JP7017958B2 - Method of preparing aggregate raw material and method of manufacturing aggregate - Google Patents
Method of preparing aggregate raw material and method of manufacturing aggregate Download PDFInfo
- Publication number
- JP7017958B2 JP7017958B2 JP2018047594A JP2018047594A JP7017958B2 JP 7017958 B2 JP7017958 B2 JP 7017958B2 JP 2018047594 A JP2018047594 A JP 2018047594A JP 2018047594 A JP2018047594 A JP 2018047594A JP 7017958 B2 JP7017958 B2 JP 7017958B2
- Authority
- JP
- Japan
- Prior art keywords
- aggregate
- raw material
- aggregate raw
- preparing
- peak
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Description
本発明は、骨材原料の調製方法及び骨材の製造方法に関し、特に石炭灰等の廃棄物を原料として骨材を製造する方法に関する。 The present invention relates to a method for preparing an aggregate raw material and a method for producing an aggregate, and more particularly to a method for producing an aggregate from waste such as coal ash.
近年、埋立処分場の逼迫化に鑑み、石炭灰、都市ごみ焼却灰、高炉スラグ等の廃棄物を骨材等に有効利用する技術が開発されている。例えば、特許文献1、2には、非晶質相の生成割合を低く抑えながら、石炭灰を主成分としてアノーサイト(CaAl2Si2O8)を含有する焼成物を得て、セメント混合材や細骨材等に利用する技術が開示される。
In recent years, in view of the tightness of landfill sites, technologies for effectively utilizing waste such as coal ash, municipal waste incineration ash, and blast furnace slag as aggregates have been developed. For example, in
一方、原子力発電所の大きな事故によって生じた放射性セシウムを含有する土壌等の廃棄物を処理するため、例えば、特許文献3には、放射性セシウムで汚染された廃棄物と、酸化カルシウム源又は/及び酸化マグネシウム源と、塩素源とを調合して加熱することで焼成骨材等を製造し、放射性セシウムを含有する廃棄物から放射性セシウムを除去してその減容化を図りながら、放射性セシウム濃度の低い建築資材を製造する方法が提供されている。 On the other hand, in order to treat waste such as soil containing radioactive cesium generated by a major accident at a nuclear power plant, for example, Patent Document 3 describes waste contaminated with radioactive cesium and a calcium oxide source or / and. By mixing and heating a magnesium oxide source and a chlorine source, fired aggregates, etc. are manufactured, and radioactive cesium is removed from waste containing radioactive cesium to reduce its volume while reducing the concentration of radioactive cesium. A method of manufacturing low building materials is provided.
しかし、廃棄物等を原料として焼成装置を安定的に運転し、良質の骨材を得るためには、原料の化学成分や粉末度等を適切に調整する必要があり、これらの分析、測定及び原料の調合が煩雑であるという問題があった。 However, in order to stably operate the firing device using waste as a raw material and obtain high-quality aggregate, it is necessary to appropriately adjust the chemical composition and powderiness of the raw material, and analysis, measurement and of these are performed. There was a problem that the preparation of raw materials was complicated.
さらには、放射性セシウムで汚染された廃棄物等を原料として焼成装置を安定的に運転し、放射性セシウムの揮発除去率を高く維持しながら良質の骨材を得ることも求められている。 Furthermore, it is also required to stably operate the firing apparatus using waste contaminated with radioactive cesium as a raw material and to obtain high-quality aggregate while maintaining a high volatilization removal rate of radioactive cesium.
そこで、本発明は、上記従来技術における問題点に鑑みてなされたものであって、骨材原料の調製を効率化し、放射性セシウムの揮発除去率を高く維持しながら良質の骨材を安定して得ることを目的とする。 Therefore, the present invention has been made in view of the above-mentioned problems in the prior art, and thus, the preparation of the aggregate raw material is made efficient, and the high-quality aggregate is stably maintained while maintaining the high volatilization removal rate of radioactive cesium. The purpose is to get.
上記目的を達成するため、本発明は、骨材原料の骨材原料の調製方法であって、示差熱分析法又は示差走査熱量測定法で測定した発熱のピークが1150℃以上1300℃以下となるように骨材原料を調製すること特徴とする。 In order to achieve the above object, the present invention is a method for preparing an aggregate raw material as an aggregate material, in which the peak of heat generation measured by a differential thermal analysis method or a differential scanning calorimetry method is 1150 ° C. or higher and 1300 ° C. or lower. It is characterized by preparing an aggregate raw material as described above.
本発明によれば、骨材原料を調製するにあたって、示差熱分析法又は示差走査熱量測定法の測定結果を利用するだけであるため、骨材原料の化学成分や粉末度等の測定及び煩雑な原料調合が不要で、効率よく骨材原料の調製を行うことができる。 According to the present invention, in preparing the aggregate raw material, only the measurement result of the differential thermal analysis method or the differential scanning calorimetry method is used, so that the measurement of the chemical composition, the degree of powder, etc. of the aggregate raw material is complicated. No raw material preparation is required, and aggregate raw materials can be efficiently prepared.
上記骨材原料の調製方法において、前記骨材原料を、放射性セシウムで汚染された廃棄物を含むものとすることができる。これによって、土壌等から放射性セシウムを除去しつつ、放射性セシウムを含有する土壌等の廃棄物を骨材原料として有効利用することができる。 In the method for preparing an aggregate raw material, the aggregate raw material may contain waste contaminated with radioactive cesium. As a result, while removing radioactive cesium from soil or the like, waste such as soil containing radioactive cesium can be effectively used as an aggregate raw material.
また、本発明は、骨材の製造方法であって、上記調製方法によって調製された骨材原料の前記発熱のピークに応じて、1250℃以上1350℃以下の温度で前記調製した骨材原料を焼成することを特徴とする。 Further, the present invention is a method for producing an aggregate, wherein the prepared aggregate raw material is used at a temperature of 1250 ° C. or higher and 1350 ° C. or lower according to the peak of heat generation of the aggregate raw material prepared by the above preparation method. It is characterized by firing.
本発明によれば、骨材原料の示差熱分析法又は示差走査熱量測定法で測定した発熱のピークに応じた焼成温度で焼成することで、良質の骨材を安定して得ることができ、放射性セシウムを含有する骨材原料の場合には、放射性セシウムの揮発除去率を高く維持しながら良質の骨材を安定して得ることができる。 According to the present invention, good quality aggregate can be stably obtained by firing at a firing temperature corresponding to the peak of heat generation measured by a differential thermal analysis method or a differential scanning calorimetry method for an aggregate material. In the case of an aggregate raw material containing radioactive cesium, good quality aggregate can be stably obtained while maintaining a high volatilization removal rate of radioactive cesium.
上記骨材の製造方法において、前記骨材原料をロータリーキルンで焼成してフリーライムの含有率が2質量%以下の骨材や、放射性セシウムの除去率が80%以上の骨材を得ることができる。 In the method for producing an aggregate, the aggregate raw material can be fired with a rotary kiln to obtain an aggregate having a free lime content of 2% by mass or less and an aggregate having a removal rate of radioactive cesium of 80% or more. ..
以上のように、本発明によれば、骨材原料の調製を効率化し、放射性セシウムの揮発除去率を高く維持しながら良質の骨材を安定して得ることが可能となる。 As described above, according to the present invention, it is possible to streamline the preparation of aggregate raw materials and stably obtain high-quality aggregate while maintaining a high volatilization removal rate of radioactive cesium.
次に、本発明を実施するための形態について、図面を参照しながら詳細に説明する。 Next, a mode for carrying out the present invention will be described in detail with reference to the drawings.
図1は、本発明に係る骨材の製造方法の一実施形態を示し、この骨材製造方法は、2種類の骨材原料A、Bを加熱して骨材原料の温度と、該温度での基準物質との温度差又は熱量差との関係を測定する工程と、この測定結果に基づいて骨材原料A、Bの調合割合を調整して骨材原料を調製する工程と、調製した骨材原料を焼成する工程とを含む。 FIG. 1 shows an embodiment of an aggregate manufacturing method according to the present invention, in which the two types of aggregate raw materials A and B are heated at the temperature of the aggregate raw material and at the temperature. A step of measuring the relationship between the temperature difference or the calorific value difference from the reference material of the above, a step of adjusting the mixing ratios of the aggregate raw materials A and B based on the measurement result, and a step of preparing the aggregate raw material, and the prepared bone. Includes a step of firing the raw material.
測定工程は、示差熱分析法又は示差走査熱量測定法を用いて行う。示差熱分析(Differential Thermal Analysis: DTA)は、試料及び基準物質を加熱炉内の対称位置に配置し、ヒーターによって加熱炉の温度をプログラムに従って変化させながら、その試料と基準物質との温度差を温度の関数として測定する方法(JIS K 0129 「熱分析通則」)であり、示差熱分析装置や、熱重量示差熱分析装置(Thermogravimeter-Differential Thermal Analyzer(TG-DTA))を用いて測定する。一方、示差走査熱量測定(Differential scanning calorimetry: DSC)は、示差走査熱量計を用い、試料及び基準物質を一定速度で加熱した際の両者の熱量の差を測定することで、試料の相転移や化学反応を推定するものである。 The measurement step is performed by using a differential thermal analysis method or a differential scanning calorimetry method. In Differential Thermal Analysis (DTA), a sample and a reference material are placed in symmetrical positions in a heating furnace, and the temperature of the heating furnace is changed according to a program by a heater, and the temperature difference between the sample and the reference material is measured. It is a method of measuring as a function of temperature (JIS K 0129 "general rule of thermal analysis"), and is measured by using a differential thermal analyzer or a thermal weight differential thermal analyzer (TG-DTA). On the other hand, differential scanning calorimetry (DSC) uses a differential scanning calorimetry to measure the difference in calories between the sample and the reference material when they are heated at a constant rate, thereby causing a phase transition of the sample. It estimates the chemical reaction.
図2は、ある骨材原料を示差走査熱量測定(DSC)した例を示す。図2(a)はDSC線図、図2(b)はDDSC(DSCの微分に相当)線図である。グラフの縦軸は熱流 (Heat Flow/mW)、横軸は骨材原料の温度(℃)を示す。また、DSC線図で上方への移行は発熱反応を、下方への移行は吸熱反応を示す。 FIG. 2 shows an example of differential scanning calorimetry (DSC) of a certain aggregate raw material. FIG. 2A is a DSC diagram, and FIG. 2B is a DDSC (corresponding to the derivative of DSC) diagram. The vertical axis of the graph shows the heat flow (Heat Flow / mW), and the horizontal axis shows the temperature (° C) of the aggregate material. Further, in the DSC diagram, the upward transition indicates an exothermic reaction, and the downward transition indicates an endothermic reaction.
図2(a)のDSC線図において、1280℃に発熱のピーク(極大値、図2(b)のDDSC線図では縦軸で0)が存在する。 In the DSC diagram of FIG. 2 (a), a peak of heat generation (maximum value, 0 on the vertical axis in the DDSC diagram of FIG. 2 (b)) exists at 1280 ° C.
調製工程は、上記の要領で骨材原料A、Bの各々の発熱のピークを測定し、各々の測定値に基づいて骨材原料A、Bの調合割合を調整し、発熱のピークが1150℃以上1300℃以下となるように骨材原料を調製する工程である。尚、骨材原料A又はBの発熱のピークが既に1150℃以上1300℃以下の範囲にある場合には、骨材原料A又はBのみを用いることも可能である。また、骨材原料A、Bのいずれか一方又は両方の発熱のピークが既に1150℃以上1300℃以下の範囲にある場合でも、骨材原料A、Bの調合割合を調整し、発熱のピークが1150℃以上1300℃以下の骨材原料を調製してもよい。尚、骨材原料を2種類用いる場合を例示したが、3種類以上の骨材原料を用いることもできる。 In the preparation step, the peak of heat generation of each of the aggregate raw materials A and B is measured as described above, the mixing ratio of the aggregate raw materials A and B is adjusted based on each measured value, and the peak of heat generation is 1150 ° C. This is a step of preparing an aggregate raw material so that the temperature becomes 1300 ° C. or lower. When the peak of heat generation of the aggregate raw material A or B is already in the range of 1150 ° C. or higher and 1300 ° C. or lower, it is also possible to use only the aggregate raw material A or B. Further, even when the peak of heat generation of either or both of the aggregate raw materials A and B is already in the range of 1150 ° C. or higher and 1300 ° C. or lower, the mixing ratio of the aggregate raw materials A and B is adjusted so that the heat generation peak becomes. Aggregate raw materials having a temperature of 1150 ° C. or higher and 1300 ° C. or lower may be prepared. Although the case where two kinds of aggregate raw materials are used is exemplified, three or more kinds of aggregate raw materials can also be used.
発熱のピークの調整は、CaO、SiO2、Al2O3等の成分を添加したり、諸々の組成の廃棄物を混合して、塩基度やCa/Si比を調整すればよい。基本的に塩基度やCa/Si比が高いほど発熱のピークを高くすることができる。また、放射性セシウムを高温揮発除去するためや、骨材の安定性を高めるために必要に応じてClやPなどの添加剤を用いてもよい。 To adjust the peak of heat generation, components such as CaO, SiO 2 , Al 2 O 3 may be added, or wastes having various compositions may be mixed to adjust the basicity and the Ca / Si ratio. Basically, the higher the basicity and the Ca / Si ratio, the higher the peak of heat generation can be. In addition, additives such as Cl and P may be used as necessary to remove radioactive cesium by volatilization at high temperature and to improve the stability of the aggregate.
焼成工程は、上記の要領で調製した骨材原料を1250℃以上1350℃以下の範囲の温度で焼成する工程である。この温度範囲は、上記発熱のピーク1150℃以上1300℃以下に対応させたものであり、実際の発熱のピークの50℃以上100℃以下の範囲に調整する。焼成装置としてロータリーキルン等を用いる。焼成温度を実際の発熱のピークの50℃以上100℃以下とすることで、キルン内での原料の融着による安定運転が妨げられることがなく、密実な骨材が得られ、放射性セシウム除去率も高く維持できる。また、焼成を行いながら原料の発熱のピークを監視し、その変動に応じて焼成温度を変化させてキルンの安定運転を維持することができる。 The firing step is a step of firing the aggregate raw material prepared in the above procedure at a temperature in the range of 1250 ° C. or higher and 1350 ° C. or lower. This temperature range corresponds to the peak of heat generation of 1150 ° C. or higher and 1300 ° C. or lower, and is adjusted to the range of 50 ° C. or higher and 100 ° C. or lower of the actual heat generation peak. A rotary kiln or the like is used as the firing device. By setting the firing temperature to 50 ° C or higher and 100 ° C or lower, which is the peak of actual heat generation, stable operation due to fusion of raw materials in the kiln is not hindered, a solid aggregate can be obtained, and radioactive cesium is removed. The rate can also be maintained high. In addition, the peak of heat generation of the raw material can be monitored while firing, and the firing temperature can be changed according to the fluctuation to maintain the stable operation of the kiln.
次に、本発明の実施例について説明する。 Next, examples of the present invention will be described.
図3に示すように、11種の骨材原料について示差熱分析(DTA)を行い、発熱のピークを測定した。同図において印を付した極大箇所が発熱のピークを示す。これら発熱のピークを表1に示す。発熱のピークが1150℃以上1300℃以下のものを実施例1~9とし、発熱のピークが1150℃未満のものを比較例1、1300℃を超えるものを比較例2とした。 As shown in FIG. 3, differential thermal analysis (DTA) was performed on 11 kinds of aggregate raw materials, and the peak of heat generation was measured. The maximum points marked in the figure indicate the peak of heat generation. The peaks of these heat generations are shown in Table 1. Examples 1 to 9 had a peak of heat generation of 1150 ° C. or higher and 1300 ° C. or lower, Comparative Example 1 had a peak of heat generation of less than 1150 ° C., and Comparative Example 2 had a peak of heat generation of more than 1300 ° C.
上記11種の骨材原料についてロータリーキルンを用い、同表に記載した運転温度で焼成した。実施例1~9については、ロータリーキルンを安定した状態で運転することができ、放射性セシウム除去率(Cs除去率)を90%以上に、フリーライム(f-CaO)も2質量%以下、良品率80%以上の骨材を製造することができた。一方、比較例1については、骨材原料の一部がロータリーキルン内で溶融し、ロータリーキルンを安定して運転することができなかった。また、比較例2については、熱量不足で十分に焼成することができず、放射性セシウム除去率が低く、フリーライムが2質量%を超え、良品率が34%に留まった。実施例1~9より、良品率80%以上の骨材を製造することができる運転温度は1250℃以上1350℃以下であり、発熱のピークの50℃以上100℃以下高温側が目安となることがわかる。 The above 11 kinds of aggregate raw materials were fired at the operating temperatures shown in the table using a rotary kiln. In Examples 1 to 9, the rotary kiln can be operated in a stable state, the radioactive cesium removal rate (Cs removal rate) is 90% or more, the free lime (f-CaO) is 2% by mass or less, and the non-defective product rate. More than 80% of aggregate could be produced. On the other hand, in Comparative Example 1, a part of the aggregate raw material was melted in the rotary kiln, and the rotary kiln could not be operated stably. Further, in Comparative Example 2, it could not be sufficiently fired due to insufficient heat, the radioactive cesium removal rate was low, the free lime exceeded 2% by mass, and the non-defective rate remained at 34%. From Examples 1 to 9, the operating temperature at which an aggregate having a non-defective rate of 80% or more can be produced is 1250 ° C. or higher and 1350 ° C. or lower, and the high temperature side of the heat generation peak of 50 ° C. or higher and 100 ° C. or lower can be used as a guide. Recognize.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018047594A JP7017958B2 (en) | 2018-03-15 | 2018-03-15 | Method of preparing aggregate raw material and method of manufacturing aggregate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018047594A JP7017958B2 (en) | 2018-03-15 | 2018-03-15 | Method of preparing aggregate raw material and method of manufacturing aggregate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019158705A JP2019158705A (en) | 2019-09-19 |
JP7017958B2 true JP7017958B2 (en) | 2022-02-09 |
Family
ID=67993857
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018047594A Active JP7017958B2 (en) | 2018-03-15 | 2018-03-15 | Method of preparing aggregate raw material and method of manufacturing aggregate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7017958B2 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001340830A (en) | 2000-06-01 | 2001-12-11 | Osamu Ikeda | Method for crystallizing refuse molten slug |
JP2003138423A (en) | 2001-10-31 | 2003-05-14 | Unitica Fibers Ltd | Method for producing polyester fiber for industrial use |
US20100175588A1 (en) | 2007-02-26 | 2010-07-15 | Tata Chemicals Limited | Cement and methods of preparing cement |
JP2014130051A (en) | 2012-12-28 | 2014-07-10 | Taiheiyo Cement Corp | Method for removing radioactive cesium and method for manufacturing burned product |
JP2017150955A (en) | 2016-02-25 | 2017-08-31 | 太平洋セメント株式会社 | Removal method of radioactive cesium and removal device, and manufacturing method and manufacturing device of construction material |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61117441A (en) * | 1984-11-13 | 1986-06-04 | Showa Electric Wire & Cable Co Ltd | Method for estimating heat history of polyethylene |
JP3155638B2 (en) * | 1992-12-15 | 2001-04-16 | 株式会社三創 | Fly ash fiber |
JPH0856497A (en) * | 1994-08-19 | 1996-03-05 | Shigenori Saito | Water-drainer for seedling box cleaner |
JP2754169B2 (en) * | 1994-08-22 | 1998-05-20 | 富士電気化学株式会社 | DTA measurement method for trace additives for Mn-Zn ferrite |
-
2018
- 2018-03-15 JP JP2018047594A patent/JP7017958B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001340830A (en) | 2000-06-01 | 2001-12-11 | Osamu Ikeda | Method for crystallizing refuse molten slug |
JP2003138423A (en) | 2001-10-31 | 2003-05-14 | Unitica Fibers Ltd | Method for producing polyester fiber for industrial use |
US20100175588A1 (en) | 2007-02-26 | 2010-07-15 | Tata Chemicals Limited | Cement and methods of preparing cement |
JP2014130051A (en) | 2012-12-28 | 2014-07-10 | Taiheiyo Cement Corp | Method for removing radioactive cesium and method for manufacturing burned product |
JP2017150955A (en) | 2016-02-25 | 2017-08-31 | 太平洋セメント株式会社 | Removal method of radioactive cesium and removal device, and manufacturing method and manufacturing device of construction material |
Also Published As
Publication number | Publication date |
---|---|
JP2019158705A (en) | 2019-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
BR112016028666B1 (en) | Method for producing a cement compound | |
JP5984599B2 (en) | Method for producing cement composition | |
Yasipourtehrani et al. | Investigation of thermal properties of blast furnace slag to improve process energy efficiency | |
JP2012530037A (en) | Industrial production method of clinker containing a lot of belite | |
JP2017029942A (en) | Method of modifying fly ash | |
JP2005255456A (en) | Hydraulic composition | |
JP7017958B2 (en) | Method of preparing aggregate raw material and method of manufacturing aggregate | |
JP2017122016A (en) | Manufacturing method of portland cement clinker | |
JP5583429B2 (en) | Hydraulic composition | |
Han et al. | Comprehensive study of recycling municipal solid waste incineration fly ash in lightweight aggregate with bloating agent: Effects of water washing and bloating mechanism | |
CN112906218B (en) | Compatibility method, control system, equipment and storage medium for high-temperature melting treatment of fly ash | |
JP2013023422A (en) | Method of manufacturing burned product | |
JP2010001196A (en) | Cement composition | |
JP2014189439A (en) | Method for manufacturing cement clinker | |
JP6206670B2 (en) | Manufacturing method and manufacturing equipment for clinker with free lime content controlled based on quartz crystallite diameter | |
JP6353264B2 (en) | Cement clinker with improved fluidity | |
JP2019144144A (en) | Method for evaluating modified coal ash quality | |
JP7288607B2 (en) | Method for manufacturing refined raw material for cement and apparatus for manufacturing refined raw material for cement | |
CN1678541A (en) | Method for preparing pre-reacted batches of raw materials for the production of glass formulas | |
JP6249160B2 (en) | Method for producing clinker with controlled free lime content based on quartz crystallite diameter | |
JP6940836B1 (en) | Concrete admixtures, concrete admixture manufacturing methods and concrete products | |
JP4377256B2 (en) | Manufacturing method of artificial lightweight aggregate | |
JP2011020867A (en) | Method for selecting fly ash and method for producing cement using the same | |
JP6616145B2 (en) | Slag manufacturing method | |
JP5980044B2 (en) | Method for producing cement composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200821 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210730 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210816 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211005 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220124 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220128 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7017958 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |