JP4335987B2 - Method for producing polylactic acid-based multifilament - Google Patents

Method for producing polylactic acid-based multifilament Download PDF

Info

Publication number
JP4335987B2
JP4335987B2 JP31313698A JP31313698A JP4335987B2 JP 4335987 B2 JP4335987 B2 JP 4335987B2 JP 31313698 A JP31313698 A JP 31313698A JP 31313698 A JP31313698 A JP 31313698A JP 4335987 B2 JP4335987 B2 JP 4335987B2
Authority
JP
Japan
Prior art keywords
fiber
polylactic acid
fibers
temperature
wear resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31313698A
Other languages
Japanese (ja)
Other versions
JP2000136435A (en
Inventor
文夫 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP31313698A priority Critical patent/JP4335987B2/en
Publication of JP2000136435A publication Critical patent/JP2000136435A/en
Application granted granted Critical
Publication of JP4335987B2 publication Critical patent/JP4335987B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Biological Depolymerization Polymers (AREA)
  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Polyesters Or Polycarbonates (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、生分解性があり、かつ高強度で、優れた耐摩耗性を有するポリ乳酸系マルチフィラメントの製造方法に関するものである。
【0002】
【従来の技術】
合成樹脂からなる従来の合成繊維は、自然環境下での分解速度が遅く、また焼却時の発熱量が多いため、自然環境保護の見地からの見直しが必要である。このため、脂肪族ポリエステルからなる生分解性繊維が開発されつつあり、環境保護への貢献が期待されている。
【0003】
脂肪族ポリエステルのあるものは、ある程度の繊維性能を持ち、新しい特徴のある繊維素材として期待されるが、繊維やその製品の強度や耐摩耗性が弱く、また、表面タッチ、外観等における品質上の問題も多く、特に、高強度を要する分野での汎用的な展開が困難であった。
【0004】
このため、脂肪族ポリエステルの中でも比較的高融点であるポリ乳酸系重合体を用いて、高強度の繊維が開発されつつある。例えば、特開平2−203729号公報や特開平8−226016号公報では、高強度のモノフィラメント繊維が開示されている。しかし、マルチフィラメントでは、生産速度が速いために高強度の繊維が得られ難く、かつ、得られる繊維の耐摩耗性が極めて劣るという問題があった。また、マルチフィラメントの繊維間で糸径変動が生じたり、繊維表面に凹凸が生じ、さらには長さ方向においてもそれらの変動が生じやすく、品質上の観点からも問題であった。
【0005】
【発明が解決しようとする課題】
本発明は、上記の問題を解決し、生分解性を有し、かつ、高強度で耐摩耗性があり、品質の安定した繊維製品となるポリ乳酸系マルチフィラメントを安定して製造する方法を提供することを技術的な課題とするものである。
【0006】
【課題を達成するための手段】
本発明者らは、蒸気の課題を解決するために鋭意検討した結果、本発明に到達した。すなわち、本発明は、次の構成を有するものである。
(1)光学純度が95%以上、メルトフローレート値が1〜50g/10分であるポリ乳酸系重合体を溶融紡糸し、次いで延伸するに際し、未延伸繊維の水分率を3%以下に調整した後、一段目及び/又は二段目の延伸ゾーンで過熱空気又は過熱蒸気を付与し、延伸点を過熱空気又は過熱蒸気の噴出点に位置させて熱延伸を行うことを特徴とするポリ乳酸系マルチフィラメントの製造方法。
(2)ポリ乳酸系重合体として光学純度が95%以上、メルトフローレート値が1〜50g/10分の重合体を用い、紡糸した繊維を、(Tm−60)℃〜(Tm−10)℃の温度で多段熱延伸する(1)記載のポリ乳酸系マルチフィラメントの製造方法。
ただし、Tmはポリ乳酸系重合体の融点(℃)である。
【0007】
【発明の実施の形態】
以下、本発明について詳細に説明する。まず、本発明におけるポリ乳酸系マルチフィラメントを構成する重合体について説明する。ポリ乳酸は、L−乳酸とD−乳酸又はそれらのブレンドによる光学異性体の重合体を主成分としたものである。したがって、異成分を共重合するものではなく同一の素材であるため、極めて製糸特性が優れている。L−乳酸の光学純度が0〜100%存在する中で、このL体に対するD体の比率は、耐熱性や生分解性に影響する要因であり、L体の純度がD体によって純度が低くなると共に、結晶性が低下し、融点降下が大きくなる傾向を示す。また、柔軟性や弾性回復性の改良、熱収縮性増加、分解性やガラス転移温度の制御、他成分との接着性の改良などができる。
【0008】
一方、D−乳酸の光学純度が0〜100%存在する中で、このD体に対するL体の比率は、同様に耐熱性や生分解性に影響する要因であり、D体の純度がL体によって純度が低くなると結晶性が低下し、融点降下が大きくなる傾向を示す。さらに、柔軟性や弾性回復性の改良、熱収縮性増加、分解性やガラス転移温度の制御、他成分との接着性の改良などができる。このようなところから、L体とD体とのブレンド比が1:1であると最も結晶性が低下して融点降下が大きく、生分解速度も同時に速くなる。
【0009】
本発明に適用するポリ乳酸としては、純粋なポリ乳酸であり、D体又はL体が主体成分であることが望ましく、融点は120℃以上のものが好適である。光学純度の低いものを適用すると、融点が低いため熱延伸し難いことや、高強度の繊維が得られ難い問題が生じたり、耐熱性、耐摩耗性が低下するため好ましくない。そのため光学純度は、95%以上とすることが必要であり、より好ましくは、96%以上、最も好ましくは97%以上である。
【0010】
次に、前記したポリ乳酸系重合体の溶融粘度、すなわち、本発明の繊維を構成する重合体のメルトフローレート値(MFR)は、ASTM−D1238の処方で210℃、2160g下で測定した値が1g/10分以上、50g/10分以下であるものが必要である。MFRが1g/10分未満では、溶融粘度が大きくてポリマーの流動性が低下するため曳糸性が低下する。また曳糸性を改良するために紡糸温度を上げると発煙性が増加して紡糸環境が悪化したり、糸切れが増加する。また、MFRが50g/10分を超えると、強度を高くすることが難しく、耐熱性や耐摩耗性も低下する。したがって、MFRの範囲は、1〜50g/10分とすることが必要であるが、より好ましくは、2〜45g/10分、最も好ましくは3〜40g/10分がよい。
【0011】
本発明の製造方法で得られたポリ乳酸系マルチフィラメントは、強度が4.0g/d以上であることが必要である。繊維強度は、高い程実用範囲が広がるのでよいが、4.0g/d未満では産業資材用途や土木資材用途、漁業資材用途などの高強度を必要とする分野での適用が制限される。したがって、本発明では、強度は4.0g/d以上であることが必要であり、好ましくは4.5g/d以上、より好ましくは、5.0g/d以上、最も好ましくは5.5g/dのものがよい。
【0012】
繊維の伸度は、特に限定されるものではないが、20〜60%が好ましい。伸度は小さ過ぎると、繊維を製造する際に毛羽が発生したり、糸切れが生じて操業性が低下しやすくなる。また、伸度が大きすぎると、製編織した時に伸びて寸法安定性が低下しやすいので好ましくない。
【0013】
また、本発明の製造方法で得られたポリ乳酸系マルチフィラメントは、繊維/繊維(F/F)の耐摩耗性が5000回以上であることが必要である。耐摩耗性が低いと、製編織した時にフィブリル化が生じ、毛羽が発生したり、強度が低下しやすく、さらに、製品の寿命が短かすぎて実用性が低下する。一般的に、ポリ乳酸繊維は、耐摩耗性が通常の合成繊維に比べて劣り、F/Fの耐摩耗性を5000回以上とすることは難しい。この理由は、微細結晶構造の違いと、繊維表面の均整度、摩擦係数及び単繊維間の均斉度の違いによるものと推定される。これに反して、本発明の製造方法で得られたポリ乳酸系マルチフィラメントは、F/Fの耐摩耗性が5000回以上であり、好ましくは、6000回以上、より好ましくは、7000回以上、最も好ましくは8000回以上であるとするのがよい。
【0014】
また、本発明の製造方法で得られたポリ乳酸系マルチフィラメントの単繊維繊度は、1〜50デニールであることが好ましい。1デニール未満になると、繊維を形成する際の固化点の制御、口金孔の精度アップ、吐出量の低減に伴う生産性の低下、糸切れ発生がしやすいなどの問題が生じやすくなる。また、50デニールを超えると、通常の溶融紡糸法で長繊維を生産する工程では、糸条の冷却固化ができなくなり、紡糸や延伸が困難となって、別途特殊生産設備を必要とすることになり、高コストとなるので好ましくない。
【0015】
本発明における単繊維の断面形状は、丸断面の他、異形断面、中空断面でもよく、また、複合形態を伴った芯鞘型、海島型、分割型、並列型、多層型などの複合断面でもよい。
【0016】
なお、本発明においては、前述したポリ乳酸系重合体に、必要に応じて、例えば熱安定剤、結晶核剤、艶消し剤、顔料、耐光剤、耐候剤、酸化防止剤、抗菌剤、香料、可塑剤、染料、界面活性剤、表面改質剤、各種無機及び有機電解質、微粉体、難燃剤等の各種添加剤を本発明の効果を損なわない範囲で添加することができる。
【0017】
本発明の製造方法で得られたポリ乳酸系マルチフィラメントは、単独で、又は他の繊維と混用し、それらを用いた編物、織物や不織布、さらには複合材料その他の構造物の製造に用いることができる。他の繊維と混用する場合には、ポリエステル繊維、ナイロン繊維、アクリル繊維、ビニロン繊維、ポリプロピレン繊維、ポリエチレン繊維などの繊維形成性重合体からなる合成繊維や、レーヨンなどの再生繊維、アセテートなどの半合成繊維、また、羊毛、絹、木綿、麻などの天然繊維が採用される。そして、その中でも、再生繊維、半合成繊維や天然繊維、あるいは脂肪族ポリエステルからなる繊維などの生分解性繊維と混用すれば、完全生分解性の製品が得られるので好ましい。
【0018】
次に、本発明のポリ乳酸系マルチフィラメントの製造方法について説明する。本発明のポリ乳酸系マルチフィラメントを製造するためには、基本的には公知の溶融紡糸装置による紡糸方法を適用することができ、重合体として前記したポリ乳酸系重合体を選択して用いればよい。次に、この重合体を溶融、計量し、紡糸口金の装置から繊維を紡出し、冷却固化した後、油剤を付与してからローラで引き取り、巻き取った後、熱延伸するか又は巻き取らずに引き続き熱延伸した後、巻き取って、目的とするポリ乳酸系マルチフィラメントを得ることができる。
【0019】
前記ポリ乳酸系重合体を溶融紡糸する際の紡糸温度は、190℃〜250℃が好適に用いることができる。紡糸温度が低過ぎると、重合体の流動性が低下するため曳糸性が低下する。また、紡糸温度が高すぎると重合体の熱分解が生じやすく、発煙が生じて紡糸環境を悪化させるため好ましくない。したがって、紡糸温度は190〜250℃が好ましいが、より好ましくは、200〜240℃、最も好ましくは210〜230℃である。
【0020】
紡糸口金は、目的とする繊維の繊度や断面形状に応じて適度の孔径や形状を有する口金を用いればよい。紡糸速度は、任意の速度を適用できるが、高強度の繊維を得るためには全延伸倍率ができるだけ大きく取れるような未延伸糸繊維とするのがよく、その観点からは低いほうが望ましいが、生産性の観点もあり、通常100m/分から1500m/分までを適用するのがよい。
【0021】
本発明の製造方法において最も重要な点は、ポリ乳酸系重合体を溶融紡糸した後の未延伸繊維の水分を3%以下に調整した後、熱延伸を行うことである。前述したように、一般的に、ポリ乳酸繊維は、通常の合成繊維に比べて、微細結晶構造の違いと、繊維表面の均整度、摩擦係数及び単繊維間の均斉度の違いによるものか、耐摩耗性が劣るので、F/Fの耐摩耗性を5000回以上とするのは難しい。そのため、ポリ乳酸繊維の耐摩耗性を向上させ、F/Fの耐摩耗性を5000回以上とするためには、いかに微細結晶構造を制御し、繊維の均斉度を上げて摩擦抵抗を少なくさせるかが重要なポイントとなる。
【0022】
そこで、本発明では、未延伸繊維の水分を3%以下、より好ましくは、2%以下、最も好ましくは1%以下に調整した後、熱延伸を行うことにより、微細結晶構造を制御し、繊維の均斉度を上げて摩擦抵抗を少なくし、F/Fの耐摩耗性が5000回以上の繊維とするものである。すなわち、水分を多く付着させて熱延伸すると、水の蒸発潜熱によって未延伸繊維が延伸変形する前に繊維表面が部分的に加水分解され、その後延伸張力が付与されて細化されることで繊維表面に凹凸形状が増長して現れる。そして、繊維の一部でも凹凸形状が存在するとトータル的に強度や耐摩耗性が低下する原因となる。そこで、本発明では、未延伸繊維の水分を3%以下に調整して延伸することで繊維表面の凹凸形状の発生を抑制し、強度や耐摩耗性の優れた繊維とするものである。
【0023】
冷却固化後の未延伸繊維の水分を3%以下に調整する方法としては、エマルジョン油剤の濃度を上げて繊維表面への水分付着量を規制する方法、繊維のガラス転移温度未満の温風を付与して水分率を低下させる方法、紡糸時の引き取りローラ温度を繊維のガラス転移温度未満で加熱する方法、非水油剤を付与する方法等を好適に用いることができる。
【0024】
熱延伸する際の温度は、(Tm −60) ℃〜(Tm −10) ℃、特に(Tm −50)℃〜(Tm −20) ℃の範囲が好ましい。多段延伸する際には、最終ローラ温度が最も高くなるようにローラ間で温度勾配を付けることがより好ましい。ローラ温度が(Tm −60) ℃未満になると、全延伸倍率を大きくすることができず、結果として高強度の繊維を得られ難くなる。またローラ温度が(Tm −10) ℃を超えると、繊維が密着したり、ローラに巻きついて操業性が低下しやすくなる。 紡糸に引き続いて多段で延伸する際の延伸倍率は、一段目で全延伸倍率の80%程度を付与し、その後二段目以降で残りの20%分を延伸し、その後リラックス熱処理を施してもよい。
【0025】
また、紡糸を行った後、一旦巻き取った未延伸繊維を延伸する際には、一段目の延伸を予備延伸としてわずかな延伸倍率で施した後、二段目で全延伸倍率の80%〜100%程度を付与し、その後三段目以降で残分を延伸したり、リラックス熱処理を施してもよい。
【0026】
熱延伸する際に、加熱空気又は過熱蒸気を利用して熱延伸を増長させると、全延伸倍率をさらに大きくでき、強度が高い繊維が得られるので重要である。過熱空気又は過熱蒸気を付与する位置は、一段目及び/又は二段目の延伸ゾーンに適用することが必要である。また、繊維に付与する過熱空気又は過熱蒸気の温度は、(Tm−40)℃〜(Tm−10)℃、特に(Tm−30)℃〜(Tm−15)℃が好ましい。過熱空気又は過熱蒸気の温度が(Tm−40)℃未満になると、全延伸倍率を大きくする効果が低下しやすい。また、(Tm−10)℃を超えると、繊維が密着したり、優着しやすくなる。
【0027】
なお、熱延伸する際に過熱空気や過熱蒸気を利用する場合、通常はローラも過熱するが、過熱空気や過熱蒸気の温度をローラ温度より高くして、延伸点を過熱空気や過熱蒸気の噴出点に位置させることが、延伸倍率を高く、かつ、操業性よく延伸できるので必要である。
【0028】
【実施例】
次に、本発明を参考例及び実施例に基づいて具体的に説明する。なお、参考例及び実施例における各種特性の測定及び評価は、次の方法により実施した。
(1) 重合体の融点(℃)
パ−キンエルマ社製示差走査型熱量計DSC−2型を用い、重合体試料約5mg、窒素中、昇温速度10℃/分、200℃で5分保持し、降温速度10℃/分で20℃まで降温し、再び昇温速度10℃/分で200℃まで昇温させた時の最大融解発熱ピーク温度を融点 (Tm)とした。
(2) ガラス転移温度(℃)
上記融点を測定する際に得た初期発熱ピーク温度をガラス転移温度 (Tg)とした。
(3) 結晶化温度(℃)
上記融点を測定する際に得た吸熱ピーク温度を結晶化温度(Tc)とした。
(4) MFR(g/10分)
ASTM D1238における210℃、2160g荷重下で測定した値である。
(5) 繊維の強度、伸度JIS L−1013に準じ、掴み間隔25cm、引張速度30cm/分の条件下で引張した時の最大引張強さを繊度で除したものを強度(g/d)とし、またその時の伸び率から伸度(%)を求めた。
(6) 繊維の乾熱収縮率JIS L−1013に準じ、乾熱温度120℃、15分間熱処理を行って乾熱収縮率を求めた。
(7) 繊維のF/F耐摩耗性直径100mmの円柱回転板とその軸部が荷重140g一定に付与されて水平方向に移動するラビング装置を用いて、繊維は、円柱回転板の外周を旋回後、互いに2回クロスさせてそのクロス角度を50度一定で、ストローク長3cm、ストローク速度30回/分で繊維/繊維(F/F)の擦過により切断するまでのストローク回数を計測して耐摩耗性とした。この値が大きい程、耐摩耗性がよいことを意味する。
(8) 繊維の生分解性長繊維の試料片を土中に埋設して2年後に取り出し、繊維形態が保持されていない場合、あるいはその形態を保持しているが、引張強力が埋設前の50%以下に低下している場合、分解性が良好であると評価した。
参考例1
光学純度が99%でMFRが20g/10分であり、DSCによるガラス転移温度(Tg)60℃、結晶化温度(Tc)136℃、融点(Tm)170℃のポリL−乳酸樹脂を重合体として用い、溶融紡糸を行った。まず、単軸のエクストルーダー型溶融押し出し機1台による紡糸機を用いて、温度220℃で溶融し、孔径0.4mm、孔数96のノズル口金より吐出量128g/分で紡出し、空気冷却装置にて冷却、非水系油剤を付与しながら紡糸速度300m/分の速度で引き取り、引き続き4段延伸が可能なスピンドロー型熱延伸を行った。
【0029】
熱延伸は、1段目/2段目/3段目の延伸倍比を8/1/1とし、4段目は0.98の延伸倍率を付与した。また、第1ローラ温度は110℃、第2ローラ温度は120℃とし、第3ローラ温度は130℃、第4ロール温度は140℃、第5ロール温度は150℃で総延伸倍率を7.1倍として延伸を行って、500デニール/96フィラメントの長繊維を得た。なお、第1ローラより引き取った未延伸繊維を、引き続き別の捲取機を準備して300m/分で巻き取った後、その繊維の水分率を測定したところ0%であった。
【0030】
得られた長繊維は、密着もなく、繊維表面は全単繊維が平滑な状態にあり、強度5.3g/d、伸度25%、120℃における乾熱収縮率8%であった。この繊維のF/F耐摩耗性は、6500回であり、優れた耐摩耗性を有する繊維であった。また、この長繊維を土中に埋設し、その生分解性を評価したところ、良好であることが確認できた。
参考例2
光学純度が99.5%でMFRが10g/10分であり、DSCによるガラス転移温度63(Tg)℃、結晶化温度(Tc)139℃、融点(Tm)175℃のポリL−乳酸樹脂を重合体として用い、吐出量を96.7g/分、総延伸倍率を5.8とした以外は参考例1と同じ方法で500デニール/96フィラメントの長繊維を製造した。なお、延伸前の未延伸繊維の水分率は0%であった。
【0031】
得られた長繊維は、密着もなく、繊維表面は全単繊維が平滑な状態にあり、強度5.6g/d、伸度27%、120℃における乾熱収縮率8%であった。この繊維のF/F耐摩耗性は7400回であり、優れた耐摩耗性を有する繊維であった。また、この長繊維を土中に埋設し、その生分解性を評価したところ、良好であることが確認できた。
参考例3
光学純度が95%で、MFRが18g/10分であり、DSCにおけるガラス転移温度(Tg)56℃で、結晶化温度(Tc)130℃、融点(Tm)152℃であるポリL−乳酸樹脂の重合体を用いたこと、吐出量を108g/分としたこと、非水系油剤の代わりに、油剤濃度20%のエマルジョン系油剤を用いたこと以外は参考例1と同じ方法で紡糸を行った。
【0032】
また、熱延伸は、各ローラ温度を15℃ずつ下げた温度を適用したこと、総延伸倍率を6.5倍としたこと以外は参考例1と同様にして500デニール/96フィラメントの長繊維を得た。なお、第1ローラより引き取った未延伸繊維を、引き続き別の捲取機を準備して300m/分で巻き取った後、その繊維の水分率を測定したところ3.0%であった。
【0033】
得られた長繊維は、密着もなく、繊維表面は極く一部の単繊維に微細な凹凸が観察されたが、強度4.8g/d、伸度28%、120℃における乾熱収縮率10%であった。この繊維のF/F耐摩耗性は5000回であり、実用的な耐摩耗性を有する繊維であった。この長繊維を土中に埋設し、その生分解性を評価したところ、良好であることが確認できた。
参考例4
光学純度が99%で、MFRが50g/10分であり、DSCによるガラス転移温度60(Tg)℃、結晶化温度(Tc)136℃、融点(Tm)170℃のポリL−乳酸樹脂を重合体として、紡糸温度210℃、吐出量137g/分で溶融紡糸を行ない、総延伸倍率8.2倍として延伸を行ったこと以外は参考例1と同じ方法で、500デニール/96フィラメントの長繊維を得た。なお、延伸前の未延伸繊維の水分率は0%であった。
【0034】
得られた長繊維は、密着もなく、繊維表面は全単繊維が平滑な状態にあり、強度5.8g/d、伸度26%、120℃における乾熱収縮率8%であった。この繊維のF/F耐摩耗性は6400回であり、優れた耐摩耗性を有する繊維であった。また、この長繊維を土中に埋設し、その生分解性を評価したところ、良好であることが確認できた。
参考例5
光学純度が99%で、MFRが4g/10分であり、DSCによるガラス転移温度60(Tg)℃、結晶化温度(Tc)136℃、融点(Tm)170℃のポリL−乳酸樹脂を重合体として、紡糸温度230℃、吐出量86.7g/分で溶融紡糸を行ない、総延伸倍率5.2倍として延伸を行った以外は参考例1と同じ方法で、500デニール/96フィラメントの長繊維を得た。なお、延伸前の未延伸繊維の水分率は0%であった。
【0035】
得られた長繊維は、密着もなく、繊維表面は全単繊維が平滑な状態にあり、強度6.5g/d、伸度26%、120℃における乾熱収縮率8%であった。この繊維のF/F耐摩耗性は、8600回であり、優れた耐摩耗性を有する繊維であった。また、この長繊維を土中に埋設し、その生分解性を評価したところ、良好であることが確認できた。
実施例1
吐出量108g/分、第2ローラと第3ローラ間に140℃の過熱空気で加熱延伸できる装置(糸条導入口の直径が2.5mmで、過熱空気は走行する糸条に対して+30度と−30度の2角度で、流速は1200m/分で当たる)を具備し、1段目/2段目/3段目の延伸比を7.5/2/0.5とし、総延伸倍率6.5倍として延伸を行った以外は参考例1と同じ方法で、500デニール/96フィラメントの長繊維を得た。なお、延伸前の未延伸繊維の水分率は0%であった。
【0036】
得られた長繊維は、密着もなく、繊維表面は全単繊維が平滑な状態にあり、強度6.8g/d、伸度27%、120℃における乾熱収縮率8%であった。この繊維のF/F耐摩耗性は、9100回であり、優れた耐摩耗性を有する繊維であった。また、この長繊維を土中に埋設し、その生分解性を評価したところ、良好であることが確認できた。
比較例1
光学純度が93%で、MFRが25g/10分であり、DSCにおけるガラス転移温度(Tg)49℃で、結晶化温度(Tc)、融点(Tm)を示さないポリL−乳酸樹脂(実溶融温度125℃)を重合体として用い、溶融紡糸を行った。まず、単軸のエクストルーダー型溶融押し出し機1台による紡糸機を用いて、温度220℃で溶融し、孔径0.4mm、孔数96のノズル口金より吐出量63g/分で紡出し、空気冷却装置にて冷却、エマルジョン系油剤をオイリングローラで付与しながら紡糸速度560m/分の速度で引き取った。この未延伸繊維の水分率は4%であった。
【0037】
次いで、この未延伸繊維を、2段延伸可能な熱延伸機を用いて延伸を行った。第1ローラ温度は25℃、第2ローラ温度は80℃とし、第3ローラ温度は25℃で、第2ローラと第3ローラ間のヒータ温度は120℃、1段目の延伸倍率1.01、2段目の延伸倍率3.76で延伸を行い、500デニール/96フィラメントの長繊維を得た。
【0038】
得られた長繊維には密着はなかったが、一部の単繊維は長手方向に凹凸を有していた。また、繊維の性能は、強度3.6g/d、伸度30%、120℃における乾熱収縮率28%であった。この繊維のF/F耐摩耗性は3600回であり、耐摩耗性が劣る繊維であった。また、この長繊維を土中に埋設し、その生分解性を評価したところ、良好であることは確認できた。
比較例2
油剤濃度20%のエマルジョン系油剤に代えて、油剤濃度が10%でオイリング回転速度を倍にした以外は参考例3と同じ条件で紡糸延伸を行って、500デニール/96フィラメントの長繊維を得た。
【0039】
得られた長繊維には密着はなかったが、繊維表面は、全単繊維の半数以上が長さ方向に凹凸を有していた。延伸前の未延伸繊維の水分率を測定すると7%もあり、この水分が繊維表面の凹凸に起因することが分かった。得られた繊維は、強度4.2g/d、伸度28%、120℃における乾熱収縮率9%であった。この繊維のF/F耐摩耗性は1900回であり、耐摩耗性が劣る繊維であった。
【0040】
【発明の効果】
本発明によれば、生分解性なので環境を汚染することが少なく、高い強度を有し、かつ、繊維を構成する単繊維間での均斉度が高くて優れた耐摩耗性を有するポリ乳酸系マルチフィラメントの製造方法が提供される。本発明の製造方法で得られたポリ乳酸系マルチフィラメントは、寸法安定性にも優れているため、編み物、織物、その他各種繊維構造物、複合構造物などに応用できる製品が得られ、衣料用、産業資材、家庭用品、土木資材、農業資材、林業資材などに好適に利用できる。特に、このポリ乳酸系繊維を用いた布帛は、強力と耐摩耗性に優れているため、フィルター、植生シート、法面緑化、土砂流失防止シート、漁網、テント、寝袋、台所水切り袋、ごみ袋、ワイパ−、木質ボード、自動車内装材等に好適に用いることができる。しかもこの繊維は、その使用後に微生物が多数存在する環境下や海水、淡水等の存在する環境下、例えば土中又は水中に放置すると、最終的には完全に分解消失するため自然環境保護の観点からも有益であり、あるいは、例えば堆肥化して肥料とする等、再利用を図ることもできるため、資源の再利用の観点からも有益である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a polylactic acid-based multifilament having biodegradability, high strength, and excellent wear resistance.
[0002]
[Prior art]
Conventional synthetic fibers made of synthetic resin have a slow degradation rate in the natural environment and generate a large amount of heat during incineration, and therefore need to be reviewed from the standpoint of protecting the natural environment. For this reason, biodegradable fibers made of aliphatic polyester are being developed, and are expected to contribute to environmental protection.
[0003]
Some aliphatic polyesters are expected to be fiber materials with a certain level of fiber performance and new characteristics, but the strength and wear resistance of the fibers and their products are weak, and the quality of the surface touch, appearance, etc. There are many problems, and in particular, general-purpose deployment in fields requiring high strength is difficult.
[0004]
For this reason, high-strength fibers are being developed using polylactic acid polymers having a relatively high melting point among aliphatic polyesters. For example, JP-A-2-203729 and JP-A-8-222016 disclose high-strength monofilament fibers. However, the multifilament has a problem that it is difficult to obtain high-strength fibers due to a high production rate, and the abrasion resistance of the obtained fibers is extremely poor. In addition, the yarn diameter fluctuates between the fibers of the multifilament, the irregularities occur on the fiber surface, and those fluctuations easily occur in the length direction, which is a problem from the viewpoint of quality.
[0005]
[Problems to be solved by the invention]
The present invention provides a method for stably producing polylactic acid-based multifilaments , which solves the above-mentioned problems, has biodegradability, has high strength, wear resistance, and has a stable quality. It is a technical problem to provide.
[0006]
[Means for achieving the object]
The inventors of the present invention have reached the present invention as a result of intensive studies to solve the problem of steam. That is, the present invention has the following configuration.
(1) When a polylactic acid polymer having an optical purity of 95% or more and a melt flow rate value of 1 to 50 g / 10 min is melt-spun and then stretched, the moisture content of unstretched fibers is adjusted to 3% or less. After that, polylactic acid is characterized in that superheated air or superheated steam is applied in the first and / or second stretch zones, and the stretch point is located at the superheated air or superheated steam ejection point. -Based multifilament manufacturing method.
(2) As a polylactic acid polymer, a fiber spun using a polymer having an optical purity of 95% or more and a melt flow rate value of 1 to 50 g / 10 min is used (Tm-60) ° C. to (Tm-10). The method for producing a polylactic acid-based multifilament according to (1), wherein the multistage hot drawing is performed at a temperature of ° C.
Where Tm is the melting point (° C.) of the polylactic acid polymer.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail. First, the polymer constituting the polylactic acid multifilament in the present invention will be described. Polylactic acid is mainly composed of a polymer of optical isomers of L-lactic acid and D-lactic acid or a blend thereof. Therefore, since different materials are not copolymerized but the same material, the yarn forming characteristics are extremely excellent. While the optical purity of L-lactic acid is 0 to 100%, the ratio of the D-form to the L-form is a factor affecting the heat resistance and biodegradability, and the purity of the L-form is low depending on the D-form. In addition, the crystallinity tends to decrease and the melting point drop tends to increase. In addition, it is possible to improve flexibility and elastic recovery, increase heat shrinkability, control decomposability and glass transition temperature, and improve adhesion with other components.
[0008]
On the other hand, while the optical purity of D-lactic acid is 0 to 100%, the ratio of L-form to D-form is a factor that similarly affects heat resistance and biodegradability, and the purity of D-form is L-form. When the purity is lowered, the crystallinity is lowered and the melting point drop tends to be increased. Furthermore, it is possible to improve flexibility and elastic recovery, increase heat shrinkage, control decomposability and glass transition temperature, and improve adhesion with other components. From such a point, when the blend ratio of L-form and D-form is 1: 1, the crystallinity is most lowered, the melting point is greatly lowered, and the biodegradation rate is simultaneously increased.
[0009]
The polylactic acid to be applied to the present invention is pure polylactic acid, preferably D-form or L-form as a main component, and preferably has a melting point of 120 ° C. or higher. Application of a material having a low optical purity is not preferable because it has a low melting point and thus it is difficult to heat stretch, a problem that a high-strength fiber is difficult to obtain, and heat resistance and wear resistance are lowered. Therefore, the optical purity needs to be 95% or more, more preferably 96% or more, and most preferably 97% or more.
[0010]
Next, the melt viscosity of the above-mentioned polylactic acid polymer, that is, the melt flow rate value (MFR) of the polymer constituting the fiber of the present invention is a value measured under 210 ° C. and 2160 g under the prescription of ASTM-D1238. Is required to be 1 g / 10 min or more and 50 g / 10 min or less. When the MFR is less than 1 g / 10 minutes, the melt viscosity is large and the fluidity of the polymer is lowered, so the spinnability is lowered. Further, if the spinning temperature is raised to improve the spinnability, the smoke generation property increases, the spinning environment is deteriorated, and the yarn breakage increases. On the other hand, if the MFR exceeds 50 g / 10 min, it is difficult to increase the strength, and the heat resistance and wear resistance also decrease. Accordingly, the MFR range needs to be 1 to 50 g / 10 minutes, more preferably 2 to 45 g / 10 minutes, and most preferably 3 to 40 g / 10 minutes.
[0011]
The polylactic acid-based multifilament obtained by the production method of the present invention needs to have a strength of 4.0 g / d or more. The higher the fiber strength, the wider the practical range may be. However, when the fiber strength is less than 4.0 g / d, application in fields requiring high strength such as industrial material use, civil engineering material use, and fishery material use is limited. Therefore, in the present invention, the strength needs to be 4.0 g / d or more, preferably 4.5 g / d or more, more preferably 5.0 g / d or more, and most preferably 5.5 g / d. Good thing.
[0012]
The elongation of the fiber is not particularly limited, but is preferably 20 to 60%. If the elongation is too small, fluffing occurs during fiber production, yarn breakage occurs, and operability tends to decrease. On the other hand, if the elongation is too large, it is not preferable because it stretches when knitting and weaving, and the dimensional stability tends to decrease.
[0013]
The polylactic acid-based multifilament obtained by the production method of the present invention needs to have a fiber / fiber (F / F) wear resistance of 5000 times or more. When the abrasion resistance is low, fibrillation occurs when weaving or weaving, fluffing is liable to occur, the strength tends to decrease, and the useful life of the product is too short, resulting in a decrease in practicality. In general, polylactic acid fibers are inferior in wear resistance to ordinary synthetic fibers, and it is difficult to make the F / F wear resistance 5000 times or more. The reason for this is presumed to be due to the difference in the fine crystal structure and the difference in the uniformity of the fiber surface, the friction coefficient, and the uniformity between the single fibers. On the contrary, the polylactic acid-based multifilament obtained by the production method of the present invention has an F / F wear resistance of 5000 times or more, preferably 6000 times or more, more preferably 7000 times or more, Most preferably, it is 8000 times or more.
[0014]
Moreover, it is preferable that the single fiber fineness of the polylactic acid-type multifilament obtained with the manufacturing method of this invention is 1-50 denier. If it is less than 1 denier, problems such as control of the solidification point when forming the fiber, increase in the accuracy of the cap hole, reduction in productivity due to reduction in the discharge amount, and occurrence of yarn breakage are likely to occur. Also, if it exceeds 50 deniers, in the process of producing long fibers by the usual melt spinning method, it becomes impossible to cool and solidify the yarn, making spinning and drawing difficult, and special production equipment is required. This is not preferable because of high cost.
[0015]
The cross-sectional shape of the single fiber in the present invention may be a round cross-section, an irregular cross-section, a hollow cross-section, or a composite cross-section such as a core-sheath type, sea-island type, split type, parallel type, and multilayer type with a composite form. Good.
[0016]
In the present invention, the above-described polylactic acid-based polymer may be added to the above-described polylactic acid-based polymer as necessary, for example, a heat stabilizer, a crystal nucleating agent, a matting agent, a pigment, a light-resistant agent, a weathering agent, an antioxidant, an antibacterial agent, and a fragrance. Various additives such as plasticizers, dyes, surfactants, surface modifiers, various inorganic and organic electrolytes, fine powders, flame retardants and the like can be added within a range not impairing the effects of the present invention.
[0017]
The polylactic acid-based multifilament obtained by the production method of the present invention may be used alone or mixed with other fibers to produce knitted fabrics, woven fabrics and nonwoven fabrics, and composite materials and other structures. Can do. When mixed with other fibers, synthetic fibers made of fiber-forming polymers such as polyester fibers, nylon fibers, acrylic fibers, vinylon fibers, polypropylene fibers, and polyethylene fibers, regenerated fibers such as rayon, and half fibers such as acetate Synthetic fibers and natural fibers such as wool, silk, cotton and hemp are used. Among them, it is preferable to mix with biodegradable fibers such as recycled fibers, semi-synthetic fibers, natural fibers, or fibers made of aliphatic polyester, since a completely biodegradable product can be obtained.
[0018]
Next, a method for producing the polylactic acid multifilament of the present invention will be described. In order to produce the polylactic acid-based multifilament of the present invention, basically, a spinning method using a known melt spinning apparatus can be applied. If the above-mentioned polylactic acid-based polymer is selected and used as the polymer, Good. Next, this polymer is melted and weighed, the fiber is spun from a spinneret device, cooled and solidified, and after applying an oil agent, taken up with a roller, wound up, and then hot stretched or not taken up. Subsequently, the film is wound and then rolled to obtain the desired polylactic acid-based multifilament .
[0019]
A spinning temperature at the time of melt spinning the polylactic acid-based polymer is preferably 190 ° C to 250 ° C. If the spinning temperature is too low, the fluidity of the polymer is lowered, so that the spinnability is lowered. On the other hand, if the spinning temperature is too high, the polymer is liable to be thermally decomposed and smoke is generated, which deteriorates the spinning environment. Accordingly, the spinning temperature is preferably 190 to 250 ° C, more preferably 200 to 240 ° C, and most preferably 210 to 230 ° C.
[0020]
As the spinneret, a die having an appropriate hole diameter and shape may be used depending on the fineness and cross-sectional shape of the target fiber. Although any spinning speed can be applied, in order to obtain a high-strength fiber, it is preferable to use an undrawn yarn fiber in which the total draw ratio is as large as possible. From the viewpoint of property, it is usually preferable to apply from 100 m / min to 1500 m / min.
[0021]
The most important point in the production method of the present invention is to perform hot drawing after adjusting the moisture of the undrawn fiber after melt spinning the polylactic acid polymer to 3% or less. As mentioned above, in general, polylactic acid fiber is due to the difference in fine crystal structure and the degree of uniformity of the fiber surface, the coefficient of friction and the degree of uniformity between single fibers, compared to ordinary synthetic fibers, Since the wear resistance is inferior, it is difficult to make the F / F wear resistance 5000 times or more. Therefore, in order to improve the abrasion resistance of the polylactic acid fiber and increase the F / F abrasion resistance to 5000 times or more, how to control the fine crystal structure, increase the uniformity of the fiber, and reduce the frictional resistance. Is an important point.
[0022]
Therefore, in the present invention, after adjusting the moisture of the unstretched fiber to 3% or less, more preferably 2% or less, and most preferably 1% or less, the fine crystal structure is controlled by performing heat stretching, and the fiber This increases the uniformity of the fiber to reduce the frictional resistance, and the fiber has an F / F wear resistance of 5000 times or more. That is, when hot drawing with a lot of moisture attached, the fiber surface is partially hydrolyzed before the undrawn fiber is drawn and deformed by the latent heat of vaporization of the water, and then the drawing tension is applied to make the fiber finer. Uneven shape appears on the surface. If even a part of the fiber has an uneven shape, the strength and wear resistance are totally reduced. Therefore, in the present invention, by adjusting the moisture of the unstretched fiber to 3% or less and stretching, the occurrence of the uneven shape on the fiber surface is suppressed, and the fiber has excellent strength and wear resistance.
[0023]
As a method of adjusting the moisture of unstretched fibers after cooling and solidification to 3% or less, a method of regulating the amount of moisture adhering to the fiber surface by increasing the concentration of the emulsion oil agent, giving warm air below the glass transition temperature of the fibers Thus, a method of reducing the moisture content, a method of heating the take-up roller temperature at the time of spinning below the glass transition temperature of the fiber, a method of applying a non-aqueous oil agent, and the like can be suitably used.
[0024]
The temperature at the time of hot stretching is preferably in the range of (Tm-60) ° C to (Tm-10) ° C, particularly (Tm-50) ° C to (Tm-20) ° C. When performing multistage stretching, it is more preferable to provide a temperature gradient between the rollers so that the final roller temperature becomes the highest. When the roller temperature is less than (Tm-60) ° C, the total draw ratio cannot be increased, and as a result, it becomes difficult to obtain high-strength fibers. On the other hand, when the roller temperature exceeds (Tm−10) ° C., the fibers are brought into close contact with each other, or the operability is liable to be lowered by winding around the roller. The draw ratio when drawing in multiple stages following spinning is such that about 80% of the total draw ratio is given in the first stage, the remaining 20% is drawn in the second and subsequent stages, and then a relaxing heat treatment is applied. Good.
[0025]
In addition, when the unstretched fiber that has been wound up is stretched after spinning, the first stage is stretched as a preliminary stretch at a slight stretch ratio, and then the second stage is 80% to the total stretch ratio. About 100% may be applied, and then the remainder may be stretched after the third stage or relaxed heat treatment may be performed.
[0026]
When hot stretching is performed using heated air or superheated steam, the total stretching ratio can be further increased and fibers having high strength can be obtained. The position for applying superheated air or superheated steam needs to be applied to the first and / or second drawing zones. The temperature of the superheated air or superheated steam applied to the fiber is preferably (Tm-40) ° C. to (Tm-10) ° C., particularly preferably (Tm-30) ° C. to (Tm-15) ° C. When the temperature of superheated air or superheated steam is less than (Tm-40) ° C., the effect of increasing the total draw ratio tends to be reduced. Moreover, when it exceeds (Tm-10) degreeC, a fiber will adhere | attach and it will become easy to adhere.
[0027]
Note that when superheated air or superheated steam is used during hot stretching, the rollers also usually superheat, but the temperature of the superheated air or superheated steam is made higher than the roller temperature, and the stretch point is ejected from the superheated air or superheated steam. Positioning at a point is necessary because the stretching ratio is high and the film can be stretched with good operability.
[0028]
【Example】
Next, the present invention will be specifically described based on reference examples and examples. In addition, the measurement and evaluation of various characteristics in the reference examples and examples were performed by the following methods.
(1) Melting point of polymer (℃)
Using a differential scanning calorimeter DSC-2 manufactured by Perkin Elma Co., Ltd., a polymer sample of about 5 mg, held in nitrogen, heated at a rate of 10 ° C./min, held at 200 ° C. for 5 minutes, and cooled at a rate of 10 ° C./min of 20 The maximum melting exothermic peak temperature when the temperature was lowered to 200 ° C. and again raised to 200 ° C. at a heating rate of 10 ° C./min was defined as the melting point (Tm).
(2) Glass transition temperature (℃)
The initial exothermic peak temperature obtained when the melting point was measured was defined as the glass transition temperature (Tg).
(3) Crystallization temperature (℃)
The endothermic peak temperature obtained when measuring the melting point was defined as the crystallization temperature (Tc).
(4) MFR (g / 10 min)
It is the value measured under 210 ° C. and 2160 g load according to ASTM D1238.
(5) Strength and elongation of fiber According to JIS L-1013, the strength (g / d) obtained by dividing the maximum tensile strength when pulled under the conditions of a grip interval of 25 cm and a tensile speed of 30 cm / min by the fineness The elongation (%) was determined from the elongation at that time.
(6) Dry heat shrinkage rate of fiber According to JIS L-1013, heat treatment was performed at a dry heat temperature of 120 ° C. for 15 minutes to obtain a dry heat shrinkage rate.
(7) F / F wear resistance of fiber Using a cylindrical rotating plate with a diameter of 100 mm and a rubbing device in which the shaft part is given a constant load of 140 g and moves in the horizontal direction, the fiber swirls around the outer periphery of the cylindrical rotating plate After that, the cloth was crossed twice and the cross angle was fixed at 50 degrees, the stroke length was 3 cm, the stroke speed was 30 times / minute, and the number of strokes until cutting by fiber / fiber (F / F) abrasion was measured. Abrasive. A larger value means better wear resistance.
(8) A sample of a biodegradable long fiber fiber is buried in the soil and taken out two years later. If the fiber form is not retained, or is retained, but the tensile strength is When it decreased to 50% or less, it was evaluated that the decomposability was good.
Reference example 1
Poly L-lactic acid resin having an optical purity of 99%, MFR of 20 g / 10 min, a glass transition temperature (Tg) of 60 ° C. by DSC, a crystallization temperature (Tc) of 136 ° C., and a melting point (Tm) of 170 ° C. Used as melt spinning. First, using a spinning machine with a single-screw extruder-type melt extruder, melted at a temperature of 220 ° C., spun from a nozzle die with a hole diameter of 0.4 mm and a number of holes of 96, and discharged at a rate of 128 g / min. While cooling with an apparatus and applying a non-aqueous oil agent, the film was taken up at a spinning speed of 300 m / min, and subsequently spin-draw type hot drawing capable of four-stage drawing was performed.
[0029]
In the heat stretching, the stretch ratio of the first stage / 2nd stage / 3rd stage was 8/1/1, and the fourth stage was given a stretching ratio of 0.98. The first roller temperature is 110 ° C., the second roller temperature is 120 ° C., the third roller temperature is 130 ° C., the fourth roll temperature is 140 ° C., the fifth roll temperature is 150 ° C., and the total draw ratio is 7.1. Drawing was performed as a double to obtain 500 denier / 96 filament long fibers. The unstretched fiber taken from the first roller was continuously wound up at 300 m / min by preparing another winder, and the moisture content of the fiber was measured to be 0%.
[0030]
The obtained long fibers had no adhesion, all the single fibers were in a smooth state, the strength was 5.3 g / d, the elongation was 25%, and the dry heat shrinkage rate at 120 ° C. was 8%. The F / F wear resistance of this fiber was 6500 times, and it was a fiber having excellent wear resistance. Moreover, when this long fiber was embed | buried in soil and the biodegradability was evaluated, it has confirmed that it was favorable.
Reference example 2
A poly L-lactic acid resin having an optical purity of 99.5%, MFR of 10 g / 10 min, a glass transition temperature by DSC of 63 (Tg) ° C., a crystallization temperature (Tc) of 139 ° C., and a melting point (Tm) of 175 ° C. A 500 denier / 96 filament long fiber was produced in the same manner as in Reference Example 1 except that the polymer was used and the discharge rate was 96.7 g / min and the total draw ratio was 5.8. The moisture content of the unstretched fiber before stretching was 0%.
[0031]
The obtained long fibers had no adhesion, all the single fibers were in a smooth state, the strength was 5.6 g / d, the elongation was 27%, and the dry heat shrinkage rate at 120 ° C. was 8%. The F / F wear resistance of this fiber was 7400 times, and it was a fiber having excellent wear resistance. Moreover, when this long fiber was embed | buried in soil and the biodegradability was evaluated, it has confirmed that it was favorable.
Reference example 3
Poly L-lactic acid resin having an optical purity of 95%, MFR of 18 g / 10 min, glass transition temperature (Tg) in DSC of 56 ° C., crystallization temperature (Tc) of 130 ° C., melting point (Tm) of 152 ° C. Spinning was carried out in the same manner as in Reference Example 1 except that the polymer was used, the discharge rate was set to 108 g / min, and an emulsion oil agent having an oil concentration of 20% was used instead of the non-aqueous oil agent. .
[0032]
In addition, the heat drawing was performed by applying 500 denier / 96 filament long fibers in the same manner as in Reference Example 1 except that the temperature of each roller was decreased by 15 ° C. and the total draw ratio was 6.5 times. Obtained. The undrawn fiber taken up from the first roller was continuously wound up at 300 m / min by preparing another winder, and the moisture content of the fiber was measured to be 3.0%.
[0033]
The obtained long fibers had no adhesion, and fine irregularities were observed on a part of single fibers on the fiber surface, but the strength was 4.8 g / d, the elongation was 28%, and the dry heat shrinkage at 120 ° C. 10%. The F / F wear resistance of this fiber was 5000 times, and it was a fiber having practical wear resistance. When this long fiber was embedded in the soil and its biodegradability was evaluated, it was confirmed that it was good.
Reference example 4
Poly L-lactic acid resin having an optical purity of 99%, MFR of 50 g / 10 min, glass transition temperature by DSC of 60 (Tg) ° C., crystallization temperature (Tc) of 136 ° C., melting point (Tm) of 170 ° C. 500 denier / 96 filament long fiber in the same manner as in Reference Example 1 except that melt spinning was performed at a spinning temperature of 210 ° C. and a discharge rate of 137 g / min as the coalescence and stretching was performed at a total draw ratio of 8.2 times. Got. The moisture content of the unstretched fiber before stretching was 0%.
[0034]
The obtained long fibers had no adhesion, all the single fibers were in a smooth state, the strength was 5.8 g / d, the elongation was 26%, and the dry heat shrinkage rate at 120 ° C. was 8%. This fiber had an F / F wear resistance of 6400 times, and was a fiber having excellent wear resistance. Moreover, when this long fiber was embed | buried in soil and the biodegradability was evaluated, it has confirmed that it was favorable.
Reference Example 5
Poly L-lactic acid resin with an optical purity of 99%, MFR of 4 g / 10 min, glass transition temperature by DSC of 60 (Tg) ° C., crystallization temperature (Tc) of 136 ° C., melting point (Tm) of 170 ° C. As a coalescence, 500 denier / 96 filament length was obtained in the same manner as in Reference Example 1 except that melt spinning was performed at a spinning temperature of 230 ° C. and a discharge rate of 86.7 g / min and stretching was performed at a total draw ratio of 5.2 times. Fiber was obtained. The moisture content of the unstretched fiber before stretching was 0%.
[0035]
The obtained long fibers had no adhesion, all the single fibers were in a smooth state, the strength was 6.5 g / d, the elongation was 26%, and the dry heat shrinkage at 120 ° C. was 8%. The F / F wear resistance of this fiber was 8600 times, and it was a fiber having excellent wear resistance. Moreover, when this long fiber was embed | buried in soil and the biodegradability was evaluated, it has confirmed that it was favorable.
Example 1
A device that can be heated and stretched with superheated air at 140 ° C. between the second and third rollers with a discharge rate of 108 g / min (the diameter of the yarn inlet is 2.5 mm, and the superheated air is +30 degrees with respect to the running yarn. And -30 degrees, and the flow rate is 1,200 m / min), and the stretch ratio of the first stage / 2nd stage / 3rd stage is 7.5 / 2 / 0.5, and the total draw ratio A 500 denier / 96 filament long fiber was obtained in the same manner as in Reference Example 1 except that stretching was performed at 6.5 times. The moisture content of the unstretched fiber before stretching was 0%.
[0036]
The obtained long fibers had no adhesion, all the single fibers were in a smooth state, the strength was 6.8 g / d, the elongation was 27%, and the dry heat shrinkage rate at 120 ° C. was 8%. The F / F wear resistance of this fiber was 9100 times, and it was a fiber having excellent wear resistance. Moreover, when this long fiber was embed | buried in soil and the biodegradability was evaluated, it has confirmed that it was favorable.
Comparative Example 1
Poly L-lactic acid resin having an optical purity of 93%, MFR of 25 g / 10 min, glass transition temperature (Tg) in DSC of 49 ° C., and no crystallization temperature (Tc) or melting point (Tm) (actual melting) Melt spinning was carried out using a temperature of 125 ° C. as the polymer. First, using a spinning machine with a single-screw extruder-type melt extruder, the melt was performed at a temperature of 220 ° C., and it was spun at a discharge rate of 63 g / min from a nozzle base having a hole diameter of 0.4 mm and a number of holes of 96. The system was cooled by an apparatus, and the emulsion-based oil was applied with an oiling roller, and was taken up at a spinning speed of 560 m / min. The moisture content of this unstretched fiber was 4%.
[0037]
Next, this unstretched fiber was stretched using a heat stretcher capable of two-stage stretching. The first roller temperature is 25 ° C., the second roller temperature is 80 ° C., the third roller temperature is 25 ° C., the heater temperature between the second roller and the third roller is 120 ° C., and the first stage draw ratio is 1.01. Drawing was performed at a draw ratio of 3.76 in the second stage to obtain 500 denier / 96 filament long fibers.
[0038]
Although the obtained long fibers did not adhere, some single fibers had irregularities in the longitudinal direction. The fiber performance was a strength of 3.6 g / d, an elongation of 30%, and a dry heat shrinkage at 120 ° C. of 28%. The F / F wear resistance of this fiber was 3600 times, and the fiber was inferior in wear resistance. Moreover, when this long fiber was embed | buried in soil and the biodegradability was evaluated, it has confirmed that it was favorable.
Comparative Example 2
Instead of the emulsion-based oil agent having an oil agent concentration of 20%, spinning and drawing were performed under the same conditions as in Reference Example 3 except that the oil agent concentration was 10% and the oiling rotation speed was doubled, to obtain a 500 denier / 96 filament long fiber. It was.
[0039]
Although the obtained long fibers did not adhere, more than half of all the single fibers had irregularities in the length direction on the fiber surface. When the moisture content of the undrawn fiber before drawing was measured, it was 7%, and it was found that this moisture was caused by irregularities on the fiber surface. The obtained fiber had a strength of 4.2 g / d, an elongation of 28%, and a dry heat shrinkage of 9% at 120 ° C. The F / F wear resistance of this fiber was 1900 times, and the fiber was inferior in wear resistance.
[0040]
【The invention's effect】
According to the present invention, less likely to pollute the environment because biodegradable, has high strength, and polylactic acid having excellent wear resistance high uniformity between single fibers constituting the fiber A method for producing a multifilament is provided. Since the polylactic acid-based multifilament obtained by the production method of the present invention is also excellent in dimensional stability, products that can be applied to knitted fabrics, woven fabrics, other various fiber structures, composite structures, etc. are obtained. , Industrial materials, household goods, civil engineering materials, agricultural materials, forestry materials, etc. In particular, since the fabric using this polylactic acid fiber is excellent in strength and abrasion resistance, it is excellent in filters, vegetation sheets, slope greening, landslide prevention sheets, fishing nets, tents, sleeping bags, kitchen draining bags, garbage bags. , Wipers, wood boards, automobile interior materials and the like. In addition, this fiber is completely decomposed and lost when it is left in an environment where many microorganisms are present after use or in an environment such as seawater or fresh water, for example, in soil or water. It is also useful from the viewpoint of resource reuse because it can be reused, for example, composted into fertilizer.

Claims (2)

光学純度が95%以上、メルトフローレート値が1〜50g/10分であるポリ乳酸系重合体を溶融紡糸し、次いで延伸するに際し、未延伸繊維の水分率を3%以下に調整した後、一段目及び/又は二段目の延伸ゾーンで過熱空気又は過熱蒸気を付与し、延伸点を過熱空気又は過熱蒸気の噴出点に位置させて熱延伸を行うことを特徴とするポリ乳酸系マルチフィラメントの製造方法 After melt spinning a polylactic acid polymer having an optical purity of 95% or more and a melt flow rate value of 1 to 50 g / 10 min, and then stretching, after adjusting the moisture content of unstretched fibers to 3% or less, A polylactic acid-based multifilament characterized in that superheated air or superheated steam is applied in the first and / or second drawing zones, and the drawing point is located at the point of ejection of the superheated air or superheated steam. Manufacturing method . ポリ乳酸系重合体として光学純度が95%以上、メルトフローレート値が1〜50g/10分の重合体を用い、紡糸した繊維を、(Tm−60)℃〜(Tm−10)℃の温度で多段熱延伸する請求項1記載のポリ乳酸系マルチフィラメントの製造方法
ただし、Tmはポリ乳酸系重合体の融点(℃)である
Using a polymer having an optical purity of 95% or more and a melt flow rate value of 1 to 50 g / 10 min as a polylactic acid polymer, a spun fiber is heated at a temperature of (Tm-60) ° C. to (Tm-10) ° C. The method for producing a polylactic acid-based multifilament according to claim 1, wherein the multi-stage heat stretching is carried out at a step .
Where Tm is the melting point (° C.) of the polylactic acid polymer .
JP31313698A 1998-11-04 1998-11-04 Method for producing polylactic acid-based multifilament Expired - Fee Related JP4335987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31313698A JP4335987B2 (en) 1998-11-04 1998-11-04 Method for producing polylactic acid-based multifilament

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31313698A JP4335987B2 (en) 1998-11-04 1998-11-04 Method for producing polylactic acid-based multifilament

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008312181A Division JP4336384B2 (en) 2008-12-08 2008-12-08 Polylactic acid based multifilament

Publications (2)

Publication Number Publication Date
JP2000136435A JP2000136435A (en) 2000-05-16
JP4335987B2 true JP4335987B2 (en) 2009-09-30

Family

ID=18037542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31313698A Expired - Fee Related JP4335987B2 (en) 1998-11-04 1998-11-04 Method for producing polylactic acid-based multifilament

Country Status (1)

Country Link
JP (1) JP4335987B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003064736A2 (en) * 2002-01-29 2003-08-07 Saurer Gmbh & Co. Kg Device for cooling down melt-spun filaments and melt-spinning device
JP2006111744A (en) * 2004-10-15 2006-04-27 Mitsui Chemicals Inc Resin composition
KR101224789B1 (en) * 2005-03-07 2013-01-21 케이비 세렌 가부시키가이샤 Normal pressure cation dyeable polyester, textile product made from the same, and process for production of the same
EP1867680A4 (en) 2005-03-29 2013-10-30 Toray Industries Resin composition, molded article produced from the same, and processes for production of the composition and article
CN104878458A (en) * 2015-05-27 2015-09-02 中国水产科学研究院东海水产研究所 Fishing polylactic acid monofilament manufacturing method
CN108624979B (en) * 2018-04-19 2020-12-08 湖北金叶玉阳化纤有限公司 High-monofilament linear density polylactic acid cigarette tow and preparation method thereof
CN114775076B (en) * 2022-04-24 2023-08-22 安徽迪惠新材料科技有限公司 Drawing process of high-performance bio-based fiber

Also Published As

Publication number Publication date
JP2000136435A (en) 2000-05-16

Similar Documents

Publication Publication Date Title
KR102213562B1 (en) Process for the preparation of a fiber, a fiber and a yarn made from such a fiber
JP4335987B2 (en) Method for producing polylactic acid-based multifilament
JP2003293220A (en) Method for producing polylactic acid fiber having excellent heat resistance
JP5254730B2 (en) Thin fabric for organdy
JP2006336125A (en) Bulky sheath-core conjugated filaments and method for producing the same
JP2008057082A (en) Method for producing polylactic acid monofilament
JP2000054228A (en) Polyamide-based conjugate fiber
JP4336384B2 (en) Polylactic acid based multifilament
JPH11293519A (en) Biodegradable continuous filament and its production
JP2005232645A (en) Polylactic acid fiber, method for producing the same and fiber structure for industrial material composed of polylactic acid fiber
JP4270734B2 (en) Method for producing biodegradable fiber having bulkiness
JP3683048B2 (en) Naturally degradable fiber assembly
JP3462977B2 (en) Method for producing polylactic acid fiber
JPS5837408B2 (en) Manufacturing method of polyester ultrafine fiber
JPH11302925A (en) Polylactic acid-based filament and its production
JP2010059570A (en) Woven fabric and textile product
JP2000054227A (en) Polyolefin-based conjugate fiber
JP4783105B2 (en) carpet
JP2003293237A (en) Method for polylactic acid fiber
JP4626163B2 (en) Polylactic acid fiber, fiber product using the same, and method for producing the same
JP2005113343A (en) Net
JP4033714B2 (en) Polylactic acid fiber
Gupta Manufactured textile fibers
JP3557027B2 (en) Naturally degradable composite yarn and its product
JP4352843B2 (en) Polylactic acid fiber and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090626

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees