JP7029733B2 - A magnetic material used to raise the magnetic field application of a single crystal, and a method of raising the magnetic field application of a single crystal. - Google Patents

A magnetic material used to raise the magnetic field application of a single crystal, and a method of raising the magnetic field application of a single crystal. Download PDF

Info

Publication number
JP7029733B2
JP7029733B2 JP2019568025A JP2019568025A JP7029733B2 JP 7029733 B2 JP7029733 B2 JP 7029733B2 JP 2019568025 A JP2019568025 A JP 2019568025A JP 2019568025 A JP2019568025 A JP 2019568025A JP 7029733 B2 JP7029733 B2 JP 7029733B2
Authority
JP
Japan
Prior art keywords
single crystal
coil
coils
crystal furnace
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019568025A
Other languages
Japanese (ja)
Other versions
JP2020522457A (en
Inventor
湯洪明
傅林堅
劉黎明
劉賽波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Bama Superconductive Technology Co Ltd
Original Assignee
Suzhou Bama Superconductive Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Bama Superconductive Technology Co Ltd filed Critical Suzhou Bama Superconductive Technology Co Ltd
Publication of JP2020522457A publication Critical patent/JP2020522457A/en
Application granted granted Critical
Publication of JP7029733B2 publication Critical patent/JP7029733B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B30/00Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions
    • C30B30/04Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions using magnetic fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/04Cooling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本開示は、半導体の技術分野に関し、例えば、単結晶の磁場印加引き上げに用いられる磁性体、および単結晶の磁場印加引き上げ方法に関する。 The present disclosure relates to the technical field of semiconductors, for example, a magnetic material used for pulling up a magnetic field applied to a single crystal, and a method for pulling up a magnetic field applied to a single crystal.

単結晶シリコンは、結晶材料における重要な要素であり、半導体シリコンデバイスを製造する原料であり、大規模集積回路、整流器、パワートランジスタ、ダイオード、および太陽電池パネル等の半導体の技術分野に広く適用されている。 Single crystal silicon is an important element in crystalline materials, a raw material for manufacturing semiconductor silicon devices, and is widely applied in the technical field of semiconductors such as large-scale integrated circuits, rectifiers, power transistors, diodes, and solar cell panels. ing.

単結晶シリコンの製造方法は、CZ法およびFZ法を含む。現在、単結晶シリコンは、通常、CZ法を用いて製造され、CZ法は、単結晶炉を用いて溶融体から棒状の単結晶シリコンを成長させる。CZ法の基本的な特徴として、技術が成熟し、結晶外形および電気的パラメータを制御しやすく、大径の単結晶シリコンの成長に適用する。近年、超大規模集積回路の発展において、単結晶シリコンの寸法および品質に対してより高い要求が求められている。しかし、結晶寸法の増大および溶融体の熱対流の強化に伴い、溶融体中の温度変動および結晶の局所的な溶融が起こり、結晶内の炭素、酸素等の不純物の分布が不均一になり、更に、単結晶シリコンの品質が低下する。 Methods for producing single crystal silicon include a CZ method and an FZ method. Currently, single crystal silicon is usually produced using the CZ method, which uses a single crystal furnace to grow rod-shaped single crystal silicon from the melt. As a basic feature of the CZ method, the technology has matured, the crystal outer shape and electrical parameters are easy to control, and it is applied to the growth of large-diameter single crystal silicon. In recent years, with the development of very large scale integration circuits, higher demands have been placed on the dimensions and quality of single crystal silicon. However, as the crystal size increases and the thermal convection of the melt is strengthened, temperature fluctuations in the melt and local melting of the crystal occur, and the distribution of impurities such as carbon and oxygen in the crystal becomes uneven. Further, the quality of the single crystal silicon is deteriorated.

上記問題を解決するために、単結晶の磁場印加引き上げ技術が発展しつつある。CZ法の基に、単結晶炉の外側に強力な磁場を印加し、強力な磁場は、溶融体の熱対流を抑制する能力を有する。単結晶シリコンの引き上げを行なう成長システムに、一定の強度および均一性を有する磁場を印加することにより、シリコン溶融体中の熱対流を効果的に抑制し、溶融シリコン中の不純物の輸送を抑制することができる。適当に分布された磁場は、酸素、ホウ素、アルミニウム等の不純物が石英ルツボから溶融体に入ることを低減し、単結晶シリコンの品質を向上させることができる。 In order to solve the above problems, a technique for raising the magnetic field application of a single crystal is being developed. Based on the CZ method, a strong magnetic field is applied to the outside of the single crystal furnace, and the strong magnetic field has the ability to suppress the thermal convection of the melt. By applying a magnetic field with constant strength and uniformity to the growth system that pulls up single crystal silicon, heat convection in the silicon melt is effectively suppressed and the transport of impurities in the molten silicon is suppressed. be able to. An appropriately distributed magnetic field can reduce impurities such as oxygen, boron and aluminum from entering the melt from the quartz crucible and improve the quality of single crystal silicon.

従来のMCZ(Magnetic field applied CZ)法の磁場発生装置は、一般的に、永久磁性材料および通常の電磁石を用い、該MCZ法は、永久磁性材料の飽和磁化および通常の電磁石の電力に制限されるため、発生する磁場強度が高くないことが多く、溶融体の熱対流に対する抑制効果は一般的である。超電導磁性体技術の発展に伴い、ますます多くの超電導磁性体は通常の電磁石を取り替え、超電導磁性体はより強力な磁場を発生することができ、溶融体の熱対流に対する抑制効果がより顕著であり、対応する結晶引き上げプロセスに合わせ、より大きな寸法またはより高い品質の単結晶シリコンを製造することができる。 The conventional MCZ (Magnetic field applied CZ) method magnetic field generator generally uses a permanent magnetic material and a normal electromagnet, and the MCZ method is limited to the saturation magnetization of the permanent magnetic material and the power of the normal electromagnet. Therefore, the generated magnetic field strength is often not high, and the effect of suppressing the thermal convection of the melt is general. With the development of superconducting magnetic material technology, more and more superconducting magnetic materials can replace ordinary electromagnets, and superconducting magnetic materials can generate a stronger magnetic field, and the effect of suppressing the thermal convection of the melt is more remarkable. Yes, it is possible to produce larger size or higher quality single crystal silicon for the corresponding crystal pulling process.

MCZ法における超電導磁性体が発生する磁場は、カスプ磁場、横磁場、および縦磁場を含む。ここで、縦磁場は、溶融体の熱対流に対する抑制効果は顕著ではなく、カスプ磁場および横磁場に取り替えられた。 The magnetic field generated by the superconducting magnetic field in the MCZ method includes a cusp magnetic field, a transverse magnetic field, and a longitudinal magnetic field. Here, the longitudinal magnetic field was replaced with a cusp magnetic field and a transverse magnetic field because the inhibitory effect on the thermal convection of the melt was not remarkable.

磁性体が単結晶炉の外側に配置されているため、単結晶炉との電磁両立の問題を考慮する必要があり、単純コイルが発生する漏洩磁場は一般的に大きく、一般的な電子機器または電源の使用要求、人体への安全要求を満たすことができない。そのため、超電導磁性体は、磁性体の外側にヨークを付加する受動遮蔽方式により漏洩磁場を低減し、これにより、磁性体の重量は急激に増大し、一般的に、ヨークの重量は磁性体全体の50%以上に達し、製造コストが増加する。 Since the magnetic material is located outside the single crystal furnace, it is necessary to consider the problem of electromagnetic compatibility with the single crystal furnace, and the leakage magnetic field generated by the simple coil is generally large, and it is a general electronic device or It is not possible to meet the power supply usage requirements and human safety requirements. Therefore, the superconducting magnetic material reduces the leakage magnetic field by a passive shielding method that adds a yoke to the outside of the magnetic material, which causes the weight of the magnetic material to increase sharply, and in general, the weight of the yoke is the entire magnetic material. It reaches 50% or more of the above, and the manufacturing cost increases.

本発明は、漏洩磁場を効果的に低減するとともに、磁性体の重量の増加を回避することができる単結晶の磁場印加引き上げに用いられる磁性体、および単結晶の磁場印加引き上げ方法を開示する。 The present invention discloses a magnetic material used for increasing the magnetic field application of a single crystal, which can effectively reduce the leakage magnetic field and avoid an increase in the weight of the magnetic material, and a method for increasing the magnetic field application of the single crystal.

本発明は、複数のコイルを備え、前記複数のコイルが、直列に接続され、且つ、単結晶炉の外周を囲むように配置され、前記複数のコイルのうち、対向して配置された2つのコイルが前記単結晶炉の中心軸を中心として対称に配置され、且つ、各前記コイルの中心軸が前記単結晶炉の中心点を通過し、各前記コイルは、同軸に配置された1次コイルおよび2次コイルを含み、前記2次コイルは、前記1次コイルに対して前記単結晶炉から離れるように配置され、前記コイルに通電すると、前記1次コイル内の電流方向と前記2次コイル内の電流方向とは逆となる単結晶の磁場印加引き上げに用いられる磁性体を提供する。 The present invention comprises a plurality of coils, the plurality of coils are connected in series and arranged so as to surround the outer periphery of the monocrystal furnace, and two of the plurality of coils are arranged facing each other. The coils are arranged symmetrically about the central axis of the single crystal furnace, and the central axis of each of the coils passes through the central point of the single crystal furnace, and each of the coils is a primary coil arranged coaxially. The secondary coil is arranged so as to be separated from the single crystal furnace with respect to the primary coil, and when the coil is energized, the current direction in the primary coil and the secondary coil are included. Provided is a magnetic material used for pulling up a magnetic field application of a single crystal opposite to the current direction in the coil.

好ましくは、前記1次コイルと前記2次コイルの間に、所定の距離が設けられている。 Preferably, a predetermined distance is provided between the primary coil and the secondary coil.

好ましくは、各前記コイルの中心軸は、前記単結晶炉の中心軸に直交する。 Preferably, the central axis of each of the coils is orthogonal to the central axis of the single crystal furnace.

好ましくは、各前記コイルの中心軸は、前記単結晶炉の中心軸と第1角度をなす。 Preferably, the central axis of each of the coils forms a first angle with the central axis of the single crystal furnace.

好ましくは、前記複数のコイルのうち、各2つの隣接する前記コイルの中心軸間の角度は同じである。 Preferably, of the plurality of coils, the angle between the central axes of each of the two adjacent coils is the same.

好ましくは、前記複数のコイルのうち、各2つの隣接する前記コイルの中心軸の間に、角度が形成され、且つ、隣接する前記角度は異なり、対向する前記角度は同じである。 Preferably, among the plurality of coils, an angle is formed between the central axes of each of the two adjacent coils, the adjacent angles are different, and the opposing angles are the same.

好ましくは、前記複数のコイルの数は4つであり、前記4つのコイルのうちの2つのコイルが前記単結晶炉の第1側に配置され、前記4つのコイルのうちの他の2つのコイルが前記単結晶炉の第2側に対向して配置される。 Preferably, the number of the plurality of coils is four, two of the four coils are arranged on the first side of the single crystal furnace, and the other two coils of the four coils are located. Is arranged to face the second side of the single crystal furnace.

好ましくは、前記4つのコイルのうちの前記単結晶炉の第1側にある隣接する2つのコイルの中心軸間の角度、および前記4つのコイルのうちの前記単結晶炉の第2側にある隣接する2つのコイルの中心軸間の角度は、いずれも所定の角度である。 Preferably, the angle between the central axes of two adjacent coils on the first side of the single crystal furnace of the four coils and the second side of the single crystal furnace of the four coils. The angle between the central axes of two adjacent coils is a predetermined angle.

好ましくは、前記所定の角度の範囲は50°~70°である。 Preferably, the predetermined angle range is 50 ° to 70 °.

好ましくは、前記複数のコイルは超電導コイルである。 Preferably, the plurality of coils are superconducting coils.

好ましくは、前記磁性体は、前記単結晶炉の周辺に配置される低温容器を更に備える。 Preferably, the magnetic material further comprises a cryogenic vessel disposed around the single crystal furnace.

好ましくは、前記低温容器内に低温液体が充填され、前記複数のコイルが前記低温液体内に置かれている。 Preferably, the cryogenic container is filled with the cryogenic liquid, and the plurality of coils are placed in the cryogenic liquid.

好ましくは、前記複数のコイルが順に直列に接続され、そのうち、前記複数のコイルの1次コイルが順に直列に接続され、前記複数のコイルの2次コイルが順に直列に接続され、直列に接続された1次コイルと2次コイルとが直列に接続され、正極および負極の2つのポートを形成する。 Preferably, the plurality of coils are connected in series in order, of which the primary coils of the plurality of coils are connected in series in order, and the secondary coils of the plurality of coils are connected in series in order and connected in series. The primary coil and the secondary coil are connected in series to form two ports, a positive electrode and a negative electrode.

好ましくは、前記複数のコイルが順に直列に接続され、そのうち、前記複数のコイルのうちの近接した1次コイルおよび2次コイルが、それぞれ直列に接続されてから、全体として直列に接続され、正極および負極の2つのポートを形成する。 Preferably, the plurality of coils are connected in series in order, and among the plurality of coils, the adjacent primary coil and secondary coil are connected in series, and then connected in series as a whole, and the positive electrode is used. And two ports of the negative electrode are formed.

好ましくは、前記低温容器に1対の2元電流リードが設けられ、それぞれ第1電流リードおよび第2電流リードである。 Preferably, the cryogenic vessel is provided with a pair of binary current leads, a first current lead and a second current lead, respectively.

第1電流リードの常温端が電源の正極に接続され、前記第1電流リードの超電導端が、前記複数のコイルが直列に接続された正極ポートに接続される。 The room temperature end of the first current lead is connected to the positive electrode of the power supply, and the superconducting end of the first current lead is connected to the positive electrode port to which the plurality of coils are connected in series.

第2電流リードの常温端が前記電源の負極に接続され、前記第2電流リードの超電導端が、前記複数のコイルが直列に接続された負極ポートに接続される。 The room temperature end of the second current lead is connected to the negative electrode of the power supply, and the superconducting end of the second current lead is connected to the negative electrode port to which the plurality of coils are connected in series.

好ましくは、前記第1電流リードの超電導端が、前記複数のコイルが直列に接続された正極ポートに接続されることは、
前記第1電流リードは第1銅線端と、前記第1銅線端に接続される第1超電導端とを含み、前記第1超電導端は前記低温液体内に延在し、前記複数のコイルが直列に接続された正極ポートに接続されることを含む。
Preferably, the superconducting end of the first current lead is connected to a positive electrode port in which the plurality of coils are connected in series.
The first current lead includes a first copper wire end and a first superconducting end connected to the first copper wire end, the first superconducting end extending into the cold liquid and the plurality of coils. Includes being connected to a positive electrode port connected in series.

好ましくは、前記第2電流リードの超電導端が、前記複数のコイルが直列に接続された負極ポートに接続されることは、
前記第2電流リードは第2銅線端と、前記第2銅線端に接続される第2超電導端とを含み、前記第2超電導端は前記低温液体内に延在し、前記複数のコイルが直列に接続された負極ポートに接続されることを含む。
Preferably, the superconducting end of the second current lead is connected to a negative electrode port in which the plurality of coils are connected in series.
The second current lead includes a second copper wire end and a second superconducting end connected to the second copper wire end, the second superconducting end extending into the cold liquid and the plurality of coils. Includes being connected to a negative electrode port connected in series.

好ましくは、前記低温容器に冷凍機が配置され、冷凍機に、上から下へ順次配置されたコールドヘッド1段およびコールドヘッド2段が設けられ、
前記コールドヘッド1段は、前記第1電流リードおよび前記第2電流リードを冷却するように構成され、前記コールドヘッド2段は、前記低温容器内の低温液体を凝縮するように構成される。
Preferably, the refrigerator is arranged in the low temperature container, and the refrigerator is provided with one stage of cold heads and two stages of cold heads sequentially arranged from top to bottom.
The cold head one stage is configured to cool the first current lead and the second current lead, and the cold head two stages are configured to condense the cold liquid in the cold container.

本発明は、
単結晶炉の外部に、上記磁性体を配置し、前記磁性体に通電することと、
前記単結晶炉内に、インゴットが載置されたルツボを加熱する加熱器を配置することと、
CZ法により、単結晶シリコンを取得することと、を含む、
単結晶の磁場印加引き上げ方法を更に提供する。
The present invention
By arranging the magnetic material outside the single crystal furnace and energizing the magnetic material,
In the single crystal furnace, a heater for heating the crucible on which the ingot is placed is placed, and
Acquiring single crystal silicon by the CZ method, including
Further provided is a method for raising the magnetic field application of a single crystal.

本発明は、コイルを1次コイルおよび2次コイルに分け、1次コイルおよび2次コイルにそれぞれ逆方向の電流を流すことにより、2次コイルが発生する磁場は、1次コイルが外部で発生する磁場を効果的に打ち消すことができ、自発遮蔽方式により、磁性体の漏洩磁場を低減する。且つ、磁性体の重量を低減し、磁性体の製造コストを節約する。 In the present invention, the coil is divided into a primary coil and a secondary coil, and the magnetic field generated by the secondary coil is generated outside the primary coil by passing currents in opposite directions to the primary coil and the secondary coil, respectively. The magnetic field can be effectively canceled, and the leakage magnetic field of the magnetic material is reduced by the spontaneous shielding method. Moreover, the weight of the magnetic material is reduced, and the manufacturing cost of the magnetic material is saved.

本発明の実施例に係る磁性体および単結晶炉の分布の構造模式図である。It is a structural schematic diagram of the distribution of the magnetic material and the single crystal furnace which concerns on embodiment of this invention. 本発明の実施例に係る磁性体および単結晶炉の断面図である。It is sectional drawing of the magnetic material and the single crystal furnace which concerns on embodiment of this invention. 本発明の実施例に係る磁性体および単結晶炉の外部の構造模式図である。It is a structural schematic diagram of the outside of the magnetic material and the single crystal furnace which concerns on embodiment of this invention. 本発明の実施例に係る磁性体が発生する電界強度と、他の形態で発生する電界強度との対比図である。It is a comparison diagram of the electric field strength generated by the magnetic material which concerns on embodiment of this invention, and the electric field strength generated by another form.

10 単結晶炉
20 加熱器
30 ルツボ
1 コイル
11 1次コイル
12 2次コイル
2 低温容器
21 第1電流リード
22 第2電流リード
23 逃がしバルブ
25 信号線インタフェース
26 真空バルブ
24 冷凍機
241 コールドヘッド1段
242 コールドヘッド2段
10 Single crystal furnace 20 Heater 30 Rutsubo 1 Coil 11 Primary coil 12 Secondary coil 2 Low temperature container 21 1st current lead 22 2nd current lead 23 Relief valve 25 Signal line interface 26 Vacuum valve 24 Refrigerator 241 Cold head 1 stage 242 Cold head 2 steps

本実施例は、単結晶の磁場印加引き上げに用いられる磁性体を提供し、図1および図2に示すように、該単結晶の磁場印加引き上げに用いられる磁性体は、複数のコイル1を備え、前記複数のコイル1は、順に直列に接続され、且つ、単結晶炉10の外周を囲むように配置され、前記複数のコイル1のうち、対向して配置された2つのコイル1は単結晶炉10の中心軸を中心として対称に配置され、且つ、各コイル1の中心軸が単結晶炉10の中心点を通過し、各前記コイル1は、同軸に配置された1次コイル11および2次コイル12を含み、前記2次コイル12は、前記1次コイル11に対して前記単結晶炉10から離れるように配置され、前記コイル1に通電すると、前記1次コイル11内の電流方向と前記2次コイル12内の電流方向とは逆となる。 The present embodiment provides a magnetic material used for raising the magnetic field application of a single crystal, and as shown in FIGS. 1 and 2, the magnetic material used for raising the magnetic field application of the single crystal includes a plurality of coils 1. The plurality of coils 1 are connected in series in order and arranged so as to surround the outer periphery of the single crystal furnace 10, and among the plurality of coils 1, the two coils 1 arranged opposite to each other are single crystals. The primary coils 11 and 2 are arranged symmetrically about the central axis of the furnace 10 and the central axis of each coil 1 passes through the central point of the single crystal furnace 10, and the coils 1 are coaxially arranged. The secondary coil 12 includes the secondary coil 12, and the secondary coil 12 is arranged so as to be separated from the single crystal furnace 10 with respect to the primary coil 11, and when the coil 1 is energized, the current direction in the primary coil 11 is set. The direction of the current in the secondary coil 12 is opposite to that of the current direction.

本実施例は、コイル1を1次コイル11および2次コイル12に分け、1次コイル11および2次コイル12に逆方向の電流を流すことにより、2次コイル12が発生する磁場は、1次コイル11が外部で発生する磁場を効果的に打ち消すことができ、自発遮蔽方式により、磁性体の漏洩磁場を低減し、磁性体の重量を低減し、磁性体の製造コストを節約し、コイルの外部に強磁性材料を付加する受動遮蔽方式を用いる場合の漏洩磁場が小さくなり、磁性体の重量が増加することを回避する。 In this embodiment, the magnetic field generated by the secondary coil 12 by dividing the coil 1 into the primary coil 11 and the secondary coil 12 and passing a current in the opposite direction through the primary coil 11 and the secondary coil 12 is 1. The next coil 11 can effectively cancel the magnetic field generated outside, and the spontaneous shielding method reduces the leakage magnetic field of the magnetic material, reduces the weight of the magnetic material, saves the manufacturing cost of the magnetic material, and the coil. When a passive shielding method in which a ferromagnetic material is added to the outside of the magnetic material is used, the leakage magnetic field is reduced and the weight of the magnetic material is prevented from increasing.

一実施例において、1次コイル11と2次コイル12との間に、所定の距離が設けられている。本実施例は、2次コイル12を1次コイル11の外側に配置することにより、2次コイル12の、1次コイル11が外部で発生する漏洩磁場を打ち消す効果を向上させることができる。また、本実施例は、所定の距離を限定せず、実際の生産過程において、2次コイル12が1次コイル11から発生する外磁場を打ち消すことができ、磁性体の漏洩磁場を減少することを確保するように、必要に応じて製造してもよい。 In one embodiment, a predetermined distance is provided between the primary coil 11 and the secondary coil 12. In this embodiment, by arranging the secondary coil 12 outside the primary coil 11, the effect of the primary coil 11 of the secondary coil 12 canceling the leakage magnetic field generated outside can be improved. Further, in this embodiment, the predetermined distance is not limited, and in the actual production process, the secondary coil 12 can cancel the external magnetic field generated from the primary coil 11, and the leakage magnetic field of the magnetic material is reduced. May be manufactured as needed to ensure that.

一実施例において、各コイル1の中心軸は、単結晶炉10の中心軸に直交する。一実施例において、各コイル1の中心軸は、単結晶炉10の中心軸と第1角度をなす。複数のコイル1のうち、対向して配置された2つのコイルは単結晶炉10の中心軸を中心として対称に配置され、且つ、隣接するコイル1の中心軸の間に角度が設けられているため、各コイル1は単結晶炉10内に横磁場を形成し、単結晶炉10により高品質の結晶を製造できることを確保する。一実施例において、1次コイル11は、CZ結晶に必要な主磁場を提供し、2次コイル12は自発遮蔽コイルで1次コイル11と逆方向になる電流を流し、漏洩磁場を低減するとともに、1次コイル11と共に発生する磁場が、単結晶の引き上げを行なうための横磁場を供給する。 In one embodiment, the central axis of each coil 1 is orthogonal to the central axis of the single crystal furnace 10. In one embodiment, the central axis of each coil 1 forms a first angle with the central axis of the single crystal furnace 10. Of the plurality of coils 1, the two coils arranged to face each other are arranged symmetrically with respect to the central axis of the single crystal furnace 10, and an angle is provided between the central axes of the adjacent coils 1. Therefore, each coil 1 forms a transverse magnetic field in the single crystal furnace 10 to ensure that high quality crystals can be produced by the single crystal furnace 10. In one embodiment, the primary coil 11 provides the main magnetic field required for the CZ crystal, and the secondary coil 12 is a spontaneous shielding coil that carries a current in the opposite direction to the primary coil 11 to reduce the leakage magnetic field. The magnetic field generated with the primary coil 11 supplies a transverse magnetic field for pulling up the single crystal.

一実施例において、コイル1の数は4つであり、そのうち、該4つのコイル1は、対応して配置された2対のコイル1を含み、4つのコイル1のうちの2つのコイル1は、単結晶炉10の第1側に配置され、4つのコイル1のうちの他の2つのコイル1は、単結晶炉10の第2側に対向して配置される。前記4つのコイル1のうちの前記単結晶炉10の第1側にある隣接する2つのコイル1の中心軸間の角度、および前記4つのコイル1のうちの前記単結晶炉10の第2側にある隣接する2つのコイル1の中心軸間の角度は、いずれも所定の角度であり、一実施例において、所定の角度の範囲は50°~70°である。 In one embodiment, the number of coils 1 is four, of which the four coils 1 include two pairs of correspondingly arranged coils 1 and two of the four coils 1 are , The other two coils 1 of the four coils 1 are arranged on the first side of the single crystal furnace 10 and face the second side of the single crystal furnace 10. The angle between the central axes of two adjacent coils 1 on the first side of the single crystal furnace 10 of the four coils 1 and the second side of the single crystal furnace 10 of the four coils 1. The angle between the central axes of the two adjacent coils 1 in the above is a predetermined angle, and in one embodiment, the range of the predetermined angle is 50 ° to 70 °.

本実施例は、該所定の角度を限定せず、1次コイル11と2次コイル12とが共に発生する横磁場が一定の強度および均一性を有し、単結晶炉10内の結晶の製造品質を向上させることを確保するように、実際の必要に応じて調整してもよい。 In this embodiment, the transverse magnetic field generated by both the primary coil 11 and the secondary coil 12 has a constant strength and uniformity without limiting the predetermined angle, and the production of crystals in the single crystal furnace 10 is performed. It may be adjusted as needed to ensure that the quality is improved.

図2および図3に示すように、本実施例に係る磁性体は、単結晶炉10の周辺に配置される低温容器2を更に備え、コイル1は低温容器2内に配置される。ここで、前記低温容器2内に低温液体が充填され、コイル1は低温液体に置かれている。一実施例において、低温容器2内に真空中間層が配置され、低温容器2には真空バルブ26が更に配置され、真空バルブ26により、低温液体の外部の真空環境が確保でき、断熱の効果を果たし、低温液体はゼロ消費状態にある。一実施例において、低温液体が液体ヘリウムであり、真空層が液体ヘリウムデュアーである。一実施例において、コイルは低温液体によって冷却され、冷凍機で直接冷却する等の形態を用いてもよく、低温液体および真空中間層は他のタイプであってもよく、本実施例はこれについて限定しない。 As shown in FIGS. 2 and 3, the magnetic material according to the present embodiment further includes a low temperature container 2 arranged around the single crystal furnace 10, and the coil 1 is arranged in the low temperature container 2. Here, the low-temperature liquid is filled in the low-temperature container 2, and the coil 1 is placed in the low-temperature liquid. In one embodiment, a vacuum intermediate layer is arranged in the low temperature container 2, a vacuum valve 26 is further arranged in the low temperature container 2, and the vacuum valve 26 can secure an external vacuum environment for the low temperature liquid and provide a heat insulating effect. As expected, the low temperature liquid is in a zero consumption state. In one embodiment, the cold liquid is liquid helium and the vacuum layer is liquid helium duel. In one embodiment, the coil may be cooled by a low temperature liquid and directly cooled by a refrigerator, or the cold liquid and the vacuum intermediate layer may be of other types. Not limited.

低温容器2に、電源に接続される第1電流リード21および第2電流リード22が設けられる。ここで、第1電流リード21および第2電流リード22は、いずれも2元電流リードであり、且つ、第1引電流リード21および第2電流リード22は、いずれも銅線端と、銅線端に接続される超電導端とを含み、超電導端は低温液体内に延在してコイル1に接続される。第1電流リード21および第2電流リード22は、それぞれコイル1および電源に接続され、閉ループを形成し、電源からコイル1に磁場の電流を供給する。 The low temperature container 2 is provided with a first current lead 21 and a second current lead 22 connected to a power source. Here, the first current lead 21 and the second current lead 22 are both binary current leads, and the first pull current lead 21 and the second current lead 22 are both a copper wire end and a copper wire. Including a superconducting end connected to the end, the superconducting end extends into the cold liquid and is connected to the coil 1. The first current lead 21 and the second current lead 22 are connected to the coil 1 and the power supply, respectively, to form a closed loop, and supply a magnetic field current from the power supply to the coil 1.

また、低温容器2に逃がしバルブ23が更に配置され、コイル1の蓄勢が大きいため、コイル1が意図せずに超電導性を失うと、大量の熱量を放出し、大量の液体ヘリウムを蒸発させ、大きな気圧を発生させ、ひどい場合、磁性体を破損して人に損傷を与える恐れがあり、この時、磁性体の安全性を確保するために、逃がしバルブ23によって放圧する。 Further, since the relief valve 23 is further arranged in the low temperature container 2 and the storage capacity of the coil 1 is large, when the coil 1 unintentionally loses superconductivity, a large amount of heat is released and a large amount of liquid helium is evaporated. A large atmospheric pressure is generated, and in the worst case, the magnetic material may be damaged and damage to a person. At this time, in order to ensure the safety of the magnetic material, the pressure is released by the relief valve 23.

本実施例は、各1次コイル11および2次コイル12をいずれも超電導コイルとすることにより、超低温環境温度で超電導状態となり、通常のコイルよりも高い電流を負荷でき、より高い磁場が発生し、単結晶シリコンの製造時の品質を確保する。 In this embodiment, by using each of the primary coil 11 and the secondary coil 12 as a superconducting coil, a superconducting state is obtained at an ultra-low temperature environment temperature, a higher current can be loaded than a normal coil, and a higher magnetic field is generated. , Ensuring the quality of single crystal silicon during manufacturing.

上記低温容器2に冷凍機24が更に配置され、冷凍機24に、上から下へ順次配置されたコールドヘッド1段241およびコールドヘッド2段242が設けられ、ここで、コールドヘッド1段241は、第1電流リード21、第2電流リード22、および輻射防止パネル(図示せず)を冷却するように配置され、コールドヘッド2段242は、低温容器2内の低温液体を凝縮するように配置される。 The refrigerator 24 is further arranged in the low temperature container 2, and the refrigerator 24 is provided with a cold head 1-stage 241 and a cold head 2-stage 242 sequentially arranged from top to bottom, where the cold head 1-stage 241 is provided. , The first current lead 21, the second current lead 22, and the radiation prevention panel (not shown) are arranged to cool, and the cold head two-stage 242 is arranged to condense the low temperature liquid in the low temperature container 2. Will be done.

上記低温容器2に信号線インタフェース25が更に配置され、信号線は、信号線インタフェース25を介して低温容器2内にアクセスし、コイル1の温度、電圧降下等の信号を検出するために使用される。 A signal line interface 25 is further arranged in the low temperature container 2, and the signal line is used to access the inside of the low temperature container 2 via the signal line interface 25 and detect signals such as the temperature and voltage drop of the coil 1. To.

図4に示すように、シールド無し、強磁性材料シールド、および自発遮蔽という3つの場合における漏洩磁場の対比図を示す。ここで、横軸は、試験点から中心磁場までの距離を表す。一般的には、1.6メートル~1.8メートルに位置する場合、磁場の強度が500ガウス(GS)よりも小さいことが要求される。人体安全に対する要求は、径方向3メートル内の磁場強度が60ガウス(GS)よりも小さいことである。図4に示すように、本実施例の自発遮蔽方式を用いることにより、漏洩磁場を効果的に低減するとともに、人体安全の要求を満たすことができる。 As shown in FIG. 4, a comparison diagram of the leakage magnetic field in the three cases of unshielded, ferromagnetic material shield, and spontaneous shielding is shown. Here, the horizontal axis represents the distance from the test point to the central magnetic field. Generally, when located at 1.6 to 1.8 meters, the strength of the magnetic field is required to be less than 500 gauss (GS). The requirement for human safety is that the magnetic field strength within 3 meters in the radial direction is less than 60 gauss (GS). As shown in FIG. 4, by using the spontaneous shielding method of this embodiment, the leakage magnetic field can be effectively reduced and the requirements for human safety can be satisfied.

本実施例は、以下のステップを含む単結晶の磁場印加引き上げ方法を更に提供する。 The present embodiment further provides a method for raising the magnetic field application of a single crystal including the following steps.

ステップ1において、単結晶炉10の外部に、上記磁性体を配置し、磁性体に通電する。 In step 1, the magnetic material is arranged outside the single crystal furnace 10 and the magnetic material is energized.

ここで、磁性体に通電することは、コイル1および冷凍機24等に通電することを含む。磁性体内のコイル1に通電すると、1次コイル11内および2次コイル12内に逆方向の電流が流れ、2次コイル12が発生する磁場は、1次コイル11が外部で発生する磁場を効果的に打ち消すことができ、磁性体の漏洩磁場が小さくなる。また、コイル1の外部に強磁性材料を付加する受動遮蔽方式を用いることにより、漏洩磁場が小さくなり、磁性体の重量が増加することを回避するとともに、磁性体の製造コストを節約する。 Here, energizing the magnetic material includes energizing the coil 1, the refrigerator 24, and the like. When the coil 1 in the magnetic body is energized, a current flows in the reverse direction in the primary coil 11 and the secondary coil 12, and the magnetic field generated by the secondary coil 12 is effective due to the magnetic field generated externally by the primary coil 11. It can be canceled out and the leakage magnetic field of the magnetic material becomes small. Further, by using a passive shielding method in which a ferromagnetic material is added to the outside of the coil 1, the leakage magnetic field is reduced, the weight of the magnetic material is prevented from increasing, and the manufacturing cost of the magnetic material is saved.

ステップ2において、単結晶炉10内に、インゴットが載置されたルツボ30を加熱する加熱器20を配置する。インゴットを加熱することにより溶融状態になるようにし、コイル1による横磁場が溶融体に作用し、磁場の作用で、導電性を有する溶融体は、流れる際に渦電流を生じ、ローレンツ力を受ける。ローレンツ力の作用で、溶融体の熱対流が抑制され、溶融体の液面における酸素、点欠陥、および他の不純物が抑制される。 In step 2, a heater 20 for heating the crucible 30 on which the ingot is placed is arranged in the single crystal furnace 10. The ingot is heated to bring it into a molten state, and the transverse magnetic field generated by the coil 1 acts on the molten material. Due to the action of the magnetic field, the conductive molten body generates an eddy current when flowing and receives Lorentz force. .. The action of Lorentz force suppresses thermal convection of the melt and suppresses oxygen, point defects, and other impurities on the liquid surface of the melt.

ステップ3において、CZ法により、単結晶シリコンを取得する。ここで、該コイル1が発生する横磁場は、溶融体の液面から液面下50ミリメートル(mm)程度までの領域で高い磁場均一性(約3‰~1%)を有するため、溶融体の熱対流の抑制に対して一致性を有し、製造された単結晶シリコンは高い純度を有し、微量な不純物の分布は更に均一となり、単結晶シリコンの品質を向上させる。 In step 3, single crystal silicon is obtained by the CZ method. Here, since the transverse magnetic field generated by the coil 1 has high magnetic field uniformity (about 3 ‰ to 1%) in the region from the liquid surface of the melt to about 50 mm (mm) below the liquid level, the melt. The single crystal silicon produced has high purity, the distribution of trace impurities becomes more uniform, and the quality of the single crystal silicon is improved.

ここで、CZ法とは、溶融体を溶融状態に加熱した後に、化学方法でエッチングされた1つの種結晶を降下させて溶融体に接触させ、単結晶炉10を回転させ、溶融体を一定の直径の結晶となるまで種結晶で結晶し続けて成長させることである。 Here, in the CZ method, after the melt is heated to a molten state, one seed crystal etched by a chemical method is dropped and brought into contact with the melt, and the single crystal furnace 10 is rotated to keep the melt constant. It is to continue to crystallize with a seed crystal and grow until it becomes a crystal with the diameter of.

Claims (4)

複数のコイル(1)を備え、前記複数のコイル(1)が、直列に接続され、且つ、単結
晶炉(10)の外周を囲むように配置され、前記複数のコイル(1)のうち、対向して配
置された2つのコイル(1)が前記単結晶炉(10)の中心軸を中心として対称に配置さ
れ、且つ、各前記コイル(1)の中心軸が前記単結晶炉(10)の中心点を通過し、各前
記コイル(1)は、同軸に配置された1次コイル(11)および2次コイル(12)を含
み、前記2次コイル(12)は、前記1次コイル(11)に対して前記単結晶炉(10)
から離れるように配置され、
前記コイル(1)に通電すると、前記1次コイル(11)内の電流方向と前記2次コイ
ル(12)内の電流方向とは逆となり、
前記単結晶炉(10)の周辺に配置される低温容器(2)を更に備え、
第1電流リード(21)の常温端が電源の正極に接続され、前記第1電流リード(21
)の超電導端が前記コイルの正極ポートに接続されることと、
第2電流リード(22)の常温端が前記電源の負極に接続され、前記第2電流リード(
22)の超電導端が前記コイルの負極ポートに接続されることと、を更に含み、
前記低温容器(2)に互いに対向する2つの冷凍機(24)が配置され、各冷凍機(2
4)には、上から下へ順次配置されたコールドヘッド1段(241)およびコールドヘッ
ド2段(242)がそれぞれ設けられ、
前記コールドヘッド1段(241)は、前記第1電流リード(21)および前記第2電
流リード(22)を冷却するように構成され、
前記コールドヘッド2段(242)は、前記低温容器(2)内の低温液体を凝縮するよ
うに構成され、
前記2次コイル(12)は前記1次コイル(11)の外側に配置され、
前記1次コイル(11)と前記2次コイル(12)との間に、所定の距離が設けられ、
各前記コイル(1)の中心軸は、前記単結晶炉(10)の中心軸と第1角度をなし、
前記複数のコイル(1)のうち、各2つの隣接する前記コイル(1)の中心軸の間に、
角度が形成され、且つ、隣接する前記角度は異なり、対向する前記角度は同じであり、
前記複数のコイル(1)の数は4つであり、前記4つのコイル(1)のうちの2つのコ
イル(1)が前記単結晶炉(10)の第1側に配置され、前記4つのコイル(1)のうち
の他の2つのコイル(1)が前記単結晶炉(10)の第2側に対向して配置され、
前記4つのコイル(1)のうちの前記単結晶炉(10)の第1側にある隣接する2つの
コイル(1)の中心軸間の角度、および前記4つのコイル(1)のうちの前記単結晶炉(
10)の第2側にある隣接する2つのコイル(1)の中心軸間の角度は、いずれも所定の
角度であり、
前記所定の角度の範囲は50°~70°であり、
前記複数のコイル(1)は超電導コイルであり、
前記低温容器(2)内に低温液体が充填され、前記複数のコイル(1)が前記低温液体
内に置かれ、
前記第1電流リード(21)の超電導端が前記コイルの正極ポートに接続されることは

前記第1電流リード(21)は第1銅線端と、前記第1銅線端に接続される第1超電導
端とを含み、前記第1超電導端は前記低温液体内に延在して前記コイルの正極ポートに接
続されることを含み、
前記第2電流リード(22)の超電導端が前記コイルの負極ポートに接続されることは

前記第2電流リード(22)は第2銅線端と、前記第2銅線端に接続される第2超電導
端とを含み、前記第2超電導端は前記低温液体内に延在して前記コイルの負極ポートに接
続されることを含む、
単結晶の磁場印加引き上げに用いられる磁性体。
A plurality of coils (1) are provided, and the plurality of coils (1) are connected in series and arranged so as to surround the outer periphery of the single crystal furnace (10). Two coils (1) arranged to face each other are arranged symmetrically about the central axis of the single crystal furnace (10), and the central axis of each coil (1) is the single crystal furnace (10). Each said coil (1) includes a primary coil (11) and a secondary coil (12) arranged coaxially, and the secondary coil (12) is said to be the primary coil (12). 11) with respect to the single crystal furnace (10)
Arranged away from
When the coil (1) is energized, the current direction in the primary coil (11) and the current direction in the secondary coil (12) are opposite to each other.
A cryogenic vessel (2) arranged around the single crystal furnace (10) is further provided.
The room temperature end of the first current lead (21) is connected to the positive electrode of the power supply, and the first current lead (21) is connected to the positive electrode of the power supply.
) Is connected to the positive electrode port of the coil.
The room temperature end of the second current lead (22) is connected to the negative electrode of the power supply, and the second current lead (22)
22) further comprises connecting the superconducting end of the coil to the negative electrode port of the coil.
Two refrigerators (24) facing each other are arranged in the low temperature container (2), and each refrigerator (2) is arranged.
In 4), one cold head stage (241) and two cold head stages (242) arranged sequentially from top to bottom are provided, respectively.
The cold head one stage (241) is configured to cool the first current lead (21) and the second current lead (22).
The cold head two-stage (242) is configured to condense the low-temperature liquid in the low-temperature container (2).
The secondary coil (12) is arranged outside the primary coil (11).
A predetermined distance is provided between the primary coil (11) and the secondary coil (12).
The central axis of each coil (1) forms a first angle with the central axis of the single crystal furnace (10).
Of the plurality of coils (1), between the central axes of two adjacent coils (1), respectively.
The angles are formed and the adjacent angles are different, and the opposing angles are the same.
The number of the plurality of coils (1) is four, and two of the four coils (1) are used.
Il (1) is arranged on the first side of the single crystal furnace (10), and of the four coils (1).
The other two coils (1) are arranged to face the second side of the single crystal furnace (10).
Two adjacent coils on the first side of the single crystal furnace (10) out of the four coils (1).
The angle between the central axes of the coil (1) and the single crystal furnace (of the four coils (1)).
The angle between the central axes of two adjacent coils (1) on the second side of 10) is predetermined.
Is an angle
The range of the predetermined angle is 50 ° to 70 °.
The plurality of coils (1) are superconducting coils.
The low-temperature liquid is filled in the low-temperature container (2), and the plurality of coils (1) form the low-temperature liquid.
Placed inside
The superconducting end of the first current lead (21) may be connected to the positive electrode port of the coil.
,
The first current lead (21) has a first copper wire end and a first superconductivity connected to the first copper wire end.
The first superconducting end extends into the cold liquid and contacts the positive electrode port of the coil, including the end.
Including being continued
The superconducting end of the second current lead (22) may be connected to the negative electrode port of the coil.
,
The second current lead (22) has a second copper wire end and a second superconductivity connected to the second copper wire end.
The second superconducting end extends into the cold liquid and contacts the negative electrode port of the coil, including the end.
Including being continued,
A magnetic material used to raise the magnetic field application of a single crystal.
各前記コイル(1)の中心軸は、前記単結晶炉(10)の中心軸に直交する、
請求項1に記載の磁性体。
The central axis of each coil (1) is orthogonal to the central axis of the single crystal furnace (10).
The magnetic material according to claim 1 .
前記複数のコイル(1)のうち、各2つの隣接する前記コイル(1)の中心軸間の角度
は同じである、
請求項1からのいずれか1項に記載の磁性体。
Of the plurality of coils (1), the angle between the central axes of each of the two adjacent coils (1) is the same.
The magnetic material according to any one of claims 1 and 2 .
単結晶炉(10)の外部に、請求項1からのいずれか1項に記載の磁性体を配置し、
前記磁性体に通電することと、
前記単結晶炉(10)内に、インゴットが載置されたルツボ(30)を加熱する加熱器
(20)を配置することと、
CZ法により、単結晶シリコンを取得することと、を含む、
単結晶の磁場印加引き上げ方法。
The magnetic material according to any one of claims 1 to 3 is arranged outside the single crystal furnace (10).
Energizing the magnetic material and
In the single crystal furnace (10), a heater (20) for heating the crucible (30) on which the ingot is placed is arranged.
Acquiring single crystal silicon by the CZ method, including
A method of pulling up a single crystal by applying a magnetic field.
JP2019568025A 2018-03-30 2018-07-03 A magnetic material used to raise the magnetic field application of a single crystal, and a method of raising the magnetic field application of a single crystal. Active JP7029733B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201810298489.3A CN110129883A (en) 2018-03-30 2018-03-30 A method of magnet structure and magnetic control pulling of crystals for magnetic control pulling of crystals
CN201810298489.3 2018-03-30
PCT/CN2018/094315 WO2019184129A1 (en) 2018-03-30 2018-07-03 Magnet for magnetic control of czochralski single crystals and method for magnetic control of czochralski single crystals

Publications (2)

Publication Number Publication Date
JP2020522457A JP2020522457A (en) 2020-07-30
JP7029733B2 true JP7029733B2 (en) 2022-03-04

Family

ID=67568034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019568025A Active JP7029733B2 (en) 2018-03-30 2018-07-03 A magnetic material used to raise the magnetic field application of a single crystal, and a method of raising the magnetic field application of a single crystal.

Country Status (3)

Country Link
JP (1) JP7029733B2 (en)
CN (1) CN110129883A (en)
WO (1) WO2019184129A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110957099A (en) * 2019-12-27 2020-04-03 西部超导材料科技股份有限公司 Superconducting magnet with four-corner-shaped coils for magnetically controlled Czochralski single crystal pulling and method thereof
JP2022110323A (en) 2021-01-18 2022-07-29 住友重機械工業株式会社 Superconducting magnet device
CN113889314A (en) * 2021-11-08 2022-01-04 西安聚能超导磁体科技有限公司 Magnetic control single crystal pulling superconducting magnet coil and superconducting magnet device
CN115254812B (en) * 2022-06-30 2023-06-20 晶科能源股份有限公司 Cleaning device for removing oxide in exhaust pipeline and single crystal furnace
CN115542865A (en) * 2022-11-24 2022-12-30 杭州慧翔电液技术开发有限公司 Superconducting magnet automatic lifting field system and parameter control method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003007526A (en) 2001-06-20 2003-01-10 Sumitomo Heavy Ind Ltd Refrigerator cooling type superconducting magnet device
JP2004051475A (en) 2002-05-31 2004-02-19 Toshiba Corp Single crystal puller, superconductive magnet, and method for pulling up single crystal

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2940437B2 (en) * 1995-06-01 1999-08-25 信越半導体株式会社 Method and apparatus for producing single crystal
JP3592467B2 (en) * 1996-11-14 2004-11-24 株式会社東芝 Superconducting magnet for single crystal pulling device
JP3535343B2 (en) * 1997-05-16 2004-06-07 三菱電機株式会社 Magnetic field application type single crystal manufacturing equipment
TW460635B (en) * 1997-05-30 2001-10-21 Toshiba Corp Superconducting magnet apparatus
JP3824412B2 (en) * 1998-02-17 2006-09-20 株式会社東芝 Superconducting magnet device for crystal pulling device
JP5889509B2 (en) * 2008-05-26 2016-03-22 株式会社東芝 Superconducting magnet device for single crystal pulling device
JP5534713B2 (en) * 2009-05-20 2014-07-02 三菱電機株式会社 Superconducting magnet
CN201713601U (en) * 2010-04-23 2011-01-19 西安理工大学 Low power-consumption cusp electromagnetic field device for single-crystal furnace
CN103106994B (en) * 2013-01-29 2015-08-26 西部超导材料科技股份有限公司 A kind of MgB for magnetic control pulling of crystals 2superconduction winding arrangement
CN103590109B (en) * 2013-08-21 2016-04-27 银川隆基硅材料有限公司 Czochralski crystal growing furnace magnetic field device and use the crystal pulling method of this magnetic field device
JP6436031B2 (en) * 2015-09-18 2018-12-12 信越半導体株式会社 Single crystal pulling apparatus and single crystal pulling method
JP6620670B2 (en) * 2016-05-16 2019-12-18 信越半導体株式会社 Single crystal pulling apparatus and single crystal pulling method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003007526A (en) 2001-06-20 2003-01-10 Sumitomo Heavy Ind Ltd Refrigerator cooling type superconducting magnet device
JP2004051475A (en) 2002-05-31 2004-02-19 Toshiba Corp Single crystal puller, superconductive magnet, and method for pulling up single crystal

Also Published As

Publication number Publication date
JP2020522457A (en) 2020-07-30
WO2019184129A1 (en) 2019-10-03
CN110129883A (en) 2019-08-16

Similar Documents

Publication Publication Date Title
JP7029733B2 (en) A magnetic material used to raise the magnetic field application of a single crystal, and a method of raising the magnetic field application of a single crystal.
JP6436031B2 (en) Single crystal pulling apparatus and single crystal pulling method
US11578423B2 (en) Magnet coil for magnetic czochralski single crystal growth and magnetic czochralski single crystal growth method
CN111243821A (en) Magnetic control czochralski single crystal superconducting magnet system
CN110136915A (en) A kind of superconducting magnet and magnetic control pulling of crystals equipment
CN103106994B (en) A kind of MgB for magnetic control pulling of crystals 2superconduction winding arrangement
CN110957099A (en) Superconducting magnet with four-corner-shaped coils for magnetically controlled Czochralski single crystal pulling and method thereof
JP3592467B2 (en) Superconducting magnet for single crystal pulling device
US20230175166A1 (en) Single-crystal pulling apparatus and single-crystal pulling method
CN209859725U (en) Superconducting magnet and magnetic control straight pulling single crystal equipment
JP7230781B2 (en) Single crystal pulling apparatus and single crystal pulling method
CN110741467A (en) Vertical multi-batch magnetic annealing system for reduced manufacturing environment footprint
CN210837338U (en) Superconducting magnet with four-corner-shaped coils for magnetically controlled Czochralski single crystal pulling
EP1348047B1 (en) Magnetic field furnace and a method of using the same to manufacture dendritic web crystals
JP2022110323A (en) Superconducting magnet device
TW202126868A (en) A semiconductor crystal growth apparatus
AU2002246865A1 (en) Magnetic field furnace and a method of using the same to manufacture semiconductor substrates
CN114318499B (en) Growth method of large-diameter semiconductor silicon single crystal and single crystal furnace
CN219778613U (en) Magnetic control coil and crystal manufacturing equipment
JP3585731B2 (en) Magnetic field application type single crystal manufacturing equipment
JP2013193946A (en) Superconducting device
JPS59195595A (en) Apparatus for crystal growth
CN116130200A (en) Magnetic control coil and crystal manufacturing equipment
CN117524692A (en) Control circuit, superconducting magnet and magnetic control single crystal pulling equipment
CN116798724A (en) Superconducting magnet, magnetic control single crystal pulling equipment and control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210925

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20211011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220209

R150 Certificate of patent or registration of utility model

Ref document number: 7029733

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150