JP7025349B2 - 構造的ldpcの符号化、復号化方法および装置 - Google Patents
構造的ldpcの符号化、復号化方法および装置 Download PDFInfo
- Publication number
- JP7025349B2 JP7025349B2 JP2018560038A JP2018560038A JP7025349B2 JP 7025349 B2 JP7025349 B2 JP 7025349B2 JP 2018560038 A JP2018560038 A JP 2018560038A JP 2018560038 A JP2018560038 A JP 2018560038A JP 7025349 B2 JP7025349 B2 JP 7025349B2
- Authority
- JP
- Japan
- Prior art keywords
- matrix
- upper left
- left corner
- submatrix
- sub
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 85
- 239000011159 matrix material Substances 0.000 claims description 962
- 238000009792 diffusion process Methods 0.000 claims description 257
- 238000007689 inspection Methods 0.000 claims description 44
- 230000001174 ascending effect Effects 0.000 claims description 12
- 238000012790 confirmation Methods 0.000 claims description 2
- 239000000470 constituent Substances 0.000 claims 1
- 125000004122 cyclic group Chemical group 0.000 description 16
- 238000012545 processing Methods 0.000 description 13
- 238000004364 calculation method Methods 0.000 description 12
- 238000013461 design Methods 0.000 description 12
- 238000004891 communication Methods 0.000 description 9
- 238000004422 calculation algorithm Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 6
- 230000009286 beneficial effect Effects 0.000 description 5
- 238000012937 correction Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- -1 Kb = Nb-Mb Substances 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 2
- 230000008520 organization Effects 0.000 description 2
- 230000007480 spreading Effects 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000010979 ruby Substances 0.000 description 1
- 229910001750 ruby Inorganic materials 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/63—Joint error correction and other techniques
- H03M13/635—Error control coding in combination with rate matching
- H03M13/6362—Error control coding in combination with rate matching by puncturing
- H03M13/6368—Error control coding in combination with rate matching by puncturing using rate compatible puncturing or complementary puncturing
- H03M13/6393—Rate compatible low-density parity check [LDPC] codes
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/03—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
- H03M13/05—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
- H03M13/11—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
- H03M13/1102—Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
- H03M13/1148—Structural properties of the code parity-check or generator matrix
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/03—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
- H03M13/033—Theoretical methods to calculate these checking codes
- H03M13/036—Heuristic code construction methods, i.e. code construction or code search based on using trial-and-error
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/03—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
- H03M13/05—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
- H03M13/11—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
- H03M13/1102—Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
- H03M13/1148—Structural properties of the code parity-check or generator matrix
- H03M13/116—Quasi-cyclic LDPC [QC-LDPC] codes, i.e. the parity-check matrix being composed of permutation or circulant sub-matrices
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/03—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
- H03M13/05—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
- H03M13/11—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
- H03M13/1102—Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
- H03M13/1148—Structural properties of the code parity-check or generator matrix
- H03M13/118—Parity check matrix structured for simplifying encoding, e.g. by having a triangular or an approximate triangular structure
- H03M13/1185—Parity check matrix structured for simplifying encoding, e.g. by having a triangular or an approximate triangular structure wherein the parity-check matrix comprises a part with a double-diagonal
- H03M13/1188—Parity check matrix structured for simplifying encoding, e.g. by having a triangular or an approximate triangular structure wherein the parity-check matrix comprises a part with a double-diagonal wherein in the part with the double-diagonal at least one column has an odd column weight equal or greater than three
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/61—Aspects and characteristics of methods and arrangements for error correction or error detection, not provided for otherwise
- H03M13/615—Use of computational or mathematical techniques
- H03M13/616—Matrix operations, especially for generator matrices or check matrices, e.g. column or row permutations
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/65—Purpose and implementation aspects
- H03M13/6508—Flexibility, adaptability, parametrability and configurability of the implementation
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/65—Purpose and implementation aspects
- H03M13/6508—Flexibility, adaptability, parametrability and configurability of the implementation
- H03M13/6516—Support of multiple code parameters, e.g. generalized Reed-Solomon decoder for a variety of generator polynomials or Galois fields
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Probability & Statistics with Applications (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Algebra (AREA)
- Computing Systems (AREA)
- Error Detection And Correction (AREA)
- Compression, Expansion, Code Conversion, And Decoders (AREA)
Description
構造的LDPC符号は、工業界で最も流行なLDPC符号であり、最も広い適用を有し、現在では、IEEE802.11n/ad、IEEE802.16eなどの国際規格に現れ、このようなLDPC符号は、また、学界では準巡回LDPC符号または多重辺タイプLDPC符号と呼ばれることが多い。
システムブロック符号の直接符号化方法は、1つの符号語xをN-M個の情報ビットsとM個の検査ビットcとに分割し、対応して、M×Nのパリティ検査行列Hを情報ビットと検査ビットにそれぞれ対応するM×(N-M)とM×Mサイズの2ブロックに分割し、すなわち、H=[A|B]である。H×x=0により、下記式が得られる。
LDPCパリティ検査行列のグラフィック表示形式は2部グラフである。2部グラフと検査行列との間には一対一で対応する関係を有し、1つのM*Nのパリティ検査行列Hにより、各Nビットを有する符号語はM個のパリティ検査セットの制約を満たすことを定義する。1つの2部グラフは、N個の変数ノードとM個のパリティ検査ノードとを含む。m個目の検査がn個目のビットに関し、すなわち、Hにおけるm行目n列目の要素Hm、n=1である場合、検査ノードmと変数ノードnとを接続する配線が1本ある。2部グラフにおいて、いずれかの同じ種類のノードの間に接続がなく、且つ、2部グラフにおける総辺数は検査行列における非ゼロ要素の個数に等しい。
各異なる拡散係数に同一の基本行列を用いることができなければ、各異なる符号長に対して、前記LDPC符号のエンコーダ/デコーダはいずれも1つの基本行列を記憶する必要があり、符号長が多い場合、多くの基本行列を記憶する必要があり、大きな記憶空間を占有し、またはハードウェアで実現される回路が複雑になる。
モジュロ(mod)方法は、下記のとおりであり、
モジュロ(mod)方法は、下記のとおりであり、
復号化に使用する基本行列Hbを確定し、そのうち、前記基本行列Hbは、組織ビットに対応するMb×KbのブロックAと、検査ビットに対応するMb×MbのブロックBとを含み、すなわち、Hb=[A,B]であり、そのうち、hbijは前記基本行列Hbのi行目とj列目の要素を示し、iは前記基本行列の行インデックスであり、jは前記基本行列の列インデックスであり、Kb=Nb-Mbであり、Kbは4以上の整数であり、Nbは3*Kb以上の整数であり、i=1,…,Mbであり、j=1,…,Nbであり、前記基本行列Hbは1つまたは複数のサブ行列を含み、前記サブ行列は左上隅サブ行列Hb1と左上隅サブ行列Hb2とを含み、そのうち、前記左上隅サブ行列Hb1および左上隅サブ行列Hb2の行数と列数はいずれも前記基本行列Hbの行数と列数よりも小さく、且つ、前記左上隅サブ行列Hb1は左上隅サブ行列Hb2の左上隅サブ行列であることと、
前記基本行列および前記基本行列Hbに対応する拡散係数Zにより、ビット数が予め設定された符号語に対して復号化演算を行い、元情報ビット系列を得て、そのうち、Zは1以上の正整数であることとを含む。
前記確定モジュールは符号化に使用する基本行列Hbを確定するように設けられ、そのうち、前記基本行列Hbは、組織ビットに対応するMb×KbのブロックAと、検査ビットに対応するMb×MbのブロックBとを含み、すなわち、Hb=[A,B]であり、そのうち、hbijは前記基本行列Hbのi行目とj列目の要素を示し、iは前記基本行列の行インデックスであり、jは前記基本行列の列インデックスであり、Kb=Nb-Mbであり、Kbは4以上の整数であり、Nbは3*Kb以上の整数であり、i=1,…,Mbであり、j=1,…,Nbであり、
前記基本行列Hbは1つまたは複数のサブ行列を含み、前記サブ行列は左上隅サブ行列Hb1と左上隅サブ行列Hb2とを含み、そのうち、前記左上隅サブ行列Hb1および左上隅サブ行列Hb2の行数と列数はいずれも前記基本行列Hbの行数と列数よりも小さく、且つ、前記左上隅サブ行列Hb1は左上隅サブ行列Hb2の左上隅サブ行列であり、
前記符号化モジュールは、前記基本行列および前記基本行列Hbに対応する拡散係数Zにより、元情報ビット系列に対してLDPC符号化演算を行い、符号語系列を得て、Zは1以上の正整数であるように設けられる。
前記確定モジュールは復号化に使用する基本行列Hbを確定するように設けられ、そのうち、前記基本行列Hbは、組織ビットに対応するMb×KbのブロックAと、検査ビットに対応するMb×MbのブロックBとを含み、すなわち、Hb=[A,B]であり、そのうち、hbijは前記基本行列Hbのi行目とj列目の要素を示し、iは前記基本行列の行インデックスであり、jは前記基本行列の列インデックスであり、Kb=Nb-Mbであり、Kbは4以上の整数であり、Nbは3*Kb以上の整数であり、i=1,…,Mbであり、j=1,…,Nbであり、前記基本行列Hbは1つまたは複数のサブ行列を含み、前記サブ行列は左上隅サブ行列Hb1と左上隅サブ行列Hb2とを含み、そのうち、前記左上隅サブ行列Hb1および左上隅サブ行列Hb2の行数と列数はいずれも前記基本行列Hbの行数と列数よりも小さく、且つ、前記左上隅サブ行列Hb1は左上隅サブ行列Hb2の左上隅サブ行列であり、
前記復号化モジュールは、前記基本行列および前記基本行列Hbに対応する拡散係数Zにより、ビット数が予め設定された符号語に対して復号化演算を行い、元情報ビット系列を得て、Zは1以上の正整数であるように設けられる。
符号化に使用する基本行列Hbを確定し、そのうち、前記基本行列Hbは、組織ビットに対応するMb×KbのブロックAと、検査ビットに対応するMb×MbのブロックBとを含み、すなわち、Hb=[A,B]であり、そのうち、hbijは前記基本行列Hbのi行目とj列目の要素を示し、iは前記基本行列の行インデックスであり、jは前記基本行列の列インデックスであり、Kb=Nb-Mbであり、Kbは4以上の整数であり、Nbは3*Kb以上の整数であり、i=1,…,Mbであり、j=1,…,Nbであり、前記基本行列Hbは1つまたは複数のサブ行列を含み、前記サブ行列は左上隅サブ行列Hb1と左上隅サブ行列Hb2とを含み、そのうち、前記左上隅サブ行列Hb1および左上隅サブ行列Hb2の行数と列数はいずれも前記基本行列Hbの行数と列数よりも小さく、且つ、前記左上隅サブ行列Hb1は左上隅サブ行列Hb2の左上隅サブ行列であるステップと、前記基本行列および前記基本行列Hbに対応する拡散係数Zにより、元情報ビット系列に対してLDPC符号化演算を行い、符号語系列を得て、そのうち、Zは1以上の正整数であるステップとを実行するためのプログラムコードを記憶するように設けられる。
復号化に使用する基本行列Hbを確定し、そのうち、前記基本行列Hbは、組織ビットに対応するMb×KbのブロックAと、検査ビットに対応するMb×MbのブロックBとを含み、すなわち、Hb=[A,B]であり、そのうち、hbijは前記基本行列Hbのi行目とj列目の要素を示し、iは前記基本行列の行インデックスであり、jは前記基本行列の列インデックスであり、Kb=Nb-Mbであり、Kbは4以上の整数であり、Nbは3*Kb以上の整数であり、i=1,…,Mbであり、j=1,…,Nbであり、前記基本行列Hbは1つまたは複数のサブ行列を含み、前記サブ行列は左上隅サブ行列Hb1と左上隅サブ行列Hb2とを含み、そのうち、前記左上隅サブ行列Hb1および左上隅サブ行列Hb2の行数と列数はいずれも前記基本行列Hbの行数と列数よりも小さく、且つ、前記左上隅サブ行列Hb1は左上隅サブ行列Hb2の左上隅サブ行列であるステップと、
前記基本行列および前記基本行列Hbに対応する拡散係数Zにより、ビット数が予め設定された符号語に対して復号化演算を行い、元情報ビット系列を得て、そのうち、Zは1以上の正整数であるステップとを実行するためのプログラムコードを記憶するように設けられる。
符号化に使用する基本行列Hbを確定し、そのうち、前記基本行列Hbは、組織ビットに対応するMb×KbのブロックAと、検査ビットに対応するMb×MbのブロックBとを含み、すなわち、Hb=[A,B]であり、そのうち、hbijは前記基本行列Hbのi行目とj列目の要素を示し、iは前記基本行列の行インデックスであり、jは前記基本行列の列インデックスであり、Kb=Nb-Mbであり、Kbは4以上の整数であり、Nbは3*Kb以上の整数であり、i=1,…,Mbであり、j=1,…,Nbであり、前記基本行列Hbは1つまたは複数のサブ行列を含み、前記サブ行列は左上隅サブ行列Hb1と左上隅サブ行列Hb2とを含み、そのうち、前記左上隅サブ行列Hb1および左上隅サブ行列Hb2の行数と列数はいずれも前記基本行列Hbの行数と列数よりも小さく、且つ、前記左上隅サブ行列Hb1は左上隅サブ行列Hb2の左上隅サブ行列であるステップと、前記基本行列および前記基本行列Hbに対応する拡散係数Zにより、元情報ビット系列に対してLDPC符号化演算を行い、符号語系列を得て、そのうち、Zは1以上の正整数であるステップとを実行するためのプログラムコードを記憶するように設けられる。
復号化に使用する基本行列Hbを確定し、そのうち、前記基本行列Hbは、組織ビットに対応するMb×KbのブロックAと、検査ビットに対応するMb×MbのブロックBとを含み、すなわち、Hb=[A,B]であり、そのうち、hbijは前記基本行列Hbのi行目とj列目の要素を示し、iは前記基本行列の行インデックスであり、jは前記基本行列の列インデックスであり、Kb=Nb-Mbであり、Kbは4以上の整数であり、Nbは3*Kb以上の整数であり、i=1,…,Mbであり、j=1,…,Nbであり、前記基本行列Hbは1つまたは複数のサブ行列を含み、前記サブ行列は左上隅サブ行列Hb1と左上隅サブ行列Hb2とを含み、そのうち、前記左上隅サブ行列Hb1および左上隅サブ行列Hb2の行数と列数はいずれも前記基本行列Hbの行数と列数よりも小さく、且つ、前記左上隅サブ行列Hb1は左上隅サブ行列Hb2の左上隅サブ行列であるステップと、
前記基本行列および前記基本行列Hbに対応する拡散係数Zにより、ビット数が予め設定された符号語に対して復号化演算を行い、元情報ビット系列を得て、そのうち、Zは1以上の正整数であるステップとを実行するためのプログラムコードを記憶するように設けられてもよい。
形態1:モジュロ(mod)方法:
Claims (22)
- 構造的低密度パリティ検査符号LDPCの符号化方法であって、
符号化に使用する基本行列Hbを確定し、前記基本行列Hbは、組織ビットに対応するMb×KbのブロックAと、検査ビットに対応するMb×MbのブロックBとを含み、すなわち、Hb=[A,B]であり、hbijは前記基本行列Hbのi行目とj列目の要素を示し、iは前記基本行列の行インデックスであり、jは前記基本行列の列インデックスであり、Kb=Nb-Mbであり、Kbは4以上の整数であり、Nbは3*Kb以上の整数であり、i=1,…,Mbであり、j=1,…,Nbであり、
前記基本行列Hbは1つまたは複数のサブ行列を含み、前記サブ行列は左上隅サブ行列Hb1と左上隅サブ行列Hb2とを含み、前記左上隅サブ行列Hb1および左上隅サブ行列Hb2の行数と列数はいずれも前記基本行列Hbの行数と列数よりも小さく、且つ、前記左上隅サブ行列Hb1は左上隅サブ行列Hb2の左上隅サブ行列であることと、
前記左上隅サブ行列Hb1は、前記行列Hbの最初の4行と最初のKb+4列とのインタセクションから構成され、前記左上隅サブ行列Hb1の各行の非零Z*Z正方行列に対応する要素の個数はいずれもKb+2以下Kb-2以上であり、前記左上隅サブ行列Hb1の最後の4列の正方行列は、1つの左下三角行列または準左下三角行列であり、
前記Hb1の左下三角行列とは、右上三角位置における全ての要素がZ*Z零正方行列に対応する要素であり、対角線位置における全ての要素がZ*Z単位行列に対応する要素であることを特徴とする正方行列を意味し、
前記Hb1の準左下三角行列は、1つのL×L右上角サブ正方行列を含み、且つ、前記右上角サブ正方行列が1つの左下三角行列であることを特徴とする4×4の正方行列であり、ここで、前記右上角サブ正方行列は、Hb1の最初のL行と最後のL列とのインタセクションから構成され、L=2または3であり、
前記基本行列および前記基本行列Hbに対応する拡散係数Zにより、元情報ビット系列に対してLDPC符号化演算を行い、符号語系列を得て、Zは1以上の正整数であることと、
を含む、構造的低密度パリティ検査符号LDPCの符号化方法。 - 前記元情報ビット系列は、(Nb-Mb)×Zビットの系列であり、前記ビット符号語系列はNb×Zビットである、請求項1に記載の方法。
- 前記左上隅サブ行列Hb2は前記行列Hbの最初のKb行と最初の2*Kb列とのインタセクションから構成され、前記左上隅サブ行列Hb2の最初の4行と最後のKb-4列とのインタセクションから構成されるサブ行列の全ての要素は、いずれもZ*Z零正方行列に対応する要素であり、前記左上隅サブ行列Hb2の最後のKb-4行と最後のKb-4列とのインタセクションから構成されるサブ行列は、サイズが(Kb-4)*(Kb-4)の左下三角行列または準左下三角行列であり、前記左上隅サブ行列Hb2の最後のKb-4行とKb+1列目~Kb+3列目とのインタセクションから構成されるサブ行列の全ての要素は、いずれもZ*Z零正方行列に対応する要素であり、
左上隅サブ行列Hb1の最後の4列の正方行列が1つの下三角行列であると、前記左上隅サブ行列Hb2の最後のKb-4行、Kb+4列目には非Z*Z零正方行列に対応する要素が1つのみあり、左上隅サブ行列Hb1の最後の4列の正方行列が1つの準下三角行列であると、前記左上隅サブ行列Hb2の最後のKb-4行、Kb+4列目の全ての要素はいずれもZ*Z零正方行列に対応する要素であり、
前記左上隅サブ行列Hb2の最後のKb-4行と最初のKb列とのインタセクションから1つのサブ行列を構成し、このサブ行列において、各行の非Z*Z零正方行列に対応する要素の個数はいずれもKb-2以下であり、
Nbは3*Kb以上である、請求項1に記載の方法。 - 前記拡散係数Zは1組の確定値セット{z1,z2,z3…,zv}をサポートし、z1、z2、…、zvは昇順に配列され、zr、zs、zt、zuは前記確定値セットにおける4つの確定値の拡散係数でz1≦zr≦zs≦zt≦zu≦zvを満たし、V、r、s、t、uは下付き文字で1≦r≦s≦t≦u≦Vであり、Vは2以上の整数であり、
z1≦Z=zi<zrである場合、拡散係数Z=ziおよび基本行列Hbに対応するLDPC符号について、各LDPC符号語における全ての重量が2よりも大きい符号語ビットにおいて、少なくとも1つのビットのgirthは4に等しく、拡散係数Z=ziおよび最も重いR列を削除した基本行列Hbに対応するLDPC符号について、各LDPC符号語における全ての重量が2よりも大きい符号語ビットのgirthはいずれも6に等しく、RはKb/2以下であり、
zr≦Z=zi<zsである場合、拡散係数Z=ziおよび基本行列Hbに対応するLDPC符号について、各LDPC符号語における全ての重量が2よりも大きい符号語ビットのgirthはいずれも6に等しく、
zs≦Z=zi<ztである場合、拡散係数Z=ziおよび基本行列Hbに対応するLDPC符号について、各LDPC符号語における全ての重量が2よりも大きい全ての組織ビットのgirthはいずれも6に等しく、各LDPC符号語における少なくとも1つの重量が2よりも大きい検査ビットのgirthは8以上であり、
zt≦Z=zi<zuである場合、拡散係数Z=ziおよび基本行列Hbに対応するLDPC符号について、各LDPC符号語における全ての重量が2よりも大きい符号語ビットのgirthはいずれも8に等しく、
zu≦Z=zi<zvである場合、拡散係数Z=ziおよび基本行列Hbに対応するLDPC符号について、各LDPC符号語における全ての重量が2よりも大きい組織ビットのgirthはいずれも8に等しく、各LDPC符号語における少なくとも1つの重量が2よりも大きい検査ビットのgirthは10以上であり、
1つのLDPC符号語の各符号語ビットはパリティ検査行列の各列に対応し、前記パリティ検査行列は、対応する拡散係数Z=ziおよび基本行列Hbにより確定され、各符号語ビットの重量とは、対応する列における非ゼロ要素の個数を意味し、且つ、i=1,2,…,Vである、請求項1~請求項3のいずれか一項に記載の方法。 - 前記基本行列Hbは、左上隅サブ行列Hb3をさらに含み、
該左上隅サブ行列Hb3は、前記基本行列Hbの最初の2*Kb行と最初の3*Kb列とのインタセクションから構成され、Hb3の最後のKb行と最後のKb列とのインタセクションから構成されるサブ行列はサイズがKb*Kbの単位行列であり、前記Hb3の単位行列は1つのKb×Kb行列であり、且つ、対角線位置における全ての要素がZ*Z単位行列に対応する要素であり、非対角線位置における全ての要素がZ*Z零行列に対応する要素であり、
Hb3の最初のKb行と最後のKb列とのインタセクションから構成されるサブ行列の全ての要素は、いずれもZ*Z零正方行列に対応する要素であり、
Hb3の最後のKb行、Kb+1列目~2*Kb列目から1つのサブ行列を構成し、該サブ行列のL1列において、各列における全ての非零正方行列に対応する要素は1つのみあり、このサブ行列の残りのKb-L1列における全ての要素は、いずれもZ*Z零正方行列に対応する要素であり、L1は0以上Kb未満の整数であり、
Nbは3*Kb以上である、請求項3に記載の方法。 - Nbは、区間[3*Kb,12*Kb]から値をとる1つの正整数である、請求項1~請求項3のいずれか一項に記載の方法。
- エンハンスメント型モバイルブロードバンドeMMBのシーンおよび超高信頼低遅延URLLCのシーンでは、異なるKbの値が用いられる、請求項1に記載の方法。
- 前記基本行列Hbのg行目の非Z*Z零正方行列に対応する要素の個数は、g+1行目の非Z*Z零正方行列に対応する要素の個数以下であり、g=1,2,…,Nb-1である、請求項1~請求項3のいずれか一項に記載の方法。
- 前記基本行列Hbのj列目における全ての非零正方行列に対応する要素はLj個であり、上から下へ1つ目の要素は0であり、Ljは1以上の正整数であり、j=1,…,Nbである、請求項1~3のいずれか一項に記載の方法。
- 構造的低密度パリティ検査符号LDPCの復号化方法であって、
復号化に使用する基本行列Hbを確定し、前記基本行列Hbは、組織ビットに対応するMb×KbのブロックAと、検査ビットに対応するMb×MbのブロックBとを含み、すなわち、Hb=[A,B]であり、hbijは前記基本行列Hbのi行目とj列目の要素を示し、iは前記基本行列の行インデックスであり、jは前記基本行列の列インデックスであり、Kb=Nb-Mbであり、Kbは4以上の整数であり、Nbは3*Kb以上の整数であり、i=1,…,Mbであり、j=1,…,Nbであり、
前記基本行列Hbは1つまたは複数のサブ行列を含み、前記サブ行列は左上隅サブ行列Hb1と左上隅サブ行列Hb2とを含み、前記左上隅サブ行列Hb1および左上隅サブ行列Hb2の行数と列数はいずれも前記基本行列Hbの行数と列数よりも小さく、且つ、前記左上隅サブ行列Hb1は左上隅サブ行列Hb2の左上隅サブ行列であることと、
前記左上隅サブ行列Hb1は、前記行列Hbの最初の4行と最初のKb+4列とのインタセクションから構成され、前記左上隅サブ行列Hb1の各行の非零Z*Z正方行列に対応する要素の個数はいずれもKb+2以下Kb-2以上であり、前記左上隅サブ行列Hb1の最後の4列の正方行列は、1つの左下三角行列または準左下三角行列であり、
前記Hb1の左下三角行列とは、右上三角位置における全ての要素がZ*Z零正方行列に対応する要素であり、対角線位置における全ての要素がZ*Z単位行列に対応する要素であることを特徴とする正方行列を意味し、
前記Hb1の準左下三角行列は、1つのL×L右上角サブ正方行列を含み、且つ、前記右上角サブ正方行列が1つの左下三角行列であることを特徴とする4×4の正方行列であり、ここで、前記右上角サブ正方行列は、Hb1の最初のL行と最後のL列とのインタセクションから構成され、L=2または3であり、
前記基本行列および前記基本行列Hbに対応する拡散係数Zにより、ビット数が予め設定された符号語に対して復号化演算を行い、元情報ビット系列を得て、Zは1以上の正整数であることと、
を含む、構造的低密度パリティ検査符号LDPCの復号化方法。 - 前記元情報ビット系列は(Nb-Mb)×Zビットの系列であり、予め設定された前記ビット数はNb×Zビットである、請求項10に記載の方法。
- 前記左上隅サブ行列Hb2は前記行列Hbの最初のKb行と最初の2*Kb列とのインタセクションから構成され、前記左上隅サブ行列Hb2の最初の4行と最後のKb-4列とのインタセクションから構成されるサブ行列の全ての要素は、いずれもZ*Z零正方行列に対応する要素であり、前記左上隅サブ行列Hb2の最後のKb-4行と最後のKb-4列とのインタセクションはサイズが(Kb-4)*(Kb-4)の左下三角行列または準左下三角行列であり、前記左上隅サブ行列Hb2の最後のKb-4行とKb+1列目~Kb+3列目とのインタセクションから構成されるサブ行列の全ての要素は、いずれもZ*Z零正方行列に対応する要素であり、
左上隅サブ行列Hb1の最後の4列の正方行列が1つの下三角行列であると、前記左上隅サブ行列Hb2の最後のKb-4行、Kb+4列目の部分には非Z*Z零正方行列に対応する要素が1つのみあり、左上隅サブ行列Hb1の最後の4列の正方行列が1つの準下三角行列であると、前記左上隅サブ行列Hb2の最後のKb-4行、Kb+4列目の部分の全ての要素はいずれもZ*Z零正方行列に対応する要素であり、
前記左上隅サブ行列Hb2の最後のKb-4行と最初のKb列とのインタセクションから1つのサブ行列を構成し、このサブ行列において、各行の非Z*Z零正方行列に対応する要素の個数はいずれもKb-2以下であり、
Nbは3*Kb以上である、請求項10に記載の方法。 - 前記拡散係数Zは1組の確定値セット{z1,z2,z3…,zv}をサポートし、z1、z2、…、zvは昇順に配列され、zr、zs、zt、zuは前記確定値セットにおける4つの確定値の拡散係数でz1≦zr≦zs≦zt≦zu≦zvを満たし、V、r、s、t、uは下付き文字で1≦r≦s≦t≦u≦Vであり、Vは2以上の整数であり、
z1≦Z=zi<zrである場合、拡散係数Z=ziおよび基本行列Hbに対応するLDPC符号について、各LDPC符号語における全ての重量が2よりも大きい符号語ビットにおいて、少なくとも1つのビットのgirthは4に等しく、拡散係数Z=ziおよび最も重いR列を削除した基本行列Hbに対応するLDPC符号は、各LDPC符号語における全ての重量が2よりも大きい符号語ビットのgirthはいずれも6に等しく、RはKb/2以下であり、
zr≦Z=zi<zsである場合、拡散係数Z=ziおよび基本行列Hbに対応するLDPC符号について、各LDPC符号語における全ての重量が2よりも大きい符号語ビットのgirthはいずれも6に等しく、
zs≦Z=zi<ztである場合、拡散係数Z=ziおよび基本行列Hbに対応するLDPC符号について、各LDPC符号語における全ての重量が2よりも大きい全ての組織ビットのgirthはいずれも6に等しく、各LDPC符号語における少なくとも1つの重量が2よりも大きい検査ビットのgirthは8以上であり、
zt≦Z=zi<zuである場合、拡散係数Z=ziおよび基本行列Hbに対応するLDPC符号について、各LDPC符号語における全ての重量が2よりも大きい符号語ビットのgirthはいずれも8に等しく、
zu≦Z=zi<zvである場合、拡散係数Z=ziおよび基本行列Hbに対応するLDPC符号について、各LDPC符号語における全ての重量が2よりも大きい組織ビットのgirthはいずれも8に等しく、各LDPC符号語における少なくとも1つの重量が2よりも大きい検査ビットのgirthは10以上であり、
1つのLDPC符号語の各符号語ビットはパリティ検査行列の各列に対応し、前記パリティ検査行列は、対応する拡散係数Z=ziおよび基本行列Hbにより確定され、各符号語ビットの重量とは、対応する列における非ゼロ要素の個数を意味し、且つ、i=1,2,…,Vである、請求項10~請求項12のいずれか一項に記載の方法。 - 構造的低密度パリティ検査符号LDPCの符号化装置であって、確定モジュールと符号化モジュールとを備え、
前記確定モジュールは符号化に使用する基本行列Hbを確定するように設けられ、前記基本行列Hbは、組織ビットに対応するMb×KbのブロックAと、検査ビットに対応するMb×MbのブロックBとを含み、すなわち、Hb=[A,B]であり、hbijは前記基本行列Hbのi行目とj列目の要素を示し、iは前記基本行列の行インデックスであり、jは前記基本行列の列インデックスであり、Kb=Nb-Mbであり、Kbは4以上の整数であり、Nbは3*Kb以上の整数であり、i=1,…,Mbであり、j=1,…,Nbであり、
前記基本行列Hbは1つまたは複数のサブ行列を含み、前記サブ行列は左上隅サブ行列Hb1と左上隅サブ行列Hb2とを含み、前記左上隅サブ行列Hb1および左上隅サブ行列Hb2の行数と列数はいずれも前記基本行列Hbの行数と列数よりも小さく、且つ、前記左上隅サブ行列Hb1は左上隅サブ行列Hb2の左上隅サブ行列であり、
前記左上隅サブ行列Hb1は、前記行列Hbの最初の4行と最初のKb+4列とのインタセクションから構成され、前記左上隅サブ行列Hb1の各行の非零Z*Z正方行列に対応する要素の個数はいずれもKb+2以下Kb-2以上であり、前記左上隅サブ行列Hb1の最後の4列の正方行列は、1つの左下三角行列または準左下三角行列であり、
前記Hb1の左下三角行列とは、右上三角位置における全ての要素がZ*Z零正方行列に対応する要素であり、対角線位置における全ての要素がZ*Z単位行列に対応する要素であることを特徴とする正方行列を意味し、
前記Hb1の準左下三角行列は、1つのL×L右上角サブ正方行列を含み、且つ、前記右上角サブ正方行列が1つの左下三角行列であることを特徴とする4×4の正方行列であり、ここで、前記右上角サブ正方行列は、Hb1の最初のL行と最後のL列とのインタセクションから構成され、L=2または3であり、
前記符号化モジュールは、前記基本行列および前記基本行列Hbに対応する拡散係数Zにより、元情報ビット系列に対してLDPC符号化演算を行い、符号語系列を得て、Zは1以上の正整数であるように設けられる、構造的低密度パリティ検査符号LDPCの符号化装置。 - 前記元情報ビット系列は、(Nb-Mb)×Zビットの系列であり、前記ビット符号語系列はNb×Zビットである、請求項14に記載の装置。
- 前記左上隅サブ行列Hb2は前記行列Hbの最初のKb行と最初の2*Kb列とのインタセクションから構成され、前記左上隅サブ行列Hb2の最初の4行と最後のKb-4列とのインタセクションから構成されるサブ行列の全ての要素は、いずれもZ*Z零正方行列に対応する要素であり、前記左上隅サブ行列Hb2の最後のKb-4行と最後のKb-4列とのインタセクションから構成されるサブ行列は、サイズが(Kb-4)*(Kb-4)の左下三角行列または準左下三角行列であり、前記左上隅サブ行列Hb2の最後のKb-4行とKb+1列目~Kb+3列目とのインタセクションから構成されるサブ行列の全ての要素は、いずれもZ*Z零正方行列に対応する要素であり、
左上隅サブ行列Hb1の最後の4列の正方行列が1つの下三角行列であると、前記左上隅サブ行列Hb2の最後のKb-4行、Kb+4列目には非Z*Z零正方行列に対応する要素が1つのみあり、左上隅サブ行列Hb1の最後の4列の正方行列が1つの準下三角行列であると、前記左上隅サブ行列Hb2の最後のKb-4行、Kb+4列目の全ての要素はいずれもZ*Z零正方行列に対応する要素であり、
前記左上隅サブ行列Hb2の最後のKb-4行と最初のKb列とのインタセクションから1つのサブ行列を構成し、このサブ行列において、各行の非Z*Z零正方行列に対応する要素の個数はいずれもKb-2以下であり、
Nbは3*Kb以上である、請求項14に記載の装置。 - 前記拡散係数Zは1組の確定値セット{z1,z2,z3…,zv}をサポートし、z1、z2、…、zvは昇順に配列され、zr、zs、zt、zuは前記確定値セットにおける4つの確定値の拡散係数でz1≦zr≦zs≦zt≦zu≦zvを満たし、V、r、s、t、uは下付き文字で1≦r≦s≦t≦u≦Vであり、Vは2以上の整数であり、
z1≦Z=zi<zrである場合、拡散係数Z=ziおよび基本行列Hbに対応するLDPC符号について、各LDPC符号語における全ての重量が2よりも大きい符号語ビットにおいて、少なくとも1つのビットのgirthは4に等しく、拡散係数Z=ziおよび最も重いR列を削除した基本行列Hbに対応するLDPC符号について、各LDPC符号語における全ての重量が2よりも大きい符号語ビットのgirthはいずれも6に等しく、RはKb/2以下であり、
zr≦Z=zi<zsである場合、拡散係数Z=ziおよび基本行列Hbに対応するLDPC符号について、各LDPC符号語における全ての重量が2よりも大きい符号語ビットのgirthはいずれも6に等しく、
zs≦Z=zi<ztである場合、拡散係数Z=ziおよび基本行列Hbに対応するLDPC符号について、各LDPC符号語における全ての重量が2よりも大きい全ての組織ビットのgirthはいずれも6に等しく、各LDPC符号語における少なくとも1つの重量が2よりも大きい検査ビットのgirthは8以上であり、
zt≦Z=zi<zuである場合、拡散係数Z=ziおよび基本行列Hbに対応するLDPC符号について、各LDPC符号語における全ての重量が2よりも大きい符号語ビットのgirthはいずれも8に等しく、
zu≦Z=zi<zvである場合、拡散係数Z=ziおよび基本行列Hbに対応するLDPC符号について、各LDPC符号語における全ての重量が2よりも大きい組織ビットのgirthはいずれも8に等しく、各LDPC符号語における少なくとも1つの重量が2よりも大きい検査ビットのgirthは10以上であり、
1つのLDPC符号語の各符号語ビットはパリティ検査行列の各列に対応し、前記パリティ検査行列は、対応する拡散係数Z=ziおよび基本行列Hbにより確定され、各符号語ビットの重量とは、対応する列における非ゼロ要素の個数を意味し、且つ、i=1,2,…,Vである、請求項14~請求項16のいずれか一項に記載の装置。 - 構造的低密度パリティ検査符号LDPCの復号化装置であって、確定モジュールと復号化モジュールとを備え、
前記確定モジュールは復号化に使用する基本行列Hbを確定するように設けられ、前記基本行列Hbは、組織ビットに対応するMb×KbのブロックAと、検査ビットに対応するMb×MbのブロックBとを含み、すなわち、Hb=[A,B]であり、hbijは前記基本行列Hbのi行目とj列目の要素を示し、iは前記基本行列の行インデックスであり、jは前記基本行列の列インデックスであり、Kb=Nb-Mbであり、Nbは3*Kb以上の整数であり、Kbは4以上の整数であり、i=1,…,Mbであり、j=1,…,Nbであり、
前記基本行列Hbは1つまたは複数のサブ行列を含み、前記サブ行列は左上隅サブ行列Hb1と左上隅サブ行列Hb2とを含み、前記左上隅サブ行列Hb1および左上隅サブ行列Hb2の行数と列数はいずれも前記基本行列Hbの行数と列数よりも小さく、且つ、前記左上隅サブ行列Hb1は左上隅サブ行列Hb2の左上隅サブ行列であり、
前記左上隅サブ行列Hb1は、前記行列Hbの最初の4行と最初のKb+4列とのインタセクションから構成され、前記左上隅サブ行列Hb1の各行の非零Z*Z正方行列に対応する要素の個数はいずれもKb+2以下Kb-2以上であり、前記左上隅サブ行列Hb1の最後の4列の正方行列は、1つの左下三角行列または準左下三角行列であり、
前記Hb1の左下三角行列とは、右上三角位置における全ての要素がZ*Z零正方行列に対応する要素であり、対角線位置における全ての要素がZ*Z単位行列に対応する要素であることを特徴とする正方行列を意味し、
前記Hb1の準左下三角行列は、1つのL×L右上角サブ正方行列を含み、且つ、前記右上角サブ正方行列が1つの左下三角行列であることを特徴とする4×4の正方行列であり、ここで、前記右上角サブ正方行列は、Hb1の最初のL行と最後のL列とのインタセクションから構成され、L=2または3であり、
前記復号化モジュールは、前記基本行列および前記基本行列Hbに対応する拡散係数Zにより、ビット数が予め設定された符号語に対して復号化演算を行い、元情報ビット系列を得て、Zは1以上の正整数であるように設けられる、構造的低密度パリティ検査符号LDPCの復号化装置。 - 前記元情報ビット系列は(Nb-Mb)×Zビットの系列であり、予め設定された前記ビット数はNb×Zビットである、請求項18に記載の装置。
- 前記拡散係数Zは1組の確定値セット{z1,z2,z3…,zv}をサポートし、z1、z2、…、zvは昇順に配列され、zr、zs、zt、zuは前記確定値セットにおける4つの確定値の拡散係数でz1≦zr≦zs≦zt≦zu≦zvを満たし、V、r、s、t、uは下付き文字で1≦r≦s≦t≦u≦Vであり、Vは2以上の整数であり、
z1≦Z=zi<zrである場合、拡散係数Z=ziおよび基本行列Hbに対応するLDPC符号について、各LDPC符号語における全ての重量が2よりも大きい符号語ビットにおいて、少なくとも1つのビットのgirthは4に等しく、拡散係数Z=ziおよび最も重いR列を削除した基本行列Hbに対応するLDPC符号について、各LDPC符号語における全ての重量が2よりも大きい符号語ビットのgirthはいずれも6に等しく、RはKb/2以下であり、
zr≦Z=zi<zsである場合、拡散係数Z=ziおよび基本行列Hbに対応するLDPC符号について、各LDPC符号語における全ての重量が2よりも大きい符号語ビットのgirthはいずれも6に等しく、
zs≦Z=zi<ztである場合、拡散係数Z=ziおよび基本行列Hbに対応するLDPC符号について、各LDPC符号語における全ての重量が2よりも大きい全ての組織ビットのgirthはいずれも6に等しく、各LDPC符号語における少なくとも1つの重量が2よりも大きい検査ビットのgirthは8以上であり、
zt≦Z=zi<zuである場合、拡散係数Z=ziおよび基本行列Hbに対応するLDPC符号について、各LDPC符号語における全ての重量が2よりも大きい符号語ビットのgirthはいずれも8に等しく、
zu≦Z=zi<zvである場合、拡散係数Z=ziおよび基本行列Hbに対応するLDPC符号について、各LDPC符号語における全ての重量が2よりも大きい組織ビットのgirthはいずれも8に等しく、各LDPC符号語における少なくとも1つの重量が2よりも大きい検査ビットのgirthは10以上であり、
1つのLDPC符号語の各符号語ビットはパリティ検査行列の各列に対応し、前記パリティ検査行列は、対応する拡散係数Z=ziおよび基本行列Hbにより確定され、各符号語ビットの重量とは、対応する列における非ゼロ要素の個数を意味し、且つ、i=1,2,…,Vである、請求項18または19に記載の装置。 - エンコーダであって、メモリとプロセッサとを備え、
前記メモリは、符号化に使用する基本行列Hbを確定するように設けられ、前記基本行列Hbは、組織ビットに対応するMb×KbのブロックAと、検査ビットに対応するMb×MbのブロックBとを含み、すなわち、Hb=[A,B]であり、hbijは前記基本行列Hbのi行目とj列目の要素を示し、iは前記基本行列の行インデックスであり、jは前記基本行列の列インデックスであり、Kb=Nb-Mbであり、Kbは4以上の整数であり、Nbは3*Kb以上の整数であり、i=1,…,Mbであり、j=1,…,Nbであり、
前記基本行列Hbは1つまたは複数のサブ行列を含み、前記サブ行列は左上隅サブ行列Hb1と左上隅サブ行列Hb2とを含み、前記左上隅サブ行列Hb1および左上隅サブ行列Hb2の行数と列数はいずれも前記基本行列Hbの行数と列数よりも小さく、且つ、前記左上隅サブ行列Hb1は左上隅サブ行列Hb2の左上隅サブ行列であり、
前記左上隅サブ行列Hb1は、前記行列Hbの最初の4行と最初のKb+4列とのインタセクションから構成され、前記左上隅サブ行列Hb1の各行の非零Z*Z正方行列に対応する要素の個数はいずれもKb+2以下Kb-2以上であり、前記左上隅サブ行列Hb1の最後の4列の正方行列は、1つの左下三角行列または準左下三角行列であり、
前記Hb1の左下三角行列とは、右上三角位置における全ての要素がZ*Z零正方行列に対応する要素であり、対角線位置における全ての要素がZ*Z単位行列に対応する要素であることを特徴とする正方行列を意味し、
前記Hb1の準左下三角行列は、1つのL×L右上角サブ正方行列を含み、且つ、前記右上角サブ正方行列が1つの左下三角行列であることを特徴とする4×4の正方行列であり、ここで、前記右上角サブ正方行列は、Hb1の最初のL行と最後のL列とのインタセクションから構成され、L=2または3であり、
前記プロセッサは、前記基本行列および前記基本行列Hbに対応する拡散係数Zを確定し、元情報ビット系列に対してLDPC符号化演算を行い、符号語系列を得て、Zは1以上の正整数であるように設けられる、エンコーダ。 - デコーダであって、記憶モジュールとプロセッサとを備え、
前記記憶モジュールは、復号化に使用する基本行列Hbを記憶するように設けられ、前記基本行列Hbは、組織ビットに対応するMb×KbのブロックAと、検査ビットに対応するMb×MbのブロックBとを含み、すなわち、Hb=[A,B]であり、hbijは前記基本行列Hbのi行目とj列目の要素を示し、iは前記基本行列の行インデックスであり、jは前記基本行列の列インデックスであり、Kb=Nb-Mbであり、Nbは3*Kb以上の整数であり、Kbは4以上の整数であり、i=1、…、Mbであり、j=1,…,Nbであり、前記基本行列Hbは1つまたは複数のサブ行列を含み、前記サブ行列は左上隅サブ行列Hb1と左上隅サブ行列Hb2とを含み、前記左上隅サブ行列Hb1および左上隅サブ行列Hb2の行数と列数はいずれも前記基本行列Hbの行数と列数よりも小さく、且つ、前記左上隅サブ行列Hb1は左上隅サブ行列Hb2の左上隅サブ行列であり、
前記左上隅サブ行列Hb1は、前記行列Hbの最初の4行と最初のKb+4列とのインタセクションから構成され、前記左上隅サブ行列Hb1の各行の非零Z*Z正方行列に対応する要素の個数はいずれもKb+2以下Kb-2以上であり、前記左上隅サブ行列Hb1の最後の4列の正方行列は、1つの左下三角行列または準左下三角行列であり、
前記Hb1の左下三角行列とは、右上三角位置における全ての要素がZ*Z零正方行列に対応する要素であり、対角線位置における全ての要素がZ*Z単位行列に対応する要素であることを特徴とする正方行列を意味し、
前記Hb1の準左下三角行列は、1つのL×L右上角サブ正方行列を含み、且つ、前記右上角サブ正方行列が1つの左下三角行列であることを特徴とする4×4の正方行列であり、ここで、前記右上角サブ正方行列は、Hb1の最初のL行と最後のL列とのインタセクションから構成され、L=2または3であり、
前記プロセッサは、前記基本行列および前記基本行列Hbに対応する拡散係数Zを確定し、且つ、ビット数が予め設定された符号語に対して復号化演算を行い、元情報ビット系列を得て、Zは1以上の正整数であるように設けられる、デコーダ。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022019134A JP7372369B2 (ja) | 2016-05-13 | 2022-02-09 | 構造的ldpcの符号化、復号化方法および装置 |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610319410.1 | 2016-05-13 | ||
CN201610319410 | 2016-05-13 | ||
CN201610884876.6 | 2016-10-10 | ||
CN201610884876.6A CN107370490B (zh) | 2016-05-13 | 2016-10-10 | 结构化ldpc的编码、译码方法及装置 |
PCT/CN2017/070488 WO2017193614A1 (zh) | 2016-05-13 | 2017-01-06 | 结构化ldpc的编码、译码方法及装置 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022019134A Division JP7372369B2 (ja) | 2016-05-13 | 2022-02-09 | 構造的ldpcの符号化、復号化方法および装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019517209A JP2019517209A (ja) | 2019-06-20 |
JP7025349B2 true JP7025349B2 (ja) | 2022-02-24 |
Family
ID=60304554
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018560038A Active JP7025349B2 (ja) | 2016-05-13 | 2017-01-06 | 構造的ldpcの符号化、復号化方法および装置 |
JP2022019134A Active JP7372369B2 (ja) | 2016-05-13 | 2022-02-09 | 構造的ldpcの符号化、復号化方法および装置 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022019134A Active JP7372369B2 (ja) | 2016-05-13 | 2022-02-09 | 構造的ldpcの符号化、復号化方法および装置 |
Country Status (5)
Country | Link |
---|---|
US (2) | US10892778B2 (ja) |
EP (2) | EP4231532A3 (ja) |
JP (2) | JP7025349B2 (ja) |
KR (2) | KR102229233B1 (ja) |
CN (2) | CN107370490B (ja) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10484010B2 (en) * | 2016-12-20 | 2019-11-19 | Samsung Electronics Co., Ltd. | Apparatus and method for channel encoding/decoding in communication or broadcasting system |
WO2018126914A1 (zh) * | 2017-01-09 | 2018-07-12 | 中兴通讯股份有限公司 | 准循环低密度奇偶校验码的编码方法及装置、存储介质 |
CN108365911B (zh) * | 2017-01-26 | 2021-07-20 | 华为技术有限公司 | 一种信息的编码方法及设备 |
CN108809506B (zh) * | 2017-05-05 | 2020-09-04 | 华为技术有限公司 | 一种编码方法及装置 |
CN109951250B (zh) * | 2017-12-21 | 2021-01-08 | 华为技术有限公司 | 通信信号的ldpc编码方法和装置 |
CN110034845B (zh) * | 2018-01-12 | 2021-09-14 | 华为技术有限公司 | 信息处理方法和无线传输设备 |
CN108880563A (zh) * | 2018-06-14 | 2018-11-23 | 东南大学 | 一种ldpc码的改进编码方法及系统 |
US11497053B2 (en) * | 2018-06-20 | 2022-11-08 | Qualcomm Incorporated | Collision management |
US11177830B2 (en) | 2019-09-10 | 2021-11-16 | Samsung Electronics Co., Ltd. | Method and apparatus for data decoding in communication or broadcasting system |
CN111162797B (zh) * | 2020-01-21 | 2023-05-30 | 华侨大学 | 一种速率兼容的5g ldpc码的编码装置及编码方法 |
JP2021141369A (ja) | 2020-03-02 | 2021-09-16 | キオクシア株式会社 | メモリシステム |
EP4329202A4 (en) | 2021-05-25 | 2024-10-16 | Samsung Electronics Co Ltd | SELF-CORRECTING MIN-SUM DECODER BASED ON NEURAL NETWORK AND ELECTRONIC DEVICE COMPRISING SAME |
KR20220159071A (ko) * | 2021-05-25 | 2022-12-02 | 삼성전자주식회사 | 신경망 자기 정정 최소합 복호기 및 이를 포함하는 전자 장치 |
CN114421972B (zh) * | 2022-01-27 | 2022-11-22 | 石家庄市经纬度科技有限公司 | 一种多进制ldpc码译码方法 |
CN114785353A (zh) * | 2022-03-24 | 2022-07-22 | 山东岱微电子有限公司 | 低密度奇偶校验码译码方法、系统、设备、装置及介质 |
WO2024152363A1 (zh) * | 2023-01-20 | 2024-07-25 | 华为技术有限公司 | 一种基于ldpc码的通信方法和通信装置 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007142476A3 (en) | 2006-06-07 | 2008-03-06 | Lg Electronics Inc | Method of encoding/decoding using low density check code matrix |
US20080155385A1 (en) | 2006-12-04 | 2008-06-26 | Samsung Electronics Co., Ltd. | Apparatus and method to encode/decode block low density parity check codes in a communication system |
WO2009060627A1 (ja) | 2007-11-09 | 2009-05-14 | Panasonic Corporation | 符号化方法および送信装置 |
US20100257425A1 (en) | 2009-04-06 | 2010-10-07 | Nec Laboratories America, Inc. | Systems and methods for constructing the base matrix of quasi-cyclic low-density parity-check codes |
US20100275089A1 (en) | 2009-04-27 | 2010-10-28 | The Hong Kong University Of Science And Technology | Iterative decoding of punctured low-density parity check codes by selection of decoding matrices |
CN103944586A (zh) | 2014-04-10 | 2014-07-23 | 重庆邮电大学 | 一种码率兼容qc-ldpc码的构造方法 |
WO2015123979A1 (zh) | 2014-02-21 | 2015-08-27 | 中兴通讯股份有限公司 | 结构化ldpc的编码方法、译码方法、编码装置和译码装置 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7996746B2 (en) * | 2004-10-12 | 2011-08-09 | Nortel Networks Limited | Structured low-density parity-check (LDPC) code |
CN100550655C (zh) | 2004-11-04 | 2009-10-14 | 中兴通讯股份有限公司 | 一种低密度奇偶校验码的编码器/译码器及其生成方法 |
US7343548B2 (en) * | 2004-12-15 | 2008-03-11 | Motorola, Inc. | Method and apparatus for encoding and decoding data |
CN100486150C (zh) * | 2005-01-23 | 2009-05-06 | 中兴通讯股份有限公司 | 基于非正则低密度奇偶校验码的编译码器及其生成方法 |
US8464120B2 (en) * | 2006-10-18 | 2013-06-11 | Panasonic Corporation | Method and system for data transmission in a multiple input multiple output (MIMO) system including unbalanced lifting of a parity check matrix prior to encoding input data streams |
KR101433375B1 (ko) | 2006-12-04 | 2014-08-29 | 삼성전자주식회사 | 통신 시스템에서 블록 저밀도 패리티 검사 부호부호화/복호 장치 및 방법 |
CN101217337B (zh) * | 2007-01-01 | 2013-01-23 | 中兴通讯股份有限公司 | 一种支持递增冗余混合自动重传的低密度奇偶校验码编码装置和方法 |
CN101325474B (zh) * | 2007-06-12 | 2012-05-09 | 中兴通讯股份有限公司 | Ldpc码的混合自动请求重传的信道编码及调制映射方法 |
CN101459430B (zh) * | 2007-12-14 | 2010-12-08 | 中兴通讯股份有限公司 | 低密度生成矩阵码的编码方法及装置 |
KR101445080B1 (ko) * | 2008-02-12 | 2014-09-29 | 삼성전자 주식회사 | 하이브리드 자동 반복 요구 방식을 사용하는 통신 시스템에서 신호 송신 방법 및 장치 |
US8443270B2 (en) * | 2008-12-09 | 2013-05-14 | Entropic Communications, Inc. | Multiple input hardware reuse using LDPC codes |
US8392789B2 (en) * | 2009-07-28 | 2013-03-05 | Texas Instruments Incorporated | Method and system for decoding low density parity check codes |
US8196012B2 (en) * | 2009-10-05 | 2012-06-05 | The Hong Kong Polytechnic University | Method and system for encoding and decoding low-density-parity-check (LDPC) codes |
TWI419481B (zh) * | 2009-12-31 | 2013-12-11 | Nat Univ Tsing Hua | 低密度奇偶檢查碼編解碼器及其方法 |
CN102412842B (zh) * | 2010-09-25 | 2016-06-15 | 中兴通讯股份有限公司 | 一种低密度奇偶校验码的编码方法及装置 |
US8627166B2 (en) * | 2011-03-16 | 2014-01-07 | Samsung Electronics Co., Ltd. | LDPC code family for millimeter-wave band communications in a wireless network |
CN103236860B (zh) * | 2013-05-02 | 2016-09-07 | 广州海格通信集团股份有限公司 | 用于生成ldpc码校验矩阵的方法、及该ldpc码编码方法 |
-
2016
- 2016-10-10 CN CN201610884876.6A patent/CN107370490B/zh active Active
- 2016-10-10 CN CN202310849531.7A patent/CN116827357A/zh active Pending
-
2017
- 2017-01-06 KR KR1020187036299A patent/KR102229233B1/ko active IP Right Grant
- 2017-01-06 JP JP2018560038A patent/JP7025349B2/ja active Active
- 2017-01-06 KR KR1020217007505A patent/KR102347823B1/ko active IP Right Grant
- 2017-01-06 EP EP23185378.9A patent/EP4231532A3/en active Pending
- 2017-01-06 EP EP17795241.3A patent/EP3457575B1/en active Active
- 2017-01-06 US US16/301,290 patent/US10892778B2/en active Active
-
2020
- 2020-12-03 US US17/110,832 patent/US11323134B2/en active Active
-
2022
- 2022-02-09 JP JP2022019134A patent/JP7372369B2/ja active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007142476A3 (en) | 2006-06-07 | 2008-03-06 | Lg Electronics Inc | Method of encoding/decoding using low density check code matrix |
US20080155385A1 (en) | 2006-12-04 | 2008-06-26 | Samsung Electronics Co., Ltd. | Apparatus and method to encode/decode block low density parity check codes in a communication system |
WO2009060627A1 (ja) | 2007-11-09 | 2009-05-14 | Panasonic Corporation | 符号化方法および送信装置 |
US20100257425A1 (en) | 2009-04-06 | 2010-10-07 | Nec Laboratories America, Inc. | Systems and methods for constructing the base matrix of quasi-cyclic low-density parity-check codes |
US20100275089A1 (en) | 2009-04-27 | 2010-10-28 | The Hong Kong University Of Science And Technology | Iterative decoding of punctured low-density parity check codes by selection of decoding matrices |
WO2015123979A1 (zh) | 2014-02-21 | 2015-08-27 | 中兴通讯股份有限公司 | 结构化ldpc的编码方法、译码方法、编码装置和译码装置 |
CN103944586A (zh) | 2014-04-10 | 2014-07-23 | 重庆邮电大学 | 一种码率兼容qc-ldpc码的构造方法 |
Also Published As
Publication number | Publication date |
---|---|
KR20190008335A (ko) | 2019-01-23 |
CN107370490B (zh) | 2023-07-14 |
EP4231532A3 (en) | 2023-08-30 |
JP7372369B2 (ja) | 2023-10-31 |
KR20210032007A (ko) | 2021-03-23 |
CN116827357A (zh) | 2023-09-29 |
KR102347823B1 (ko) | 2022-01-05 |
EP3457575A4 (en) | 2019-12-04 |
EP3457575B1 (en) | 2023-08-23 |
CN107370490A (zh) | 2017-11-21 |
EP3457575C0 (en) | 2023-08-23 |
US20210091790A1 (en) | 2021-03-25 |
US10892778B2 (en) | 2021-01-12 |
KR102229233B1 (ko) | 2021-03-22 |
JP2019517209A (ja) | 2019-06-20 |
EP4231532A2 (en) | 2023-08-23 |
US20200244287A1 (en) | 2020-07-30 |
EP3457575A1 (en) | 2019-03-20 |
US11323134B2 (en) | 2022-05-03 |
JP2022058949A (ja) | 2022-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7025349B2 (ja) | 構造的ldpcの符号化、復号化方法および装置 | |
CN104868925B (zh) | 结构化ldpc码的编码方法、译码方法、编码装置和译码装置 | |
JP4062435B2 (ja) | 誤り訂正符号復号装置 | |
JP4168055B2 (ja) | 低密度パリティ検査符号の生成方法及び装置 | |
US8572463B2 (en) | Quasi-cyclic LDPC encoding and decoding for non-integer multiples of circulant size | |
EP1850484A1 (en) | Basic matrix based on irregular ldcp, codec and generation method thereof | |
KR100941680B1 (ko) | 준순환 저밀도 패리티 검사 부호의 생성 방법 및 장치 | |
JP6990259B2 (ja) | 疑似サイクリック低密度パリティチェックの設計方法および装置 | |
CN114499541A (zh) | 分层译码方法、装置、终端设备及介质 | |
WO2017193614A1 (zh) | 结构化ldpc的编码、译码方法及装置 | |
JP5789014B2 (ja) | 符号化方法、符号化器、復号器 | |
KR20150034668A (ko) | 송신 장치 및 그의 신호 처리 방법 | |
Xu et al. | Low-Density Parity Check (LDPC) Codes | |
Wenjun et al. | A 223Mbps FPGA implementation of (10240, 5120) irregular structured low density parity check decoder | |
KR100678521B1 (ko) | 비균일 저밀도 패리티 검사 부호의 부호화 장치 및 방법 | |
JP2009177649A (ja) | 符号化方法、符号化器、復号器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190306 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200127 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200218 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20200515 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20200717 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200817 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210202 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20210428 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20210702 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210802 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220111 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220210 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7025349 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |