JP2003138423A - Method for producing polyester fiber for industrial use - Google Patents

Method for producing polyester fiber for industrial use

Info

Publication number
JP2003138423A
JP2003138423A JP2001334588A JP2001334588A JP2003138423A JP 2003138423 A JP2003138423 A JP 2003138423A JP 2001334588 A JP2001334588 A JP 2001334588A JP 2001334588 A JP2001334588 A JP 2001334588A JP 2003138423 A JP2003138423 A JP 2003138423A
Authority
JP
Japan
Prior art keywords
fiber
temperature
steam
roller
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001334588A
Other languages
Japanese (ja)
Inventor
Shuji Miyazaki
修二 宮崎
Shiro Ishibai
司郎 石灰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Fibers Ltd
Original Assignee
Unitika Fibers Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Fibers Ltd filed Critical Unitika Fibers Ltd
Priority to JP2001334588A priority Critical patent/JP2003138423A/en
Publication of JP2003138423A publication Critical patent/JP2003138423A/en
Pending legal-status Critical Current

Links

Landscapes

  • Biological Depolymerization Polymers (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a polyester fiber for a industrial use, enabling to draw the fiber at a high drawing ratio, that is the polylactate fiber having high strength sufficiently applicable to the industrial use is produced with good operability. SOLUTION: This method for producing the polyester fiber for the industrial material comprises spinning out the polylactate polymer having a melting point (Tm) of >=130 deg.C through nozzles, then cooling, furnishing with a finish, aspirating, further drawing the spun fiber directly without winding it in an intermediate stage, and finally winding the drawn fiber at a winding speed of >=1500 m/min, wherein the first stage of the drawing of the fiber is conducted by blowing steam which is heated with a heating means to have a temperature higher than the Tm on the fiber so that the fiber is thermally drawn.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ポリ乳酸を主成分
とし、高強度が必要とされる産業資材や生活資材用途に
適したポリエステル繊維を、延伸性よく製造することが
できる産資用ポリエステル繊維の製造法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polyester for industrial use, which contains polylactic acid as a main component and is capable of producing polyester fiber suitable for industrial materials and daily life materials requiring high strength with good stretchability. The present invention relates to a fiber manufacturing method.

【0002】[0002]

【従来の技術】従来より熱可塑性樹脂を用いた繊維、フ
ィルム、不織布、成形品等の加工製品が利便性の面から
多く大量に生産されている。しかし、その反面、石油資
源の枯渇化懸念や使用後の廃棄物の処理が環境問題にな
ってきている。
2. Description of the Related Art Conventionally, many processed products such as fibers, films, non-woven fabrics and molded products using thermoplastic resins have been mass-produced for convenience. However, on the other hand, concerns over exhaustion of petroleum resources and disposal of waste after use have become an environmental problem.

【0003】これに伴い、一部ペットボトル等の比較的
不純物の少ない樹脂を回収して繊維等に再生しており、
これらの再生繊維は、環境に優しい製品として評価され
ている。しかし、石油製品の全体から見ればほんの一部
にしか過ぎず、依然として廃棄物は大量に存在し、環境
問題はまだまだ解決されていないのが現状である。
Along with this, some resins, such as PET bottles, containing relatively few impurities are collected and recycled into fibers and the like.
These recycled fibers are valued as environmentally friendly products. However, from the perspective of petroleum products as a whole, it is only a part, and there are still a large amount of waste, and the environmental problems have not yet been solved.

【0004】このような状況下で、近年トウモロコシを
原料とした脂肪族ポリエステルであるポリ乳酸系樹脂を
用いた加工製品が注目されている。ポリ乳酸は生分解性
や抗菌性があり、加水分解性に優れるため、埋め立てや
コンポジット処理等で分解させることができる。
Under these circumstances, a processed product using a polylactic acid resin, which is an aliphatic polyester made from corn, has been attracting attention in recent years. Since polylactic acid has biodegradability and antibacterial properties and is excellent in hydrolyzability, it can be decomposed by landfill or composite treatment.

【0005】しかしながら、一般的にポリ乳酸系樹脂を
主原料とした繊維は、産資用途に汎用的に用いられてい
るポリエチレンテレフタレート(PET)と比較して、
強度が弱く、耐加水分解性に劣り、さらには低融点であ
るため、用途範囲が限られるといった問題がある。
However, in general, a fiber mainly made of polylactic acid resin is compared with polyethylene terephthalate (PET) which is generally used for industrial purposes,
Since the strength is weak, the hydrolysis resistance is poor, and the melting point is low, the application range is limited.

【0006】そこで、産資用にも用いることができるポ
リ乳酸系繊維として、高強度のポリ乳酸繊維を得る方法
が種々提案されている。その一つの手段は、延伸時に高
延伸倍率で延伸を行い、高強度繊維を得る方法である。
しかしながら、ポリ乳酸系繊維は延伸倍率を高くしてい
くとボイドが原因と推測される失透が発生しやすく、こ
のような失透の発生している状態になると操業性が悪化
したり、また、延伸倍率を高くしても高強度にすること
は困難であった。
Therefore, various methods have been proposed for obtaining high-strength polylactic acid fibers as polylactic acid fibers that can be used for industrial purposes. One of the means is to obtain a high-strength fiber by performing drawing at a high draw ratio during drawing.
However, when the draw ratio of the polylactic acid-based fiber is increased, devitrification, which is presumed to be caused by voids, is likely to occur, and in a state where such devitrification occurs, operability deteriorates, and However, it was difficult to obtain high strength even if the draw ratio was increased.

【0007】特開2000-136435号公報には、高強度のポ
リ乳酸系繊維を得る製造法として、糸条の水分率を調節
して熱延伸を行なう方法が記載されている。この公報に
記載されているように、ローラの加熱温度を適正化して
いくことで、失透の発生を抑制しながら延伸倍率を高く
して高強度のポリ乳酸系繊維を得るのは可能であるが、
高倍率延伸するにはローラの加熱温度を高くする必要が
あった。
Japanese Patent Laid-Open No. 2000-136435 describes a method for producing a high-strength polylactic acid-based fiber by adjusting the moisture content of the yarn and performing hot drawing. As described in this publication, by optimizing the heating temperature of the roller, it is possible to obtain a high-strength polylactic acid-based fiber by increasing the draw ratio while suppressing the occurrence of devitrification. But,
It was necessary to raise the heating temperature of the roller for high-stretching.

【0008】しかし、ローラ温度を高くしていくと、こ
れと比例してローラ上での糸揺れが大きくなり、特に延
伸前のローラ上での糸揺れが激しくなり、毛羽の発生や
切断が多くなるという問題があった。特に、多エンド糸
条の延伸を行う場合は、糸条間の接触や重なりが生じや
すく、この問題が顕著であった。
However, as the roller temperature is increased, the yarn swaying on the roller increases in proportion to this, especially the yarn swaying on the roller before stretching becomes severe, and fluff is often generated and cut. There was a problem of becoming. In particular, when a multi-end yarn is drawn, contact and overlap between yarns are likely to occur, and this problem is remarkable.

【0009】このように、ローラ温度を調整するだけで
は高倍率延伸化には限界があった。また、補助的に融点
温度以下の加熱空気や加熱蒸気を併用した方法も提案さ
れているが、これらにより多少の効果は有るものの、安
定した操業性を得るには至っていなかった。
As described above, there is a limit to the high-magnification stretching only by adjusting the roller temperature. Further, a method of additionally using heated air or heated steam having a melting point temperature or lower has been proposed, but although these have some effects, stable operability has not been obtained.

【0010】[0010]

【発明が解決しようとする課題】本発明は、上記の問題
を解決し、高倍率での延伸を可能にし、産資用途に十分
使用可能な高い強度を有したポリ乳酸繊維を、操業性よ
く製造することができる産資用ポリエステル繊維の製造
法を提供することを技術的な課題とするものである。
DISCLOSURE OF THE INVENTION The present invention solves the above problems, makes it possible to stretch at a high ratio, and provides a polylactic acid fiber having high strength which can be sufficiently used for industrial purposes with good operability. It is a technical subject to provide a method for producing a polyester fiber for industrial use that can be produced.

【0011】[0011]

【課題を解決するための手段】本発明者らは、上記の課
題を解決すべく検討した結果、1段目の延伸の際に融点
以上の温度のスチームを吹き付けながら熱延伸すること
で、失透の発生を防ぐとともに、高延伸倍率の延伸が可
能となり、しかも延伸前の糸条を引き揃えたり、予備加
熱する引き取りローラを非加熱或いは低温加熱とするこ
とが可能で、糸揺れが小さくなるため、多エンド糸条の
延伸も安定して行えるということを見い出し、本発明に
到達した。
Means for Solving the Problems The inventors of the present invention have conducted studies to solve the above problems, and as a result of the heat drawing while blowing steam having a temperature equal to or higher than the melting point during the first drawing, the In addition to preventing the occurrence of transparency, it is possible to draw at a high draw ratio, and it is possible to align the yarns before drawing and to heat the take-up roller for preheating without heating or at low temperature, which reduces yarn shaking. Therefore, they have found that the multi-end yarn can be stably drawn, and have arrived at the present invention.

【0012】すなわち、本発明は、融点130℃以上の
ポリ乳酸系重合体からなるポリエステルを溶融紡糸口金
から紡出した後、冷却し、油剤を付与して引き取り、一
旦巻き取ることなく連続して延伸を行い、1500m/
分以上で巻き取る製造方法において、1段目の延伸を、
融点(Tm)以上の温度のスチームを吹き付けながら熱
延伸することを特徴する産資用ポリエステル繊維の製造
法を要旨とするものである。
That is, according to the present invention, a polyester made of a polylactic acid-based polymer having a melting point of 130 ° C. or higher is spun from a melt spinneret, then cooled, and an oil agent is applied to the polyester, which is continuously taken up without being wound up. Stretched 1500m /
In the manufacturing method of winding in more than a minute,
The gist is a method for producing a polyester fiber for industrial use, which is characterized in that hot drawing is performed while blowing steam having a temperature equal to or higher than a melting point (Tm).

【0013】[0013]

【発明の実施の形態】以下、本発明について詳細に説明
する。本発明の製造法に用いるポリ乳酸系重合体は、融
点が130℃以上であり、さらに好ましくは150℃以
上である。融点が130℃未満であると用途が限られる
ため好ましくない。具体的には、L−乳酸とD−乳酸の
光学異性体の共重合体を主成分とし、このうち、L−乳
酸の光学純度が85.0〜99.5%であることが好ま
しい。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below. The polylactic acid polymer used in the production method of the present invention has a melting point of 130 ° C. or higher, more preferably 150 ° C. or higher. If the melting point is less than 130 ° C, the use is limited, which is not preferable. Specifically, the main component is a copolymer of optical isomers of L-lactic acid and D-lactic acid, and of these, the optical purity of L-lactic acid is preferably 85.0 to 99.5%.

【0014】L体とD体の比率は、耐熱性と生分解性に
影響する要因である。一般にL体の比率が低いと結晶性
が低下し、融点が低下すると同時に生分解速度は速くな
る。しかし、L体の純度がこの範囲より低いと、融点が
低く、耐熱性の劣った繊維となり、製糸性も悪化し、熱
延伸がし難くなる。また、L体の純度がこの範囲より高
いと、結晶化温度が高いため分解速度が遅く、生分解性
に劣った繊維となる。
The ratio of L-form to D-form is a factor affecting heat resistance and biodegradability. Generally, when the ratio of the L-form is low, the crystallinity is lowered, the melting point is lowered, and at the same time, the biodegradation rate is increased. However, if the purity of the L-form is lower than this range, the melting point is low, the fiber becomes inferior in heat resistance, the spinnability is deteriorated, and hot drawing becomes difficult. When the purity of the L-form is higher than this range, the crystallization temperature is high and the decomposition rate is slow, resulting in a fiber having poor biodegradability.

【0015】本発明の製造法で得られる繊維は産資用途
に用いることを目的としているため、用いるポリ乳酸系
重合体の溶融粘度はメルトフローレート値(以下MFR
と称す:ASTM−D1238に準じて温度210℃、
2160g荷重下で測定した値)が1g/10分〜40
g/10分が好ましい。MFRが1g/10分未満では
溶融粘度が大き過ぎて製糸性が低下し、また、40g/
10分を超えると高強度の繊維を得ることが困難となり
やすい。
Since the fiber obtained by the production method of the present invention is intended to be used for industrial purposes, the melt viscosity of the polylactic acid-based polymer used is the melt flow rate value (hereinafter referred to as MFR).
Referred to as: according to ASTM-D1238, temperature 210 ℃,
Value measured under a load of 2160 g) is 1 g / 10 minutes to 40
g / 10 minutes is preferred. If the MFR is less than 1 g / 10 minutes, the melt viscosity will be too large and the spinnability will be reduced.
If it exceeds 10 minutes, it tends to be difficult to obtain high-strength fibers.

【0016】なお、本発明においては、前述したポリ乳
酸系重合体に、必要に応じて、例えば熱安定剤、結晶核
剤、艶消し剤、顔料、耐光剤、耐候剤、酸化防止剤、抗
菌剤、香料、可塑剤、染料、界面活性剤、表面改質剤、
各種無機及び有機電解質、微粉体、難燃剤等の各種添加
剤を本発明の効果を損なわない範囲で添加することがで
きる。
In the present invention, the above-mentioned polylactic acid-based polymer may be added to the above-mentioned polylactic acid polymer, if necessary, for example, a heat stabilizer, a crystal nucleating agent, a matting agent, a pigment, a light resistance agent, a weather resistance agent, an antioxidant, an antibacterial agent. Agents, fragrances, plasticizers, dyes, surfactants, surface modifiers,
Various additives such as various inorganic and organic electrolytes, fine powders, flame retardants and the like can be added within a range that does not impair the effects of the present invention.

【0017】そして、本発明の製造法は、上記のような
ポリ乳酸系重合体を溶融紡糸し、冷却、油剤を付与した
後、一旦巻き取ることなく連続して延伸を行ない、15
00m/分以上で巻き取る、スピンドロー法である。本
発明においては、1段目の延伸を行なう際に、融点(T
m)以上の温度のスチームを吹き付けて熱延伸を行なう
ことがポイントである。
In the production method of the present invention, the polylactic acid-based polymer as described above is melt-spun, cooled, given an oil agent, and then continuously stretched without being once wound.
It is a spin draw method of winding at a rate of 00 m / min or more. In the present invention, the melting point (T
The point is to perform hot drawing by spraying steam having a temperature of m) or higher.

【0018】このように高温のスチームを吹き付けて熱
延伸することによって、延伸点が固定され、高倍率での
延伸が可能となる。特にスチームの温度は融点の2.0
〜2.5倍とすることが好ましい。これにより高倍率で
の延伸をよりスムーズに行なうことができる。融点未満
の温度であると、高倍率延伸をスムーズに行なうことが
できず、得られる繊維には失透が発生したり、毛羽が生
じることとなる。一方、2.5倍を超えると、重合体が
変性したりして強度低下を引き起こすことになる。
By thus blowing hot steam and performing hot stretching, the stretching point is fixed, and it becomes possible to stretch at a high magnification. Especially the temperature of steam is 2.0 which is the melting point.
It is preferably set to be 2.5 times. This makes it possible to smoothly perform stretching at a high magnification. If the temperature is lower than the melting point, high-stretching cannot be smoothly carried out, and devitrification occurs or fluff occurs in the obtained fiber. On the other hand, when it exceeds 2.5 times, the polymer is modified and the strength is lowered.

【0019】スチームの吹き付け方法は、複数の吹き付
け口より、糸条の走行方向に沿って対称にスチームを吹
き付けることが好ましい。吹き付け口の数、スチームの
吹き付け角度は特に限定するものではないが、図1に示
すように、糸条走行方向に向かって45度の角度で、2
個のオリフィス11(吹き付け口)から対称にスチーム
が吹き付けるようにすることが好ましい。このように両
オリフィス11からスチームが吹き付けられる点Xが延
伸点となり、延伸点を固定することができるので、高倍
率での延伸が可能となる。また、このとき、吹き付け部
付近においては未延伸糸Yは円筒22の中を走行させる
ことが好ましい。ただし、この円筒22はスチームの飛
散を防止するためのものであるので、長さ3〜10cm
程度のものでよい。
As a method of spraying steam, it is preferable to spray steam symmetrically along the running direction of the yarn from a plurality of spray ports. The number of spray ports and the spray angle of steam are not particularly limited, but as shown in FIG. 1, at an angle of 45 degrees toward the yarn running direction, 2
It is preferable that the steam is sprayed symmetrically from each orifice 11 (spraying port). In this way, the point X at which steam is blown from both orifices 11 becomes the stretching point, and the stretching point can be fixed, so that stretching at a high magnification becomes possible. At this time, it is preferable that the undrawn yarn Y runs in the cylinder 22 in the vicinity of the blowing portion. However, since this cylinder 22 is for preventing the scattering of steam, the length is 3 to 10 cm.
Something is enough.

【0020】吹き付けるスチームは、吹き出し圧力を
0.3〜0.7MPaとすることが好ましい。スチーム
の吹き出し圧力は、スチームの流速や流量によって左右
されるものであるが、圧力を上記範囲とすることが好ま
しい。また、流量は10〜50kg/時間とすることが好
ましい。吹き出し圧力が0.3MPa未満であったり、
流量が10kg/時間未満であると、失透が発生しやす
く、高倍率の延伸を行うことが困難となりやすい。一
方、吹き出し圧力が0.7MPaを超えたり、流量が5
0kg/時間を超えると、糸条の走行が不安定になり、延
伸点の固定が困難となりやすく、また、コスト的にも不
利である。
The spraying steam preferably has a blowing pressure of 0.3 to 0.7 MPa. The blowing pressure of the steam depends on the flow rate and the flow rate of the steam, but the pressure is preferably within the above range. The flow rate is preferably 10 to 50 kg / hour. Blowing pressure is less than 0.3 MPa,
When the flow rate is less than 10 kg / hour, devitrification is likely to occur, and it is difficult to perform high-strength stretching. On the other hand, the blowing pressure exceeds 0.7 MPa and the flow rate is 5
When it exceeds 0 kg / hour, the running of the yarn becomes unstable, fixing of the drawing point tends to be difficult, and it is also disadvantageous in terms of cost.

【0021】そして、この1段目の延伸において、全延
伸倍率の50%以上を行うことが好ましく、さらに好ま
しくは70%以上である。50%未満であると結晶化が
進むため、全延伸倍率の低下につながり高強度の繊維を
得ることが困難となる。また、1段目の延伸のみの1段
延伸でもよいが、高強度が得やすいため2〜3段延伸と
することが好ましい。
In this first-stage stretching, it is preferable to carry out 50% or more of the total draw ratio, and more preferably 70% or more. If it is less than 50%, crystallization will proceed, resulting in a decrease in the total draw ratio and making it difficult to obtain high-strength fibers. Further, although only the first stage stretching may be performed, the second stage stretching is preferable because high strength is easily obtained.

【0022】このようなスチーム熱延伸により、延伸前
の引き取りローラ又は引き揃えローラを加熱することな
く十分に延伸を行なうことができ、ローラ上の糸揺れが
減少し、コストも削減できる。
By such hot steam drawing, the drawing can be sufficiently carried out without heating the take-up roller or the aligning roller before drawing, the yarn sway on the roller is reduced, and the cost can be reduced.

【0023】また、本発明の製造法において、巻き取り
速度は、1500m/分以上、好ましくは2000〜3
000m/分である。1500m/分未満であるとコス
ト面で不利になり、3000m/分を超えると、高倍率
での延伸が困難となり、高強度が得にくくなったり、製
糸性が劣るようになり好ましくない。
In the production method of the present invention, the winding speed is 1500 m / min or more, preferably 2000-3.
000 m / min. If it is less than 1500 m / min, it is disadvantageous in terms of cost, and if it exceeds 3000 m / min, it becomes difficult to stretch at a high ratio, it becomes difficult to obtain high strength, and the spinnability is deteriorated, which is not preferable.

【0024】本発明の製造法で得られる繊維は、延伸倍
率にもよるが、強度を4.5cN/dtex以上とする
ことが好ましく、さらには、5.0cN/dtex以上
とすることが好ましい。断面形状は特に限定されるもの
ではなく、丸断面のみならず、異型断面でもよい。
The fiber obtained by the production method of the present invention has a strength of preferably 4.5 cN / dtex or more, and more preferably 5.0 cN / dtex or more, though it depends on the draw ratio. The cross-sectional shape is not particularly limited, and may be a round cross section or an irregular cross section.

【0025】また、繊度も任意に設定することができる
が、産資用途に用いるため、総繊度は300〜2000
dtex、単糸の繊度2〜30dtex程度とすること
が好ましい。
Although the fineness can be set arbitrarily, the total fineness is 300 to 2000 because it is used for industrial purposes.
dtex, and the fineness of the single yarn is preferably about 2 to 30 dtex.

【0026】次に、図面を用いて本発明を説明する。図
2は本発明の製造法の一実施態様を示す概略工程図であ
る。まず、常用の溶融紡糸装置に紡糸口金を装着し、温
度200〜240℃で紡出し、長さ20〜50cmの環
状吹き付け装置を用いて、温度10〜40℃、速度0.
3〜2.0m/秒の空気で冷却した後、油剤を付与して
引き取る。
Next, the present invention will be described with reference to the drawings. FIG. 2 is a schematic process drawing showing one embodiment of the manufacturing method of the present invention. First, a spinneret is attached to a conventional melt spinning apparatus, spinning is performed at a temperature of 200 to 240 ° C., an annular spraying apparatus having a length of 20 to 50 cm is used, and a temperature of 10 to 40 ° C. and a speed of 0.
After cooling with air of 3 to 2.0 m / sec, an oil agent is applied and taken out.

【0027】このとき、紡糸直後に内壁温度200〜4
00℃に加熱された長さ10〜30cmの加熱筒を通過
させてから冷却することが好ましい。これにより未延伸
糸の配向を下げ、延伸性を高めることができる。
At this time, the inner wall temperature was 200 to 4 immediately after spinning.
It is preferable to pass through a heating cylinder having a length of 10 to 30 cm heated to 00 ° C. and then cool. This can reduce the orientation of the undrawn yarn and enhance the drawability.

【0028】そして、図2に示すように、未延伸糸Yを
非加熱の第1ローラ1に複数回掛けて引き取り、引き続
いて非加熱の第2ローラ2に複数回掛けて倍率1.00
5〜1.05の引き揃えを行う。続いて、スチーム処理
機6内を通過させ、温度100〜150℃に加熱された
第3ローラ3に複数回掛けて、スチーム処理機6内で延
伸倍率4.0〜6.0で1段目の延伸を行う。引き続き
100〜150℃に加熱された第4ローラ4に複数回掛
けて延伸倍率1.1〜1.5で2段目の延伸を行った
後、0.90〜0.99倍の弛緩処理を行いながら速度
1500m/分以上でワインダー5に巻取る。
Then, as shown in FIG. 2, the undrawn yarn Y is applied to the unheated first roller 1 a plurality of times to be taken up, and subsequently applied to the unheated second roller 2 a plurality of times to obtain a magnification of 1.00.
Alignment of 5 to 1.05 is performed. Subsequently, the steam is passed through the steam treatment machine 6 and hung on the third roller 3 heated to a temperature of 100 to 150 ° C. a plurality of times, and the first stage at a draw ratio of 4.0 to 6.0 in the steam treatment machine 6. Is stretched. Subsequently, the fourth roller 4 heated to 100 to 150 ° C. is applied a plurality of times to perform the second stage stretching at a stretching ratio of 1.1 to 1.5, and then a relaxation treatment of 0.90 to 0.99 times. While performing, wind up on the winder 5 at a speed of 1500 m / min or more.

【0029】[0029]

【実施例】次に、本発明を実施例によって具体的に説明
する。なお、実施例における各物性値の測定及び各種の
評価は次のように行なった。 (a)融点(℃) パーキンエルマ社製示差走査型熱量計DSC−2型を用
い、試料約5mg、窒素中、昇温速度10℃/分、20
0℃で5分保持し、降温速度10℃/分で20℃まで降
温し、再び昇温速度10℃/分で200℃まで昇温させ
た時の最大融解発熱ピーク温度を融点(Tm)とした。 (b)ガラス転移温度(℃) 上記融点を測定する際に得た初期発熱ピーク温度をガラ
ス転移温度(Tg)とした。 (c)MFR(g/10分) ASTM D1238に準じて210℃、2160g荷
重下で測定した。 (d)強伸度 JIS L−1013に準じて、島津製作所製オートグ
ラフDSSー500を用い、試料長25cm、引っ張り
速度30cm/分で測定した。 (e)失透の評価 得られた繊維の白色化度合いを目視にて判断し、以下の
3段階で評価した。 白色化無し・・・○ 白色化度合いが小さい・・・△ 白色化度合いが大きい・・・× (f)引き揃えローラ(第2ローラ2)上での糸揺れの
評価 ローラ上での糸揺れの大きさを目視にて以下の3段階で
評価した。 小・・・○ 中・・・△ 大・・・×
EXAMPLES Next, the present invention will be specifically described with reference to examples. In addition, the measurement of each physical property value and various evaluations in the examples were performed as follows. (A) Melting point (° C) Using a differential scanning calorimeter DSC-2 type manufactured by Perkin Elma Co., Ltd., a sample of about 5 mg, in nitrogen, heating rate 10 ° C / min, 20
The maximum melting exothermic peak temperature when the temperature was kept at 0 ° C. for 5 minutes, the temperature was decreased to 20 ° C. at a temperature decreasing rate of 10 ° C./minute, and the temperature was again increased to 200 ° C. at a temperature increasing rate of 10 ° C./minute was taken as the melting point (Tm). did. (B) Glass transition temperature (° C.) The initial exothermic peak temperature obtained when measuring the melting point was taken as the glass transition temperature (Tg). (C) MFR (g / 10 minutes) Measured according to ASTM D1238 at 210 ° C. under a load of 2160 g. (D) Strength and Elongation According to JIS L-1013, a Shimadzu Corporation Autograph DSS-500 was used to measure a sample length of 25 cm and a pulling speed of 30 cm / min. (E) Evaluation of devitrification The degree of whitening of the obtained fiber was visually judged and evaluated according to the following three grades. No whitening ・ ・ ・ ○ Whitening degree is small △ △ Whitening degree is large ・ ・ ・ × (f) Evaluation of yarn sway on the aligning roller (second roller 2) Yarn sway on the roller The size of was evaluated by the following three grades visually. Small ・ ・ ・ ○ Medium ・ ・ ・ △ Large ・ ・ ・ ×

【0030】実施例1 常用の溶融紡糸装置に、孔径が0.5μm、孔数192
個が2孔群に配列された常用の紡糸口金を装着し、光学
純度が99.5%でMFRが8g/10分であり、ガラ
ス転移温度(Tg)が63℃、融点(Tm)が175℃
のポリL−乳酸を温度225℃で紡出した。口金直下に
設置された内壁温度300℃、長さ20cmの加熱筒内
を通過させた後、吹き付け長40cmの環状吹き付け装
置を用いて、温度15℃、速度0.6m/秒の冷却風で
冷却し、オイリングローラで油剤を付与し、糸条を2分
割した。続いて図2に示す概略工程図に示すように延伸
を行なった。まず、速度319m/分の非加熱の第1ロ
ーラに4回掛けて2糸条を引き取り、引き続き各々の糸
条を速度328m/分の非加熱の第2ローラに5回掛け
て1.03倍で引き揃えを行い、その後、図1に示すス
チーム処理機(長さ4cm)を用いて、温度380℃、
圧力0.4MPa、流量15kg/時間のスチームを吹き
付けながら、速度1708m/分、温度130℃の第3
ローラに5回掛けて延伸倍率5.2で1段目の延伸を行
った。引き続き速度2050m/分、温度130℃の第
4ローラに5回掛けて延伸倍率1.2で2段目の延伸を
行った後、速度2000m/分のワインダーに2コップ
で巻き取り、555dtex/96フィラメント、丸断
面形状のポリエステル繊維を得た。
Example 1 A conventional melt-spinning apparatus was equipped with a pore size of 0.5 μm and a number of holes of 192.
Equipped with a conventional spinneret in which two pieces are arranged in a group of 2 holes, the optical purity is 99.5%, the MFR is 8 g / 10 minutes, the glass transition temperature (Tg) is 63 ° C., and the melting point (Tm) is 175. ℃
Poly L-lactic acid of was spun at a temperature of 225 ° C. After passing through a heating cylinder with an inner wall temperature of 300 ° C and a length of 20 cm installed immediately below the mouthpiece, it was cooled with a cooling wind at a temperature of 15 ° C and a speed of 0.6 m / sec using an annular blowing device with a blowing length of 40 cm. Then, an oiling agent was applied with an oiling roller to divide the yarn into two parts. Subsequently, stretching was performed as shown in the schematic process drawing shown in FIG. First, the first roller of 319 m / min, which is not heated, is wound four times to pull out the two yarns, and then each yarn is wound five times, on the second roller of unheated, which is 328 m / min, five times to 1.03 times. By using the steam treatment machine (length 4 cm) shown in FIG. 1 at a temperature of 380 ° C.
While spraying steam with a pressure of 0.4 MPa and a flow rate of 15 kg / hour, the speed was 1708 m / min and the temperature was 130 ° C.
The roller was stretched 5 times to draw the first stage at a draw ratio of 5.2. Subsequently, the second roller was stretched 5 times on a fourth roller at a speed of 2050 m / min and a temperature of 130 ° C. for a second stage at a draw ratio of 1.2, and then wound on a winder at a speed of 2000 m / min with 2 cups and 555 dtex / 96. A polyester fiber having a filament and a round cross section was obtained.

【0031】実施例2 光学純度が95.0%でMFRが10g/分、Tg56
℃、Tm152℃のポリL−乳酸を用い、温度210℃
で紡出し、内壁温度280℃の加熱筒を通過させ、温度
340℃のスチームを吹き付け、第3、第4ローラの温
度を各々15℃下げた以外は、実施例1と同様に行っ
た。
Example 2 Optical purity was 95.0%, MFR was 10 g / min, Tg56
℃, Tm 152 ℃ poly L-lactic acid, temperature 210 ℃
The same procedure as in Example 1 was performed, except that the inner wall temperature was passed through a heating cylinder having a temperature of 280 ° C., the steam having a temperature of 340 ° C. was sprayed, and the temperatures of the third and fourth rollers were lowered by 15 ° C.

【0032】実施例3、4 スチームの温度を表1に示す値とした以外は実施例1と
同様に行った。
Examples 3 and 4 The procedure of Example 1 was repeated except that the steam temperature was changed to the values shown in Table 1.

【0033】比較例1 スチーム処理機を取り外し、第2ローラの温度を110
℃に加熱し、ローラ延伸を行った以外は実施例1と同様
に行った。
Comparative Example 1 The steam treatment machine was removed and the temperature of the second roller was adjusted to 110
The same procedure as in Example 1 was carried out except that the temperature was raised to 0 ° C. and the roller was stretched.

【0034】比較例2 第2ローラの温度を90℃にした以外は、比較例1と同
様に行った。
Comparative Example 2 The procedure of Comparative Example 1 was repeated, except that the temperature of the second roller was 90 ° C.

【0035】比較例3 スチームの温度を表1に示す値とした以外は実施例1と
同様に行った。
Comparative Example 3 The procedure of Example 1 was repeated except that the steam temperature was changed to the value shown in Table 1.

【0036】実施例1〜4、比較例1〜3で得られた繊
維の物性値、評価結果を表1に示す。
Table 1 shows the physical property values and evaluation results of the fibers obtained in Examples 1 to 4 and Comparative Examples 1 to 3.

【0037】[0037]

【表1】 [Table 1]

【0038】表1から明らかなように、実施例1〜4で
得られた繊維は十分な強度と切断伸度を有し、失透もな
く産資用に好適な繊維であった。また、糸揺れも生じず
操業性よく生産することができた。一方、比較例1はス
チーム処理機を設けず、第2ローラを加熱ローラとして
ローラ間での延伸を行なったため、糸揺れが大きく安定
した操業は困難な状況であった。比較例2もスチーム処
理機を設けなかった例であるが、第2ローラ上での糸揺
れを小さくするために比較例1よりも温度を低くした
が、得られた繊維は失透が発生し、毛羽が生じており、
強度や切断伸度も劣るものとなった。比較例3は、スチ
ーム処理機でのスチーム温度が低すぎたため、スムーズ
な延伸が行なえず、得られた繊維は失透が発生し、毛羽
も生じていた。
As is clear from Table 1, the fibers obtained in Examples 1 to 4 had sufficient strength and cutting elongation, and were devitrified and suitable for production. In addition, it was possible to produce with good operability without causing yarn sway. On the other hand, in Comparative Example 1, the steam treatment machine was not provided and the second roller was used as the heating roller to perform stretching between the rollers, so that the yarn sway was large and stable operation was difficult. Comparative Example 2 is also an example in which the steam treatment machine was not provided, but the temperature was made lower than that of Comparative Example 1 in order to reduce the yarn wobbling on the second roller, but devitrification occurred in the obtained fiber. , Fluff is generated,
The strength and cutting elongation were also inferior. In Comparative Example 3, since the steam temperature in the steam treatment machine was too low, smooth stretching could not be performed, and the obtained fiber had devitrification and fluffing.

【0039】[0039]

【発明の効果】本発明の製造法によれば、高倍率でのス
ムーズな延伸を行なうことができ、ローラ上での糸揺れ
も生じることがないので、産資用途に十分使用可能な高
い強度を有したポリ乳酸繊維を操業性よく製造すること
が可能となる。
According to the manufacturing method of the present invention, it is possible to carry out a smooth drawing at a high magnification and to prevent the yarn from shaking on the roller. It becomes possible to manufacture the polylactic acid fiber having the above-mentioned properties with good operability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の製造法で用いるスチーム処理機の断面
の一実施態様を示す説明図である。
FIG. 1 is an explanatory view showing an embodiment of a cross section of a steam processing machine used in a manufacturing method of the present invention.

【図2】本発明の製造法の一実施態様を示す概略工程図
である。
FIG. 2 is a schematic process drawing showing one embodiment of the production method of the present invention.

【符号の説明】[Explanation of symbols]

1 第1ローラ 2 第2ローラ 3 第3ローラ 4 第4ローラ 5 ワインダー 6 スチーム処理機 11 オリフィス 22 円筒 Y 未延伸糸 X 延伸点 1st roller 2 Second roller 3rd roller 4th roller 5 winders 6 steam processing machine 11 Orifice 22 cylinder Y undrawn yarn X stretch point

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 融点130℃以上のポリ乳酸系重合体か
らなるポリエステルを溶融紡糸口金から紡出した後、冷
却し、油剤を付与して引き取り、一旦巻き取ることなく
連続して延伸を行い、1500m/分以上で巻き取る製
造方法において、1段目の延伸を、融点(Tm)以上の
温度のスチームを吹き付けながら熱延伸することを特徴
する産資用ポリエステル繊維の製造法。
1. A polyester composed of a polylactic acid-based polymer having a melting point of 130 ° C. or higher is spun from a melt spinneret, then cooled, an oil agent is applied thereto and taken out, and continuous drawing is carried out without winding once. A method for producing a polyester fiber for industrial use, which comprises drawing the first stage by hot drawing while blowing steam having a temperature of a melting point (Tm) or higher in a manufacturing method of winding at 1500 m / min or more.
【請求項2】 複数の吹き付け口より、糸条の走行方向
に沿って対称にスチームを吹き付ける請求項1記載の産
資用ポリエステル繊維の製造法。
2. The method for producing polyester fiber for industrial use according to claim 1, wherein steam is sprayed symmetrically along the running direction of the yarn from a plurality of spray ports.
JP2001334588A 2001-10-31 2001-10-31 Method for producing polyester fiber for industrial use Pending JP2003138423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001334588A JP2003138423A (en) 2001-10-31 2001-10-31 Method for producing polyester fiber for industrial use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001334588A JP2003138423A (en) 2001-10-31 2001-10-31 Method for producing polyester fiber for industrial use

Publications (1)

Publication Number Publication Date
JP2003138423A true JP2003138423A (en) 2003-05-14

Family

ID=19149694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001334588A Pending JP2003138423A (en) 2001-10-31 2001-10-31 Method for producing polyester fiber for industrial use

Country Status (1)

Country Link
JP (1) JP2003138423A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019158705A (en) * 2018-03-15 2019-09-19 太平洋セメント株式会社 Method for estimating melt generation start temperature of aggregate raw material and method for preparing aggregate raw material, and method for producing aggregate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019158705A (en) * 2018-03-15 2019-09-19 太平洋セメント株式会社 Method for estimating melt generation start temperature of aggregate raw material and method for preparing aggregate raw material, and method for producing aggregate
JP7017958B2 (en) 2018-03-15 2022-02-09 太平洋セメント株式会社 Method of preparing aggregate raw material and method of manufacturing aggregate

Similar Documents

Publication Publication Date Title
US7622188B2 (en) Islands-in-sea type composite fiber and process for producing the same
JP2008057082A (en) Method for producing polylactic acid monofilament
JPS62243824A (en) Production of ultrafine polyester filament yarn
JPH06248551A (en) Aliphatic polyester melt-blown nonwoven fabric and its production
JP4009370B2 (en) Production method of polyester fiber
JP2012067407A (en) Polycarbonate fiber and method for manufacturing the same
JP2003138423A (en) Method for producing polyester fiber for industrial use
JP4335987B2 (en) Method for producing polylactic acid-based multifilament
JP2016030879A (en) Sea-island composite fiber
JP3462977B2 (en) Method for producing polylactic acid fiber
JP2021042511A (en) Method of manufacturing polylactic acid filament
JP4352843B2 (en) Polylactic acid fiber and method for producing the same
JP2009191390A (en) Recycled hollow multifilament
JP2002105752A (en) Bulky biodegradable yarn and method for producing the same
JP4173072B2 (en) Method and apparatus for producing polylactic acid-based long fiber nonwoven fabric
JP4049940B2 (en) Heat-sealable composite fiber and method for producing the same
JPH11302925A (en) Polylactic acid-based filament and its production
JP2004052173A (en) High-strength polyester monofilament and method for producing the same
JP4459657B2 (en) Composite fiber
JP2004176205A (en) Recycled polyester fiber for use as industrial material
JP2006336117A (en) Method for producing polyester hollow yarn
JP2019052395A (en) Sea-island type composite fiber and ultra fine fiber
JP4596636B2 (en) Method for producing thermal adhesive fiber
JPH08158154A (en) Biodegradable filament and its production
JP2023111771A (en) Biodegradable polyester fiber and manufacturing method thereof