JP6719154B2 - Low calcium fluidized bed coal ash solidification method and solidified body - Google Patents

Low calcium fluidized bed coal ash solidification method and solidified body Download PDF

Info

Publication number
JP6719154B2
JP6719154B2 JP2015254394A JP2015254394A JP6719154B2 JP 6719154 B2 JP6719154 B2 JP 6719154B2 JP 2015254394 A JP2015254394 A JP 2015254394A JP 2015254394 A JP2015254394 A JP 2015254394A JP 6719154 B2 JP6719154 B2 JP 6719154B2
Authority
JP
Japan
Prior art keywords
fluidized bed
ash
coal ash
low
bed coal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015254394A
Other languages
Japanese (ja)
Other versions
JP2017113730A (en
Inventor
柱国 李
柱国 李
攻 池田
攻 池田
貴也 鳥海
貴也 鳥海
佐藤 貴之
貴之 佐藤
藤本 康之
康之 藤本
細谷 多慶
多慶 細谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY
Nippon Paper Industries Co Ltd
Landes Co Ltd
Original Assignee
NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY
Nippon Paper Industries Co Ltd
Landes Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY, Nippon Paper Industries Co Ltd, Landes Co Ltd filed Critical NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY
Priority to JP2015254394A priority Critical patent/JP6719154B2/en
Publication of JP2017113730A publication Critical patent/JP2017113730A/en
Application granted granted Critical
Publication of JP6719154B2 publication Critical patent/JP6719154B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

本発明は、流動床ボイラーから排出される石炭灰(流動床石炭灰)のうちカルシウム(CaO)含有量の少ない低カルシウム流動床石炭灰のリサイクル技術に関し、より詳しくは低カルシウム流動床石炭灰をジオポリマー固化体に添加する固化技術に関する。 The present invention relates to a technique for recycling low-calcium fluidized-bed coal ash having a low content of calcium (CaO) among coal ash (fluidized-bed coal ash) discharged from a fluidized-bed boiler, and more particularly, to low-calcium fluidized-bed coal ash. The present invention relates to a solidification technique for adding a solidified geopolymer.

石炭灰は、石炭火力発電所では石炭を燃焼させて電気エネルギーを発生させる時に発生する残滓である。2013年度の石炭灰発生量は全体で1289万トンであった(内訳は、電気事業が993万トン、一般産業が296万トンである。)。前年度に対し、21万トン増加した。一方、2013年度の石炭灰の有効利用量は1249万トンであった。その内訳は、セメント分野の占める割合が有効利用量の67%(839万トン)と高い水準にある。その他の分野では、セメント混合材、人工超軽量骨材、道路材、埋立材、盛土材など多岐にわたり利用されている。 Coal ash is a residue generated when a coal-fired power plant burns coal to generate electric energy. The total amount of coal ash generated in 2013 was 12.89 million tons (the breakdown is 9.93 million tons for the electric power industry and 2.96 million tons for the general industry). It increased by 210,000 tons from the previous year. On the other hand, the effective amount of coal ash in 2013 was 12.49 million tons. The breakdown is that the cement sector accounts for a high level of 67% (83.9 million tons) of effective use. In other fields, it is used in a wide range of applications including cement admixtures, artificial ultralight aggregates, road materials, landfill materials, and embankment materials.

しかしながら、セメント生産量は近年減少傾向にあり、今後も大幅な増産を見込むことは難しい。また、自治体の都市ゴミや下水汚泥の焼却灰が競合することから、今後は引取り条件が悪化することが自明である。なお、灰捨処分に関しても最終処分場を確保することは困難になりつつある上に、自治体の産廃税課徴の動きが散見される。したがって、今後の石炭灰の増加に対処するためには、セメント原料以外の有効利用方法の開拓が重要な課題となっており、特に大量利用の可能性の大きい土木材料としての利用が期待されている。 However, cement production has been declining in recent years, and it is difficult to expect a significant increase in production in the future. In addition, it is clear that the conditions for collection will worsen in the future due to competition between municipal waste and incinerator ash from sewage sludge. Regarding ash disposal, it is becoming difficult to secure a final disposal site, and there are some movements in the local government to impose industrial waste tax. Therefore, in order to cope with the future increase in coal ash, the development of effective utilization methods other than cement raw materials has become an important issue, and it is particularly expected to be used as a civil engineering material with a large potential for large-scale utilization. There is.

石炭の燃焼方式は、微粉炭燃焼方式(PC方式)と循環流動床燃焼方式(CFB方式)の2タイプがある。PC方式の場合、燃焼温度は1500℃に達するため、石炭灰は溶融する。そのうち、85〜95%は燃焼ガス中に浮遊して球形粒子となり、電気集塵器で回収され(フライアッシュ)、残りの5〜15%はクリンカアッシュである。また、PC方式においてNO及びSOは、排煙脱硝・脱硫装置で所要の基準以下となるよう処理された後、煙突から排出される。フライアッシュのCaO含有量は5%以下である。一方、CFB方式の場合、燃焼温度は1000℃以下(800〜900℃)であり、NOの発生はなく、また石炭灰は溶融していないため、ガラス質化せず、角ばっている不定形のものとなる。CFB方式では、石炭に含まれる硫黄分が燃焼過程ではSOに転換することを避けるために、石灰石−石膏法、水酸化マグネシウム法及び活性炭法のいずれかの脱硫方式が利用されている。石灰石−石膏法や活性炭法を用いた場合には石炭灰にCaO成分は多く含まれる(15〜30%)が、水酸化マグネシウム法の場合、CaO低含有量(5%以下)の石炭灰が排出される。 There are two types of coal combustion methods: a pulverized coal combustion method (PC method) and a circulating fluidized bed combustion method (CFB method). In the case of the PC method, the combustion temperature reaches 1500° C., so the coal ash melts. Of these, 85 to 95% are suspended in combustion gas to form spherical particles, which are collected by an electrostatic precipitator (fly ash), and the remaining 5 to 15% are clinker ash. Further, in the PC system, NO x and SO x are exhausted from the chimney after being processed by a flue gas denitration/desulfurization device so as to be below a required standard. The CaO content of fly ash is 5% or less. On the other hand, in the case of the CFB method, the combustion temperature is 1000° C. or lower (800 to 900° C.), NO x is not generated, and the coal ash is not melted, so that it does not vitrify and is angular. It becomes a fixed form. In the CFB method, a desulfurization method of any one of the limestone-gypsum method, the magnesium hydroxide method and the activated carbon method is used in order to prevent the sulfur content contained in coal from being converted into SO x in the combustion process. When the limestone-gypsum method or activated carbon method is used, the coal ash contains a large amount of CaO components (15 to 30%), but in the case of the magnesium hydroxide method, coal ash with a low CaO content (5% or less) is used. Is discharged.

近年、電力需給の逼迫や電気料金上昇、電力システム改革、発電設備の更新時期の到来等を背景に、発電出力11.25万kW未満の火力発電所(以下「小規模火力発電所」という。)の設置事業・計画が急増している。火力発電所で用いられる化石燃料としては、石炭と天然ガスが候補となるが、小規模火力発電所においては、天然ガスは発電原価に占める燃料価格の割合が高く、大規模な火力発電所に比べて効率が小さいため相対的に燃料費が増加すること、かつ、価格変動の影響を受けやすいこと、さらには、天然ガスを産出国で液化し、国内需要地まで運搬するための膨大なインフラ投資が必要となり、中小規模の需要家が独自に調達することが難しく、このため天然ガスの供給が可能な地点の制約を受けること等から、石炭が採用されやすいと考えられる。PC方式とCFB方式を比較すると、前者は、比較的、熱効率が高くなるが、バイオマス燃料においては高品位な燃料が必要になるのに対して、後者は、固体燃料であれば、バイオマス・廃棄物燃料等の高品位から低品位のもの、均質・不均質なもの等の多様な燃料を採用可能であり、これらを複数種類混焼する事例もある。これまではPC方式が主流であるが、CFB方式は、バイオマスや廃棄物燃料等多様な燃料種を専焼又は混焼で利用できることから、地球温暖化対策・廃棄物等の循環利用の点で長所があり、小規模火力発電所の場合にはCFB方式が今後益々増加すると想定できる。また、水酸化マグネシウム法は他の2つの方式と比べ、簡易で設備費が安価であるため、小規模火力発電所で多用されている。したがって、今後、CaO含有量の少ない低カルシウム流動床石炭灰の排出量は増加すると予想されている。 In recent years, thermal power plants with a power generation output of less than 11.25 million kW (hereinafter referred to as "small-scale thermal power plants") are backed by tight power supply and demand, rising electricity prices, power system reforms, and the arrival of power generation facility renewal. ) Installation projects and plans are rapidly increasing. Coal and natural gas are candidates for fossil fuels used in thermal power plants, but in small-scale thermal power plants, natural gas accounts for a large proportion of the fuel price in the power generation cost, making it a large-scale thermal power plant. Compared to the above, it is relatively inefficient, resulting in relatively high fuel costs, and is susceptible to price fluctuations. Furthermore, it has a huge infrastructure for liquefying natural gas in producing countries and transporting it to domestic demand sites. Since investment is required and it is difficult for small and medium-sized customers to procure their own, and because of the restrictions on the points where natural gas can be supplied, it is considered that coal is likely to be adopted. Comparing the PC method and the CFB method, the former has relatively high thermal efficiency, but the biomass fuel requires a high-quality fuel, while the latter is a solid fuel, the It is possible to adopt various fuels such as high- to low-grade ones such as physical fuels, homogeneous and non-homogeneous ones, and there are also cases where multiple types of these are mixed and burned. Until now, the PC method has been the mainstream, but the CFB method has advantages in terms of measures against global warming and recycling of waste, since various fuel types such as biomass and waste fuel can be used by burning or mixed burning. Therefore, it can be assumed that the CFB method will increase more and more in the case of small-scale thermal power plants. Also, the magnesium hydroxide method is simpler and less expensive than the other two methods, so it is widely used in small-scale thermal power plants. Therefore, it is expected that the emission amount of low-calcium fluidized bed coal ash having a low CaO content will increase in the future.

一方、アルカリ溶液の刺激を受け、縮重合反応を起こさせてモノリス化(ジオポリマー固化体)する方法は、高炉スラグ、フライアッシュ、都市ごみ焼却灰溶融スラグ及び下水汚泥焼却灰溶融スラグなどの産業廃棄物の新たな有効利用方法として多くの注目を集めている。フライアッシュ及びCaO含有量の多い高カルシウム流動床石炭灰は、活性フィラーとしてジオポリマー固化体の作製にリサイクルできることが確認されている(非特許文献1、2)。しかし、CaO含有量の少ない低カルシウム流動床石炭灰の固化方法については、ジオポリマー固化体の作製に利用できるかどうかを含めて、これまで研究例は皆無である。 On the other hand, the method of causing a polycondensation reaction to generate a monolith (solidified body of geopolymer) by the stimulation of an alkaline solution is used in industries such as blast furnace slag, fly ash, municipal waste incinerated ash molten slag and sewage sludge incinerated ash molten slag. It has attracted much attention as a new effective use method of waste. It has been confirmed that fly ash and high-calcium fluidized-bed coal ash having a high CaO content can be recycled as active fillers for producing a solidified geopolymer (Non-Patent Documents 1 and 2). However, there have been no studies on the solidification method of low-calcium fluidized bed coal ash having a low CaO content, including whether it can be used for producing a solidified geopolymer.

P.T. Fernando, et al.:Alkali-activated binders: A review Part 1. Historical background, terminology, reaction mechanisms and hydration products, Construction and Building Materials, Vol.22, pp.1305−1314, 2008.P.T.Fernando, et al.: Alkali-activated binders: A review Part 1. Historical background, terminology, reaction mechanisms and hydration products, Construction and Building Materials, Vol.22, pp.1305-1314, 2008. T. Kihara, et al.: Consolidation of pressurized fluidized bed combustion ash (PF‐Ash) by the geopolymer technique at ambient temperature, Science for New Technology of Silicate Ceramics, CIMTEC 2002, pp.163-168, 2003.T. Kihara, et al.: Consolidation of pushed fluidized bed combustion ash (PF-Ash) by the geopolymer technique at ambient temperature, Science for New Technology of Silicate Ceramics, CIMTEC 2002, pp.163-168, 2003.

以上の背景を踏まえて、本発明が解決しようとする課題は、ジオポリマー固化体の作製にCaO含有量の少ない低カルシウム流動床石炭灰の利用を試みて、低カルシウム流動床石炭灰の新たなリサイクル技術を提供することにある。 Based on the above background, the problem to be solved by the present invention is to try to utilize low calcium fluidized bed coal ash with a low CaO content in the production of a solidified geopolymer, and to develop a new low calcium fluidized bed coal ash. To provide recycling technology.

本発明によれば、「活性フィラー及びアルカリ溶液に低カルシウム流動床石炭灰を加えて混練し、養生して固化させる、低カルシウム流動床石炭灰の固化方法」及び「活性フィラー及びアルカリ溶液に低カルシウム流動床石炭灰を加えて混練し、養生して得られた、低カルシウム流動床石炭灰の固化体」が提供される。 According to the present invention, "a low-calcium fluidized bed coal ash solidifying method, in which low-calcium fluidized-bed coal ash is added to an active filler and an alkaline solution and kneaded, and cured to solidify" and "active filler and alkaline solution are low in A solidified product of low calcium fluidized bed coal ash, which is obtained by adding and kneading calcium fluidized bed coal ash and curing, is provided.

アルカリ溶液(通常はJIS 1号水ケイ酸ナトリウム水溶液、又はJIS 1号水ケイ酸ナトリウム水溶液と苛性ソーダ水溶液の混合水溶液)と、金属イオンを溶出する能力に優れる活性フィラー、例えば、非晶質のメタカオリン、高炉スラグ・都市ゴミ/下水汚泥焼却灰溶融スラグ等のガラス質のスラグ類及びガラス質のフライアッシュのうち、少なくとも1種類とを混合すると、縮重合反応が生じ、ジオポリマー固化体を作製できる。前述のように、CaO含有量の多い高カルシウム流動床石炭灰は、ジオポリマー固化体を作製でき、活性フィラーの1種であると考えられる。一方、アルカリ溶液に金属イオンを溶出する能力に劣る粉末(以下「不活性フィラー」という。)、例えば、石英、赤泥などは、縮重合反応を生じず、固化できない。 Alkaline solution (usually JIS No. 1 water sodium silicate aqueous solution or JIS No. 1 water sodium silicate aqueous solution and mixed aqueous solution of caustic soda) and an active filler excellent in the ability to elute metal ions, for example, amorphous metakaolin , When mixed with at least one of glassy slag such as blast furnace slag, municipal waste/sewage sludge incinerator ash molten slag, and glassy fly ash, a polycondensation reaction occurs and a solidified geopolymer can be produced. .. As described above, high calcium fluidized bed coal ash having a high CaO content is capable of producing a solidified geopolymer, and is considered to be one type of active filler. On the other hand, powder (hereinafter referred to as "inert filler") having a poor ability to elute metal ions in an alkaline solution, such as quartz and red mud, does not undergo a polycondensation reaction and cannot be solidified.

後述するように本発明者らによる実験により、低カルシウム流動床石炭灰は不活性フィラーに分類できることが明らかになった。そこで、本発明では、低カルシウム流動床石炭灰の一部を活性フィラーで置換(代替)することでジオポリマー固化体を作製し、これによって低カルシウム流動床石炭灰の固化、すなわち、低カルシウム流動床石炭灰をジオポリマー固化体にリサイクルすることを可能とした。 As will be described later, experiments by the present inventors have revealed that low-calcium fluidized bed coal ash can be classified as an inert filler. Therefore, in the present invention, a solidified geopolymer is produced by substituting (substituting) a part of the low-calcium fluidized bed coal ash with an active filler, thereby solidifying the low-calcium fluidized-bed coal ash, that is, a low calcium fluidized bed. It was possible to recycle the bed coal ash into a solidified geopolymer.

本発明によれば、低カルシウム流動床石炭灰をジオポリマー固化体にリサイクルすることが可能となり、低カルシウム流動床石炭灰を有効利用することができる。 According to the present invention, it is possible to recycle low-calcium fluidized bed coal ash into a geopolymer solidified body, and the low-calcium fluidized bed coal ash can be effectively used.

本発明の実施例による低カルシウム流動床石炭灰の固化体(低カルシウム流動床石炭灰を添加したジオポリマー固化体)の曲げ強度と圧縮強度の測定結果を示す。5 shows the measurement results of bending strength and compressive strength of a solidified product of low-calcium fluidized bed coal ash (geopolymer solidified product to which low-calcium fluidized bed coal ash is added) according to an example of the present invention.

低カルシウム流動床石炭灰は、前述のとおり循環流動床燃焼方式(CFB方式)により生成するCaO含有量の少ない流動床石炭灰である。CFB方式の多くの場合、低硫黄炭を燃焼するか又は水酸化マグネシウム法の脱硫方式を採用するため、石灰石は特に加えていない。したがって、流動床石炭灰の化学組成は微粉炭燃焼方式(PC方式)の石炭灰(フライアッシュ)と同様であり、CaOの含有量が少ない。 The low-calcium fluidized bed coal ash is a fluidized bed coal ash having a low CaO content produced by the circulating fluidized bed combustion method (CFB method) as described above. In many cases of the CFB method, low-sulfur coal is burned or a desulfurization method of the magnesium hydroxide method is adopted, so no limestone is added. Therefore, the chemical composition of the fluidized bed coal ash is similar to that of pulverized coal combustion system (PC system) coal ash (fly ash), and the content of CaO is small.

一方、最近は石炭のみならず、バイオマスや廃プラスチック燃料(RPF)を石炭と混合して燃焼する傾向にあり、いわゆる「専焼灰」と「混焼灰」の二種類の流動床石炭灰が排出されている。前述のように、石炭灰のリサイクルの定番と言えばセメント原料である。専焼灰はPC方式のフライアッシュと同等の化学組成をもつのでセメント原料として使うことができる。しかし、混焼灰はアルミナ分を多く含むことにより、セメント原料に不向きである。本発明では、専焼灰と混焼灰のいずれも低カルシウム流動床石炭灰としてジオポリマー固化体の作製に利用することができる。すなわち、本発明において低カルシウム流動床石炭灰としては、石炭単独又は石炭と廃棄物との混合物を例えば1000℃以下の流動床で燃焼して得られた粉状物を利用することができる。なお、本発明で利用する低カルシウム流動床石炭灰のCaO含有量は10質量%以下であり、典型的には5質量%以下である。 On the other hand, recently, not only coal, but also biomass and waste plastic fuel (RPF) tend to be mixed with coal and burned, and two types of fluidized bed coal ash, so-called "exclusive ash" and "mixed ash" are discharged. ing. As mentioned above, the standard material for recycling coal ash is the cement raw material. Since the burnt ash has the same chemical composition as PC-based fly ash, it can be used as a cement raw material. However, the mixed ash is not suitable as a cement raw material because it contains a large amount of alumina. In the present invention, both the exclusively burned ash and the mixed burned ash can be used as low-calcium fluidized bed coal ash for producing a solidified geopolymer. That is, in the present invention, as the low-calcium fluidized bed coal ash, a powdery material obtained by burning coal alone or a mixture of coal and waste in a fluidized bed at 1000° C. or lower can be used. The CaO content of the low-calcium fluidized bed coal ash used in the present invention is 10% by mass or less, typically 5% by mass or less.

活性フィラーとしては、高炉スラグ粉末、フライアッシュ、高カルシウム流動床石炭灰、都市ごみ焼却灰溶融スラグ粉末、メタカオリン及び下水汚泥焼却灰溶融スラグ粉末のうち少なくとも1種類を含むものを利用することができる。また、アルカリ溶液としては、ケイ酸ナトリウム若しくはケイ酸カリウムの水溶液、又はケイ酸ナトリウム若しくはケイ酸カリウムと水酸化ナトリウム若しくは水酸化カリウムとの混合水溶液を利用することができる。 As the active filler, one containing at least one of blast furnace slag powder, fly ash, high calcium fluidized bed coal ash, municipal solid waste incinerated ash molten slag powder, metakaolin and sewage sludge incinerated ash molten slag powder can be used. .. As the alkaline solution, an aqueous solution of sodium silicate or potassium silicate or a mixed aqueous solution of sodium silicate or potassium silicate and sodium hydroxide or potassium hydroxide can be used.

なお、本発明において、活性フィラーと低カルシウム流動床石炭灰の配合割合、並びにアルカリ溶液の固形分濃度及び使用量(以下、総称して「固化条件」という。)は、主として、固化体を製造する段階(硬化前)の流動性、及び固化体(製品)の強度などの性能に影響を及ぼす。したがって、これら固化条件は、製品の製造条件、用途等に応じ、固化体を製造する段階(硬化前)に求められる流動性や固化体(製品)に求められる性能などを考慮して適宜決定すればよい。 In the present invention, the blending ratio of the active filler and the low-calcium fluidized bed coal ash, and the solid content concentration and usage amount of the alkaline solution (hereinafter, collectively referred to as “solidification conditions”) mainly produce a solidified product. It affects the fluidity at the stage of curing (before curing) and the performance of the solidified product (product). Therefore, these solidification conditions should be appropriately determined in consideration of the fluidity required at the stage of manufacturing the solidified product (before curing) and the performance required for the solidified product (product) according to the manufacturing conditions of the product, the application, etc. Good.

低カルシウム流動床石炭灰として専焼灰と混焼灰を利用し、ジオポリマー固化体の作製を試みた(以下の実験I〜VI)。石炭灰の排出時期によって、燃やした石炭の品質が変動するため、石炭灰の品質が異なる。表1には、本実施例で用いた3種類の低カルシウム流動床石炭灰(N11、N12、N12A)、及び高炉スラグ(BFS)の化学成分と物理性質を示す。なお、以下の説明では、3種類の低カルシウム流動床石炭灰及び高炉スラグを総称して「フィラー」という。 An attempt was made to produce a solidified geopolymer by using specially burned ash and mixed ash as low-calcium fluidized bed coal ash (Experiments I to VI below). The quality of the burned coal varies depending on the timing of discharge of the coal ash, so the quality of the coal ash differs. Table 1 shows the chemical components and physical properties of the three types of low-calcium fluidized bed coal ash (N11, N12, N12A) and blast furnace slag (BFS) used in this example. In the following description, the three types of low-calcium fluidized bed coal ash and blast furnace slag are collectively referred to as "filler".

Figure 0006719154
Figure 0006719154

混焼灰のCaO含有量は専燃灰より多い(10%以下)が、混焼灰のCaOは石炭以外の起源から来るものが殆どである。ただし、混焼灰のCaO含有量は10質量%以下であって、高炉スラグのCaO含有量と比べるとはるかに少ない。 The CaO content of the mixed ash is higher than that of the combustion ash (10% or less), but the CaO of the mixed ash mostly comes from sources other than coal. However, the CaO content of the mixed ash is 10 mass% or less, which is far less than the CaO content of the blast furnace slag.

<実験I>
混焼灰(N11)及び専焼灰(N12,N12A)をそれぞれ単独でアルカリ溶液と所定の液固比((アルカリ溶液の質量/フィラーの質量)で混合してジオポリマー固化体の作製を試みた。用いたアルカリ溶液は、次の1号液と0号液の2種類である。
・1号液:市販のJIS 1号水ケイ酸ナトリウム液(通称、1号水ガラス)を水で希釈し、比重1.27に調製したもの。
・0号液:1号液とモル濃度が10Mの苛性ソーダ水溶液を3:1の体積割合で混合して調製したもの(比重1.31)。
<Experiment I>
The mixed burned ash (N11) and the exclusively burned ash (N12, N12A) were individually mixed with an alkali solution at a predetermined liquid-solid ratio ((mass of alkali solution/mass of filler)) to make a solidified geopolymer. The alkaline solutions used were the following two types, solution 1 and solution 0.
Liquid No. 1: A commercially available JIS No. 1 water sodium silicate liquid (commonly called No. 1 water glass) was diluted with water to have a specific gravity of 1.27.
Solution No. 0: Solution No. 1 and a caustic soda aqueous solution having a molar concentration of 10 M were mixed at a volume ratio of 3:1 (specific gravity 1.31).

ジオポリマー固化体の作製に通常に使われるアルカリ溶液は0号液であるが、そのコストが高く、またコンクリート製造工場での苛性ソーダ水溶液の保管・計量及び排水処理に不便を生じるおそれがあるため、本実施例では1号液を用いた実験も行った。混焼灰(N11)は0号液と練り混ぜた後に発泡するため、発泡が停止してから再攪拌して泡を抜いた。発泡時間は20〜40分で、再攪拌は練り混ぜから1時間後に行った。発泡するのは、廃棄物燃料由来の金属アルミニウムが混焼灰に含まれる苛性ソーダなどのアルカリ環境で水素ガスを生じるためであると考えられる。他のフィラーとアルカリ溶液を用いた場合は発泡しないので、泡抜きのための再攪拌は行わなかった。 Alkaline solution that is usually used for producing solidified geopolymer is No. 0 solution, but its cost is high, and it may cause inconvenience in storage/measurement and wastewater treatment of caustic soda solution in concrete manufacturing plant. In this example, an experiment using the No. 1 solution was also conducted. The mixed ash (N11) foams after kneading with No. 0 liquid, so after the foaming stopped, the mixture was stirred again to remove the foam. The foaming time was 20 to 40 minutes, and the re-stirring was performed 1 hour after the kneading. It is considered that the foaming is due to the fact that metallic aluminum derived from waste fuel produces hydrogen gas in an alkaline environment such as caustic soda contained in the mixed ash. When another filler and an alkaline solution were used, foaming did not occur, so that re-stirring for removing bubbles was not performed.

練混ぜ又は再攪拌の直後に20×20×80mmの角柱3個取の砲金製型枠に打込み、ラップで密閉して80℃又は60℃の高温養生を行い、ある程度硬化した段階(ほぼ3時間後)で脱型し、さらに所定の時間まで養生を続けた。2日材齢に3点法で曲げ強度を測定した。また、練混ぜ後から硬化開始までの時間、いわゆる可使時間を測定した。測定方法として、室温20±3℃の条件下で、平滑にした試料面を実験室用ミクロスパーテルで突き刺し、圧痕に液の進入が認められず、かつ圧痕が明瞭に残るまでの時間を計測し、可使時間とした。 Immediately after kneading or re-stirring, it is driven into a 20×20×80 mm three-column prismatic metal mold frame, sealed with a wrap, and subjected to high temperature curing at 80° C. or 60° C. to a certain degree of curing (approximately 3 hours Later), the mold was removed, and curing was continued until a predetermined time. Bending strength was measured by a three-point method at the age of 2 days. Further, the time from the kneading to the start of curing, that is, the so-called pot life was measured. As a measuring method, at the room temperature of 20±3° C., the smoothed sample surface is pierced with a laboratory microspatel, and the time until the indentation does not show any liquid and the indentation remains clearly is measured. , The pot life.

実験Iの結果を表2及び表3に示す。 The results of Experiment I are shown in Tables 2 and 3.

Figure 0006719154
Figure 0006719154

Figure 0006719154
Figure 0006719154

表2及び表3に示すように、アルカリ溶液として0号液より1号液を混焼灰と使う場合の方が可使時間は短い。混焼灰と1号液を用いたジオポリマーの可使時間は20分程度しかない。混焼灰と専焼灰のいずれかをフィラーとして単独使用した場合のジオポリマー固化体の曲げ強度は3MPa以下で、圧縮強度に換算すると15MPa以下となり、実用性のあるジオポリマー固化体の作製が困難である。これらの結果によれば、CaO含有量が少ない低カルシウム流動床石炭灰は、不活性フィラーに分類することができる。 As shown in Tables 2 and 3, the pot life is shorter when the solution No. 1 is used as the alkaline solution with the co-fired ash than the solution No. 0. The pot life of the geopolymer using mixed ash and No. 1 solution is only about 20 minutes. The flexural strength of the solidified geopolymer is 3 MPa or less when the mixed ash or the exclusively burned ash is used alone as the filler, and is 15 MPa or less when converted to the compressive strength, which makes it difficult to produce a practical geopolymer solidified body. is there. According to these results, the low calcium fluidized bed coal ash having a low CaO content can be classified as an inert filler.

<実験II>
混焼灰(N11)の一部を高炉スラグ微粉末(BFS)で置換してアルカリ溶液と混合し、ジオポリマー固化体の作製を行った。作製したジオポリマー固化体の性能を表4に示す。曲げ強度及び可使時間の測定方法は実験Iと同じである。
<Experiment II>
A part of the mixed ash (N11) was replaced with blast furnace slag fine powder (BFS) and mixed with an alkaline solution to prepare a solidified geopolymer. The performance of the produced geopolymer solidified product is shown in Table 4. The methods for measuring the bending strength and the pot life are the same as in Experiment I.

Figure 0006719154
Figure 0006719154

表4に示すように、アルカリ溶液として0号液を使う場合は、BFSの置換率を0%から25%に増加すると、可使時間は5時間から35分まで短縮した。しかし、BFSの添加によって強度は大幅に増加したことが認められる。BFSの置換率が同じであれば、0号液を使った場合は、1号液より曲げ強度は高く、80℃の高温養生で曲げ強度が6MPa以上のジオポリマー固化体を作製できた(圧縮強度に換算すると、30MPa以上である)。 As shown in Table 4, when the No. 0 solution was used as the alkaline solution, the pot life was shortened from 5 hours to 35 minutes when the BFS substitution rate was increased from 0% to 25%. However, it is observed that the strength was significantly increased by the addition of BFS. If the substitution ratio of BFS was the same, when using solution No. 0, the bending strength was higher than that of solution No. 1, and a geopolymer solidified body having a bending strength of 6 MPa or more could be produced by high temperature curing at 80°C (compression). When converted into strength, it is 30 MPa or more).

<実験III>
専焼灰(N12,N12A)の一部を高炉スラグ微粉末(BFS)で置換してアルカリ溶液と混合し、ジオポリマー固化体の作製を行った。作製したジオポリマー固化体の性能を表5及び表6に示す。曲げ強度及び可使時間の測定方法は実験Iと同じである。
<Experiment III>
A part of the exclusively baked ash (N12, N12A) was replaced with blast furnace slag fine powder (BFS) and mixed with an alkaline solution to prepare a solidified geopolymer body. The performance of the produced solidified geopolymer is shown in Tables 5 and 6. The methods for measuring the bending strength and the pot life are the same as in Experiment I.

Figure 0006719154
Figure 0006719154

Figure 0006719154
Figure 0006719154

表5に示すように、専焼灰(N12)の25%をBFSで置換し、0号液を使ったジオポリマーは、80℃で6時間養生した後の曲げ強度が9.63MPaであった。BFSを50%添加すれば、1号液を使っても、80℃6時間養生の試験体の曲げ強度は8.21MPaであった。つまり、BFSを添加すれば、専焼灰(N12)で圧縮強度が40MPa以上の常用コンクリート相当品を作製することができると言える。また、専焼灰(N12)とBFSを併用しても可使時間は1時間以上で型枠への打ち込み作業に問題はないと言える。 As shown in Table 5, the geopolymer obtained by substituting 25% of the exclusively burned ash (N12) with BFS and using No. 0 solution had a bending strength of 9.63 MPa after curing at 80° C. for 6 hours. When 50% of BFS was added, the flexural strength of the test body aged at 80° C. for 6 hours was 8.21 MPa even with the solution No. 1. In other words, it can be said that by adding BFS, it is possible to produce a common concrete equivalent product having a compressive strength of 40 MPa or more with the exclusively burned ash (N12). Further, even if the burnt ash (N12) and BFS are used together, the pot life is 1 hour or more, and it can be said that there is no problem in the work of driving into the mold.

また、表6に示すように、専焼灰の2番目のサンプルN12AとBFSを併用する場合、BFSの置換率が50%と25%であれば、可使時間はそれぞれ2時間50分と10時間半であり、ジオポリマー固化体の作製作業に問題はないと考えられる。 In addition, as shown in Table 6, when the second sample N12A of burnt ash and BFS are used together, if the replacement ratio of BFS is 50% and 25%, the pot life is 2 hours 50 minutes and 10 hours, respectively. Since it is half, it is considered that there is no problem in the production work of the solidified geopolymer.

表5及び表6に示すように、BFSの置換率が高いほど、又は養生温度が高いほど、ジオポリマー固化体の曲げ強度が高かった。BFSの置換率が50%の場合、1号液を使っても60℃以上の高温養生を行えば、曲げ強度が6.0MPa以上、つまり圧縮強度が30MPa以上のジオポリマー固化体を作製できることが認められた。 As shown in Table 5 and Table 6, the higher the substitution rate of BFS or the higher the curing temperature, the higher the bending strength of the solidified geopolymer. When the substitution rate of BFS is 50%, even if the No. 1 solution is used, high temperature curing at 60°C or higher can produce a solidified geopolymer having a bending strength of 6.0 MPa or more, that is, a compressive strength of 30 MPa or more. Admitted.

<実験VI>
専焼灰(N12)と高炉スラグ微粉末(BFS)を併用したジオポリマー固化体(ジオポリマーモルタル)を作製し、常温養生の性能を測定した。モルタルの調合を表7に示す。砂(細骨材)には豊浦砂を用いた。
<Experiment VI>
A solidified geopolymer (geopolymer mortar) was prepared by using a combination of exclusively baked ash (N12) and blast furnace slag fine powder (BFS), and the performance of room temperature curing was measured. The mortar formulation is shown in Table 7. Toyoura sand was used as sand (fine aggregate).

Figure 0006719154
Figure 0006719154

試験体の寸法は4×4×16cmとし、調合ごと3本の角柱試験体を20℃,0%R.Hの養生槽に28日材齢まで養生した後、3点法で曲げ強度を測定した。曲げ強度は、3本の試験体の平均値とした。曲げ試験後の折片を用いた圧縮試験を実施して、6つの折片の平均値を圧縮強度とした。 The size of the test piece was 4×4×16 cm, and three prism-shaped test pieces were prepared at 20° C. and 0% R.S. After being cured in a H-curing tank up to 28 days of age, the bending strength was measured by a three-point method. The bending strength was the average value of three test pieces. A compression test was performed using the folded pieces after the bending test, and the average value of the six folded pieces was taken as the compressive strength.

図1に曲げ強度及び圧縮強度の測定結果を示す。同図より、専焼灰とBFSを併用すると、常温養生でも圧縮強度は28MPa以上のジオポリマー固化体(ジオポリマーモルタル)を作製でき、BFSの置換率が高いほど、強度は大きいことが認められた。また、圧縮強度は曲げ強度の5倍以上であることがわかった。 FIG. 1 shows the measurement results of bending strength and compressive strength. From the figure, it was confirmed that when the burned ash and BFS were used together, a solidified geopolymer (geopolymer mortar) having a compressive strength of 28 MPa or more could be produced even at room temperature curing, and the higher the substitution rate of BFS, the greater the strength. .. It was also found that the compressive strength is 5 times or more the bending strength.

以上の実験I〜VIの結果をまとめると、以下の知見が得られた。
a)CaO含有量の少ない低カルシウム流動床石炭灰は、混焼灰と専焼灰にかかわらず不活性フィラーであり、アルカリ溶液と混合して固化したモノリスは、実用上要求される強さがない。
b)低カルシウム流動床石炭灰の一部を活性フィラーである高炉スラグ微粉末で置換すれば、高温養生でも常温養生でも圧縮強度が30MPa以上のジオポリマー固化体を作製できる。
c)圧縮強度が30MPa以上のジオポリマー固化体を作製するために、高炉スラグ微粉末の置換率(混合率)は、0号液を用いた場合には25%以上、1号液を用いた場合には50%以上が好ましい。
d)高温養生の場合、養生温度を60℃以上にする必要がある。また、養生時間は12時間以内にすればよい。
e)50%以下の専焼灰を高炉スラグ微粉末で置換する場合、フィラーとアルカリ溶液の混合物の可使時間は80分程度であるが、混焼灰の25%を高炉スラグ微粉末で置換する場合は、可使時間は35分程度しかない。
f)混焼灰と0号液を使用する場合、高炉スラグ微粉末の置換有無にかかわらず、フィラーとアルカリ溶液の混合物は、練り混ぜた後の20〜40分の間に発泡するが、1号液を用いる場合は発泡しない。混焼灰の0号液による発泡特性を利用すれば、多孔質軽量固化体を作製できる。
The following findings were obtained by summarizing the results of the above Experiments I to VI.
a) Low-calcium fluidized bed coal ash having a low CaO content is an inert filler regardless of mixed ash and exclusively ash, and a monolith solidified by mixing with an alkaline solution does not have the strength required for practical use.
b) By substituting a part of the low-calcium fluidized bed coal ash with blast furnace slag fine powder which is an active filler, a geopolymer solidified body having a compressive strength of 30 MPa or more can be produced under both high temperature curing and normal temperature curing.
c) In order to prepare a geopolymer solidified body having a compressive strength of 30 MPa or more, the substitution rate (mixing rate) of the blast furnace slag fine powder was 25% or more when No. 0 solution was used, and No. 1 solution was used. In this case, 50% or more is preferable.
d) In the case of high temperature curing, it is necessary to set the curing temperature to 60°C or higher. Further, the curing time may be set within 12 hours.
e) When replacing 50% or less of exclusively burned ash with blast furnace slag fine powder, the pot life of the mixture of filler and alkaline solution is about 80 minutes, but when replacing 25% of mixed burned ash with blast furnace slag fine powder Has a pot life of only 35 minutes.
f) When mixed ash and No. 0 liquid are used, the mixture of filler and alkaline solution foams within 20 to 40 minutes after kneading, regardless of whether blast furnace slag fine powder is replaced or not, but No. 1 It does not foam when a liquid is used. A porous lightweight solidified body can be produced by utilizing the foaming property of the mixed ash of No. 0 liquid.

Claims (2)

活性フィラー及びアルカリ溶液に低カルシウム流動床石炭灰を加えて混練し、養生して固化させる、低カルシウム流動床石炭灰の固化方法であって、
前記低カルシウム流動床石炭灰が、石炭単独又は石炭と廃棄物との混合物を流動床で燃焼して得られ、CaOの含有量が10質量%以下の粉状物であり、
前記活性フィラーが、高炉スラグ粉末、フライアッシュ、高カルシウム流動床石炭灰(CaOの含有量が10質量%超)、都市ごみ焼却灰溶融スラグ粉末、メタカオリン及び下水汚泥焼却灰溶融スラグ粉末のうち少なくとも1種類を含むものであり、
前記アルカリ溶液が、ケイ酸ナトリウム若しくはケイ酸カリウムの水溶液、又はケイ酸ナトリウム若しくはケイ酸カリウムと水酸化ナトリウム若しくは水酸化カリウムとの混合水溶液である、低カルシウム流動床石炭灰の固化方法
A method of solidifying low calcium fluidized bed coal ash, which comprises adding low calcium fluidized bed coal ash to an active filler and an alkaline solution, kneading, and curing to solidify .
The low-calcium fluidized bed coal ash is a powdery material obtained by burning coal alone or a mixture of coal and waste in a fluidized bed, and having a CaO content of 10 mass% or less,
The active filler is at least one of blast furnace slag powder, fly ash, high calcium fluidized bed coal ash (content of CaO is more than 10% by mass), municipal solid waste incinerated ash molten slag powder, metakaolin and sewage sludge incinerated ash molten slag powder. It includes one type,
A method for solidifying low-calcium fluidized bed coal ash, wherein the alkaline solution is an aqueous solution of sodium silicate or potassium silicate or a mixed aqueous solution of sodium silicate or potassium silicate and sodium hydroxide or potassium hydroxide .
活性フィラー及びアルカリ溶液に低カルシウム流動床石炭灰を加えて混練し、養生して得られた、低カルシウム流動床石炭灰の固化体であって、
前記低カルシウム流動床石炭灰が、石炭単独又は石炭と廃棄物との混合物を流動床で燃焼して得られ、CaOの含有量が10質量%以下の粉状物であり、
前記活性フィラーが、高炉スラグ粉末、フライアッシュ、高カルシウム流動床石炭灰(CaOの含有量が10質量%超)、都市ごみ焼却灰溶融スラグ粉末、メタカオリン及び下水汚泥焼却灰溶融スラグ粉末のうち少なくとも1種類を含むものであり、
前記アルカリ溶液が、ケイ酸ナトリウム若しくはケイ酸カリウムの水溶液、又はケイ酸ナトリウム若しくはケイ酸カリウムと水酸化ナトリウム若しくは水酸化カリウムとの混合水溶液である、低カルシウム流動床石炭灰の固化体
Kneaded by adding low calcium fluidized bed coal ash to the active filler and alkaline solution, obtained by curing, a solidified product of low calcium fluidized bed coal ash ,
The low-calcium fluidized bed coal ash is a powdery material obtained by burning coal alone or a mixture of coal and waste in a fluidized bed, and having a CaO content of 10 mass% or less,
The active filler is at least one of blast furnace slag powder, fly ash, high calcium fluidized bed coal ash (content of CaO is more than 10% by mass), municipal solid waste incinerated ash molten slag powder, metakaolin and sewage sludge incinerated ash molten slag powder. It includes one type,
A solidified product of low-calcium fluidized bed coal ash, wherein the alkaline solution is an aqueous solution of sodium silicate or potassium silicate, or a mixed aqueous solution of sodium silicate or potassium silicate and sodium hydroxide or potassium hydroxide .
JP2015254394A 2015-12-25 2015-12-25 Low calcium fluidized bed coal ash solidification method and solidified body Active JP6719154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015254394A JP6719154B2 (en) 2015-12-25 2015-12-25 Low calcium fluidized bed coal ash solidification method and solidified body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015254394A JP6719154B2 (en) 2015-12-25 2015-12-25 Low calcium fluidized bed coal ash solidification method and solidified body

Publications (2)

Publication Number Publication Date
JP2017113730A JP2017113730A (en) 2017-06-29
JP6719154B2 true JP6719154B2 (en) 2020-07-08

Family

ID=59231134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015254394A Active JP6719154B2 (en) 2015-12-25 2015-12-25 Low calcium fluidized bed coal ash solidification method and solidified body

Country Status (1)

Country Link
JP (1) JP6719154B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11673835B2 (en) 2021-02-26 2023-06-13 Pq, Llc Sustainable two-component annular grout composition and method for use with a tunnel-boring machine

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108328975A (en) * 2018-03-07 2018-07-27 长安大学 A kind of super hardening inorganic mixture for repairing road surface at quick speed and preparation method thereof and application method
JP7208077B2 (en) * 2019-03-25 2023-01-18 一般財団法人電力中央研究所 Method for producing solidified coal ash
CN110508596A (en) * 2019-08-23 2019-11-29 泽州县和美环保科技有限公司 A kind of processing method of dangerous waste flying ash
CN110963751A (en) * 2019-11-22 2020-04-07 昆明理工大学 Method for stabilizing arsenic-containing sludge by kaolin geopolymer
CN111378312A (en) * 2020-03-26 2020-07-07 安徽工业大学 Solid-waste composite synergistic functional pigment and filler and preparation method thereof
CN114716173B (en) * 2022-04-26 2023-08-15 武汉理工大学 Resource utilization method for slag of circulating fluidized bed

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8801506A (en) * 1988-06-13 1990-01-02 Aardelite Holding Bv METHOD FOR MANUFACTURING A COAL SHAFT CONTAINING CURABLE MIXTURE; METHOD FOR MANUFACTURING COAL-ASH-CONTAINING HARDENED GRANULES AND COAL-ASH-CONTAINING BUILDING ELEMENT
JP3177760B2 (en) * 1994-03-10 2001-06-18 新日本製鐵株式会社 Solidified material for soft sludge waste
JP3262210B2 (en) * 1996-11-25 2002-03-04 三菱マテリアル株式会社 Treatment method for water containing organic matter
JP2003024914A (en) * 2001-07-19 2003-01-28 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Method for solidifying incineration ash and fly ash with addition of coal cinders of pressurized fluid bed, and method for utilizing solid material
JP4878432B2 (en) * 2003-12-25 2012-02-15 東亜建設工業株式会社 Solidifying material composition
JP2012229376A (en) * 2011-04-27 2012-11-22 Aibaragumi:Kk Wet sand of coal ash and various construction methods utilizing the wet sand of coal ash
CN104649602A (en) * 2013-11-20 2015-05-27 新疆贝肯石油科技开发有限责任公司 Fluidized bed fly ash activating agent
JP2017042709A (en) * 2015-08-26 2017-03-02 太平洋セメント株式会社 Treatment method for fluidized bed boiler ash

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11673835B2 (en) 2021-02-26 2023-06-13 Pq, Llc Sustainable two-component annular grout composition and method for use with a tunnel-boring machine

Also Published As

Publication number Publication date
JP2017113730A (en) 2017-06-29

Similar Documents

Publication Publication Date Title
JP6719154B2 (en) Low calcium fluidized bed coal ash solidification method and solidified body
Toniolo et al. Fly ash-based geopolymers containing added silicate waste. A review
Thaarrini et al. Comparative study on the production cost of geopolymer and conventional concretes
Kourti et al. Production of geopolymers using glass produced from DC plasma treatment of air pollution control (APC) residues
Gupta et al. Utilization of biochar from unwashed peanut shell in cementitious building materials–Effect on early age properties and environmental benefits
Luhar et al. A comprehensive review on fly ash-based geopolymer
Potgieter An Overview of Cement production: How" green" and sustainable is the industry?
CN110723929B (en) Baking-free brick and preparation method thereof
KR20120098042A (en) Method for production of high strength concrete using fly ash geopolymer
Rivera et al. Alkali-activated cements from urban, mining and agro-industrial waste: state-of-the-art and opportunities
Zhang et al. Research progress on the performance of circulating fluidized bed combustion ash and its utilization in China
Lăzărescu et al. Alternative Concrete–Geopolymer Concrete: Emerging Research and Opportunities
Dong et al. Sustainable municipal solid waste incineration fly ash (MSWIFA) alkali-activated materials in construction: Fabrication and performance
KR101043932B1 (en) Non-sintering inorganic binder comprising bottom-ash and concrete composition using thereof
CN105541150A (en) An active admixture prepared by utilizing semi-dry process desulfurized fly ash
Gou et al. Application of aluminum oxide nanoparticles in asphalt cement toward non-polluted green environment using linear regression
CN116655266A (en) Low-cost clinker-free cementing material and application thereof
CN106220057A (en) A kind of coal base solid waste foaming thermal-insulating and preparation method thereof
CN101113623B (en) Magnesium brick added coal slag and method for making same
JP2012240852A (en) Method for producing geopolymer cured body having controlled coagulation start time
Patil et al. Recent development in geopolymer concrete: A review
Dassanayake et al. Development of geopolymer with coal fired boiler ash
Jwaida et al. Geopolymers: the green alternative to traditional materials for engineering applications. Infrastructures 2023; 8: 98
Alida et al. The Effect of Acidic to the Fly Ash Based Geopolymer Artificial Aggregate
Li et al. The future resources for eco-building materials: II. Fly ash and coal waste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190716

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200612

R150 Certificate of patent or registration of utility model

Ref document number: 6719154

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250