JP6940836B1 - Concrete admixtures, concrete admixture manufacturing methods and concrete products - Google Patents

Concrete admixtures, concrete admixture manufacturing methods and concrete products Download PDF

Info

Publication number
JP6940836B1
JP6940836B1 JP2021099651A JP2021099651A JP6940836B1 JP 6940836 B1 JP6940836 B1 JP 6940836B1 JP 2021099651 A JP2021099651 A JP 2021099651A JP 2021099651 A JP2021099651 A JP 2021099651A JP 6940836 B1 JP6940836 B1 JP 6940836B1
Authority
JP
Japan
Prior art keywords
concrete
biomass
combustion ash
concrete admixture
silicon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021099651A
Other languages
Japanese (ja)
Other versions
JP2022108246A (en
Inventor
一成 謝花
一成 謝花
拓人 南出
拓人 南出
薫 大嶺
薫 大嶺
尚也 上里
尚也 上里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RYUX INC.
Original Assignee
RYUX INC.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=77846970&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6940836(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by RYUX INC. filed Critical RYUX INC.
Application granted granted Critical
Publication of JP6940836B1 publication Critical patent/JP6940836B1/en
Priority to PCT/JP2022/000429 priority Critical patent/WO2022153952A1/en
Publication of JP2022108246A publication Critical patent/JP2022108246A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/06Quartz; Sand
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/10Burned or pyrolised refuse
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/06Oxides, Hydroxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/30Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a fluidised bed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

【課題】環境負荷が小さく、混合したコンクリートにおいて優れた初期強度を発現するコンクリート混和材を提供する。【解決手段】少なくとも、流動媒体使用ボイラを用いて燃焼したバイオマスを含むバイオマス燃焼灰を含有し、前記バイオマス燃焼灰は、二酸化ケイ素を含有するコンクリート混和材とした。また、前記二酸化ケイ素は、少なくとも可溶性シリカを含有する構成とした。さらに、バイオマス燃焼灰は、バイオマスを流動媒体使用ボイラで燃焼させる火力発電設備から産出されたものであり、前記流動媒体使用ボイラは、ケイ砂を流動媒体とする流動層を備えて1100℃よりも低温で燃焼させるものであり、前記二酸化ケイ素は、前記流動媒体使用ボイラ内で前記バイオマスとともに燃焼される前記流動媒体としての前記ケイ砂由来であるものとした。【選択図】図1PROBLEM TO BE SOLVED: To provide a concrete admixture which has a small environmental load and exhibits excellent initial strength in mixed concrete. SOLUTION: At least, a biomass combustion ash containing biomass burned using a fluid medium-using boiler is contained, and the biomass combustion ash is a concrete admixture containing silicon dioxide. Further, the silicon dioxide was configured to contain at least soluble silica. Further, the biomass combustion ash is produced from a thermal power generation facility that burns biomass in a boiler using a fluid medium, and the boiler using a fluid medium is provided with a fluid layer using silica sand as a fluid medium and has a temperature higher than 1100 ° C. It is burned at a low temperature, and the silicon dioxide is derived from the silica sand as the fluid medium that is burned together with the biomass in the boiler using the fluid medium. [Selection diagram] Fig. 1

Description

この発明は、コンクリートに混合して使用するコンクリート混和材、コンクリート混和材の製造方法およびコンクリート製品に関する。 The present invention relates to a concrete admixture used by mixing with concrete, a method for producing a concrete admixture, and a concrete product.

従来、建築現場等において、コンクリートが広く使用されている。コンクリートは、最初は液状だが、徐々に硬化して固形となる物質であり、建築構造物、土木構造物、路盤等に使用されることから強度の性能が重要視される。コンクリート強度の指標には、養生開始から短時間で発現する初期強度と、長時間経過後に発現する長期強度があることが知られている。 Conventionally, concrete has been widely used at construction sites and the like. Concrete is a substance that is initially liquid but gradually hardens to become solid, and since it is used in building structures, civil engineering structures, roadbeds, etc., strength performance is important. It is known that the index of concrete strength includes the initial strength that develops in a short time from the start of curing and the long-term strength that develops after a long period of time.

また、コンクリートの製造過程において、コンクリート混和材が加えられることがある。このような、コンクリート混和材として、石炭焚き火力発電所で発生した未燃カーボン含有石炭灰を使用したコンクリート混和材が提案されている(特許文献1参照)。 In addition, concrete admixtures may be added during the concrete manufacturing process. As such a concrete admixture, a concrete admixture using unburned carbon-containing coal ash generated in a coal-fired thermal power plant has been proposed (see Patent Document 1).

しかし、特許文献1のような石炭焚き火力発電所で発生した石炭灰を使用したコンクリート混和材は、発電の燃料が石炭であることから環境負荷が大きいという問題があり、生成過程における環境負荷の小さいコンクリート混和材が望まれてきた。 However, a concrete admixture using coal ash generated in a coal-fired thermal power plant as in Patent Document 1 has a problem that it has a large environmental load because the fuel for power generation is coal, and the environmental load in the production process is large. Small concrete admixtures have been desired.

一方で、環境負荷の小さい発電方法として、植物由来の燃料を使用するバイオマス発電が知られている。しかし、火力発電所から産出される燃焼灰のコンクリート混和材としての利用は、石炭炊き火力発電所から産出される燃焼灰が日本工業規格(現、日本産業規格)で前提になっていた。このため、バイオマス発電によって発生する燃焼灰は、コンクリート混和材として使用されることがなかった。 On the other hand, biomass power generation using plant-derived fuel is known as a power generation method having a small environmental load. However, the use of combustion ash produced from thermal power plants as a concrete admixture was based on the Japanese Industrial Standards (currently Japanese Industrial Standards) for combustion ash produced from coal-cooked thermal power plants. Therefore, the combustion ash generated by biomass power generation has not been used as a concrete admixture.

特開2018−172259号公報JP-A-2018-172259

この発明は、上述の問題に鑑みて、環境負荷が小さく、混合したコンクリートにおいて優れた初期強度を発現するコンクリート混和材、コンクリート混和材の製造方法およびコンクリート製品を提供することを目的とする。 In view of the above problems, it is an object of the present invention to provide a concrete admixture, a method for producing a concrete admixture, and a concrete product, which have a small environmental load and exhibit excellent initial strength in mixed concrete.

この発明は、少なくとも、流動媒体使用ボイラを用いて燃焼したバイオマスを含むバイオマス燃焼灰を含有し、前記バイオマス燃焼灰は、二酸化ケイ素を含有するコンクリート混和材であることを特徴とする。 The present invention is characterized in that at least a biomass combustion ash containing biomass burned using a fluid medium-using boiler is contained, and the biomass combustion ash is a concrete admixture containing silicon dioxide.

この発明により、環境負荷が小さく、混合したコンクリートにおいて優れた初期強度を発現するコンクリート混和材、コンクリート混和材の製造方法およびコンクリート製品を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a concrete admixture, a method for producing a concrete admixture, and a concrete product, which have a small environmental load and exhibit excellent initial strength in mixed concrete.

循環流動媒体使用ボイラの概略図。Schematic diagram of a boiler using a circulating flow medium. バイオマス燃料からコンクリート混和材を製造するフロー図。A flow chart for producing a concrete admixture from biomass fuel. パームヤシ殻燃焼灰の測定結果を示す測定結果図。The measurement result figure which shows the measurement result of the palm shell combustion ash.

出願人は、火力発電所から産出される燃焼灰の有効利用をするべく、鋭意研究している。例えば、石炭灰を加熱改質して高品質のフライアッシュにする加熱改質装置の開発も行い、特許権も取得している。
ここで、従来、火力発電においては、エネルギー効率の点から一般的には石炭や石油等の化石燃料が使用されていた。しかし、化石燃料は燃焼した際に発生する二酸化炭素量が多く、地球温暖化が進行するとして、環境負荷が低い別の燃料が検討されてきた。その中でも、植物を燃料として使用するバイオマス発電は、植物の成長過程で吸収する二酸化炭素が、燃料使用時に燃焼させた際に発生する二酸化炭素よりも多い(カーボンニュートラル)という考えの元、環境負荷が低い火力発電として普及が進んでいる。
The applicant is diligently researching the effective use of combustion ash produced from thermal power plants. For example, we have also developed a heat reformer that heats and reforms coal ash to produce high-quality fly ash, and has obtained a patent right.
Here, conventionally, in thermal power generation, fossil fuels such as coal and petroleum have generally been used from the viewpoint of energy efficiency. However, fossil fuels generate a large amount of carbon dioxide when burned, and as global warming progresses, other fuels with a low environmental load have been considered. Among them, biomass power generation using plants as fuel has an environmental load based on the idea that carbon dioxide absorbed during the growth process of plants is more than carbon dioxide generated when burned when using fuel (carbon neutral). Is becoming more widespread as low thermal power generation.

しかし、バイオマス発電は燃料に植物を使用することから、一定量の燃焼灰が発生する。発生する燃焼灰は産業廃棄物として扱われ、一般に埋め立て処理がされているが、広大な埋め立て地の確保が必要という問題があった。
このようなバイオマス発電で発生する燃焼灰の有効利用について、出願人は鋭意研究した。そして、バイオマス燃料を用いた火力発電にて産出されるバイオマス燃焼灰を用いたコンクリート混和材を発明した。
以下、この発明の一実施形態を図面と共に説明する。
However, since biomass power generation uses plants as fuel, a certain amount of combustion ash is generated. The generated combustion ash is treated as industrial waste and is generally landfilled, but there is a problem that it is necessary to secure a vast landfill.
The applicant has diligently studied the effective use of combustion ash generated by such biomass power generation. Then, he invented a concrete admixture using biomass combustion ash produced by thermal power generation using biomass fuel.
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

本発明のコンクリート混和材は、原料としてバイオマス燃焼灰を使用する。バイオマス燃焼灰は、少なくとも、バイオマス燃料を高温で燃焼して灰化させたもの、すなわち燃焼したバイオマスを含有し、主に植物(バイオマス)を燃料とする火力発電(バイオマス火力発電)の副産物として生成される。 The concrete admixture of the present invention uses biomass combustion ash as a raw material. Biomass combustion ash is produced by at least burning biomass fuel at a high temperature and ashing it, that is, containing the burned biomass and producing it as a by-product of thermal power generation (biomass-fired power generation) mainly using plants (biomass) as fuel. Will be done.

バイオマスを燃料とした火力発電は、様々な種類のボイラを採用できるが、本発明で使用するバイオマス燃焼灰を産出する先火力発電施設は、流動媒体使用ボイラとして流動媒体としてケイ砂を使用する流動層(または流動床)を備えるボイラを使用していることが好ましく、さらにボイラが流動媒体としてケイ砂を強制的に循環させる機構を備えていることがより好ましく、その中でも循環流動層(床)ボイラ(循環式の流動媒体使用ボイラ)を使用していることが好適である。 Various types of boilers can be used for thermal power generation using biomass as fuel, but the pre-thermal power generation facility that produces the biomass combustion ash used in the present invention uses a fluidized bed as a fluidized bed and uses silica sand as a fluidized bed. It is preferable to use a boiler having a layer (or fluidized bed), and it is more preferable that the boiler has a mechanism for forcibly circulating silica sand as a fluidized bed, among which the circulating fluidized bed (floor). It is preferable to use a boiler (boiler using a circulating fluidized medium).

図1は、バイオマス火力発電に用いられる流動媒体使用ボイラとしての循環流動層ボイラ10の構成を示す概略構成図である。なお、流動媒体使用ボイラには、流動層ボイラ、あるいは流動床ボイラを用いることができる。
循環流動層ボイラ10は、燃料を供給する燃料供給口11と、ベッド材12と、燃料およびベッド材12の燃焼を行う火炉13と、火炉13内に空気を流入する空気流入路14と、火炉13の上部側面に設けられた火炉出口15と、火炉13内での燃焼により発生した燃焼ガス中に含まれる灰とその灰と共に流動してきた一部のベッド材12とを捕集および分離するサイクロン16と、燃焼ガスを微粉末とともに排気する排気路17と、サイクロン16の底部および火炉13の下部側面に連通した灰戻し管18とを備える。
FIG. 1 is a schematic configuration diagram showing a configuration of a circulating fluidized bed boiler 10 as a boiler using a fluidized medium used for biomass-fired power generation. As the boiler using a fluidized medium, a fluidized bed boiler or a fluidized bed boiler can be used.
The circulating flow layer boiler 10 includes a fuel supply port 11 for supplying fuel, a bed material 12, a furnace 13 for burning fuel and the bed material 12, an air inflow path 14 for inflowing air into the furnace 13, and a furnace. A cyclone that collects and separates the furnace outlet 15 provided on the upper side surface of the furnace 13 and the ash contained in the combustion gas generated by the combustion in the furnace 13 and a part of the bed material 12 that has flowed with the ash. A 16 and an exhaust passage 17 for exhausting combustion gas together with fine powder, and an ash return pipe 18 communicating with the bottom of the cyclone 16 and the lower side surface of the furnace 13 are provided.

本実施例において燃料供給口11から投入される燃料は、油分を含有するバイオマスである。このようなバイオマスとしては、例えばパームヤシ殻(PKS)、ソルガム、または木質チップ、もしくはこれらの複数を使用できる。特に、パームヤシ殻は、パームヤシと呼ばれるヤシの種子殻であって、パーム油を生産する過程で発生する残渣であることから、抽出されずに残った微量のパーム油(油分)が含まれる。そのため燃焼効率が高く、バイオマス発電の農業系バイオマス燃料として好適である。また、複数のバイオマスを混合してバイオマス燃料としてもよい。 In this embodiment, the fuel input from the fuel supply port 11 is biomass containing oil. As such biomass, for example, palm husk (PKS), sorghum, or wood chips, or a plurality of these can be used. In particular, the palm husk is a coconut seed husk called palm palm, which is a residue generated in the process of producing palm oil, and therefore contains a small amount of palm oil (oil) remaining without being extracted. Therefore, it has high combustion efficiency and is suitable as an agricultural biomass fuel for biomass power generation. Further, a plurality of biomass may be mixed to form a biomass fuel.

ベッド材12は、火炉13の下部から吹き込まれる空気によって、バイオマス燃料とともに火炉13内で上下に流動し、流動するバイオマス燃料とともに加熱される。また、ベッド材12は、加熱された状態で火炉13内を流動することで、バイオマス燃料が均一に燃焼されるよう、火炉13内の温度を一定に保持する。すなわち、ベッド材12は、空気中の流動性が高く、熱保持性能が高い種々の粒子物質を使用できる。このようなベッド材12としては、シリカを含有する熱触媒を用いることができ、ケイ砂を使用することが好ましい。ベッド材12としてケイ砂を使用することで、後述する二酸化ケイ素の含有量を調整する工程を省略することができる。また、ケイ砂に加えて排煙脱硫のための石灰石を使用してもよい。 The bed material 12 flows up and down in the furnace 13 together with the biomass fuel by the air blown from the lower part of the furnace 13, and is heated together with the flowing biomass fuel. Further, the bed material 12 keeps the temperature in the furnace 13 constant so that the biomass fuel is uniformly burned by flowing in the furnace 13 in a heated state. That is, as the bed material 12, various particulate matter having high fluidity in the air and high heat retention performance can be used. As such a bed material 12, a thermal catalyst containing silica can be used, and it is preferable to use silica sand. By using silica sand as the bed material 12, the step of adjusting the content of silicon dioxide described later can be omitted. Further, in addition to silica sand, limestone for flue gas desulfurization may be used.

火炉13は、備え付けの加熱装置によって内部が高温に加熱される。このときの火炉13内の温度は、600〜1100℃とすることができ、700〜1000℃とすることが好ましい。これにより、十分な熱量を確保でき、灰の発生量も確保でき、かつ、灰の焼結が起こりにくい環境でバイオマス燃焼灰を生成できる。特に、バイオマス燃焼灰を焼結させない(もしくは焼結を少なくする)ことにより、化学反応を生じやすい状態を維持でき、後述するポゾラン反応を生じやすくすることができる。 The inside of the furnace 13 is heated to a high temperature by the provided heating device. The temperature inside the furnace 13 at this time can be 600 to 1100 ° C, preferably 700 to 1000 ° C. As a result, a sufficient amount of heat can be secured, the amount of ash generated can be secured, and biomass combustion ash can be generated in an environment in which ash sintering is unlikely to occur. In particular, by not sintering the biomass combustion ash (or reducing the sintering), it is possible to maintain a state in which a chemical reaction is likely to occur, and it is possible to easily cause a pozzolan reaction, which will be described later.

空気流入路14は、火炉13の下部に備えられている。空気流入路14を通して火炉13の内部に空気を吹き込む。吹き込まれた空気によってベッド材12およびバイオマス燃料が火炉13内を上下に流動し、火炉13内の温度をできるだけ均等に保持する。 The air inflow path 14 is provided in the lower part of the furnace 13. Air is blown into the furnace 13 through the air inflow path 14. The bed material 12 and the biomass fuel flow up and down in the furnace 13 by the blown air, and the temperature in the furnace 13 is maintained as evenly as possible.

火炉出口15は、火炉13の上部側面に備えられている。火炉出口15が備えられる高さとしては、バイオマス燃料およびベッド材12が流動している高さよりも高い位置とすることが好ましい。パームヤシ殻およびベッド材12は、火炉13内で燃焼され、燃料時よりも粒度が小さく重量が軽いバイオマス燃焼灰となり、燃焼によって発生した燃焼ガスとともに火炉出口15から連通するサイクロン16に運搬される。 The furnace outlet 15 is provided on the upper side surface of the furnace 13. It is preferable that the height at which the reactor outlet 15 is provided is higher than the height at which the biomass fuel and the bed material 12 are flowing. The palm coconut shell and the bed material 12 are burned in the furnace 13 to become biomass combustion ash having a smaller particle size and a lighter weight than the fuel, and are transported to the cyclone 16 communicating from the furnace outlet 15 together with the combustion gas generated by the combustion.

サイクロン16は、火炉13から火炉出口15を通して運搬されたバイオマス燃焼灰について、比較的粗粒なバイオマス燃焼灰を沈降させ、粗粒なバイオマス燃焼灰と微細なバイオマス燃焼灰とを分離する。粗粒なバイオマス燃焼灰はサイクロン16の底部に連通した灰戻し管18を通して、再び火炉13の底部に供給される。一方、微細なバイオマス燃焼灰は、燃焼ガスとともに排気路17に導入される。 The cyclone 16 precipitates relatively coarse-grained biomass-burning ash from the biomass-burning ash transported from the furnace 13 through the furnace outlet 15, and separates the coarse-grained biomass-burning ash from the fine-grained biomass-burning ash. The coarse-grained biomass combustion ash is supplied to the bottom of the furnace 13 again through the ash return pipe 18 communicating with the bottom of the cyclone 16. On the other hand, the fine biomass combustion ash is introduced into the exhaust passage 17 together with the combustion gas.

排気路17に導入された燃焼ガスおよびバイオマス燃焼灰は、図示省略する対流伝熱部を経てバグフィルターまたは電気集塵機を使用して燃焼ガスとバイオマス燃焼灰とを分離される。分離された燃焼ガスは、含有する硫黄酸化物を脱硫処理によって取り除かれ、排煙として大気中に放出される。脱硫処理の方法としては石灰を用いる方法が一般的に用いられている。ベッド材12に石灰石を含有していた場合は、燃焼段階で脱硫処理が完了しているため、燃焼ガスの脱硫処理は行わなくてもよい。 The combustion gas and biomass combustion ash introduced into the exhaust passage 17 are separated from the combustion gas and biomass combustion ash by using a bag filter or an electrostatic precipitator via a convection heat transfer section (not shown). The separated combustion gas is desulfurized to remove the sulfur oxides contained therein, and is released into the atmosphere as flue gas. As a method of desulfurization treatment, a method using lime is generally used. When the bed material 12 contains limestone, the desulfurization treatment is completed at the combustion stage, so that the desulfurization treatment of the combustion gas does not have to be performed.

分離されたバイオマス燃焼灰は産業廃棄物として回収され、一般には指定された埋め立て地にて埋め立て処理される。 The separated biomass combustion ash is collected as industrial waste and is generally landfilled at a designated landfill site.

図2は、バイオマス燃料からコンクリート混和材を製造するフローのフローチャートである。 FIG. 2 is a flowchart of a flow for producing a concrete admixture from biomass fuel.

火力発電の燃料として、バイオマスが火力発電施設内に備えられた循環流動層ボイラ10に投入され、このバイオマス燃料を、ケイ砂を主とするベッド材12の粒子とともに燃焼する(ステップS1)。 As a fuel for thermal power generation, biomass is put into a circulating fluidized bed boiler 10 provided in a thermal power generation facility, and this biomass fuel is burned together with particles of a bed material 12 mainly composed of silica sand (step S1).

循環流動層ボイラ10は、バイオマス燃焼灰を産出する。この産出されたバイオマス燃焼灰を作業員が火力発電の施設から回収する(ステップS2)。このとき、産出される全てのバイオマス燃焼灰を回収することが好ましい。バイオマス燃焼灰の体積平均粒径(MV)は、250μm以下とすることができ、100μm以下とすることが好ましく、40μm以下とすることがより好ましい。また、さらに分級機を使用して35μm以下に調整することが好ましく、1〜30μmとすることがより好ましい。また、バイオマス燃焼灰の個数平均粒径(MN)は、20μm以下とすることが好ましく、分級機を使用して15μm以下に調整することがより好ましく、1〜10μmとすることがさらに好ましい。さらに、バイオマス燃焼灰の面積平均粒径(MA)は、40μm以下とすることが好ましく、分級機を使用して30μm以下に調整することがより好ましく、1〜20μmとすることがさらに好ましい。また、バイオマス燃焼灰のメジアン径(50%累積粒径、D50)は、40μm以下とすることが好ましく、分級機を使用して30μm以下に調整することがより好ましく、1〜20μmとすることがさらに好ましい。さらに、バイオマス燃焼灰の各平均粒径について、体積平均粒径(MV)が250μm以下を満たすことに加えて、個数平均粒径(MN)が20μm以下、面積平均粒径(MA)が40μm以下、およびメジアン径(50%累積粒径、D50)が40μm以下の条件の内、1つ以上を満たすことが好ましく、すべて満たすことが最も好ましい。これらの体積平均粒径(MV)、個数平均粒径(MN)、面積平均粒径(MA)、およびメジアン径(50%累積粒径、D50)は、例えば、マイクロトラック社製の「粒子径分布測定装置 MT3300EXII」など、適宜の粒度分布測定装置で測定することができる。ここで言うメジアン径(50%累積粒径、D50)は、体積の頻度が50%になるタイミングの粒径を意味する。なお、各「粒径」の用語は「粒子径」と同一の意味で使用している。
このようにして得られるバイオマス燃焼灰は、ベッド材12として使用されたケイ砂の粒子由来の二酸化ケイ素含有量が30%以上あり、より好ましくは45%以上あるものであり、50%以上のものとすることもできる。また、得られたバイオマス燃焼灰の強熱減量は、10%以下であり、好ましくは5%以下のものとすることもできる。また、得られたバイオマス燃焼灰の比表面積は、2,500〜5,000cm2/gである。さらに、得られるバイオマス燃焼灰に含まれる二酸化ケイ素には、燃焼の際に加えられた熱量が不足したことにより焼結が不十分なままバイオマス燃焼灰に含有される未焼結二酸化ケイ素が含まれる。
より具体的には、バイオマス燃料にパームヤシ殻を採用し、ベッド材12にケイ砂を採用した場合には、ケイ砂の粒子由来の二酸化ケイ素含有量が53.4%、強熱減量が4.6、比表面積が3,360cm2/gのバイオマス燃焼灰が得られる。
The circulating fluidized bed boiler 10 produces biomass combustion ash. Workers recover the produced biomass combustion ash from the thermal power generation facility (step S2). At this time, it is preferable to recover all the produced biomass combustion ash. The volume average particle size (MV) of the biomass combustion ash can be 250 μm or less, preferably 100 μm or less, and more preferably 40 μm or less. Further, it is preferable to adjust the size to 35 μm or less by using a classifier, and more preferably to 1 to 30 μm. The average particle size (MN) of the biomass combustion ash is preferably 20 μm or less, more preferably 15 μm or less using a classifier, and even more preferably 1 to 10 μm. Further, the area average particle size (MA) of the biomass combustion ash is preferably 40 μm or less, more preferably adjusted to 30 μm or less using a classifier, and further preferably 1 to 20 μm. The median diameter (50% cumulative particle size, D50) of the biomass combustion ash is preferably 40 μm or less, more preferably 30 μm or less using a classifier, and 1 to 20 μm. More preferred. Further, for each average particle size of the biomass combustion ash, in addition to satisfying the volume average particle size (MV) of 250 μm or less, the number average particle size (MN) is 20 μm or less, and the area average particle size (MA) is 40 μm or less. , And one or more of the conditions that the median diameter (50% cumulative particle size, D50) is 40 μm or less are preferably satisfied, and most preferably all of them are satisfied. These volume average particle size (MV), number average particle size (MN), area average particle size (MA), and median diameter (50% cumulative particle size, D50) are, for example, "particle size" manufactured by Microtrac. It can be measured with an appropriate particle size distribution measuring device such as "Distribution measuring device MT3300EXII". The median diameter (50% cumulative particle size, D50) referred to here means the particle size at the timing when the frequency of the volume becomes 50%. The term "particle size" is used in the same meaning as "particle size".
The biomass combustion ash thus obtained has a silicon dioxide content derived from the particles of silica sand used as the bed material 12 of 30% or more, more preferably 45% or more, and 50% or more. It can also be. The ignition loss of the obtained biomass combustion ash is 10% or less, preferably 5% or less. The specific surface area of the obtained biomass combustion ash is 2,500 to 5,000 cm2 / g. Further, the silicon dioxide contained in the obtained biomass combustion ash contains unsintered silicon dioxide contained in the biomass combustion ash with insufficient sintering due to insufficient heat applied during combustion. ..
More specifically, when palm coconut shells are used as the biomass fuel and silica sand is used for the bed material 12, the silicon dioxide content derived from the particles of the silica sand is 53.4%, and the loss on ignition is 4. 6. Biomass combustion ash with a specific surface area of 3,360 cm2 / g can be obtained.

さらに、作業員は、必要に応じて、バイオマス燃焼灰に一般的にコンクリート混和材に使用できる種々の添加材を添加し混合する(ステップS3)。このような添加材としては、例えば、フライアッシュ(石炭燃焼灰)等を使用できる。なお、必要なければこのステップS3の工程を省略してもよい。 Further, if necessary, the worker adds and mixes various additives that can be generally used as a concrete admixture to the biomass combustion ash (step S3). As such an additive, for example, fly ash (coal combustion ash) or the like can be used. If it is not necessary, the step of step S3 may be omitted.

このようにして、燃焼したバイオマスおよび二酸化ケイ素を含むバイオマス燃焼灰に適宜の素材を混合した、バイオマス燃焼灰を主成分としたバイオマス燃焼灰混合粉が得られ、これをコンクリート混和材とすることができる。
製造したコンクリート混和材は、コンクリートの原料の一部と置換する形態でコンクリートに混合する。コンクリートの原料の内、どの原料と置換するかは適宜選択できるが、セメントまたは細骨材(砕砂等)と置換することが好ましく、粒子の大きさの観点から、細骨材の一部と置換することが好ましい。例えば、水、セメント、細骨材(砕砂等)、および粗骨材(砕石または砂利等)を原料とするコンクリートにおいては、セメントおよび/または細骨材(砕砂等)の一部をコンクリート混和材に置換することが好ましい。また、製造したコンクリート混和材を混合したコンクリートを原料として、生コンクリート、再生骨材といった種々のコンクリート製品とすることができる。
In this way, a biomass combustion ash mixed powder containing biomass combustion ash as a main component is obtained by mixing an appropriate material with the burned biomass and biomass combustion ash containing silicon dioxide, and this can be used as a concrete admixture. can.
The produced concrete admixture is mixed with concrete in a form of replacing a part of the raw material of concrete. Of the concrete raw materials, which raw material to replace with can be appropriately selected, but it is preferable to replace with cement or fine aggregate (crushed sand, etc.), and from the viewpoint of particle size, replace with a part of fine aggregate. It is preferable to do so. For example, in concrete made from water, cement, fine aggregate (crushed sand, etc.), and coarse aggregate (crushed stone, gravel, etc.), cement and / or part of the fine aggregate (crushed sand, etc.) is part of the concrete admixture. It is preferable to replace with. Further, various concrete products such as ready-mixed concrete and recycled aggregate can be made from concrete mixed with the produced concrete admixture as a raw material.

以上の構成により、環境負荷が小さく、混合したコンクリートにおいて優れた初期強度を発現するコンクリート混和材を提供することができる。
本発明のコンクリート混和材は、燃焼したバイオマスであるバイオマス燃焼灰を原料としている。バイオマスは火力発電の中でも環境負荷が小さいバイオマス発電の燃料となり、本発明のコンクリート混和材の原料とするバイオマス燃焼灰は、バイオマスを燃料としたバイオマス発電の発電工程で発生する副産物を使用できる。この構成により、廃棄物削減を実現でき、環境にやさしいコンクリート混和材を提供できる。
With the above configuration, it is possible to provide a concrete admixture that has a small environmental load and exhibits excellent initial strength in mixed concrete.
The concrete admixture of the present invention uses biomass combustion ash, which is burned biomass, as a raw material. Biomass becomes a fuel for biomass power generation, which has a small environmental load among thermal power generation, and the biomass combustion ash used as a raw material for the concrete admixture of the present invention can use by-products generated in the power generation process of biomass power generation using biomass as fuel. With this configuration, waste reduction can be realized and an environment-friendly concrete admixture can be provided.

また、コンクリート混和材の原料とするバイオマス燃焼灰には、二酸化ケイ素が30重量%以上、好ましくは45重量%以上含まれている。この構成により、混合後のコンクリートに対して優れた初期強度と長期強度を付与できる。これは、水と混合されたセメントに含まれる水酸化カルシウムと、コンクリート混和材に含まれる焼結していない未焼結二酸化ケイ素が反応(ポゾラン反応)することで、初期強度および長期強度が得られるためである。 Further, the biomass combustion ash used as a raw material for the concrete admixture contains 30% by weight or more, preferably 45% by weight or more of silicon dioxide. With this configuration, excellent initial strength and long-term strength can be imparted to the mixed concrete. This is because calcium hydroxide contained in cement mixed with water reacts with unsintered unsintered silicon dioxide contained in concrete admixture (pozzolan reaction) to obtain initial strength and long-term strength. This is because it is possible.

また、バイオマス燃料灰に含有されている二酸化ケイ素は、可溶性シリカであるため、コンクリートにおけるポゾラン反応を促してコンクリートを徐々に硬化させていくことができる。 Further, since silicon dioxide contained in the biomass fuel ash is soluble silica, it is possible to promote the pozzolan reaction in concrete and gradually harden the concrete.

また、コンクリート混和材の原料とするバイオマス燃焼灰は、粒径が1〜10μmとなるよう分級機によって調整しても良い。粒径が小さくなることで比表面積が増大し、コンクリート混和材の反応性が向上し、混合先のコンクリートの硬化速度を向上させることができる。 Further, the biomass combustion ash used as a raw material of the concrete admixture may be adjusted by a classifier so that the particle size is 1 to 10 μm. By reducing the particle size, the specific surface area can be increased, the reactivity of the concrete admixture can be improved, and the hardening rate of the concrete to be mixed can be improved.

また、本発明のコンクリート混和材は、燃料をバイオマスとして、ベッド材12をケイ砂として使用する流動層を備えたボイラによって燃焼し、生成したバイオマス燃焼灰を原料としている。この構成により、原料のバイオマス燃焼灰は、ケイ砂由来の可溶性シリカを含有し、コンクリート混和材の原料として好適に使用できる。また、成分調整用の二酸化ケイ素の一部またはすべてを削減することができ、製造工程の簡略化および低コスト化を実現することができる。さらに、ベッド材として使用されたケイ砂は、燃焼中の流動による摩耗で粒度が細かくなるため、得られるバイオマス燃焼灰の反応性を高め、コンクリートの添加材としてより適したコンクリート混和材とできる。 Further, the concrete admixture of the present invention uses biomass combustion ash produced by burning by a boiler having a fluidized bed using the fuel as biomass and the bed material 12 as silica sand as a raw material. With this configuration, the raw material biomass combustion ash contains soluble silica derived from silica sand and can be suitably used as a raw material for a concrete admixture. In addition, part or all of the silicon dioxide for component adjustment can be reduced, and the manufacturing process can be simplified and the cost can be reduced. Further, since the silica sand used as a bed material has a fine particle size due to wear due to flow during combustion, the reactivity of the obtained biomass combustion ash is enhanced, and a concrete admixture more suitable as a concrete additive can be obtained.

また、本発明の循環流動層ボイラ10は、燃料のバイオマスを600〜1100℃で燃焼する。この構成により、バイオマス燃焼灰が焼結せず、より反応性の高いコンクリート混和材とすることができる。すなわち、高温で焼成が行われる石炭焚き火力発電所のような施設から産出される燃焼灰は、焼結によって表面が硬化し、反応性が悪化するが、本発明のような低温で燃焼させたバイオマス燃焼灰は焼結が抑制されるため、バイオマス燃焼灰中の二酸化ケイ素とセメント中の水酸化カルシウムがより早期にポゾラン反応し、コンクリートが高い早期強度を示す。 Further, the circulating fluidized bed boiler 10 of the present invention burns fuel biomass at 600 to 1100 ° C. With this configuration, the biomass combustion ash is not sintered, and a more reactive concrete admixture can be obtained. That is, the combustion ash produced from a facility such as a coal-fired thermal power plant that is fired at a high temperature has its surface hardened by sintering and its reactivity deteriorates, but it is burned at a low temperature as in the present invention. Since sintering of biomass combustion ash is suppressed, silicon dioxide in biomass combustion ash reacts with calcium hydroxide in cement earlier, and concrete exhibits high early strength.

また、バイオマス燃焼灰の体積平均粒径(MV)は、250μm以下であり、100μm以下が好ましく、40μm以下とすることがより好ましい。この構成により、ポゾラン反応の反応性を向上することができる。すなわち、よりコンクリート混和材として好適に使用することができる。 The volume average particle size (MV) of the biomass combustion ash is 250 μm or less, preferably 100 μm or less, and more preferably 40 μm or less. With this configuration, the reactivity of the pozzolan reaction can be improved. That is, it can be more preferably used as a concrete admixture.

また、バイオマス燃焼灰の個数平均粒径(MN)は、20μm以下とすることが好ましく、15μm以下がより好ましく、1〜10μmとすることがさらに好ましい。この構成により、ポゾラン反応の反応性を向上することができる。すなわち、よりコンクリート混和材として好適に使用することができる。 The average particle size (MN) of the biomass combustion ash is preferably 20 μm or less, more preferably 15 μm or less, and further preferably 1 to 10 μm. With this configuration, the reactivity of the pozzolan reaction can be improved. That is, it can be more preferably used as a concrete admixture.

また、バイオマス燃焼灰の面積平均粒径(MA)は、40μm以下が好ましく、30μm以下がより好ましく、1〜20μmとすることがさらに好ましい。この構成により、ポゾラン反応の反応性を向上することができる。すなわち、よりコンクリート混和材として好適に使用することができる。 The area average particle size (MA) of the biomass combustion ash is preferably 40 μm or less, more preferably 30 μm or less, and further preferably 1 to 20 μm. With this configuration, the reactivity of the pozzolan reaction can be improved. That is, it can be more preferably used as a concrete admixture.

また、バイオマス燃焼灰の累積平均径(メジアン径、D50)は、40μm以下が好ましく、30μm以下がより好ましく、1〜20μmとすることがさらに好ましい。この構成により、ポゾラン反応の反応性を向上することができる。すなわち、よりコンクリート混和材として好適に使用することができる。
<実施例>
The cumulative average diameter (median diameter, D50) of the biomass combustion ash is preferably 40 μm or less, more preferably 30 μm or less, and further preferably 1 to 20 μm. With this configuration, the reactivity of the pozzolan reaction can be improved. That is, it can be more preferably used as a concrete admixture.
<Example>

燃料としてバイオマスであるパームヤシ殻、ベッド材としてケイ砂を使用し、火炉内温度を600〜1000℃に調整した循環流動層ボイラにおいて、生成したパームヤシ殻燃焼灰(バイオマス燃焼灰)を取得した。 The produced palm husk combustion ash (biomass combustion ash) was obtained in a circulating fluidized bed boiler in which the temperature inside the furnace was adjusted to 600 to 1000 ° C. using palm husks which are biomass as fuel and silica sand as bed material.

取得したパームヤシ殻燃焼灰について、体積平均粒径(MV)、個数平均粒径(MN)、面積平均粒径(MA)、およびメジアン径(50%累積粒径、D50)を測定した。各粒度分布の測定にはマイクロトラック社製、「粒子径分布測定装置 MT3300EXII」を使用した。このときの測定条件として、MT3300(LOW−WET)の光学台を使用し、粒子形状を非球形と仮定して、溶媒を水とし、測定上限を2000μm、測定下限を0.021μm、測定時間を10秒とし、分布表示を体積として、計算モードを「MT3300II」とした。また、3回測定の平均値を測定結果とした。 The volume average particle size (MV), number average particle size (MN), area average particle size (MA), and median diameter (50% cumulative particle size, D50) were measured for the obtained palm shell combustion ash. A "particle size distribution measuring device MT3300EXII" manufactured by Microtrac Co., Ltd. was used for measuring each particle size distribution. As the measurement conditions at this time, an optical table of MT3300 (LOW-WET) is used, the particle shape is assumed to be non-spherical, the solvent is water, the upper limit of measurement is 2000 μm, the lower limit of measurement is 0.021 μm, and the measurement time is set. The time was set to 10 seconds, the distribution display was set to volume, and the calculation mode was set to "MT3300II". Moreover, the average value of three measurements was taken as the measurement result.

図3は、取得したパームヤシ殻燃焼灰の測定結果を示す測定結果図である。
測定結果図100には、縦軸を頻度(%)、横軸を粒径(μm)として示す累積%の粒子径分布グラフ101と、体積平均粒径(μm)(MV)、個数平均粒径(μm)(MN)、面積平均粒径(μm)(MA)、比表面積(m2/ml)(CS)、および粒子径分布の分布幅の目安を示す標準偏差(μm)(SD)の測定値である要約データ表102と、粒子径分布グラフ101における山が単数か複数かを示すピーク粒径103と、頻度分布グラフのチャンネルデータ104と、10%間隔の各累積%における粒径を示す累積%径表105と、測定条件を示す測定条件表106が含まれる。
FIG. 3 is a measurement result diagram showing the measurement results of the acquired palm husk combustion ash.
Measurement Results FIG. 100 shows a cumulative% particle size distribution graph 101 showing the vertical axis as frequency (%) and the horizontal axis as particle size (μm), volume average particle size (μm) (MV), and number average particle size. Measurement of (μm) (MN), area average particle size (μm) (MA), specific surface area (m2 / ml) (CS), and standard deviation (μm) (SD) indicating the distribution width of the particle size distribution. The summary data table 102, which is a value, the peak particle size 103 indicating whether the peaks in the particle size distribution graph 101 are single or plural, the channel data 104 in the frequency distribution graph, and the particle size at each cumulative% at 10% intervals are shown. A cumulative% diameter table 105 and a measurement condition table 106 showing the measurement conditions are included.

図3に示すように、取得したパームヤシ殻燃焼灰の各粒径は、体積平均粒径(MV)が25.354μm、個数平均粒径(MN)が4.6633μm、面積平均粒径(MA)が13.436μm、メジアン径(50%累積粒径、D50)が19.121μmであった。 As shown in FIG. 3, each particle size of the acquired palm shell combustion ash has a volume average particle size (MV) of 25.354 μm, a number average particle size (MN) of 4.6633 μm, and an area average particle size (MA). Was 13.436 μm, and the median diameter (50% cumulative particle size, D50) was 19.121 μm.

取得したパームヤシ殻燃焼灰を、水、セメント、砕砂、および砕石を原料とするコンクリートにおいて、セメントまたは砕砂の一部と置換するように混合した。
具体的には、置換前のコンクリート材料(普通コンクリートの材料)として、水165kg/m3、セメント450kg/m3、砕砂780kg/m3、砕石1050kg/m3、混和材2.250kg/m3のコンクリート材料を用意した。また、置換前のコンクリート材料に用いられている混和材は、バイオマス燃焼灰以外のものである。
そして、実施例1としてセメントの5重量%を、実施例2としてセメントの10重量%を、実施例3として砕砂の5重量%を、それぞれパームヤシ殻燃焼灰で置換したコンクリートを製造した。また、比較例としていずれの原料もパームヤシ殻燃焼灰で置換していないコンクリート(普通コンクリート)を製造した。
The obtained palm husk combustion ash was mixed in water, cement, crushed sand, and concrete made from crushed stone so as to replace a part of cement or crushed sand.
Specifically, as concrete materials before replacement (ordinary concrete materials), concrete materials of water 165 kg / m3, cement 450 kg / m3, crushed sand 780 kg / m3, crushed stone 1050 kg / m3, and admixture 2.250 kg / m3 are prepared. bottom. The admixture used for the concrete material before replacement is other than biomass combustion ash.
Then, 5% by weight of cement was replaced with Example 1, 10% by weight of cement was replaced with Example 2, and 5% by weight of crushed sand was replaced with palm husk combustion ash as Example 3, respectively. In addition, as a comparative example, concrete (ordinary concrete) in which none of the raw materials was replaced with palm husk combustion ash was produced.

製造した各実施例および比較例を24時間養生させ、JIS A 1108に規定されたコンクリート圧縮強度試験方法に基づいて圧縮強度を測定した。 Each of the produced Examples and Comparative Examples was cured for 24 hours, and the compressive strength was measured based on the concrete compressive strength test method specified in JIS A 1108.

Figure 0006940836
Figure 0006940836

表1は、各実施例および比較例における24時間養生後の圧縮強度測定の結果である。表1に示す通り、原料の一部をパームヤシ殻燃焼灰で置換した各実施例は、普通コンクリートと比較して、いずれも圧縮強度に優れる結果となった。具体的には、原料の一部をパームヤシ殻燃焼灰で置換することによって、圧縮強度が3%〜15%向上した。
また、91日経過後の長期強度についても、パームヤシ殻燃焼灰を添加しない普通コンクリートと同等かそれ以上の強度が得られた。特に、砕砂をパームヤシ殻燃焼灰で置換した場合に、普通コンクリートよりも長期強度が高まる好適な結果が得られた。
Table 1 shows the results of compressive strength measurement after 24-hour curing in each Example and Comparative Example. As shown in Table 1, each of the examples in which a part of the raw material was replaced with palm husk combustion ash resulted in excellent compressive strength as compared with ordinary concrete. Specifically, by substituting a part of the raw material with palm husk combustion ash, the compressive strength was improved by 3% to 15%.
In addition, the long-term strength after 91 days was equal to or higher than that of ordinary concrete to which palm husk combustion ash was not added. In particular, when the crushed sand was replaced with palm husk combustion ash, favorable results were obtained in which the long-term strength was higher than that of ordinary concrete.

なお、この発明は、上述の実施形態の構成のみに限定されるものではなく、多くの実施の形態を得ることができる。
例えば、本実施例におけるバイオマス燃焼灰は、発電所の排煙に含まれる微細な燃焼灰をバグフィルターまたは電気集塵機で回収したものとしたが、サイクロンで沈降した粗粒な燃焼灰に対して分級を行い、粗粒な燃焼灰の中でも比較的微細な燃焼灰を回収してもよい。
The present invention is not limited to the configuration of the above-described embodiment, and many embodiments can be obtained.
For example, in the biomass combustion ash in this example, the fine combustion ash contained in the flue gas of the power plant was recovered by a bag filter or an electrostatic collector, but it was classified with respect to the coarse-grained combustion ash settled by the cyclone. May be carried out to recover relatively fine combustion ash among the coarse-grained combustion ash.

また、本実施例では、コンクリート混和材の各製造工程を作業員が行うものとして説明したが、各工程の一部またはすべてを機械によって行ってもよい。 Further, in the present embodiment, each manufacturing process of the concrete admixture has been described as being performed by an operator, but a part or all of each process may be performed by a machine.

また、水180kg、セメント350kg、砕砂850kg、砕石1050kgのコンクリート材料のセメントの一部をバイオマス燃焼灰に置換してもよい。この場合、例えばセメントの10%を混和材に置換して、セメント315kg、バイオマス燃焼灰(もしくはバイオマス燃焼灰を用いた混和材)35kgとすることができる。このような構成であっても上述した実施例と同様の作用効果を得ることができる。 Further, a part of the cement of the concrete material of 180 kg of water, 350 kg of cement, 850 kg of crushed sand and 1050 kg of crushed stone may be replaced with biomass combustion ash. In this case, for example, 10% of the cement can be replaced with an admixture to obtain 315 kg of cement and 35 kg of biomass combustion ash (or an admixture using biomass combustion ash). Even with such a configuration, the same effect as in the above-described embodiment can be obtained.

この発明は、コンクリートに混合して使用するコンクリート混和材の製造販売の産業に利用することができる。 The present invention can be used in the industry of manufacturing and selling concrete admixtures used by mixing with concrete.

10…循環流動層ボイラ
11…燃料供給口
12…ベッド材
13…火炉
14…空気流入路
15…火炉出口
16…サイクロン
17…排気路
18…灰戻し管
10 ... Circulating fluidized bed boiler 11 ... Fuel supply port 12 ... Bed material 13 ... Furnace 14 ... Air inflow path 15 ... Furnace outlet 16 ... Cyclone 17 ... Exhaust path 18 ... Ash return pipe

Claims (7)

少なくともケイ砂を流動媒体とする流動層を備えたボイラにより600〜1100℃でパームヤシ殻、ソルガム、および木質チップの1以上で構成されるバイオマス燃料と前記流動媒体を共に燃焼させ、
前記燃焼により得られる前記ケイ砂由来の二酸化ケイ素を含有するバイオマス燃焼灰を得、
前記バイオマス燃焼灰を主成分とし前記二酸化ケイ素を含有し、体積平均粒径が250μm以下のコンクリート混和材を得る
コンクリート混和材の製造方法。
A boiler provided with a fluidized bed using at least silica sand as a fluidized bed is used to burn the fluidized medium together with a biomass fuel composed of one or more palm husks, sorghum, and wood chips at 600 to 1100 ° C.
Biomass combustion ash containing silicon dioxide derived from the silica sand obtained by the combustion is obtained.
A method for producing a concrete admixture, which comprises the biomass combustion ash as a main component, contains the silicon dioxide, and obtains a concrete admixture having a volume average particle diameter of 250 μm or less.
前記コンクリート混和材は、前記二酸化ケイ素として焼結していない未焼結二酸化ケイ素を含有し、コンクリート材料に混和されてポゾラン反応を生じさせる
請求項1記載のコンクリート混和材の製造方法。
The method for producing a concrete admixture according to claim 1, wherein the concrete admixture contains unsintered silicon dioxide that has not been sintered as the silicon dioxide, and is mixed with the concrete material to cause a pozzolan reaction.
前記コンクリート混和材は、コンクリートにおけるセメントの一部と置換可能である
請求項2記載のコンクリート混和材の製造方法。
The method for producing a concrete admixture according to claim 2, wherein the concrete admixture can be replaced with a part of cement in concrete.
パームヤシ殻、ソルガム、および木質チップの1以上で構成されるバイオマス燃料と、少なくともケイ砂を含有する流動媒体を燃焼させたバイオマス燃焼灰を主成分とし、
二酸化ケイ素を含有し体積平均粒径が250μm以下である
コンクリート混和材。
The main components are biomass fuel composed of one or more palm husks, sorghum, and wood chips, and biomass combustion ash obtained by burning a fluid medium containing at least silica sand.
A concrete admixture containing silicon dioxide and having a volume average particle size of 250 μm or less.
前記二酸化ケイ素として焼結していない未焼結二酸化ケイ素を含有し、コンクリート材料に混和されてポゾラン反応を生じさせる
請求項4記載のコンクリート混和材。
The concrete admixture according to claim 4, which contains unsintered silicon dioxide as the silicon dioxide and is mixed with the concrete material to cause a pozzolan reaction.
請求項1、2、または3記載の製造方法で製造され、
前記バイオマス燃焼灰を主成分とし前記二酸化ケイ素を30重量%以上含有する
コンクリート混和材。
Manufactured by the manufacturing method according to claim 1, 2 or 3.
A concrete admixture containing the biomass combustion ash as a main component and containing 30% by weight or more of the silicon dioxide.
請求項4、5、または6に記載のコンクリート混和材を含有した
コンクリート製品。
A concrete product containing the concrete admixture according to claim 4, 5, or 6.
JP2021099651A 2021-01-12 2021-06-15 Concrete admixtures, concrete admixture manufacturing methods and concrete products Active JP6940836B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/000429 WO2022153952A1 (en) 2021-01-12 2022-01-07 Concrete admixture, concrete admixture manufacturing method, and concrete product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021002582 2021-01-12
JP2021002582 2021-07-02

Publications (2)

Publication Number Publication Date
JP6940836B1 true JP6940836B1 (en) 2021-09-29
JP2022108246A JP2022108246A (en) 2022-07-25

Family

ID=77846970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021099651A Active JP6940836B1 (en) 2021-01-12 2021-06-15 Concrete admixtures, concrete admixture manufacturing methods and concrete products

Country Status (2)

Country Link
JP (1) JP6940836B1 (en)
WO (1) WO2022153952A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0442848A (en) * 1990-06-06 1992-02-13 Kubota Corp Production of inorganic board
JPH04182339A (en) * 1990-11-16 1992-06-29 Kubota Corp Production of inorganic product
JPH07332636A (en) * 1994-06-08 1995-12-22 Ngk Insulators Ltd Method for burning waste
JPH09159370A (en) * 1995-12-08 1997-06-20 Ngk Insulators Ltd Incinerating method of waste
JPH11190355A (en) * 1997-12-25 1999-07-13 Ntn Corp Stationary type constant speed universal coupling
JPH11256173A (en) * 1998-03-09 1999-09-21 Kawasaki Heavy Ind Ltd Refuse solid fuel suitable for solidification of burned ash, its production, burning treatment and burning treatment apparatus of the refuse solid fuel
JP2000313643A (en) * 1999-04-27 2000-11-14 Taiheiyo Cement Corp Production of cement feedstock and cement clinker
JP2006159033A (en) * 2004-12-03 2006-06-22 Mitsui Eng & Shipbuild Co Ltd Chloride removal process from fluidized bed boiler incineration ash
US20190084883A1 (en) * 2017-09-21 2019-03-21 Crown Products & Services, Inc. Dry Mix and Concrete Composition Containing Bed Ash and Related Methods
JP6808883B1 (en) * 2020-07-24 2021-01-06 株式会社リュウクス Soil improvement material and soil improvement method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5514516B2 (en) * 2009-11-10 2014-06-04 独立行政法人国立高等専門学校機構 Manufacture of mixed cement and hardened body using natural materials such as silica supply and various wastes as main raw materials
KR20170090602A (en) * 2016-01-29 2017-08-08 주식회사 대웅 Cement admixture composition with biomass ash
WO2019170963A1 (en) * 2018-03-09 2019-09-12 Betolar Oy Binder composition and hardenable mixture

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0442848A (en) * 1990-06-06 1992-02-13 Kubota Corp Production of inorganic board
JPH04182339A (en) * 1990-11-16 1992-06-29 Kubota Corp Production of inorganic product
JPH07332636A (en) * 1994-06-08 1995-12-22 Ngk Insulators Ltd Method for burning waste
JPH09159370A (en) * 1995-12-08 1997-06-20 Ngk Insulators Ltd Incinerating method of waste
JPH11190355A (en) * 1997-12-25 1999-07-13 Ntn Corp Stationary type constant speed universal coupling
JPH11256173A (en) * 1998-03-09 1999-09-21 Kawasaki Heavy Ind Ltd Refuse solid fuel suitable for solidification of burned ash, its production, burning treatment and burning treatment apparatus of the refuse solid fuel
JP2000313643A (en) * 1999-04-27 2000-11-14 Taiheiyo Cement Corp Production of cement feedstock and cement clinker
JP2006159033A (en) * 2004-12-03 2006-06-22 Mitsui Eng & Shipbuild Co Ltd Chloride removal process from fluidized bed boiler incineration ash
US20190084883A1 (en) * 2017-09-21 2019-03-21 Crown Products & Services, Inc. Dry Mix and Concrete Composition Containing Bed Ash and Related Methods
JP6808883B1 (en) * 2020-07-24 2021-01-06 株式会社リュウクス Soil improvement material and soil improvement method

Also Published As

Publication number Publication date
JP2022108246A (en) 2022-07-25
WO2022153952A1 (en) 2022-07-21

Similar Documents

Publication Publication Date Title
JP6719154B2 (en) Low calcium fluidized bed coal ash solidification method and solidified body
JP5941183B1 (en) Method for producing combustion aid for co-firing and combustion method for combustion coal using this combustion aid
US20060032408A1 (en) Method of making pozzolands and cementitious materials from coal combustion by-products
CN1294181A (en) Clean combustion of coal and application and products of its companion substance
CN103979771A (en) High water-content sludge curing agent using petroleum coke desulfurization gypsum
JP2006272174A (en) Manufacturing method of sintered object
JP6940836B1 (en) Concrete admixtures, concrete admixture manufacturing methods and concrete products
CN107640952A (en) The method for producing light concrete product
JP6527025B2 (en) Method of insolubilizing heavy metals in coal ash, and method of producing earthworking materials in which heavy metals are insolubilized
JP6808883B1 (en) Soil improvement material and soil improvement method
JP2009275999A (en) Harmful trace element elution inhibitor and harmful trace element elution suppression method
JP4901274B2 (en) Method for producing fired product
JP4644635B2 (en) Clinker ash production promotion method and clinker ash production promoter
CN205368156U (en) Fly ash sintered ceramsite apparatus for producing
JP4215921B2 (en) Circulating fluidized bed boiler system and operating method thereof
KR101236862B1 (en) Soil Conditioner manufacturing method utilizing sewage sludge
JP4377256B2 (en) Manufacturing method of artificial lightweight aggregate
JP7155450B1 (en) SOIL IMPROVEMENT MATERIAL, SOIL IMPROVEMENT METHOD, AND SOIL IMPROVEMENT METHOD
JP4644636B2 (en) Clinker ash production promotion method and clinker ash production promoter
JP2007269549A (en) Method of producing artificial aggregate
CN107556040A (en) The method for producing foaming thermal-insulating
JP6927377B2 (en) Cement composition manufacturing method and cement composition manufacturing system
CN107640951A (en) Fibre cement product and its manufacture method
KR101899805B1 (en) Admixture stabilized industrial by-products containing large amounts of free-CaO
KR20180013215A (en) Method for manufacturing mixing filler for asphalt paving

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210623

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210819

R150 Certificate of patent or registration of utility model

Ref document number: 6940836

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S303 Written request for registration of pledge or change of pledge

Free format text: JAPANESE INTERMEDIATE CODE: R316303

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157