JP7028367B1 - 高炉の操業方法および高炉附帯設備 - Google Patents
高炉の操業方法および高炉附帯設備 Download PDFInfo
- Publication number
- JP7028367B1 JP7028367B1 JP2021516509A JP2021516509A JP7028367B1 JP 7028367 B1 JP7028367 B1 JP 7028367B1 JP 2021516509 A JP2021516509 A JP 2021516509A JP 2021516509 A JP2021516509 A JP 2021516509A JP 7028367 B1 JP7028367 B1 JP 7028367B1
- Authority
- JP
- Japan
- Prior art keywords
- gas
- blast furnace
- methane
- methane gas
- carbon dioxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 43
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 406
- 239000007789 gas Substances 0.000 claims abstract description 339
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 144
- 239000001569 carbon dioxide Substances 0.000 claims abstract description 72
- 229910002092 carbon dioxide Inorganic materials 0.000 claims abstract description 72
- 238000007664 blowing Methods 0.000 claims abstract description 56
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims abstract description 42
- 229910001882 dioxygen Inorganic materials 0.000 claims abstract description 42
- 239000006227 byproduct Substances 0.000 claims abstract description 16
- 239000003638 chemical reducing agent Substances 0.000 claims description 67
- 229910052799 carbon Inorganic materials 0.000 claims description 26
- 239000001301 oxygen Substances 0.000 claims description 22
- 229910052760 oxygen Inorganic materials 0.000 claims description 22
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 18
- 229910052751 metal Inorganic materials 0.000 claims description 11
- 239000002184 metal Substances 0.000 claims description 11
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 125000004432 carbon atom Chemical group C* 0.000 claims description 5
- 239000000463 material Substances 0.000 abstract description 12
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 31
- 229910002091 carbon monoxide Inorganic materials 0.000 description 31
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 20
- 150000001721 carbon Chemical group 0.000 description 19
- 238000006243 chemical reaction Methods 0.000 description 19
- 239000003245 coal Substances 0.000 description 19
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 18
- 229910052739 hydrogen Inorganic materials 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 14
- 239000001257 hydrogen Substances 0.000 description 14
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 10
- 239000000571 coke Substances 0.000 description 10
- 238000000926 separation method Methods 0.000 description 10
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- 239000002699 waste material Substances 0.000 description 8
- 238000002485 combustion reaction Methods 0.000 description 7
- 238000006722 reduction reaction Methods 0.000 description 6
- 229910052786 argon Inorganic materials 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 239000002803 fossil fuel Substances 0.000 description 4
- 238000011017 operating method Methods 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 230000018044 dehydration Effects 0.000 description 3
- 238000006297 dehydration reaction Methods 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- 239000002893 slag Substances 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 239000000567 combustion gas Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000002801 charged material Substances 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 150000002505 iron Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- -1 that is Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B7/00—Blast furnaces
- C21B7/007—Controlling or regulating of the top pressure
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B5/00—Making pig-iron in the blast furnace
- C21B5/001—Injecting additional fuel or reducing agents
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B5/00—Making pig-iron in the blast furnace
- C21B5/06—Making pig-iron in the blast furnace using top gas in the blast furnace process
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B7/00—Blast furnaces
- C21B7/002—Evacuating and treating of exhaust gases
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B7/00—Blast furnaces
- C21B7/16—Tuyéres
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D17/00—Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
- F27D17/001—Extraction of waste gases, collection of fumes and hoods used therefor
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B2100/00—Handling of exhaust gases produced during the manufacture of iron or steel
- C21B2100/20—Increasing the gas reduction potential of recycled exhaust gases
- C21B2100/22—Increasing the gas reduction potential of recycled exhaust gases by reforming
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B2100/00—Handling of exhaust gases produced during the manufacture of iron or steel
- C21B2100/20—Increasing the gas reduction potential of recycled exhaust gases
- C21B2100/26—Increasing the gas reduction potential of recycled exhaust gases by adding additional fuel in recirculation pipes
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B2100/00—Handling of exhaust gases produced during the manufacture of iron or steel
- C21B2100/20—Increasing the gas reduction potential of recycled exhaust gases
- C21B2100/28—Increasing the gas reduction potential of recycled exhaust gases by separation
- C21B2100/282—Increasing the gas reduction potential of recycled exhaust gases by separation of carbon dioxide
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B2100/00—Handling of exhaust gases produced during the manufacture of iron or steel
- C21B2100/20—Increasing the gas reduction potential of recycled exhaust gases
- C21B2100/28—Increasing the gas reduction potential of recycled exhaust gases by separation
- C21B2100/284—Increasing the gas reduction potential of recycled exhaust gases by separation of nitrogen
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B2100/00—Handling of exhaust gases produced during the manufacture of iron or steel
- C21B2100/40—Gas purification of exhaust gases to be recirculated or used in other metallurgical processes
- C21B2100/44—Removing particles, e.g. by scrubbing, dedusting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D19/00—Arrangements of controlling devices
- F27D2019/0028—Regulation
- F27D2019/0031—Regulation through control of the flow of the exhaust gases
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/10—Reduction of greenhouse gas [GHG] emissions
- Y02P10/122—Reduction of greenhouse gas [GHG] emissions by capturing or storing CO2
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/10—Reduction of greenhouse gas [GHG] emissions
- Y02P10/143—Reduction of greenhouse gas [GHG] emissions of methane [CH4]
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Manufacture Of Iron (AREA)
- Blast Furnaces (AREA)
Abstract
Description
なお、送風ガスは、羽口から高炉内に吹き込まれるガスである。送風ガスは、高炉内において微粉炭やコークスをガス化する役割も果たすものである。
「CO2及び/又はCOを含む混合ガスからCO2及び/又はCOを分離回収する工程(A)と、該工程(A)で分離回収されたCO2及び/又はCOに水素を添加し、CO2及び/又はCOをCH4に変換する工程(B)と、該工程(B)を経たガスからH2Oを分離除去する工程(C)と、該工程(C)を経たガスを高炉内に吹き込む工程(D)を有することを特徴とする高炉の操業方法。」
が開示されている。
「高炉ガスを燃料の一部または全部として使用する燃焼炉の排ガスからCO2を分離し、分離したCO2をメタンに改質して得られた還元ガスを高炉に吹込むことを特徴とする高炉操業方法。」
が開示されている。
そのため、安定した操業の下、高炉からの二酸化炭素の排出量の一層の削減が可能な高炉の操業方法の開発が求められている。
また、本発明は、上記の高炉の操業方法に用いる高炉附帯設備を提供することを目的とする。
まず、発明者らは、特許文献1および2の技術において、還元材として高炉に吹込むメタンの量を一定以上とした場合に、操業トラブルが発生する原因について検討した。
その結果、以下の知見を得た。
還元材として高炉に吹込むメタンの量を一定以上にすると、羽口の出口近傍に生じる燃焼領域(レースウェイ)において吹込み還元材およびコークスが燃焼して生じる火炎の温度(以下、羽口先温度ともいう)が大幅に低下する。そして、この羽口先温度の低下が、高炉下部の着熱不足や圧損上昇、出滓不良などの操業トラブルの発生原因となる。
C+0.5O2=CO+110.5kJ/mol
一方、羽口から高炉内に還元材としてメタンを吹込む場合、レースウェイでは以下のような反応が起こる。
CH4+0.5O2=CO+2H2+35.7kJ/mol
当該反応時に発生する熱量を、COおよびH2の合計量の1モルあたりに換算すると、11.9kJ/molとなる。
高炉の安定操業のためには、羽口先温度を2000℃~2400℃の範囲に制御する必要がある。しかし、高炉内に吹込む還元材の多くを微粉炭からメタンガスに置換すると、上記の反応熱の差により、羽口先温度が低下する。その結果、羽口先温度を上記範囲内に制御することができなくなって、種々の操業トラブルが発生する。
その結果、送風ガスとして、熱風(1200℃程度に加熱した空気)ではなく、酸素ガスを使用することにより、高炉内に吹込む還元材に多量のメタンを用いても、羽口先温度の低下が有効に防止されることを知見した。そして、このようなメタンを高炉から排出される副生ガスから再生し、この再生したメタン(再生メタンガス)を還元材として高炉内に再度吹込むことによって、高炉からの二酸化炭素の排出量を一層削減しつつ、安定した高炉の操業が可能になるとの知見を得た。
すなわち、送風ガスとして、熱風(1200℃程度に加熱した空気)を使用する場合、燃焼ガス中に燃焼反応に寄与しない50体積%程度の窒素が含まれるため、レースウェイにおける火炎の温度は高温となり難い。そのため、高炉内に吹込む還元材の多くを微粉炭からメタンガスに置換すると、上記した微粉炭-酸素の反応における反応熱と、メタンガス-酸素の反応における反応熱との差によって、羽口先温度が低下し、ひいては、羽口先温度が適正温度の下限である2000℃を下回ってしまう。
一方、送風ガスとして、酸素ガスを使用することにより、燃焼反応に寄与しない窒素ガスの混入を抑制できるので、羽口先温度を十分な温度まで昇温することが可能となる。すなわち、レースウェイにおける火炎の温度を、熱風を使用する場合と比べて高温とすることができるため、羽口から還元材として多量のメタンを吹込む場合にも、羽口先温度を適正範囲である2000℃~2400℃の範囲に制御することが可能となる。
本発明は、上記の知見に基づき、さらに検討を加えて完成されたものである。
1.高炉の操業方法であって、
前記高炉から排出される副生ガスから二酸化炭素ガスを分離する工程と、
前記二酸化炭素ガスから再生メタンガスを生成する工程と、
前記高炉の羽口から前記高炉内に送風ガスおよび還元材を吹込む工程と、を有し、
前記送風ガスとして酸素ガスを用い、かつ、前記還元材の少なくとも一部に前記再生メタンガスを用いる、高炉の操業方法。
ここで、循環炭素原子の原単位とは、溶銑1tを製造する際に還元材として高炉内に吹込まれる再生メタンガスの炭素換算質量であり、次式により求める。
[循環炭素原子の原単位(kg/t)]=[還元材として高炉内に吹込まれる再生メタンガス中のメタンの質量(kg)]×(12/16)÷[溶銑製造量(t)]
前記副生ガスから前記二酸化炭素ガスを分離する、ガス分離装置と、
前記二酸化炭素ガスから前記再生メタンガスを生成する、メタンガス生成装置と、
前記再生メタンガスを前記高炉の羽口に導入するメタンガス供給部、および、前記酸素ガスを前記高炉の羽口に導入する酸素ガス供給部を有する、ガス吹込装置と、
をそなえる、高炉附帯設備。
本発明の一実施形態は、高炉の操業方法であって、
前記高炉から排出される副生ガスから二酸化炭素ガスを分離する工程と、
前記二酸化炭素ガスから再生メタンガスを生成する工程と、
前記高炉の羽口から前記高炉内に送風ガスおよび還元材を吹込む工程と、を有し、
前記送風ガスとして酸素ガスを用い、かつ、前記還元材の少なくとも一部に前記再生メタンガスを用いる、というものである。
図中、符号1は高炉、2は羽口、3はメタンガス生成装置、4はガス吹込装置、5は第1の脱水装置、6は第2の脱水装置、7はバーナー、10はガス分離装置である。
なお、ここでいう高炉には、シャフト型還元炉なども含むものとする。
本発明の一実施形態に従う高炉の操業方法では、高炉の炉頂部から高炉内へ原料となる焼結鉱や塊鉱石、ペレット(以下、鉱石原料ともいう)やコークスなどが装入される(図示せず)。また、高炉下部に設置された羽口2から高炉1内へ、送風ガスと還元材とが吹込まれる。なお、羽口2から高炉1内へ吹込む還元材を、コークスと区別するため、吹込み還元材ともいう。
そして、送風ガスと還元材の反応により生じた一酸化炭素ガスや水素ガスによって、高炉1内に装入した鉱石原料が還元される。この鉱石原料の還元反応において、二酸化炭素が発生する。そして、この二酸化炭素は、鉱石原料と反応しなかった一酸化炭素や水素などとともに、副生ガスとして、高炉の炉頂部から排出される。高炉の炉頂部は2.5気圧程度の高圧条件となっている。そのため、この高炉の炉頂部から排出される副生ガス(以下、高炉ガスともいう)が、常圧に戻る際の膨張冷却により、水蒸気が凝縮する。そして、第1の脱水装置5において、その凝縮水が除去される。
ここで、二酸化炭素ガスは、必ずしも二酸化炭素濃度:100体積%のガスでなくてもよいが、再生メタンガスのメタン濃度を高濃度とするため、二酸化炭素濃度が高いガス、具体的には、二酸化炭素濃度が80体積%以上の二酸化炭素ガスを用いることが好ましい。二酸化炭素濃度は、より好ましくは90体積%以上、さらに好ましくは95体積%以上である。
また、二酸化炭素以外のガス濃度は、20体積%以下、より好ましくは10体積%以下、さらに好ましくは5体積%以下となるようにガス分離を行うことが好ましい。二酸化炭素以外のガスとしては、一酸化炭素や水素、窒素、アルゴンなどが挙げられる。このうち、窒素およびアルゴンの濃度は特に十分に低減する必要があり、窒素およびアルゴンの合計の濃度は、好ましくは20体積%以下、より好ましくは10体積%以下、さらに好ましくは5体積%以下である。二酸化炭素以外のガス濃度は0体積%であってもよい。
なお、高炉ガスから二酸化炭素ガスを分離した残部ガス(以下、分離後残ガスともいう)は、例えば、図1に示すように、高炉ガスの製鉄所内への供給ラインに合流させればよい。また、分離後残ガスは、主に一酸化炭素および水素から構成され、一部に、窒素やアルゴンなどが含まれる場合がある。
なお、再生メタンガスの生成に使用する水素は、外部から供給すればよいが、二酸化炭素を極力発生しない製法が好ましい。例えば、水の電気分解などを用いればよい。また、水素ガスは、水素濃度:100体積%のガスでなくてもよいが、再生メタンガスのメタン濃度を高濃度とするため、水素濃度が高いガス、具体的には、水素濃度が80体積%以上の水素ガスを用いることが好ましい。水素濃度は、より好ましくは90体積%以上、さらに好ましくは95体積%以上である。水素濃度は100体積%であってもよい。水素以外の残部ガスとしては、例えば、COやCO2、H2S、CH4、N2などが挙げられる。
また、その他の吹込み還元材、例えば、微粉炭や廃プラスチック、水素ガスや一酸化炭素ガス等の還元ガスを一緒に使用してもよい。なお、その他の吹込み還元材の高炉内への吹込み量は、合計で150kg/t以下とすることが好適である。ここで、「kg/t」という単位は、溶銑1tを製造する際に高炉内へ吹込むその他の吹込み還元材の量である。
その他の吹込み還元材を使用する場合、メタンガス供給部に、その他の吹込み還元材も一緒に導入してもよい。また、その他の吹込み還元材として、微粉炭や廃プラスチックを用いる場合には、メタンガス供給部とは別に、微粉炭や廃プラスチックを流通させる別の還元材供給部(路)を設けることが好ましい。この場合、ガス吹込装置3は、例えば、図2(b)に示すように、中心管4-1および外管4-3に加え、中心管4-1と外管4-3の間に内管4-2を設けた同軸多重管により構成される。そして、別の還元材供給部となる中心管内路から微粉炭や廃プラスチックなどのその他の吹込み還元材が導入される。また、メタンガス供給部となる中心管4-1と外管4-3との間の環状管路からメタンガスが導入され、酸素ガス供給部となる内管4-2と外管4-3との間の環状管路から酸素が導入される。
なお、送風ガスに常温の酸素ガスを用いると着火性が悪くなるので、ガス吹込装置4の酸素ガス供給部を構成する外管の吐出部を多孔構造とし、酸素ガスと吹込み還元材の混合を促進することが好ましい。
なお、外部メタンガスとしては、例えば、化石燃料由来のメタンガスなどが挙げられる。
すなわち、送風ガスとして、熱風(1200℃程度に加熱した空気)を使用する場合、燃焼ガス中に燃焼反応に寄与しない50体積%程度の窒素が含まれるため、レースウェイにおける火炎の温度は高温となり難い。そのため、高炉内に吹込む還元材の多くを微粉炭からメタンガスに置換すると、上記した微粉炭-酸素の反応における反応熱と、メタンガス-酸素の反応における反応熱との差によって、羽口先温度が低下して、羽口先温度が適正温度の下限である2000℃を下回ってしまう。その結果、高炉下部の着熱不足や圧損上昇、出滓不良などの操業トラブルを招く。
一方、送風ガスとして、酸素ガスを使用することにより、燃焼反応に寄与しない窒素ガスの混入を抑制できるので、羽口先温度を十分な温度まで昇温することが可能となる。すなわち、レースウェイにおける火炎の温度を、熱風を使用する場合と比べて高温とすることができる。そのため、羽口から還元材として多量のメタンを吹込む場合にも、羽口先温度を適正範囲である2000℃~2400℃の範囲に制御することが可能となる。
以上のことから、本発明の一実施形態に係る高炉の操業方法では、送風ガスとして、酸素ガスを使用することが重要となる。
図8に示したように、熱風送風条件では、循環炭素原子の原単位が52kg/t以上(すなわち、再生メタンの吹き込み量が97Nm3/t以上)になると、羽口先温度が適正温度の下限である2000℃を下回ってしまうことがわかる。このように、一般的に用いられている熱風送風条件では、循環炭素原子の原単位を、55kg/t以上、特には、60kg/t以上にすると、羽口先温度の低下を招き、安定した操業を行うことができない。
一方、酸素ガス送風条件では、循環炭素原子の原単位を55kg/t以上、さらには、60kg/t以上としても、羽口先温度を2000℃以上に保つことが可能であることがわかる。
なお、図8の酸素ガス送風条件では、循環炭素原子の原単位が55kg/t~80kg/tの範囲で羽口先温度が適正温度の上限である2400℃を超えている。これは、吹込み還元材に、全量、再生メタンを使用しているためであり、吹込み還元材の一部に外部メタンガスを使用する場合には、循環炭素原子の原単位が55kg/t~80kg/tの範囲においても羽口先温度を2000℃~2400℃の範囲に制御することが可能である。また、吹込み還元材に、全量、再生メタンを使用する場合にも、酸素ガスの酸素濃度を調整することによって、羽口先温度を2000℃~2400℃の範囲に制御することが可能である。
なお、酸素ガス中の酸素以外の残部ガスとしては、例えば、窒素や二酸化炭素、アルゴン等が含まれていてもよい。
すなわち、吹込みメタンガス中のメタン濃度が低いと、高炉内への吹込むガス量、ひいては、高炉の圧力損失が増大して、生産性が低下するおそれがある。また、上記したガス循環を繰り返す間に、再生メタンガス中のメタン濃度が相対的に低下する。そのため、吹込みメタンガスのメタン濃度は、80体積%以上とすることが好ましい。吹込みメタンガスのメタン濃度は、より好ましくは90体積%以上、さらに好ましくは95体積%以上である。吹込みメタンガスのメタン濃度は100体積%であってもよい。
同様の理由から、再生メタンガスおよび外部メタンガスのメタン濃度もそれぞれ、80体積%以上とすることが好ましい。再生メタンガスおよび外部メタンガスのメタン濃度はそれぞれ、より好ましくは90体積%以上、さらに好ましくは95体積%以上である。再生メタンガスおよび外部メタンガスのメタン濃度はそれぞれ100体積%であってもよい。
なお、吹込みメタンガス、再生メタンガスおよび外部メタンガス中のメタン以外の残部ガスとしては、例えば、一酸化炭素、二酸化炭素、水素および炭化水素、ならびに、窒素などの不純物ガスが含まれていてもよい。
また、再生メタンガスのメタン濃度が低下した場合には、例えば、吹込みメタンガスにおける再生メタンガスの割合を低下させる一方、メタン濃度の高い外部メタンガスの割合を増加させることによって、吹込みメタンガス中のメタン濃度を高く保つことが可能である。
ここで、循環炭素原子の原単位とは、溶銑1tを製造する際に還元材として高炉内に吹込まれる再生メタンガスの炭素換算質量であり、次式により求める。
[循環炭素原子の原単位(kg/t)]=[還元材として高炉内に吹込まれる再生メタンガス中のメタンの質量(kg)]×(12/16)÷[溶銑製造量(t)]
なお、還元材における循環炭素原子の原単位は、吹込み還元材における再生メタンガスの羽口への吹き込み量を調整することにより、制御することができる。
特に、吹込みメタンガスにおける再生メタンガスの割合を80体積%以上、好ましくは90体積%以上とすることにより、高い二酸化炭素の排出量削減効果が得られる。
本発明の一実施形態に従う高炉附帯設備は、上記の高炉の操業方法に用いる高炉附帯設備であって、
前記副生ガスから前記二酸化炭素ガスを分離する、ガス分離装置と、
前記二酸化炭素ガスから前記再生メタンガスを生成する、メタンガス生成装置と、
前記再生メタンガスを前記高炉の羽口に導入するメタンガス供給部、および、前記酸素ガスを前記高炉の羽口に導入する酸素ガス供給部を有する、ガス吹込装置と、
をそなえる、高炉附帯設備である。
また、ガス分離装置は、例えば、二酸化炭素ガス取入れ部と、反応部とを有する。反応部で分離した二酸化炭素ガスは、メタンガス供給部へ送給される。なお、分離後残ガスは、例えば、図1に示すように、高炉ガスの製鉄所内への供給ラインに合流させればよい。
また、その他の吹込み還元材、例えば、微粉炭や廃プラスチック、水素ガスや一酸化炭素ガス等の還元ガスを一緒に使用してもよい。
その他の吹込み還元材を使用する場合、メタンガス供給部に、その他の吹込み還元材も一緒に導入してもよい。また、その他の吹込み還元材として、微粉炭や廃プラスチックを用いる場合には、メタンガス供給部とは別に、微粉炭や廃プラスチックを流通させる別の還元材供給部(路)を設けることが好ましい。この場合、ガス吹込装置は、例えば、図2(b)に示すように、中心管4-1および外管4-3に加え、中心管4-1と外管4-3の間に内管4-2を設けた同軸多重管により構成される。そして、別の還元材供給部となる中心管内路から微粉炭や廃プラスチックなどのその他の吹込み還元材が導入される。また、メタンガス供給部となる中心管4-1と外管4-3との間の環状管路からメタンガスが導入され、酸素ガス供給部となる内管4-2と外管4-3との間の環状管路から酸素が導入される。
なお、図5~7中、符号9は熱風炉、11は熱風炉排ガス用脱水装置である。
発明例2では、図3に模式的に示した高炉および高炉附帯設備を用い、高炉ガスの一部から二酸化炭素ガスを分離し、二酸化炭素ガスから再生メタンガスを生成し、高炉ガスの余剰分を製鉄所内に供給した。また、吹込み還元材には、全量、再生メタンガスを使用し、再生メタンガスの余剰分が発生しないように、再生メタンガスの生成量を調整した。
発明例3では、図4に模式的に示した高炉および高炉附帯設備を用い、高炉ガスの全量から二酸化炭素ガスを分離し、二酸化炭素ガスから再生メタンガスを生成した。また、吹込み還元材には、全量、再生メタンガスを使用し、再生メタンガスの余剰分を、製鉄所内に供給した。
発明例4および5では、図3に模式的に示した高炉および高炉附帯設備を用い、高炉ガスの一部から二酸化炭素ガスを分離し、二酸化炭素ガスから再生メタンガスを生成し、高炉ガスの余剰分を製鉄所内に供給した。また、吹込み還元材には、再生メタンガスに加え、一部、化石燃料由来の外部メタンガスを使用した。
比較例2では、図6に模式的に示した高炉および高炉附帯設備を用いた。ここでは、送風ガスとして、熱風(1200℃程度に加熱した空気(酸素濃度:21~25体積%程度))を、吹込み還元材として再生メタンガスをそれぞれ使用した。また、再生メタンガスの生成前に、高炉ガスから一酸化炭素および二酸化炭素を分離し、分離した一酸化炭素および二酸化炭素から、再生メタンガスを生成した。
比較例3では、図7に模式的に示した高炉および高炉附帯設備を用いた。ここでは、送風ガスとして、熱風(1200℃程度に加熱した空気(酸素濃度:21~25体積%程度))を、吹込み還元材として再生メタンガスをそれぞれ使用した。また、再生メタンガスの生成では、高炉ガスではなく、熱風炉の副生ガス(以下、熱風炉排ガスともいう)を使用した。そして、熱風炉排ガスから二酸化炭素を分離し、分離した二酸化炭素から、再生メタンガスを生成した。
比較例4では、図1に模式的に示した高炉および高炉附帯設備を用い、高炉ガスの一部から再生メタンガスを生成し、高炉ガスの余剰分を製鉄所内に供給した。また、吹込み還元材には、再生メタンガスに加え、一部、化石燃料由来の外部メタンガスを使用した。
比較例5では、比較例2と同様、図6に模式的に示した高炉および高炉附帯設備を用いた。なお、比較例5は、吹込みメタンガス比を増加させたこと以外は、比較例2と同じ条件である。
なお、「kcal/t」という単位は、溶銑1tを製造する際に発生するヒートロス量(kcal)を意味するものである。同様に、コークス比などで使用する「kg/t」という単位は、溶銑1tを製造する際に使用されるコークスの量(kg)などを意味するものである。また、吹込みメタン比などに使用する「Nm3/t」という単位も、溶銑1tを製造する際に高炉内に吹込まれる吹込みメタンガス中のメタン量(Nm3)などを意味するものである(なお、吹込みメタン比は、再生メタン比および外部メタン比の和であるが、再生メタンガスには、メタン以外の微量の残部ガスが含まれている。また、表1中に表示している再生メタン比および外部メタン比の値は、いずれもメタン以外の微量の残部ガスを除いたメタン量であり、小数点以下第1位を四捨五入した値である。そのため、表1中の吹込みメタン比と、再生メタン比および外部メタン比の和が一致しない場合がある。)。
また、表1中の「高炉InputC」は、溶銑1tを製造する際に使用する外部由来の(具体的には、コークス、微粉炭および外部メタンガスに含まれる)炭素原子の質量(kg)を意味するものである。さらに、表1中の「高炉ガスの余剰量(製鉄所内供給量)」には、分離後残ガスも含まれる。
一方、比較例1~4では、十分な二酸化炭素量の削減効果が得られなかった。また、比較例5では、吹込みメタンガス量の増加により、羽口先温度が2000℃未満になったため、安定した高炉の操業を行うことができなかった。
2:羽口
3:メタンガス生成装置
4:ガス吹込装置
4-1:中心管
4-2:内管
4-3:外管
5:第1の脱水装置
6:第2の脱水装置
7:バーナー
8:レースウェイ
9:熱風炉
10:ガス分離装置
11:熱風炉排ガス用脱水装置
Claims (6)
- 高炉の操業方法であって、
前記高炉から排出される副生ガスから二酸化炭素ガスを分離する工程と、
前記二酸化炭素ガスから再生メタンガスを生成する工程と、
前記高炉の羽口から前記高炉内に送風ガスおよび還元材を吹込む工程と、を有し、
前記送風ガスとして酸素ガスを用い、かつ、前記還元材の少なくとも一部に前記再生メタンガスを用い、
溶銑1tを製造する際に還元材として高炉内に吹込まれる再生メタンガスの炭素換算質量である循環炭素原子の原単位が55kg/t以上である、高炉の操業方法。 - 前記還元材における循環炭素原子の原単位が60kg/t以上である、請求項1に記載の高炉の操業方法。
ここで、循環炭素原子の原単位は、次式により求める。
[循環炭素原子の原単位(kg/t)]=[還元材として高炉内に吹込まれる再生メタンガス中のメタンの質量(kg)]×(12/16)÷[溶銑製造量(t)] - 前記酸素ガスの酸素濃度が80体積%以上である、請求項1または2に記載の高炉の操業方法。
- 前記副生ガスの一部から前記二酸化炭素ガスを分離し、前記副生ガスの余剰分を製鉄所内に供給する、請求項1~3のいずれかに記載の高炉の操業方法。
- 前記再生メタンガスの余剰分を製鉄所内に供給する、請求項1~4のいずれかに記載の高炉の操業方法。
- 請求項1~5のいずれかに記載の高炉の操業方法に用いる高炉附帯設備であって、
前記副生ガスから前記二酸化炭素ガスを分離する、ガス分離装置と、
前記二酸化炭素ガスから前記再生メタンガスを生成する、メタンガス生成装置と、
前記再生メタンガスを前記高炉の羽口に導入するメタンガス供給部、および、前記酸素ガスを前記高炉の羽口に導入する酸素ガス供給部を有する、ガス吹込装置と、
をそなえる、高炉附帯設備。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020077727 | 2020-04-24 | ||
JP2020077727 | 2020-04-24 | ||
PCT/JP2021/000401 WO2021215059A1 (ja) | 2020-04-24 | 2021-01-07 | 高炉の操業方法および高炉附帯設備 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2021215059A1 JPWO2021215059A1 (ja) | 2021-10-28 |
JP7028367B1 true JP7028367B1 (ja) | 2022-03-02 |
Family
ID=78270424
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021516509A Active JP7028367B1 (ja) | 2020-04-24 | 2021-01-07 | 高炉の操業方法および高炉附帯設備 |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP4141130B1 (ja) |
JP (1) | JP7028367B1 (ja) |
KR (1) | KR20220129625A (ja) |
CN (1) | CN115315532A (ja) |
TW (1) | TWI785506B (ja) |
WO (1) | WO2021215059A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7544015B2 (ja) * | 2021-10-29 | 2024-09-03 | Jfeスチール株式会社 | メタンガス生成装置の操業方法、高炉の操業方法、メタンガスの製造方法、溶銑の製造方法およびメタンガス生成装置 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS498608B1 (ja) * | 1966-12-16 | 1974-02-27 | ||
JPS63171804A (ja) * | 1987-01-09 | 1988-07-15 | Nkk Corp | 酸素高炉ガスの利用方法 |
JPH07167569A (ja) * | 1993-09-21 | 1995-07-04 | Gas Res Inst | 酸素と燃料ガス導入用羽口とその導入法 |
JP2010261095A (ja) * | 2009-05-03 | 2010-11-18 | Npo Seitetsu Carbon Offset Gijutsu Kenkyukai | 高炉およびその操業方法 |
JP2011225969A (ja) * | 2010-03-29 | 2011-11-10 | Jfe Steel Corp | 高炉又は製鉄所の操業方法 |
JP2014005510A (ja) * | 2012-06-26 | 2014-01-16 | Jfe Steel Corp | 高炉操業方法 |
JP2015196619A (ja) * | 2014-04-01 | 2015-11-09 | 株式会社Ihi | 二酸化炭素固定システム |
JP2016531973A (ja) * | 2013-07-09 | 2016-10-13 | ミツビシ ヒタチ パワー システムズ ヨーロッパ ゲーエムベーハー | メタネーション方法および電力プラント煙道ガスの二酸化炭素メタネーションを備える電力プラント |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011108546A1 (ja) * | 2010-03-02 | 2011-09-09 | Jfeスチール株式会社 | 高炉の操業方法、製鉄所の操業方法、および酸化炭素含有ガスの利用方法 |
EP2886666B1 (en) * | 2013-12-20 | 2018-09-19 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Method for operating a top gas recycling blast furnace installation |
WO2015146872A1 (ja) * | 2014-03-26 | 2015-10-01 | Jfeスチール株式会社 | 酸素高炉の操業方法 |
DE102014216336A1 (de) * | 2014-08-18 | 2016-02-18 | Küttner Holding GmbH & Co. KG | Verfahren zum Einblasen von Ersatzreduktionsmitteln in einen Hochofen |
JP6256710B2 (ja) * | 2015-05-28 | 2018-01-10 | Jfeスチール株式会社 | 酸素高炉の操業方法 |
DE102016008915A1 (de) * | 2016-07-21 | 2018-01-25 | Helmut Aaslepp | CO2-Emissionsfreies Hochofenverfahren |
DE102017006067A1 (de) * | 2017-06-27 | 2018-12-27 | Helmut Aaslepp | Sauerstoff-Hochofen mit Top Gas Recycling |
-
2021
- 2021-01-07 EP EP21792587.4A patent/EP4141130B1/en active Active
- 2021-01-07 JP JP2021516509A patent/JP7028367B1/ja active Active
- 2021-01-07 WO PCT/JP2021/000401 patent/WO2021215059A1/ja active Application Filing
- 2021-01-07 CN CN202180020762.6A patent/CN115315532A/zh active Pending
- 2021-01-07 KR KR1020227029107A patent/KR20220129625A/ko not_active Application Discontinuation
- 2021-02-23 TW TW110106217A patent/TWI785506B/zh active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS498608B1 (ja) * | 1966-12-16 | 1974-02-27 | ||
JPS63171804A (ja) * | 1987-01-09 | 1988-07-15 | Nkk Corp | 酸素高炉ガスの利用方法 |
JPH07167569A (ja) * | 1993-09-21 | 1995-07-04 | Gas Res Inst | 酸素と燃料ガス導入用羽口とその導入法 |
JP2010261095A (ja) * | 2009-05-03 | 2010-11-18 | Npo Seitetsu Carbon Offset Gijutsu Kenkyukai | 高炉およびその操業方法 |
JP2011225969A (ja) * | 2010-03-29 | 2011-11-10 | Jfe Steel Corp | 高炉又は製鉄所の操業方法 |
JP2014005510A (ja) * | 2012-06-26 | 2014-01-16 | Jfe Steel Corp | 高炉操業方法 |
JP2016531973A (ja) * | 2013-07-09 | 2016-10-13 | ミツビシ ヒタチ パワー システムズ ヨーロッパ ゲーエムベーハー | メタネーション方法および電力プラント煙道ガスの二酸化炭素メタネーションを備える電力プラント |
JP2015196619A (ja) * | 2014-04-01 | 2015-11-09 | 株式会社Ihi | 二酸化炭素固定システム |
Also Published As
Publication number | Publication date |
---|---|
EP4141130B1 (en) | 2024-05-29 |
JPWO2021215059A1 (ja) | 2021-10-28 |
EP4141130A1 (en) | 2023-03-01 |
EP4141130A4 (en) | 2023-06-28 |
TW202140802A (zh) | 2021-11-01 |
WO2021215059A1 (ja) | 2021-10-28 |
CN115315532A (zh) | 2022-11-08 |
TWI785506B (zh) | 2022-12-01 |
KR20220129625A (ko) | 2022-09-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7028364B2 (ja) | 高炉の操業方法および高炉附帯設備 | |
JP7192899B2 (ja) | 高炉の操業方法および高炉附帯設備 | |
JP7028367B1 (ja) | 高炉の操業方法および高炉附帯設備 | |
JP7028363B2 (ja) | 高炉の操業方法および高炉附帯設備 | |
JP7131694B2 (ja) | 高炉の操業方法および高炉附帯設備 | |
JP7192901B2 (ja) | 高炉の操業方法および高炉附帯設備 | |
JP2021152211A (ja) | 高炉の操業方法および高炉附帯設備 | |
WO2021149401A1 (ja) | 高炉の操業方法および高炉附帯設備 | |
JP7192845B2 (ja) | 高炉の操業方法および高炉附帯設備 | |
JP7131698B2 (ja) | 高炉の操業方法および高炉附帯設備 | |
KR102719154B1 (ko) | 고로의 조업 방법 및 고로 부대 설비 | |
KR102721902B1 (ko) | 고로의 조업 방법 및 고로 부대 설비 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210322 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211130 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211222 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220118 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220131 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7028367 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |