充電器被反 向加到VPACK+和VPACK-端。這種拓撲中,放電FET 18被開啟以允 許放電或者被關閉而不能放電。當放電FET 18被開啟時,如果發生 了異常情況,從電池組22流出的大電流流經放電FET18和充電FET 16,這將依次破壞電池組22和/或MOSFETs 〇 此外’當電池組22從電子系統中被移除,例如,放在一架上, 放電FET 18可以被酬用以保護電池組22免遭異常情況。然而, 由於放電FET 18棚閉,當電池組22被插回電子系統中時,電池 組22將無法立即對電子_供電,需要-機械方法或電子電路 來通知電路10以開啟放電FET 18。額外的機械方法或者電子電路 將增加電路10魄雜、微、和/献寸。糾,冑池組22在被 插進電子系統後仍然會因異常情況被損壞。 傳統用於保護電池組22的辦法是關閉放電FET 18,以避免當 發生異常情況時產生大電流。放電FET18被酬一預定時間後,例 如30秒,放電FET18被再次開啟。如果當放謂τ 18被重新開啟 後異常情_絲在’大電流縱緻電FET18並且再摘發電池 組防護讀制。因此’放電FET 18被再次關閉。否則,電齡涊 1336158 =著的_工作在—正常放電模式。然而,如果異 吊情況存在-段時期’大電流將持續地流過放電咖,最終將破 壞電池組22和/或MOSFETs。 ^ 和/、方法能夠進行涓流預先充電和/或涓 放電’本發明主要提出了這樣—種電路和方法。 【發明内容】 在-實施讲,本綱提供了—種職紐電敝避免大電流Transistor’ FET) 16 off 'Precharged fet 12 is turned on. Therefore, the precharge current is roughly determined by the voltage difference between the charger input voltage ypACK+ and the total cell voltage VceU divided by the series resistance (Rpre) 14. When there is an AC converter (not shown) 15 and is still above the cell voltage Vce11, charging or pre-charging will start according to the initial voltage of each electric. If the voltage in any cell is below the threshold voltage Vw, the battery pack will enter pre-charge mode. On the contrary, normal charging will begin. A person skilled in the art will or include a battery monitor ic 20 in FIG. 1B, which includes monitoring the electrical 20 voltage and current of each cell (Celll, Cell2...Cell4) in the battery pack 2. Circuit. Such circuitry may include a switching network 24 for sampling each cell voltage. In order to control the operation of the pre-charged MOSFET 12, the conventional circuit 1A includes a comparator 26 which can compare a certain voltage reference source sink (ν υ ν) with each cell voltage through the switch 30. However, the circuit shown in Figure 1B has the drawback of requiring an additional power M〇SFET (also 25 'M0SFKT 12') and resistor (Rpre) 14, which adds extra cost and 6 adds printed circuit board (Printed Circuit) Board, PCB) area. In addition, in this circuit topology, a lower cell voltage results in a larger precharge current. Moreover, the precharge current decreases as the cell voltage increases, which means that it takes longer to complete the precharge. In addition, the value of the 'resistor (Rpre) 14 is usually fixed, and the maximum and minimum values of the precharge current are also generally fixed' and therefore cannot be adjusted to provide different battery pack needs. Another drawback of this circuit topology is that the battery pack 22 and MOSFETs are susceptible to damage under abnormal conditions 'e.g., the VPACK+ terminal is shorted to the VPACK-end' or the external charger is reversely applied to the VPACK+ and VPACK- terminals. In this topology, the discharge FET 18 is turned on to allow discharge or to be turned off and not to discharge. When the discharge FET 18 is turned on, if an abnormality occurs, a large current flowing from the battery pack 22 flows through the discharge FET 18 and the charge FET 16, which in turn destroys the battery pack 22 and/or MOSFETs 〇 in addition when the battery pack 22 The electronic system is removed, for example, on a rack, and the discharge FET 18 can be used to protect the battery pack 22 from abnormal conditions. However, since the discharge FET 18 is closed, when the battery pack 22 is inserted back into the electronic system, the battery pack 22 will not be able to power the electronics immediately, requiring a mechanical or electronic circuit to notify the circuit 10 to turn on the discharge FET 18. Additional mechanical methods or electronic circuitry will add to the circuit 10 noisy, micro, and/or small. Correction, Dianchi Group 22 will still be damaged due to abnormal conditions after being inserted into the electronic system. A conventional method for protecting the battery pack 22 is to turn off the discharge FET 18 to avoid generating a large current when an abnormality occurs. After the discharge FET 18 is paid for a predetermined time, for example, 30 seconds, the discharge FET 18 is turned on again. If the τ 18 is turned back on after the τ 18 is turned back on, the FET 18 is turned on the FET 18 at the high current and the battery pack is read again. Therefore, the discharge FET 18 is turned off again. Otherwise, the age of the battery 涊 1336158 = _ work in - normal discharge mode. However, if a different suspension condition exists - a period of time, a large current will continuously flow through the discharge coffee, which will eventually destroy the battery pack 22 and/or MOSFETs. ^ and /, the method is capable of turbulent pre-charging and/or 放电 discharging. The present invention mainly proposes such a circuit and method. [Summary of the Invention] In the implementation, this program provides - a variety of new 敝 to avoid large currents
過流情況的絲。財法包括在—開_概顧生—測信號的 步驟’以及如果大電流過流情況發生,在該控制信號的控制下產生 ίο 20 -須流放電電流的步驟。騎放钱魏夠防止流從電池組中 流通。 在另-貫施例中,本發明提供了另一種保護電池組避免電流過 情況的方法。該方法包括步驟a)當—大電流過流情況發生時, 酬-放電開關;b)在-開關控制電路產生一控制信號,該控備 號具有一預设表大位準;c)在該控制信號之控制下產生一涓流放電 電流’触放電歧具有-臨界麟轉並且麟社電池組的大 電流流通;d)根據涓流放電電流、臨界電流位準、和預設最大位準 檢測大電流過流情況是否仍然存在;e)如果大電流過流情況仍然存 在’則重複步驟a)至d);以及f)如果大電流過流情況消除,則 開啟放電開關。 【實施方式】Silk in an overcurrent condition. The financial method includes the steps of -opening - taking care of the signal - and if a large current overcurrent occurs, generating a ί 20 - current discharge current under the control of the control signal. Ride money to prevent the flow from circulating in the battery pack. In another embodiment, the present invention provides another method of protecting a battery pack from current overcurrent conditions. The method comprises the steps a) when a large current overcurrent condition occurs, the pay-discharge switch; b) the -switch control circuit generates a control signal, the control register has a preset table level; c) Under the control of the control signal, a turbulent discharge current is generated. The contact discharge has a critical transition and the large current flow of the Lins battery pack; d) according to the turbulent discharge current, the critical current level, and the preset maximum level detection. Whether the large current overcurrent condition still exists; e) if the large current overcurrent condition still exists 'repetition steps a) to d); and f) if the large current overcurrent condition is eliminated, the discharge switch is turned on. [Embodiment]
圖2A示出了根據本發明一實施例之涓流預先充電電路1〇〇。在 此實施例中’使用了兩個M0SFET 104和102 (充電FET (CHG_FET) 25 和放電FET (DSG_FET))。在此實施例中,充電FET 104和放電FET 8 1336158 102主要以背對背串聯設置之#式描述。在須流預先充電模式,放 電FET 102是關閉的(不導通的),但是如果充電FET 開啟(導 通)電灿仍,然机經其本體體⑴恤)到電池電芯。如果 充電FET 104綱,那麼沒有電流流進或者流出電池電芯。 5 除了兩個職FET,電路應也可以包括-參考二極體⑽ 110、二放t驅動器106、-充電驅動器108、以及一參考電流源(Iref) 112。每一充電驅動器108和放電驅動器1〇6都包括各自的比較器。 在常規的充電模式下,開關(K1) 114和開關(K2) 116被設置到 位置2。在這個位置,一充電驅動電壓CHG被驅動至與參考電壓 ίο CHGJREF相當,該參考電壓CHG—REF可以完全開啟充電FET 1〇4。因 此’參考電壓CHG—REF係根據充電FET 1〇4的啟動要求來選擇。2A shows a trickle precharge circuit 1 in accordance with an embodiment of the present invention. In this embodiment, two MOSFETs 104 and 102 (charge FET (CHG_FET) 25 and discharge FET (DSG_FET)) are used. In this embodiment, charge FET 104 and discharge FET 8 1336158 102 are primarily described in a back-to-back series arrangement. In the pre-charge mode, the discharge FET 102 is off (non-conducting), but if the charge FET is turned on (on), the machine is still connected to the battery cell via its body (1). If the FET 104 is charged, no current flows into or out of the battery cells. 5 In addition to the two FETs, the circuit should also include a reference diode (10) 110, a two-stage t driver 106, a charge driver 108, and a reference current source (Iref) 112. Each of the charging driver 108 and the discharging driver 1〇6 includes a respective comparator. In the normal charging mode, switch (K1) 114 and switch (K2) 116 are set to position 2. In this position, a charge driving voltage CHG is driven to be equivalent to the reference voltage ίο CHGJREF, which can completely turn on the charging FET 1〇4. Therefore, the reference voltage CHG_REF is selected in accordance with the activation request of the charging FET 1〇4.
在涓流預先充電模式,開關(ΚΙ) H4和開關(K2) 116可以 被設置到位置1。當AC轉壓器連接上時,電壓vpACK+會升高。充電 FET104可以被充電驅動器1〇8驅動到飽和區,這也意味著充電FET 15 1〇4可以作為一可變電阻,涓流充電電流可以流經充電FET 104。充 電驅動器108調節充電FET104使電壓Vc等於Vd,Vd由二^體(D1) 110和參考電流源(Iref) 112決定。In the trickle precharge mode, switch (ΚΙ) H4 and switch (K2) 116 can be set to position 1. When the AC converter is connected, the voltage vpACK+ will rise. The charge FET 104 can be driven to the saturation region by the charge driver 1 , 8, which also means that the charge FET 15 1 〇 4 can function as a variable resistor, and a trickle charge current can flow through the charge FET 104. The charge driver 108 regulates the charge FET 104 such that the voltage Vc is equal to Vd, which is determined by the binary (D1) 110 and the reference current source (Iref) 112.
Vc為M0SFET 102和104之間連接點的電壓。Vc可以被設定為 充電驅動器108中比較器的負端輸入(-),同時Vd (由^和见 20 決定)可以被設為正端輸入⑴。輸出信號CHG是Vd-Vc。當Vc幾乎 等於Vd,充電驅動器1〇8的比較器增益係被選擇使得一大輸出信號 足以驅動充電FET 104在飽和區工作。這樣’充電驅動器ι〇8可在 涓流預先充電期間比較Vc以及固定信號Vd。 在順向偏壓條件下,流經二極體(Dl)ll〇的dc電流透過下式 給出: 9 25 1336158Vc is the voltage at the junction between the MOSFETs 102 and 104. Vc can be set to the negative input (-) of the comparator in charge driver 108, while Vd (determined by ^ and see 20) can be set to the positive input (1). The output signal CHG is Vd-Vc. When Vc is nearly equal to Vd, the comparator gain of charge driver 1 〇 8 is selected such that a large output signal is sufficient to drive charge FET 104 to operate in the saturation region. Thus, the 'charger driver ι 8 can compare Vc and the fixed signal Vd during trickle precharge. Under forward bias conditions, the dc current flowing through the diode (Dl) 〇 is passed through the following equation: 9 25 1336158
Iref = Al*ISl*(exp(Vdi/Vt)-l) 其中A1是二^體(Dl)ll〇的接面積,IS1是二^體(w)11〇 單兀反向飽和電流,Vdl=Vd-Vceii,是二極體⑽no的跨壓,Vt 是二極體臨界電壓。 5 放電FET 102中的本體二體的dc電流透過下式給出:Iref = Al*ISl*(exp(Vdi/Vt)-l) where A1 is the junction area of the dimorphic (Dl)ll〇, IS1 is the dimorphic (w)11〇 single 兀 reverse saturation current, Vdl= Vd-Vceii is the voltage across the diode (10) no, and Vt is the diode threshold voltage. 5 The dc current of the body body in the discharge FET 102 is given by:
Ipch = A2*IS2*(exp(Vd2/Vt)-l) 其中A2是本體沐體的接面積’ IS2是本體^體單元反向飽 和電流,Vd2=Vc-Vcdl,是放電®本體沐體兩端的壓降。⑸和 IS2由所選擇的半導體類型讀定。如果〜和皮強制實質相等, 10 那麼涓流預充電電流與參考電流Iref成正比,由下式給出:'Ipch = A2*IS2*(exp(Vd2/Vt)-l) where A2 is the junction area of the body body' IS2 is the reverse saturation current of the body body unit, Vd2=Vc-Vcdl, is the discharge® body body body two The pressure drop at the end. (5) and IS2 are read by the selected semiconductor type. If ~ and the skin force are substantially equal, 10 then the turbulent precharge current is proportional to the reference current Iref, given by:
Ipch = A2/A1 木(IS2/IS1)木 Iref 較佳的’雜對於本發明不是必須的,通常因為低開啟電胁 大電流能力的要求,充電Fm〇2和放電FET1G4的本體^ 面積A2通常比較大’同時為了節省晶片面積,二極體(])1)11〇的 15 ,面積A1較小。因此,由於A2遠大於A1,-小電流lref (幾十微 女)可以被用於控制較大的電流(幾十到幾百毫安)。 圖2B示出了根據本發明-實施例之涓流放電電路2〇〇。本實施 例類似圖2A所描述的電路1〇〇 ’除了參考電流源(Ire〇 112和二 極體(Dl)110係·到放電FET 102端。在渴流放電時期,充電^ 2〇 104關閉’涓流放電電流流經其本體工^體。電路2〇〇的工作原理 清參考圖2A之詳細描述。 ' 圖3A示出了根據本發明另一實施例之涓流預先 在此實施例中’充電FET 302和放電FET 304係採面對面串聯設置 而非背對背串聯設置(如® 2A中所示)。圖3A的實施例還包括一參 25考冰體⑽310,在此實施例中,一充電驅動器306可以由開關 10 1336158 (ΚΙ) 314和開關(K2)316控制。 在正常的充電模式下,開關(ΚΙ) 314和開關(Κ2) 316可以 被δ又置到位置2,因此充電FET302的閘極電壓被驅動至chg_REF, 疋全開啟充電FET 302。在涓流預先充電模式,放電FET 3〇4關閉, 5 開關(K1) 314和開關(K2) 316被設到位置丨。這樣充電驅動器 306動作以調節充電fet 302進而強制電壓vc大致上等於化。在順 向偏壓條件下,二^體(D1) 310的DC電流透過下式給出: Iref=Al*ISl*(exp(Vdl/Vt)-l) 其中A1疋二^體(D1) 310接面積,isi是二^體(di) 310 10 單元反向飽和電流,V di=VPAK+ - Vd,是二^體(D1) 31〇的跨壓, Vt是二極體臨界電壓。 放電FET 304内本體二極體的DC電流為:Ipch = A2/A1 wood (IS2/IS1) wood Iref The preferred 'miscellaneous' is not necessary for the present invention, usually because of the low turn-on voltage and high current capability, the body of the charge Fm〇2 and the discharge FET1G4 area A2 is usually At the same time, in order to save the wafer area, the diode (1) is 1) 11 〇 15 and the area A1 is small. Therefore, since A2 is much larger than A1, the small current lref (tens of micro-female) can be used to control a large current (tens to hundreds of milliamps). Figure 2B shows a choke discharge circuit 2A in accordance with an embodiment of the present invention. This embodiment is similar to the circuit 1' described in FIG. 2A except for the reference current source (Ire〇112 and diode (D1) 110 series to the discharge FET 102 terminal. During the thirst discharge period, the charge ^ 2 104 is turned off. 'The trickle discharge current flows through its body. The operation of circuit 2〇〇 is described in detail with reference to Figure 2A. ' Figure 3A shows turbulence in accordance with another embodiment of the present invention in advance in this embodiment. 'Charge FET 302 and discharge FET 304 are arranged in series face-to-face rather than back-to-back series arrangement (as shown in ® 2A). The embodiment of Figure 3A also includes a reference ice cube (10) 310, in this embodiment, a charge Driver 306 can be controlled by switch 10 1336158 (ΚΙ) 314 and switch (K2) 316. In normal charging mode, switch (ΚΙ) 314 and switch (Κ2) 316 can be again set to position 2 by δ, thus charging FET 302 The gate voltage is driven to chg_REF, and the charge FET 302 is fully turned on. In the trickle precharge mode, the discharge FET 3〇4 is turned off, and the 5 switch (K1) 314 and the switch (K2) 316 are set to the position 丨. 306 action to adjust the charging fet 302 and further The voltage vc is substantially equalized. Under forward bias conditions, the DC current of the diode (D1) 310 is given by: Iref = Al * ISl * (exp (Vdl / Vt) - l) where A1疋二^体(D1) 310 joint area, isi is di^ body (di) 310 10 unit reverse saturation current, V di=VPAK+ - Vd, is the cross-pressure of the two body (D1) 31〇, Vt is two Polar Body Threshold Voltage The DC current of the body diode in discharge FET 304 is:
Ipch=A2*IS2(exp(Vd2/Vt)-l) 其中A2是本體二^體接面積,IS2是本體二^體單元反向飽和 15電流’ Vd2=VPACK+ — & ’是放電FET本體二#體的^t D IS1和 IS2由所選擇的半導體類型峰定。如果抑和Vc被強制相同,那麼谓 流預充電電流透過下式給出:Ipch=A2*IS2(exp(Vd2/Vt)-l) where A2 is the body two body connection area, IS2 is the body two body unit reverse saturation 15 current 'Vd2=VPACK+ — & 'is the discharge FET body two #体的^t D IS1 and IS2 are determined by the selected semiconductor type peak. If the suppression and Vc are forced to be the same, then the pre-charge current is given by:
Ipch=A2/Al*(IS2/ISl)*Iref 圖3β不出了根據本發明另一實施例之涓流放電電路4〇〇。此實 20 施例類似圖3Α所示之電路3〇〇,除了參考電流源(1时)312和4 體(D1) 310是耦接至充電FET 302端。在涓流放電期間充電F灯 302是酬的,放電電流可以流經充電FET 3〇2的本體4體。電 路400的工作原理請參考圖3A之詳細描述。 為了加速涓流預先充電過程,涓流預充電電流Ipch可以根據電 25 池電壓被迅速地調整。電池電壓越高,透過編輯參考電流Iref使得 /局流預充電電流越大《熟悉此技藝者皆知,圖4中之可程式化I考 電流源適用於根據電池電壓而產生參考電流。 夕 圖4中還描述了另一涓流預先充電電路5〇〇 ^在該實施例中, 充電FET 504和放電FET 502主要以習知之背對背串聯設置方式描 述。在涓流預先充電模式下,放電FET502關閉(不導通),但是^ 果充電FET 504開啟(導通),那麼電流仍然流經其本體二極體至電 池電芯。如果充電FET 504關閉’那麼沒有電流流進或流出電池 芯。 此實施例還包括一參考電阻R1、一放電驅動器5〇6、一充電驅 動器508、以及一參考電流源(Irefl) 512。充電驅動器5〇8和放電 驅動器506可以包括各自的比較器。在常規的充電模式下,開關(K1) 520和開關(K2) 518被設置到位置1。在這個位置,一閘極驅動電 壓CHG被驅動到等於一參考電壓哪_哪,以完全開啟充電fet 504。因此’應根據充電FET 504的啟動要求選擇參考電壓CHG_REF。 當需要涓流充電(也就是,涓流預先充電)時,開關K1和K2 連接到節點2。這樣充電驅動器5〇8中比較器的輸入是感測電阻Rsens 上的跨壓(+)和R1的壓降(由Irefl 512所產生)(-)。充電驅動 器508中比較器的增益應設計得夠大(例如80dB)以使Irefl流經電 阻R1所產生的壓降近似於涓流充電電流Ipch流經感測電阻1^〇5的 所產生之壓降。 涓流預充電電流透過下式給出:Ipch = A2 / Al * (IS2 / IS1) * Iref Figure 3 is a diagram showing a choke discharge circuit 4 according to another embodiment of the present invention. The embodiment 20 is similar to the circuit 3 shown in FIG. 3A except that the reference current source (1) 312 and the 4 body (D1) 310 are coupled to the charge FET 302 terminal. The charge F lamp 302 is paid during the choke discharge, and the discharge current can flow through the body 4 of the charge FET 3〇2. The operation of circuit 400 is described in detail with reference to Figure 3A. In order to accelerate the trickle precharge process, the trickle precharge current Ipch can be quickly adjusted according to the battery voltage. The higher the battery voltage, the greater the /current precharge current by editing the reference current Iref. As is well known to those skilled in the art, the programmable I current source of Figure 4 is suitable for generating a reference current based on the battery voltage. Another trickle precharge circuit 5 is also depicted in FIG. 4. In this embodiment, charge FET 504 and discharge FET 502 are primarily described in a conventional back-to-back series arrangement. In the trickle precharge mode, the discharge FET 502 is turned off (non-conducting), but if the charge FET 504 is turned "on", current still flows through its body diode to the battery cell. If the charge FET 504 is turned off then no current flows into or out of the cell. This embodiment also includes a reference resistor R1, a discharge driver 5〇6, a charge driver 508, and a reference current source (Iref1) 512. The charge driver 5〇8 and the discharge driver 506 may include respective comparators. In the normal charging mode, switch (K1) 520 and switch (K2) 518 are set to position 1. In this position, a gate drive voltage CHG is driven to be equal to a reference voltage to fully turn on the charge fet 504. Therefore, the reference voltage CHG_REF should be selected in accordance with the startup requirements of the charging FET 504. When trickle charging is required (i.e., trickle precharge), switches K1 and K2 are connected to node 2. Thus the input to the comparator in the charging driver 5〇8 is the voltage across the sense resistor Rsens (+) and the voltage drop across R1 (generated by Irefl 512) (-). The gain of the comparator in the charging driver 508 should be designed to be large enough (for example, 80 dB) to cause the voltage drop generated by the flow of Iref1 through the resistor R1 to approximate the generated voltage of the trickle charging current Ipch flowing through the sensing resistor 1^〇5. drop. The turbulent precharge current is given by:
Ipch= Irefl ^Rl /Rsens 其中Irefl是一可程式化參考電流源。通常Rsens非常小(例如 10到20毫歐)’同時R1可以被選擇在1〇歐姆的範圍内。因此,R1 對Rsens的比率(Rl/Rsens)可以非常大,從而可以利用一很小的參考 1336158 5 電流Irefl產生相對大的涓流預充電電流Ipch。 在圖4的實施例中’在财預先充電模式期間,放電順淝 可以被完全Ml ’辦猶瓶跡€驗賴之_^噴向 偏塵。在該模式中,開關(K4 ) 514和開關(K3 ) 516可以被設到 位置1從而利用放電參考電壓DSG—REF驅動放電FET 5〇2以 啟放電FET 502。 凡王竭Ipch= Irefl ^Rl /Rsens where Irefl is a programmable reference current source. Usually Rsens is very small (e.g. 10 to 20 milliohms)' while R1 can be chosen to be in the range of 1 ohm. Therefore, the ratio of R1 to Rsens (Rl/Rsens) can be very large, so that a relatively small reference current 1153158 5 current Irefl can be used to generate a relatively large trickle precharge current Ipch. In the embodiment of Fig. 4, during the pre-charging mode, the discharge can be completely smeared by the M1. In this mode, switch (K4) 514 and switch (K3) 516 can be set to position 1 to drive discharge FET 5〇2 with discharge reference voltage DSG_REF to activate discharge FET 502. Wang Wang
10 15 20 請繼續參考圖4,在正常的放電模式,_⑽)516和開關 (K4 ) 514可以分別連接到節.點!。這樣,放電驅動器5〇6被設置 作為一緩衝器且驅動放電FET 502完全開啟。當在涓流放電模式, 開關(K3 ) 516和開關(K4 ) 514可以連接到節點2。由於放電驅 動器506的高增益’因“流過電阻敗所造成的壓降近似於流過 感測電阻Rsens所造成的壓降。這樣,涓流放電電流由下式給出: I dsg= I ref 2*R2/Rsens 其中Iref2是一可程式化參考電流源。通常Rsens可以非常小, 這樣R2對Rsens的比率(R2/Rsens)可以非常大,因此一小的參考電 流Iref2可以產生相對大的涓流放電電流Idsg。由於在放電期間電流 方向被反轉’感測電阻Rsens上的跨壓和敗上的跨壓具有反極性。 因此’極性反轉電路522用以反轉流過的電流極性。 在此實施例中,在涓流充電期間,放電FET 5〇2可以被完全開 啟°這樣在VPACK+和電池組電壓之間的二極體的順向偏壓被消除。 同樣的,在涓流放電期間’充電FET 504可以被完全開啟以消除電 池組電壓和VPACK+之間的二極體的順向偏壓。 在本發明中’一旦MOSFETs和二^體被固定,仍然可以被 可秋式化參考電流源(Iref)112、312、510、和/或512調整。圖5 中描述了一可程式化參考電流源的一電路拓撲。圖5的電路係用於 13 25 產生具有比率電流鏡(rati〇 currerrt 的電流I时。當然, 除了圖5中所示的電路,可程式化參考電流源在本領域中是公知的 並且可以透過多種模式呈現。 圖6描述了一涓流預先充電和涓流放電電路6〇〇。在此實施例 中,充電FET 604和放電FET 602以背對背串聯設置,或者以上述 之面對面串聯設置之方式描述。在此實施例中,數位/類比轉換器電 路(DAC)616可以被用以產生一 FET驅動電壓,下面進行更全面的描 述。 此實施例包括一類比/數位轉換器電路(ADC) 614、一控制單元 612、以及一數位/類比轉換器電路⑽c)616所組成的控制環路。流 過感測電阻(Rsens) 618的電流由ADC 614接收。接著,ADC 614可 以產生代表感測電流的數位信號並且傳送這些信號至控制單元 612 °在操作中,如果流經感測電阻(Rsens)618的電流小於預設的臨 界值,控制單元612可以發送數據到DAC 616以增加相應的FET驅 動電壓。反之,控制單元612將發送數據到DAC 616以減少FET驅 動電壓,直到感測電流和預設電流近似相等。 在正常的充電或放電模式,DAC 616被失能(由DAC 616所接 收的DAC—EN信號來控制),充電FET _和放電FET 6〇2之驅動電 壓此時為高位準(High)。充電驅動器608驅動充電FET 604的閘極 電壓至一 CHG一REF值,並且完全開啟充電FET 604。放電驅動器606 驅動放電FET 602的閘極電壓至dsg_REF值,並且完全開啟放電FET 602。 在涓流放電模式’開關(Kl)620連接到節點1。放電驅動器606 被失能(DSG-EN為低位準)且具有一高阻抗之輸出,且放電FET 6〇2 的導電狀態可以由DAC 616所控制。因此,放電FET 602、感測電 1336158 阻(Rsens)618、ADC 614、和DAC 616可以組成控制環路。透過控制 放電FET 602的開啟電阻’本實施例能夠調整須流放電電流到一預 δ又值(可以預先編輯至控制單元612)。M0SFET的開啟電阻可以透過 調整閘極驅動電壓而調整。 5 在一實施例中,如果需要的涓流放電電流被設定為ltd,那麼使 用逐次逼近暫存器方式(Successive Approximation Register, SAR)可以獲得控制DAC 616的相應控制碼。DAC的最高位元(Most Significant Bit, MSB)首先被設為高位準(high),如果流過感測 電阻(Rsens) 618的電流Isen大於Itd,則將MSB設為低位準(i〇w), 1〇 否則聽將被保持為高位準。然後第二最高位元被設為高位準,如 果Isen大於ltd,則將第二最高位元設為低位準(1〇w),否則第二最 南位70將被保持為高位準。這種逐次逼近的方式將持續到DAC的最 低位元(Significant Bit,⑽)被設定。相應的控制碼可 以被保存在暫絲巾㈤巾未示)触可峨控制單元612存取。 15如果1td係為一給定電池組所設定之固定值,那麼控綱也是固定 值。無論辦需要騎放電,控制單元612可以發送被經過程式編 輯的控制碼到DAC 616 ’因此,電池組將可以傳送Itd到一外部負載。 如果4/,IL放電電流需要被調整,上述之控制環路可以被相應地用於 =加或f減> 控制碼。麵流放電期間充電驅動器⑼8可以被致 2〇此或失此。其區別係在於項流放電電流將分別流經充電FET 604或 其本體二^體。 在’月流充電模式’開關(K1) 62〇連接到節點2。充電驅動器 被失犯(CHG__EN為低位準)。充電FET 6〇4的導電狀態可以由10 15 20 Please continue to refer to Figure 4. In the normal discharge mode, _(10)) 516 and switch (K4) 514 can be connected to the node. . Thus, the discharge driver 5〇6 is set as a buffer and the drive discharge FET 502 is fully turned on. When in the trickle discharge mode, switch (K3) 516 and switch (K4) 514 can be connected to node 2. Since the high gain of the discharge driver 506 'because of the voltage drop caused by the flow resistance is similar to the voltage drop caused by the flow of the sense resistor Rsens. Thus, the trickle discharge current is given by: I dsg = I ref 2*R2/Rsens where Iref2 is a programmable reference current source. Usually Rsens can be very small, so the ratio of R2 to Rsens (R2/Rsens) can be very large, so a small reference current Iref2 can produce a relatively large 涓The current discharge current Idsg. Since the current direction is reversed during discharge, the voltage across the sense resistor Rsens and the voltage across the reverse have a reverse polarity. Therefore, the polarity inversion circuit 522 is used to reverse the polarity of the current flowing. In this embodiment, during trickle charging, the discharge FET 5〇2 can be fully turned on so that the forward bias of the diode between the VPACK+ and the battery voltage is eliminated. Similarly, in the choke discharge During the 'charge FET 504 can be fully turned on to eliminate the forward bias of the diode between the battery voltage and VPACK+. In the present invention, 'once the MOSFETs and the two bodies are fixed, they can still be referenced by the autumn. Current source (Ire f) 112, 312, 510, and/or 512 adjustments. A circuit topology of a programmable reference current source is depicted in Figure 5. The circuit of Figure 5 is used to generate a ratio current mirror (rati〇currerrt) Current I. Of course, in addition to the circuit shown in Figure 5, a programmable reference current source is well known in the art and can be presented in a variety of modes. Figure 6 depicts a trickle precharge and choke discharge circuit 6 In this embodiment, the charge FET 604 and the discharge FET 602 are arranged in series back-to-back or in a face-to-face arrangement as described above. In this embodiment, the digital/analog converter circuit (DAC) 616 can be Used to generate a FET drive voltage, which is described more fully below. This embodiment includes an analog/digital converter circuit (ADC) 614, a control unit 612, and a digital/analog converter circuit (10) c) 616. Control loop. The current flowing through the sense resistor (Rsens) 618 is received by the ADC 614. Next, the ADC 614 can generate a digital signal representative of the sense current and transmit the signal to the control unit 612 ° In the meantime, if the current flowing through the sense resistor (Rsens) 618 is less than a predetermined threshold, the control unit 612 can send data to the DAC 616 to increase the corresponding FET drive voltage. Conversely, the control unit 612 will send data to the DAC 616. To reduce the FET drive voltage until the sense current and the preset current are approximately equal. In normal charge or discharge mode, DAC 616 is disabled (controlled by the DAC-EN signal received by DAC 616), charge FET_ and discharge The driving voltage of the FET 6〇2 is now at a high level. Charge driver 608 drives the gate voltage of charge FET 604 to a CHG-REF value and fully turns on charge FET 604. The discharge driver 606 drives the gate voltage of the discharge FET 602 to the dsg_REF value and fully turns on the discharge FET 602. The switch (Kl) 620 is connected to the node 1 in the choke discharge mode. The discharge driver 606 is disabled (DSG-EN is low level) and has a high impedance output, and the conduction state of the discharge FET 6〇2 can be controlled by the DAC 616. Thus, discharge FET 602, sense 1336158 Rsens 618, ADC 614, and DAC 616 can form a control loop. By controlling the turn-on resistance of discharge FET 602, this embodiment is capable of adjusting the current to discharge current to a pre-δ value (which can be pre-edited to control unit 612). The turn-on resistance of the M0SFET can be adjusted by adjusting the gate drive voltage. 5 In one embodiment, if the required choke discharge current is set toltd, then the corresponding control code for the control DAC 616 can be obtained using the Successive Approximation Register (SAR). The Most Significant Bit (MSB) of the DAC is first set to a high level. If the current Isen flowing through the sense resistor (Rsens) 618 is greater than Itd, the MSB is set to a low level (i〇w). , 1〇 Otherwise the listening will be kept at a high level. Then the second highest bit is set to a high level, and if Isen is greater thanltd, the second highest bit is set to a low level (1〇w), otherwise the second most south bit 70 will be maintained at a high level. This successive approximation will continue until the lowest bit of the DAC (Significant Bit, (10)) is set. The corresponding control code can be stored in the temporary wiper (not shown) access control unit 612 for access. 15 If the 1td is a fixed value set for a given battery pack, the control is also a fixed value. Regardless of the need to ride and discharge, control unit 612 can send a programmed control code to DAC 616 ' Thus, the battery pack will be able to transmit Itd to an external load. If the 4/, IL discharge current needs to be adjusted, the above control loop can be used accordingly for = plus or f minus > control code. The charging driver (9) 8 can be caused or lost during the surface discharge. The difference is that the term stream discharge current will flow through the charge FET 604 or its body, respectively. The 'monthly charging mode' switch (K1) 62 is connected to node 2. The charging driver is offended (CHG__EN is low). The conduction state of the charging FET 6〇4 can be
Anr ¢/6來控制。在這種模式,充電FET 604、感測電__ 618、 Μ和DAC 616係組成控制環路。透過控制充電順6〇4的開 15 1336158 啟電阻,本實施例能夠調整涓流充電電流至一預設值。預充電電流 通常是一固定值。在這種模式中,本實施例可以產生一控制碼(使 用上述的SAR方法)並且將控制碼儲存在一記憶體中。對於涓流預 充電電流,其值可以在一上限到下限之範圍間變化,因此,控制碼 5 亦在Ctch (代表涓流預充電電流之上限值)和Cra (代表涓流預充電 電流之下限值)之間變化,以允許渴流充電電流被相應地調整。在須 流充電模式,放電驅動器606也可以被致能或失能。其區別係在於 清流充電電流將分別流經放電jrET 602或者其本體二極體。 > 上面所述的涓流放電模式可以被進一步應用以實現電池組短路 ίο /過電流保護。當電池組從電子系統中被取出時(也即電池組處於空 閒狀態時),第-種對電池組保護的實施例是有效的。不像傳統保持 放電FET 602酬的方法,第一種實施例將放電順6〇2設定為一 種可控的導通狀態。當放電FET 6〇2處於可控的導通狀態時,即使 發生短路情況,例如VPACK+端短接到觀一端,一大電流突波將被 15放電FET 602之開啟電阻阻止。類似的,當過電流情況發生時所產 生之大電流突波如皮阻止。實際上,當短路/過電流情況發生時,消 流放電電流將流嫩電FET 602,須流放電電流可以被設定為一預 〇又值以便療f呆電池組和MOSFET的安全。涓流放電電流,例如應畆, 能夠驅動域在電子彡統巾的外雜鮮元(其不同棚6中所示 20之控制單元612)。當電池組被插入到電子系統中,内嵌之控制單元 即旎偵測到電池組的插入並且通知電池組進人^常的放電模式。這 樣,就不f要額外的顧方法或者電子電路來檢測電池組的插入。 如此’並不需要額外續械方法或電子電路來偵測以及通知電池组 之插入。_,當電池組祕人電子魏巾時1—餘施例沒有 25進一步提供電池短路/過電流保護。因此,第-種實施例僅在當電池 16 1336158 組被從電子系統中取出時是有幫助的β 漏描述了電池組保護邮嘴施例。 第-種只關在於备電池組被從電子系統中取出 入到電子系統中時均是有效的。一開始,如步驟他=、= 組在閒置狱(例如’電敝從電子彡財餘· 1 財)。柯魏域^種 =I 路/過電流的發生。如果沒有發生短路/過電 〜情況’组將留在閒置模式或者放魏式。 10 15 20 路/過電流情況,那麼步驟706立即關閉放電FET咖。通 ^ FET 602可以在幾微秒内關閉。接著,在步驟7〇8中,如絲 已經被酬至一預設的時間,例如,25秒、,不像傳統尋上士入 。田放電FET 602處於可控導電狀態,在步驟71〇中 流流滅電FET ’電池組將工作在 如^ 預定時間尚未終止,放魏Τ 6_仍然停留在關如果 本領域技術人員將認可為了實現步驟7〇8,圖6中 包池管理減和—定辟。魏管购醜夠監^ ^作。疋_具有-預設時間(例如25秒)。如果發生短路 H。如果疋時器的預設時間終止’電池管理幢就會知悉放電 PET 602已被關閉了預設時間長之久。 ,流放電模式中,圖6中⑽提供閘極驅動電壓給放 ill 602。透過間極驅動電壓的驅動’使得放電FET 602工作於 =通狀態。透過調節閘極驅動電壓,放電順的開啟電阻 破調郎,因此流織電FET 602的消流放電電流被相應地調節。 25 t月流放電权式中’可以包括下面的子步驟。一開始在控制 早Ί2的控制下’來自DAC 616的閘極驅動電壓在步驟712中被 〇伏。接著,在步驟714中,閉極驅動電壓逐漸增加。根據 ▲,特性,本領域技術人員容易理解,放電FET 6〇2的開啟電 p將|^著閘極驅動電壓的增力逐漸降低因此流麵^電順6〇2 的渴流放電電流將逐漸增加。每一次問極驅動電壓增加,相對應之 j流放電電流係在電阻(Rsens)618的兩端被檢測到,然後被用於決 定短路/過電流情況是否仍然存在。 尤其是’在步驟716中’透過比較胃流放電電流與預設的電流, 例如’ 40⑧安,用以確定短路/過電流情況是否仍然存在。如果渭 流放電電流大於預設電流,可—_短路。 接著’圖6中示出的系統透過步驟706的操作重新啟動電池組之保 護。如果須流放電電流小於預設的電流,在步驟718巾,間極驅動 電壓將與-預設之最大控做準相比。實際上,閘極驅動電壓不會 無限制地增加’而會限制在預設之最大控制位準。在步驟718中, 如果閘極驅動電壓達到預設之最大控制位準,可以推斷出短路/過電 流情況不再存在,電池組將返回閒置模式或者正常放電模式(步驟 702)。否則’電池組將重複執行步驟714、716和718直到步驟716 判定短路/過電流情況存在或步驟718判定短路/過電流情況不存在 而退出涓流放電模式。 此處所提及之預設的電流係透過考慮MOSFET的功率耗散性能 來設定。對於圖6中示出之具有四個電芯的電池組,預設的電流可 以被設定為40毫安,因此放電FET 602的最大功率耗散接近68〇 毫瓦,這對於功率MOSFET來說是一安全值。 此外’ VPACK+端的電壓可以被應用於確定短路/過電流情況是否 存在在步驟716中,vpacK+端的電壓被檢測並且與—預設電壓相 ^例如,1〇〇毫伏。如果鄕沿端的電壓小於預設電壓可以斷 疋短路/過電流情況仍然存在。否則,在步驟718巾,間極驅動電壓 將與預設之最大控繼準進行比較。呢胁端的預設電壓係透過考 慮雜,内部阻抗而設定。對於圖6的實施例,預設電壓被設定為 100毛伏’這疋考慮短路/過電流情況和雜訊以及電池内部阻抗的重 要性之間之一較佳折衷值。 攸圖1A中’我們知道在預先充電期間和定電壓_充電期間, 充電電流需要被控制。在傳統電路中’需要一額外的預先充電FET 來控制預充電魏。錢樣的觀電路巾,GV充電必縣全依靠充 電器賴確的調節充電電壓至v〇v,然後充電電流將錢減。 在本發明中,預先充電的功能可在不需增加額外的預先充電 FET的情況下被實現。另外,為了加速預先充電過程,預充電電流 Ipch可以根據電池電壓而被容肖地調節。電池電壓越高,透過程式 化參考電流Iref而得之預充電電流越大,例如圖2A、圖3A和圖4 中所述或者圖6中描述的控制碼方法。 更進一步地,如眾多實施例中所描述的,涓流預充電電流控制 方法也可財0^電細峨,錢觸,騎觥充電電路 能夠根據電池電壓喊生職充電紐。如此,cv充電餘的遞減 不需要倚賴充電器來精確地調節電壓v〇v。因此,本發a月提供^^幾個 實施例都可以不需要昂貴的、精確的電壓靖充電器。實際上,一 簡易的AC機器即可織麟對鐘離子電池充電。由於在⑺充電 期間’即使充電器不能將定電細定在偷,但是充電電流被限制於 根據電池縣而定的預先程式化之縣電流值。所以,不會發生過 度充電的狀況。充電電流的限制可以獅作第二層過電壓保護(透 1336158 過將電_限設定得比在期望電壓_時實際觀測而得之電流值稍 微大-些)’姑作絲-層過賴織(透祕電雜 得精確的期望電壓Vuv)。 ^ 運用本發明的須流放電性能,對於電池组的較佳短路/過電 護是可能的。在現有技術中,放電FET係完全地開啟以允許放= 元全地麵以禁止放電。當電池組從電子系統中被取出,例如,^ 在架子上’那麼放電FET係保持在開啟狀態以準備在任何_ 10 池組插進電子系統時爲電子祕供電^這種情況下,如果發: 異常情況’例如VPACK+端被短接到vpACK—端,則一大额從也中 泄出,如此一來’將破壞電池;或者放電FET保持_狀態以防止 電池遭受短路/過電流情況。但是吏當電池組被插進系統 止電池向彡統供電。需些技術方法^^知電池返闕開啟放 FET的狀態。這將導致客戶的不便並增加成本。 15 使用本發明’ §電〉峨電子紐巾被取㈣,我們可以將電池 組設定為舰放雛^。辦顧電紐可峨麵雜 100毫安’當電池組被插進電子系統中時足夠為内嵌控制單元的^ 統供電。然後内嵌控制單元的系·_m池的存在並且通知池 ,變到正常放電模式。隨著放€順將電流限制到預設渭流放電電 20Anr ¢ / 6 to control. In this mode, charge FET 604, sense __ 618, Μ and DAC 616 form a control loop. By controlling the turn-on of the charging 15 1336158, the current embodiment can adjust the trickle charging current to a predetermined value. The precharge current is usually a fixed value. In this mode, the present embodiment can generate a control code (using the SAR method described above) and store the control code in a memory. For turbulent precharge current, the value can vary from one upper limit to the lower limit. Therefore, control code 5 is also at Ctch (representing the upper limit of the turbulent precharge current) and Cra (representing the turbulent precharge current). The change between the lower limit values) allows the thirst charging current to be adjusted accordingly. In the current charging mode, the discharge driver 606 can also be enabled or disabled. The difference is that the clear current charging current will flow through the discharge jrET 602 or its body diode, respectively. > The trickle discharge mode described above can be further applied to achieve battery pack short circuit ίο / over current protection. The first embodiment of the battery pack protection is effective when the battery pack is removed from the electronic system (i.e., when the battery pack is in an idle state). Unlike the conventional method of maintaining the discharge FET 602, the first embodiment sets the discharge cis 6 〇 2 to a controllable conduction state. When the discharge FET 6〇2 is in a controlled conduction state, even if a short circuit condition occurs, for example, the VPACK+ terminal is shorted to the viewing end, a large current surge will be blocked by the opening resistance of the 15 discharge FET 602. Similarly, large current surges generated when an overcurrent condition occurs are blocked by the skin. In fact, when a short circuit/overcurrent condition occurs, the current discharge current will flow through the FET 602, and the current to be discharged can be set to a predetermined value to protect the battery pack and the MOSFET. The turbulent discharge current, e.g., should be capable of driving an external miscellaneous element of the electronic tweezers (the control unit 612 shown in the different sheds 6). When the battery pack is inserted into the electronic system, the embedded control unit detects the insertion of the battery pack and notifies the battery pack of the normal discharge mode. In this way, it is not necessary to have additional methods or electronic circuits to detect the insertion of the battery pack. This does not require additional methods or electronic circuitry to detect and notify the insertion of the battery pack. _, when the battery pack secret electronic wipes 1 - the remaining examples do not further provide battery short circuit / over current protection. Thus, the first embodiment describes a battery pack protection postal application only when the battery 16 1336158 group is removed from the electronic system. The first type is only effective when the backup battery pack is removed from the electronic system into the electronic system. In the beginning, as the steps he ==, the group is in idle (for example, 'Electricity from the electronic 彡 彡 财 · 1 财 ). Ke Wei domain ^ species = I path / overcurrent occurs. If there is no short circuit/over power~ The condition 'group will remain in the idle mode or put the Wei type. 10 15 20 way / over current condition, then step 706 immediately turns off the discharge FET coffee. The pass FET 602 can be turned off within a few microseconds. Next, in step 7〇8, if the silk has been paid for a preset time, for example, 25 seconds, unlike the traditional stalker. The field discharge FET 602 is in a controllable conductive state, and in step 71, the current is extinguished. The battery pack will operate at a predetermined time, such as ^, which has not been terminated yet, and remains in the state if it is recognized by those skilled in the art. Step 7〇8, in Figure 6, the pool management is reduced and determined. Wei Guan bought ugly enough to supervise ^ ^.疋_ has - preset time (for example 25 seconds). If a short circuit occurs H. If the preset time of the timer expires, the battery management building will know that the discharge PET 602 has been turned off for a preset period of time. In the stream discharge mode, (10) in Fig. 6 provides a gate driving voltage to the ill 602. The drive 'through the drive of the interpole drive voltage' causes the discharge FET 602 to operate in the -on state. By adjusting the gate drive voltage, the discharge resistance of the discharge is broken, so the current consumption of the flow-through electric FET 602 is adjusted accordingly. The 25 t monthly flow discharge weight can include the following sub-steps. The gate drive voltage from DAC 616 is initially slammed in step 712 under control of early control. Next, in step 714, the closed-circuit driving voltage is gradually increased. According to the characteristics of ▲, it will be easily understood by those skilled in the art that the turn-on voltage p of the discharge FET 6〇2 gradually reduces the boosting force of the gate driving voltage, so that the thirst discharge current of the flow surface is 6 〇2 will gradually increase. Each time the gate drive voltage is increased, the corresponding j-stream discharge current is detected across the resistor (Rsens) 618 and is then used to determine if the short-circuit/overcurrent condition is still present. In particular, 'in step 716', by comparing the gastric current discharge current with a predetermined current, such as '408 amps, to determine if the short circuit/overcurrent condition is still present. If the 渭 current discharge current is greater than the preset current, it can be short-circuited. Next, the system shown in Fig. 6 restarts the protection of the battery pack by the operation of step 706. If the current to be discharged is less than the preset current, in step 718, the interpole drive voltage will be compared to the preset maximum control. In fact, the gate drive voltage does not increase indefinitely and is limited to the preset maximum control level. In step 718, if the gate drive voltage reaches the preset maximum control level, it can be inferred that the short circuit/over current condition no longer exists and the battery pack will return to the idle mode or the normal discharge mode (step 702). Otherwise, the battery pack will repeat steps 714, 716, and 718 until step 716 determines that the short/over current condition exists or step 718 determines that the short/over current condition is absent and exits the choke discharge mode. The preset currents mentioned here are set by considering the power dissipation performance of the MOSFET. For the battery pack with four cells shown in Figure 6, the preset current can be set to 40 mA, so the maximum power dissipation of the discharge FET 602 is close to 68 mA, which is for the power MOSFET. A safe value. Further, the voltage at the 'VPACK+ terminal can be applied to determine whether the short/overcurrent condition exists in step 716, and the voltage at the vpacK+ terminal is detected and is, for example, 1 〇〇 millivolt. If the voltage at the edge of the 鄕 is less than the preset voltage, the short circuit/overcurrent condition still exists. Otherwise, at step 718, the inter-pole drive voltage will be compared to the preset maximum control pass. The preset voltage at the flank is set by considering the internal impedance. For the embodiment of Figure 6, the preset voltage is set to 100 volts, which is a preferred compromise between short-circuit/overcurrent conditions and the importance of noise and internal impedance of the battery. In Figure 1A, we know that during pre-charging and during constant voltage_charging, the charging current needs to be controlled. In conventional circuits, an additional pre-charge FET is required to control the pre-charge. The money-like view of the circuit towel, GV charge must rely on the charger to adjust the charging voltage to v〇v, and then the charging current will reduce the money. In the present invention, the pre-charging function can be implemented without adding additional pre-charged FETs. In addition, in order to accelerate the pre-charging process, the pre-charging current Ipch can be adjusted to be adjusted according to the battery voltage. The higher the battery voltage, the greater the precharge current obtained by programming the reference current Iref, such as the control code method described in Figures 2A, 3A and 4 or described in Figure 6. Further, as described in the various embodiments, the trickle precharge current control method can also be used to control the charging circuit according to the battery voltage. Thus, the decrement of the cv charge balance does not need to rely on the charger to accurately adjust the voltage v〇v. Therefore, the present invention provides a few embodiments that do not require an expensive, accurate voltage charger. In fact, a simple AC machine can charge the lining battery. Since the charging current is not fixed during the (7) charging period, the charging current is limited to the pre-programmed county current value depending on the battery county. Therefore, there is no overcharging condition. The charging current can be limited by the lion's second layer of overvoltage protection (through the 1336,158, the power is limited to a slightly larger current value than the actual voltage observed at the desired voltage _) (The desired voltage Vuv is precisely obtained by the secret electricity.) ^ Using the current-storage performance of the present invention, it is possible to have a better short circuit/over-voltage for the battery pack. In the prior art, the discharge FET is fully turned on to allow the discharge to be completely grounded to inhibit discharge. When the battery pack is removed from the electronic system, for example, ^ on the shelf, then the discharge FET remains in the on state to prepare to power the electronic secret when any _ 10 pool group is inserted into the electronic system ^ in this case, if : Abnormal condition 'For example, the VPACK+ terminal is shorted to the vpACK-end, then a large amount is vented from the other, so that 'the battery will be destroyed; or the discharge FET remains _ state to prevent the battery from being subjected to a short-circuit/overcurrent condition. However, when the battery pack is inserted into the system, the battery is supplied to the system. Some technical methods are needed ^^ know that the battery is turned back on and the state of the FET is turned on. This will lead to customer inconvenience and increase costs. 15 Using the invention ' § electric 峨 峨 electronic wicking is taken (four), we can set the battery pack to ship. The power supply can be used to power the built-in control unit when the battery pack is inserted into the electronic system. Then, the presence of the system__m pool of the control unit is embedded and the pool is notified to change to the normal discharge mode. With the release of current, the current is limited to the preset choke discharge.
流值’假設為100毫安,即使概㈤端被短接到WACK—端大 突波也會被阻止。 々丨L 而且’不管電池組是在電子系統中或者從電子系統中被取出, 本發明之電池組在異常航下可受備,·,短路/過電流情況。 發卿。織’在預設的關閉 t 被設定為可控的導通狀態,而非如傳統方法中 的&王_。0此’電池組將被操作在騎放賴式巾。隨著開極 20 25 驅動電壓逐漸增加,相對應的涓流放電電流也相應增加。在這個過 程中’如果相對應的涓流放電電流大於預設電流,假設40亳安則 可以推斷出異常情況持續存在,因此放電FET將再次關閉且電池組 將重複上述操作。如果閘極驅動電壓增加到一預設最大控制位準, 而相應的涓流放電電流還沒有達到預設電流,則可以確定異常情況 已經消除且電池組可以在正常放電模式下操作。 /月OIL欲電和/月>瓜充電性能對於支援多電池系統是非常有用的。 當電子系統需要衫電力和更錄性時,多重電池組將變得更加普 及。當多重電池組同時放電’它們可以提供更多的電力給系統,而 且由於多重電池組並行也將減少電池内部之阻抗以提升效率。但是 多重電池組_放電具有-嚴格的前提,這些|池必纖確地具有 相同的電壓。否則,即使僅杨個電池組科·微小的電壓差異,假 設10毫伏’由於電力匯^^的電阻很小,假設2毫歐姆,那麼電力 II流排也將具有-大的電流,5安培,從具冑較冑― 向具有較低電壓的電池組。實際上,多重電池組很難具有相同電壓, 因為電池組f觀著放電電細變化,所辦使_電池組具有一 鋪確的ADC來監視電池電壓,也很_定它們具有相同的電壓。 P遺著須流放電舰的應用’仙可鱗奸面蝴題(_以兩個 電池組為例)。 一系統具有_電池組’電池組A和電池組B 一開始 組A的電壓高於電池組B的電麗;電池組A首級電以供電給系統, 則電=組A的·逐漸降低。電池_的放電m被酬以苹止放 電模式或者項流放電模式。如果我們將電池組B 权疋為㈣充電模式’可以完全開麟電FET,而驅動充電順到 1336158 其飽和區且把充電FET作為一限流電阻;如果我們將電池組B設定 為涓流放電模式,則完全開啟充電FET,且驅動放電FET到其飽和 區並且把放電FET作為一限流電阻。基於更多安全因素,我們可以 將涓流充電控制碼Crc (代表須流充電)或者須流放電控制碼Ctd (代 5 表須流放電)設定為一小電流值。因此充電FET或者放電FET的等效 電阻變得較大。因為電池組A放電但是電池組B處於閒置模式,所 以即使它們兩者被測量到之電壓是相同的,實際上電池組A的電壓 將鬲於電池組B的電壓。因此’電池組A將向電池組B充電。然而, > 充電電流被充電FET (如果將電池組B設定為涓流充電模式)或者 ίο 放電FET(如果將電池組B設定為涓流放電模式)的電阻所限制。受 限制之電流值由控制碼Ctc或者Cro決定。我們還透過電池組B中的 ADC監測該充電電流;當電池組a和b的電壓差變得越來越小時, 從電池組A到電池組B的充電電流將變得越來越小。當該充電電流 小於預定值時’假設10毫安’我們可以將電池組B從涓流充電模式 15 或者涓流放電模式轉變到正常的放電模式。 因此’本發明所公開的可程式化須流預先充電和/或谓流放電電 路和方法較佩的電轉構•、較細組件和較細鮮來完成 預先充電。級電池組電池的電荷量(深度放電的電池需要一渴流 充電模式)’在圖2A和2B中,開關(IQ、K2和/或K3和K4)可以透 2〇過電池監測IC所控制,以將可程式化項流充電電路設定為棘預先 充電模式或者正常充電模式。進一步理解,這㈣描述的電路架構 可以使義別的元件和/或積體電路來實現。本發明適用於任何使用 可再充電的可攜式電子設備(可攜辆算機、手機、舰等等)。 25㈤f這喊朗频桃__只是典_子,但不以此為 限,其他的減嫌放钱姑難構也仰顧。職的,胁 22 丄wo丄58 蝴物对物電路變形及改 【圖式簡單說明】 例和ΪΓΓΪί術人s知道™詳細描騎翻岐較佳實施 ΐ並砂祕趟健實酬和絲。本發明的 權利細是由下列之拥要求範圍所定義。The stream value' is assumed to be 100 mA, even if the (5) end is shorted to the WACK-end glitch will be blocked. 々丨L and 'When the battery pack is taken out of or removed from the electronic system, the battery pack of the present invention can be prepared under abnormal navigation, short circuit/overcurrent conditions. Sending a letter. Weave ' is set to a controllable conduction state at the preset off t, instead of & Wang _ as in the conventional method. 0 This battery pack will be operated on a riding towel. As the drive voltage of the open pole 20 25 gradually increases, the corresponding trickle discharge current also increases accordingly. In this process, if the corresponding turbulent discharge current is greater than the preset current, assuming 40 amps, it can be inferred that the abnormal condition persists, so the discharge FET will be turned off again and the battery pack will repeat the above operation. If the gate drive voltage is increased to a predetermined maximum control level and the corresponding choke discharge current has not reached the preset current, it can be determined that the abnormal condition has been eliminated and the battery pack can operate in the normal discharge mode. / month OIL wants electricity and / month > melon charging performance is very useful for supporting multi-battery systems. Multiple battery packs will become more common when electronic systems require shirt power and greater visibility. When multiple battery packs are simultaneously discharged, they can provide more power to the system, and because multiple battery packs in parallel will also reduce the internal impedance of the battery to increase efficiency. However, multiple battery packs_discharge have a strict premise that these pools must have the same voltage. Otherwise, even if only a small battery pack has a small voltage difference, assuming 10 millivolts 'Because the resistance of the power sink is small, assuming 2 milliohms, then the power II bus will have a large current, 5 amps. From a more ambiguous to a battery pack with a lower voltage. In fact, it is difficult for multiple battery packs to have the same voltage, because the battery pack f has a fine change in discharge power, and the battery pack has a well-defined ADC to monitor the battery voltage, and it is also determined that they have the same voltage. P's legacy of the application of the discharge ship's sage can be smudged face mask (_ with two battery packs as an example). A system has a battery pack A and a battery pack B. The voltage of the group A is higher than that of the battery pack B; the battery pack A is powered by the first stage to supply power to the system, and the voltage of the group A is gradually decreased. The discharge m of the battery_ is paid in the discharge mode or the item flow discharge mode. If we change the battery pack B to (4) charging mode, the FET can be fully turned on, and the drive charge goes to the saturation region of 1336158 and the charging FET is used as a current limiting resistor; if we set the battery pack B as a choke discharge In mode, the charge FET is fully turned on and the discharge FET is driven to its saturation region and the discharge FET is used as a current limiting resistor. Based on more safety factors, we can set the trickle charge control code Crc (representing current charge) or the current discharge control code Ctd (to be discharged) to a small current value. Therefore, the equivalent resistance of the charge FET or the discharge FET becomes larger. Since the battery pack A is discharged but the battery pack B is in the idle mode, even if the voltages at which both of them are measured are the same, the voltage of the battery pack A will actually be at the voltage of the battery pack B. Therefore, battery pack A will charge battery pack B. However, the > charge current is limited by the resistance of the charge FET (if battery pack B is set to trickle charge mode) or ίο discharge FET (if battery pack B is set to trickle discharge mode). The limited current value is determined by the control code Ctc or Cro. We also monitor the charging current through the ADC in battery pack B; as the voltage difference between battery packs a and b becomes smaller, the charging current from battery pack A to battery pack B becomes smaller and smaller. When the charging current is less than the predetermined value, 'assuming 10 mA', we can switch the battery pack B from the trickle charge mode 15 or the trickle discharge mode to the normal discharge mode. Therefore, the present invention can be pre-charged by the programmable pre-charged and/or shunt discharge circuits and methods of the present invention, which are more suitable for finer components and finer. The amount of charge in the battery pack (deep-discharged battery requires a thirst charging mode). In Figures 2A and 2B, the switches (IQ, K2 and/or K3 and K4) can be controlled by the battery monitoring IC. The programmable stream charging circuit is set to a spine precharge mode or a normal charging mode. It is further understood that the circuit architecture described in (4) can be implemented by means of separate components and/or integrated circuits. The invention is applicable to any portable electronic device (portable computer, mobile phone, ship, etc.) that uses rechargeable. 25 (five) f This is called the lang _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Jobs, threats 22 丄wo丄58 Butterfly object-to-object circuit deformation and modification [Simple diagram description] Case and ΪΓΓΪ 术 人 知道 TM TM TM TM 详细 详细 详细 详细 详细 详细 详细 详细 详细 详细 详细 详细 岐 岐 岐 岐 岐 岐 岐 岐 岐 岐 岐 岐 岐 岐 岐 岐 岐 岐 岐 岐The scope of the invention is defined by the following claims.
ίο 15 m本發明的其匕特徵和優點將隨著下面的詳細描述並參考附圖變 件更加明確’其中相同的數字代表相同的部分,並且其中: 圖1A是典型的鐘離子電池充電過程電流、電壓示意圖。 圖1B是傳統的電池預先充電電路。 圖2A是根據本發明一實施例之涓流預先充電電路。 圖2B是根據本發明一實施例之涓流放電電路。 圖3A是根據本發明另一實施例之涓流預先充電電路。 圖3B是根據本發明另一實施例之涓流放電電路。The features and advantages of the present invention will be more apparent from the following detailed description and the appended claims, wherein the same numerals represent the same parts, and wherein: Figure 1A is a typical clock ion battery charging process current , voltage diagram. FIG. 1B is a conventional battery precharge circuit. 2A is a trickle precharge circuit in accordance with an embodiment of the present invention. 2B is a choke discharge circuit in accordance with an embodiment of the present invention. 3A is a trickle precharge circuit in accordance with another embodiment of the present invention. 3B is a choke discharge circuit in accordance with another embodiment of the present invention.
圖4是根據本發明的另一實施例之預先充電電路。 圖5是可程式化電流源之一實施例。 圖6是一實施例之涓流預先充電和涓流放電電路。 20 圖7是根據本發明其中一實施例的電池組短路/過電流保護的 控制流程圖。 【主要元件符號說明】 10 :預先充電傳統電路 12 :預先充電場效電晶體(FET) 14 :電阻 254 is a precharge circuit in accordance with another embodiment of the present invention. Figure 5 is an embodiment of a programmable current source. Figure 6 is a diagram of a trickle precharge and choke discharge circuit of an embodiment. Figure 7 is a control flow diagram of battery pack short circuit/overcurrent protection in accordance with one embodiment of the present invention. [Main component symbol description] 10 : Pre-charged conventional circuit 12 : Pre-charged field effect transistor (FET) 14 : Resistor 25
Μ :充電FET 23 1336158Μ : Charging FET 23 1336158
放電FET 電池監視器IC 電池組 開關網路 比較器 定電壓參考源 開關 充電分佈圖 :涓流預先充電電路 :放電FET :充電FET :放電驅動器 :充電驅動器 :參考β體 :參考電流源 、116 :開關 :涓流_放電電路 :涓流預先充電電路 :充電FET :放電FE:T :充電驅動器 :β體 :.參考電流源 、316 :開關 :涓流放電電路 24 1336158 500 :涓流預先充電電路 502 :放電 FET 504 :充電 FET 506 :放電驅動器 5 508 :充電驅動器 510 :參考電流源 512 :參考電流源 514、516、518、520 :開關 522 :極性反轉電路 10 600 :涓流預先充電和涓流放電電路 602 :放電 FET 604 :充電 FET 606 :放電驅動器 608 :充電驅動器 15 612 :控制單元 614 :類比數位轉換器(ADC) 616 :數位類比轉換器(DAC) 618 :感測電阻 620 :開關 20 7 00:控制流程圖 702〜718 :步驟 25Discharge FET Battery Monitor IC Battery Pack Switch Network Comparator Constant Voltage Reference Source Switch Charging Profile: Trickle Precharge Circuit: Discharge FET: Charge FET: Discharge Driver: Charge Driver: Reference β Body: Reference Current Source, 116: Switch: turbulent_discharge circuit: trickle precharge circuit: charge FET: discharge FE: T: charge driver: beta body: reference current source, 316: switch: choke discharge circuit 24 1336158 500: trickle precharge circuit 502: discharge FET 504: charge FET 506: discharge driver 5 508: charge driver 510: reference current source 512: reference current source 514, 516, 518, 520: switch 522: polarity inversion circuit 10 600: trickle precharge and Choke discharge circuit 602: discharge FET 604: charge FET 606: discharge driver 608: charge driver 15 612: control unit 614: analog-to-digital converter (ADC) 616: digital analog converter (DAC) 618: sense resistor 620: Switch 20 7 00: Control Flowchart 702~718: Step 25
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/540,236 US7646169B2 (en) | 2004-03-25 | 2006-09-29 | Trickle discharge for battery pack protection |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200822484A TW200822484A (en) | 2008-05-16 |
TWI336158B true TWI336158B (en) | 2011-01-11 |
Family
ID=39405335
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW096136105A TWI336158B (en) | 2006-09-29 | 2007-09-28 | Method for protecting a battery pack from a large current overdrawn condition |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN100589305C (en) |
HK (1) | HK1118643A1 (en) |
TW (1) | TWI336158B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9368994B2 (en) | 2012-07-06 | 2016-06-14 | Wistron Corporation | Dynamic charging device and method thereof |
US10714958B2 (en) | 2018-08-17 | 2020-07-14 | Chicony Power Technology Co., Ltd. | Charging apparatus and operating method thereof |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8629679B2 (en) * | 2009-12-29 | 2014-01-14 | O2Micro, Inc. | Circuits and methods for measuring cell voltages in battery packs |
US9291680B2 (en) | 2009-12-29 | 2016-03-22 | O2Micro Inc. | Circuits and methods for measuring a cell voltage in a battery |
TWI536702B (en) | 2010-07-15 | 2016-06-01 | Z動力能源有限責任公司 | Method and apparatus for recharging a battery |
DE102012205144A1 (en) | 2012-03-29 | 2013-10-02 | Robert Bosch Gmbh | Method for interconnecting battery cells in a battery, battery and monitoring device |
KR101975395B1 (en) * | 2012-08-29 | 2019-05-07 | 삼성에스디아이 주식회사 | Battery pack, and controlling method of the same |
CA2897054A1 (en) | 2013-01-11 | 2014-07-17 | Zpower, Llc | Methods and systems for recharging a battery |
CN104518534A (en) | 2013-09-27 | 2015-04-15 | 中兴通讯股份有限公司 | Method and device for circuit protection, and charging device |
TWI661631B (en) * | 2014-11-20 | 2019-06-01 | 力智電子股份有限公司 | Battery protection device and operation method thereof |
TWI531134B (en) | 2014-12-29 | 2016-04-21 | 廣達電腦股份有限公司 | Battery power device |
US10547189B2 (en) | 2015-04-29 | 2020-01-28 | Zpower, Llc | Temperature dependent charge algorithm |
DE102017121441A1 (en) * | 2017-09-15 | 2019-03-21 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Protection circuit for a charging device |
GB2563311B (en) * | 2018-03-08 | 2020-03-04 | O2Micro Inc | Circuits, systems and methods for protecting batteries |
CN110962630B (en) * | 2018-12-04 | 2021-06-25 | 宁德时代新能源科技股份有限公司 | Method and circuit for regulating and controlling precharge current |
CN111953082B (en) * | 2019-05-14 | 2023-12-22 | 伏达半导体(合肥)股份有限公司 | Efficient wireless charging system and method |
CN113972884B (en) * | 2020-07-22 | 2023-09-05 | 致新科技股份有限公司 | overvoltage protection circuit |
CN113949126A (en) * | 2021-10-14 | 2022-01-18 | 东莞新能安科技有限公司 | Charging protection circuit, battery management system, battery pack and circuit control method |
CN114725893B (en) * | 2022-05-13 | 2024-02-27 | 杭州华塑科技股份有限公司 | Short-circuit protection system and method for battery and electronic equipment |
CN115313564A (en) * | 2022-08-16 | 2022-11-08 | 昂宝电子(上海)有限公司 | Battery voltage and current regulating device used in charge pump charging mode |
-
2007
- 2007-09-28 TW TW096136105A patent/TWI336158B/en not_active IP Right Cessation
- 2007-09-28 CN CN200710152100A patent/CN100589305C/en active Active
-
2008
- 2008-09-16 HK HK08110237.4A patent/HK1118643A1/en unknown
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9368994B2 (en) | 2012-07-06 | 2016-06-14 | Wistron Corporation | Dynamic charging device and method thereof |
TWI553998B (en) * | 2012-07-06 | 2016-10-11 | 緯創資通股份有限公司 | Dynamic charge device and dynamic charge method |
US10714958B2 (en) | 2018-08-17 | 2020-07-14 | Chicony Power Technology Co., Ltd. | Charging apparatus and operating method thereof |
Also Published As
Publication number | Publication date |
---|---|
HK1118643A1 (en) | 2009-02-13 |
CN101179200A (en) | 2008-05-14 |
TW200822484A (en) | 2008-05-16 |
CN100589305C (en) | 2010-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI336158B (en) | Method for protecting a battery pack from a large current overdrawn condition | |
TWI281299B (en) | Circuit for controlling precharge/discharge state and method, apparatus and system thereof | |
TWI750432B (en) | Backup system for power supply unit providing power to load via distribution bus | |
US11303137B2 (en) | Systems and methods for controlling battery current | |
US7646169B2 (en) | Trickle discharge for battery pack protection | |
US6130813A (en) | Protection circuit for electronic devices | |
JP5671595B2 (en) | Charge control device | |
US6163086A (en) | Power supply circuit and a voltage level adjusting circuit and method for a portable battery-powered electronic device | |
US20110080143A1 (en) | Buck-boost circuit | |
TWM264662U (en) | Battery pack and a battery charging/discharging circuit incorporating the same | |
JP2006197797A (en) | System and method for adjusting preliminary charging current in battery system | |
US20090001948A1 (en) | Programmable Power Limiting for Power Transistor System | |
US11996714B2 (en) | Battery charger | |
JP2008148496A (en) | Charging apparatus | |
TW201010245A (en) | Battery systems, charging /discharging circuits and methods for controlling battery charge /discharge | |
JP2008061488A (en) | Power supply system equipped with remote control circuit, and method for operating the power supply system | |
US20190312444A1 (en) | Balance circuits for battery cells | |
TWM261910U (en) | DC to DC controller with inrush current protection | |
KR20240078602A (en) | power system | |
TW202324897A (en) | Power system | |
JP2004320914A (en) | Charging controller and charging control method | |
JP2002110257A (en) | Battery module | |
JP2002152983A (en) | Charger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |