JP5941183B1 - Method for producing combustion aid for co-firing and combustion method for combustion coal using this combustion aid - Google Patents

Method for producing combustion aid for co-firing and combustion method for combustion coal using this combustion aid Download PDF

Info

Publication number
JP5941183B1
JP5941183B1 JP2015078473A JP2015078473A JP5941183B1 JP 5941183 B1 JP5941183 B1 JP 5941183B1 JP 2015078473 A JP2015078473 A JP 2015078473A JP 2015078473 A JP2015078473 A JP 2015078473A JP 5941183 B1 JP5941183 B1 JP 5941183B1
Authority
JP
Japan
Prior art keywords
combustion
coal
mixed
aid
ash
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015078473A
Other languages
Japanese (ja)
Other versions
JP2016199622A (en
Inventor
敏彦 丸山
敏彦 丸山
敏 内藤
敏 内藤
克典 谷口
克典 谷口
護 宮森
護 宮森
忠一 溝口
忠一 溝口
裕之 松本
裕之 松本
英樹 早坂
英樹 早坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paper Industries Co Ltd
Kumagai Gumi Co Ltd
Original Assignee
Nippon Paper Industries Co Ltd
Kumagai Gumi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paper Industries Co Ltd, Kumagai Gumi Co Ltd filed Critical Nippon Paper Industries Co Ltd
Priority to JP2015078473A priority Critical patent/JP5941183B1/en
Application granted granted Critical
Publication of JP5941183B1 publication Critical patent/JP5941183B1/en
Publication of JP2016199622A publication Critical patent/JP2016199622A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Abstract

【課題】燃焼用石炭の着火性及び燃焼性を的確に向上させ、これにより燃焼灰(フライアッシュ)中に含まれる未燃分を低減して燃焼の効率化を図る。【解決手段】混焼用燃焼助剤は燃焼用石炭と混合して燃焼用石炭の燃焼を支援するために用いられる。また、上記混焼用燃焼助剤は、圧搾して脱水した後解砕したペーパースラッジと石炭粉末とを混合した混合物を所定の長さの棒状に押出し成形した後、この成形物を切断し乾燥して得られたスティック状の乾燥成形物である。【選択図】図1An object of the present invention is to accurately improve the ignitability and combustibility of combustion coal, thereby reducing unburned components contained in combustion ash (fly ash) and improving combustion efficiency. A combustion aid for mixed combustion is mixed with combustion coal and used to assist combustion of the combustion coal. The combustion aid for co-firing is formed by extruding a mixture of paper sludge crushed and dehydrated and then crushed and coal powder into a rod shape of a predetermined length, and then cutting and drying the molded product. It is a stick-shaped dry molded product obtained in this way. [Selection] Figure 1

Description

本発明は、燃焼用石炭の燃焼性を向上させるための混焼用燃焼助剤の製造方法及びこの燃焼助剤を用いた燃焼用石炭の燃焼方法に関する。更に詳しくは圧搾脱水したペーパースラッジと石炭粉末を混合して複合成形(低圧成形を含む。)又は高圧成形した混焼用燃焼助剤の製造方法と、この混焼用燃焼助剤を燃焼用石炭に混合処理又は混合・微粉砕処理を行ってこの燃焼用石炭を燃焼する方法に関するものである。 The present invention relates to a method for producing a mixed combustion combustion aid for improving the combustibility of combustion coal, and a combustion method for combustion coal using the combustion aid. More specifically, a method for producing a combustion aid for mixed combustion obtained by mixing paper sludge and coal powder that has been dewatered and mixed with coal powder (including low-pressure molding) or high-pressure molding, and mixing the combustion aid for mixed combustion with combustion coal. The present invention relates to a method of burning this coal for combustion by performing treatment or mixing / pulverization treatment.

従来、石炭粉末の燃焼性を向上させるために、石炭粉末単独で燃焼(即ち専焼)させる技術を改良して、石炭粉末とマツ、スギ、カシ等の木材粉末であるバイオマス粉末とを混合して燃焼(即ち混焼)させる技術が開示されている(例えば、非特許文献1参照。)。この非特許文献1には、石炭粉末である微粉炭を微粉炭焚きボイラでバイオマスと混焼する際の方式として、バイオマスを単独で粉砕する単独粉砕方式及びバイオマスと石炭と混合して粉砕する混合粉砕方式が示される。上記単独粉砕方式では、石炭を微粉砕した微粉炭を微粉炭燃焼炉で微粉炭焚きボイラに供給し、同時にバイオマスを細かく粉砕したバイオマス粉末を微粉炭燃焼炉に供給し、更に微粉炭燃焼炉内で微粉炭とバイオマス粉末を混合して燃焼している。また上記混合粉砕方式では、石炭とバイオマスとを混合した後にこれらを粉砕し、微粉炭燃焼炉に供給して燃焼している。上記単独粉砕方式では、バイオマス専用の粉砕機やバーナを設置する必要があるため、追加設備が多くなって、発電所内の動力を増加させる問題点があるのに対し、上記混合粉砕方式では、石炭搬送用コンベヤ上で石炭とバイオマスを混合することにより、既設の微粉炭機や微粉炭バーナを利用できるため、追加設備が少なくて済み、発電所内の動力に与える影響が少ない。   Conventionally, in order to improve the combustibility of coal powder, the technology of burning (ie, exclusively burning) coal powder alone is improved, and coal powder and biomass powder that is wood powder of pine, cedar, oak, etc. are mixed. A technique for burning (that is, co-firing) is disclosed (for example, see Non-Patent Document 1). In this Non-Patent Document 1, as a method for co-firing pulverized coal that is coal powder with biomass in a pulverized coal-fired boiler, a single pulverization method that pulverizes biomass alone and mixed pulverization that mixes and pulverizes biomass and coal. The method is shown. In the above single pulverization method, pulverized coal obtained by finely pulverizing coal is supplied to a pulverized coal-fired boiler in a pulverized coal combustion furnace, and at the same time, biomass powder obtained by finely pulverizing biomass is supplied to the pulverized coal combustion furnace. In pulverized coal and biomass powder are mixed and burned. In the mixed pulverization method, coal and biomass are mixed and then pulverized, supplied to a pulverized coal combustion furnace, and burned. In the above-mentioned single pulverization method, it is necessary to install a pulverizer or burner dedicated to biomass. By mixing coal and biomass on the conveyor for transportation, existing pulverized coal machines and pulverized coal burners can be used, so there is little additional equipment and there is little impact on power in the power plant.

しかしながら、上記混合粉砕方式を用いた混焼技術では、木材と石炭とを微粉炭機で同時に微粉砕しているため、微粉炭機への電力負荷が大きく、木材の混合率を上げられない問題点がある。この混焼技術の改良技術として、石炭を粉砕した石炭粉末と、植物由来のバイオマス原料を炭化処理したバイオマス炭化物粉末と、酢液とを混合して燃焼装置に供給する石炭燃焼方法が開示されている(例えば、特許文献1参照。)。この方法によれば、石炭粉末と、バイオマス炭化物粉末と、酢液とを混焼することによって、石炭の灰成分であるカルシウム、更にはバイオマス炭化物の灰成分であるカルシウムを酢液に溶け込ませ、これらを石炭粉末及びバイオマス炭化物粉末の表面に均一に分散担持させて燃焼触媒活性を呈するようにしている。この特許文献1には、発明の効果として、石炭粉末単独で燃焼(即ち専焼)させた場合よりも燃焼性を向上させることができ、また石炭粉末とバイオマス炭化物粉末とを混合して燃焼(即ち混焼)させた場合よりも燃焼性を向上させることができ、同時に二酸化炭素の排出量の削減を図ることができることが記載されている。   However, in the mixed combustion technology using the above-mentioned mixed pulverization method, wood and coal are simultaneously pulverized with a pulverized coal machine, so the power load on the pulverized coal machine is large and the mixing rate of wood cannot be increased. There is. As an improvement technique of this co-firing technique, a coal combustion method is disclosed in which coal powder obtained by pulverizing coal, biomass carbide powder obtained by carbonizing a plant-derived biomass material, and vinegar are mixed and supplied to a combustion apparatus. (For example, refer to Patent Document 1). According to this method, coal powder, biomass carbide powder, and vinegar liquid are mixed and mixed, so that calcium that is an ash component of coal and further calcium that is an ash component of biomass carbide is dissolved in the vinegar liquid. Is uniformly dispersed and supported on the surface of coal powder and biomass carbide powder so as to exhibit combustion catalytic activity. In Patent Document 1, as an effect of the invention, the combustibility can be improved as compared with the case where the coal powder is burned (i.e., exclusively burned), and the coal powder and the biomass carbide powder are mixed and burned (i.e. It is described that flammability can be improved as compared with the case of co-firing, and at the same time, the amount of carbon dioxide emission can be reduced.

一方、ペーパースラッジと石炭粉末とを混合して燃料とする技術として、製紙スラッジ(ペーパースラッジ)と低質石炭の粉炭(石炭粉末)とを混合することにより作られた固型燃料(例えば、特許文献2参照。)や、ペーパースラッジ等の水分高含有廃棄有機物と石炭粉末等の発熱補助材料とを混合して粉体燃料を作る粉体燃料化方法(例えば、特許文献3参照。)が開示されている。上記特許文献2に示される固型燃料は、低質石炭の粉炭と製紙スラッジとオイルスラッジと消石灰とを混練し、固型化処理して作られる。この固型燃料によれば、消石灰が製紙スラッジ及びオイルスラッジ中の硫黄分と反応してその亜硫酸ガス化を阻止するとともに、投棄により公害源になっていた製紙スラッジを有効利用して、発熱量の低い低質石炭を燃焼させることができる。   On the other hand, solid fuel made by mixing paper sludge (paper sludge) and low-quality coal pulverized coal (coal powder) as a fuel technology by mixing paper sludge and coal powder (for example, patent documents) 2), and a method for making a pulverized fuel (see, for example, Patent Document 3) in which a waste organic substance having a high water content such as paper sludge and a heat-generating auxiliary material such as coal powder are mixed to produce a pulverized fuel. ing. The solid fuel shown in Patent Document 2 is produced by kneading low-quality coal pulverized coal, paper sludge, oil sludge, and slaked lime, and solidifying the mixture. According to this solid fuel, slaked lime reacts with sulfur in paper sludge and oil sludge to prevent its sulfurous acid gasification, and effectively uses paper sludge that has become a pollution source by dumping, and generates heat. Low quality coal can be burned.

また特許文献3に示される粉体燃料化方法では、水分高含有廃棄有機物であるペーパースラッジを乾燥して乾燥廃棄有機物とし、次にミキサーにこの乾燥廃棄有機物を入れるとともに、ポバール等の水溶性熱可塑性樹脂と、上記乾燥廃棄有機物中の残留水分を吸収することで残留水分を除去する石炭粉末などの発熱補助材料とを適当量入れて掻き混ぜることにより粉体燃料化原料を作り、この粉体燃料化原料を更に押出し成形機のホッパーに入れて加熱・加圧・混練してスティック状に押出し成形して短柱状可燃原料とし、更に、短柱状可燃原料を破砕機に入れて微粉末状に破砕することにより粉体燃料を得ている。この粉体燃料化方法によれば、ペーパースラッジ等の水分含有廃棄有機物から水分を強力に除去しかつ臭気を無臭化して、廃棄し燃やしてもダイオキシンが発生しないように高熱エネルギーを保有する粉体燃料を生産することができる。   Also, in the method for converting to powder fuel shown in Patent Document 3, paper sludge, which is a waste organic substance with a high water content, is dried to form a dry waste organic substance, and then this dry waste organic substance is put into a mixer and water-soluble heat such as poval is added. An appropriate amount of a plastic resin and a heat-generating auxiliary material such as coal powder that removes residual moisture by absorbing residual moisture in the dried waste organic matter is mixed and mixed to make a powder fuel raw material. The fueled raw material is further put into a hopper of an extrusion molding machine, heated, pressurized, kneaded and extruded into a stick shape to form a short columnar combustible raw material. Further, the short columnar combustible raw material is put into a crusher and made into a fine powder. Powdered fuel is obtained by crushing. According to this method for converting to powder fuel, powder that retains high thermal energy so that dioxins are not generated even when discarded and burned by powerfully removing moisture from water-containing waste organic matter such as paper sludge and making it odor-free. Fuel can be produced.

大野恵美他「微粉炭焚きボイラでのバイオマス利用技術」石川島播磨技報 Vol.44 No.6(2004−11)Emi Ohno et al. “Biomass utilization technology in pulverized coal-fired boilers”, Ishikawajima-Harima Technical Report Vol.44 No.6 (2004-11)

特開2013−11377号公報(請求項1、請求項2、段落[0035])JP2013-11377A (Claim 1, Claim 2, Paragraph [0035]) 特開昭55−12117号公報(特許請求の範囲、1頁左欄14行〜同頁右欄17行)Japanese Patent Application Laid-Open No. 55-12117 (Claims, page 1, left column, line 14 to page 17, right column, line 17) 特開2003−138282号公報(請求項1、段落[0003])JP 2003-138282 A (Claim 1, paragraph [0003])

しかし、特許文献1に示される石炭燃焼方法は、石炭粉末の燃焼助剤の一つである酢液が強酸性水溶液であるため、酢液を供給する送液ポンプやその配管等を腐食させ易く、また酢液から生じる臭気により作業環境を悪化させ易い問題点があった。   However, in the coal combustion method disclosed in Patent Document 1, since vinegar, which is one of coal powder combustion aids, is a strongly acidic aqueous solution, it is easy to corrode the liquid feed pump that supplies the vinegar and its piping. In addition, there is a problem that the working environment is liable to be deteriorated by the odor generated from the vinegar.

また、特許文献2に示される固型燃料及び特許文献3に示される粉体燃料は、文字通り、それ自体が燃料として利用され、燃焼用石炭の燃焼性を向上させる目的で使用されていない。特許文献2に示される上記固型燃料を仮に燃焼用石炭の燃焼助剤として使用する場合には、上記固型燃料はオイルスラッジと消石灰を必要とし、固型燃料の構成成分が多くなる不具合がある。また、特許文献2に示される固型燃料を構成する製紙スラッジに関して、その含水率やスラッジの形態・サイズがどのようなものでもよく、また低質石炭との配合量も規定されていないため、この固型燃料を燃焼用石炭と混合燃焼させたときに燃焼用石炭の燃焼性を的確に向上させることができない問題点もある。   Moreover, the solid fuel shown in Patent Document 2 and the pulverized fuel shown in Patent Document 3 are literally used as fuels and are not used for the purpose of improving the combustibility of combustion coal. In the case where the solid fuel shown in Patent Document 2 is used as a combustion aid for combustion coal, the solid fuel requires oil sludge and slaked lime, and there is a problem that the components of the solid fuel increase. is there. In addition, regarding the papermaking sludge constituting the solid fuel shown in Patent Document 2, any water content or sludge shape / size may be used, and the blending amount with low quality coal is not specified. There is also a problem that the combustibility of combustion coal cannot be improved accurately when solid fuel is mixed and burned with combustion coal.

また、特許文献3に示される上記粉体燃料を仮に燃焼用石炭の燃焼助剤として使用する場合には、上記粉体燃料はポバール等の水溶性熱可塑性樹脂を必要とし、粉体燃料の構成成分が多くなる不具合がある。更に、特許文献3に示される粉体燃料を構成する乾燥廃棄有機物のペーパースラッジに関して、その含水率やスラッジの形態・サイズがどのようなものでもよく、また石炭粉末との配合量も規定されていないため、この粉体燃料を燃焼用石炭と混合燃焼させたときに燃焼用石炭の燃焼性を的確に向上させることができない問題点もある。   In addition, when the powder fuel shown in Patent Document 3 is used as a combustion aid for combustion coal, the powder fuel requires a water-soluble thermoplastic resin such as poval, and the composition of the powder fuel. There is a problem that the component increases. Furthermore, the dry waste organic paper sludge constituting the pulverized fuel shown in Patent Document 3 may have any moisture content, sludge form / size, and the amount of coal sludge is specified. Therefore, there is a problem that the combustibility of the combustion coal cannot be improved accurately when this powder fuel is mixed and burned with the combustion coal.

本発明の第1の目的は、燃焼用石炭の着火性及び燃焼性を的確に向上させることができ、これにより燃焼灰(フライアッシュ)中に含まれる未燃分を低減して燃焼の効率化を図ることができる、混焼用燃焼助剤の製造方法及びこれを用いた燃焼用石炭の燃焼方法を提供することにある。 The first object of the present invention is to improve the ignitability and combustibility of combustion coal accurately, thereby reducing the unburned content contained in the combustion ash (fly ash) and increasing the efficiency of combustion. An object of the present invention is to provide a method for producing a combustion aid for co-firing and a method for burning combustion coal using the same.

本発明の第2の目的は、燃焼用石炭に混合して燃焼したときに、その燃焼性の改善によって低NOxで燃焼することができ、ペーパースラッジ中の炭酸カルシウムが燃焼用石炭中の硫黄分を吸収・反応して効率良く除去でき、これまでの後流処理によるNOx・SOx低減法とは違った、燃焼炉内での処理の可能性を与える、混焼用燃焼助剤の製造方法及びこれを用いた燃焼用石炭の燃焼方法を提供することにある。 The second object of the present invention is that, when mixed with combustion coal and combusted, it can be burned with low NOx by improving its combustibility, and the calcium carbonate in the paper sludge contains sulfur content in the combustion coal. A method for producing a combustion aid for co-firing that can absorb and react efficiently and that can be treated in a combustion furnace, unlike the conventional NOx / SOx reduction method by wake treatment. It is providing the combustion method of the coal for combustion using this.

本発明の第3の目的は、燃焼用石炭に混合して燃焼したときに、ペーパースラッジ中の炭酸カルシウムが燃焼用石炭中の微量の有害金属成分と反応してこの成分を固定化し、かつその燃焼性の改善によって灰中の未燃分を低減でき、フライアッシュを有効に利用し、その性状及び粒度構成等を改善できる、混焼用燃焼助剤の製造方法及びこれを用いた燃焼用石炭の燃焼方法を提供することにある。 According to a third object of the present invention, when mixed with combustion coal and combusted, calcium carbonate in the paper sludge reacts with a trace amount of harmful metal components in the combustion coal to immobilize this component, and It can be reduced unburned ash through improved flammability, effective use of fly ash, can improve its properties and particle size configuration and the like, preparation and combustion coal using the same co-firing combustion aid It is to provide a combustion method.

本発明の第4の目的は、製紙排出物のペーパースラッジを混焼用燃焼助剤の形態で原料化することによって、その中に含む主成分のセルロース、リグニン質等の繊維質バイオマス及び合成された炭酸カルシウムが、上記のように燃焼助剤として微粉炭燃焼上の多面的効果をもたらす一方で、ペーパースラッジの2〜3質量%を占めるクリーンなバイオマスの燃焼による熱エネルギーから、高効率的サーマルリサイクルを可能にする、混焼用燃焼助剤の製造方法及びこれを用いた燃焼用石炭の燃焼方法を提供することにある。 The fourth object of the present invention is to synthesize paper biomass of papermaking waste in the form of a combustion aid for mixed firing, and to synthesize fiber biomass such as cellulose and lignin as main components contained therein, and As described above, calcium carbonate provides a multifaceted effect on pulverized coal combustion as a combustion aid as described above. On the other hand, high-efficiency thermal recycling is achieved from the thermal energy of clean biomass that occupies 2-3% by mass of paper sludge. It is an object of the present invention to provide a method for producing a combustion aid for mixed combustion and a method for burning combustion coal using the same.

本発明の第1の観点は、燃焼用石炭と混合してこの燃焼用石炭の燃焼を支援するための混焼用燃焼助剤の製造方法であって、圧搾して脱水した後解砕したペーパースラッジと石炭粉末とを混合した混合物を所定の長さの棒状に押出し成形した後、この成形物を切断し乾燥して含水率が7〜10%であるスティック状の乾燥成形物を製造し、この乾燥成形物を更にバインダレスで所定の圧力で圧縮成形して板状又はアーモンド状にしてなることを特徴とする。 A first aspect of the present invention is a method for producing a co-firing combustion aid for mixing with combustion coal and assisting combustion of the combustion coal, which is squeezed, dewatered and then crushed paper sludge and after the mixture obtained by mixing the coal powder was extruded into bars of predetermined length, and a water content to produce a stick of dry molding 7 to 10 percent by dry cutting the molded product, the The dry molded product is further compression-molded at a predetermined pressure without a binder to form a plate or almond .

本発明の第の観点は、平均粒径が50mm以下の燃焼用石炭と第1の観点に記載の方法で製造された混焼用燃焼助剤とを、燃焼用石炭100質量%に対して混焼用燃焼助剤が3〜25質量%の割合となるように混合することにより混合物を調製する工程と、この混合物を流動床炉、循環流動層石炭燃焼炉、移床式石炭燃焼炉、焼却炉又はガス化燃焼炉に供給して燃焼させる工程とを含む燃焼用石炭の燃焼方法である。 According to a second aspect of the present invention, a coal for combustion having an average particle diameter of 50 mm or less and a combustion aid for mixed combustion produced by the method described in the first aspect are mixed with respect to 100% by mass of the coal for combustion. A step of preparing a mixture by mixing so that the combustion auxiliary agent is in a proportion of 3 to 25% by mass, and this mixture is a fluidized bed furnace, a circulating fluidized bed coal combustion furnace, a moving bed coal combustion furnace, an incinerator Or it is the combustion method of the coal for combustion including the process of supplying and burning to a gasification combustion furnace.

本発明の第の観点は、平均粒径が50mm以下の燃焼用石炭と第の観点に記載の方法で製造された混焼用燃焼助剤とを、燃焼用石炭100質量%に対して混焼用燃焼助剤が3〜25質量%の割合となるように混合することにより混合物を調製する工程と、この混合物を流動床炉、循環流動層石炭燃焼炉、移床式石炭燃焼炉、焼却炉又はガス化燃焼炉に供給して燃焼させる工程とを含む燃焼用石炭の燃焼方法である。 According to a third aspect of the present invention, a combustion coal having an average particle diameter of 50 mm or less and a combustion aid for mixed combustion produced by the method described in the first aspect are mixed with 100% by mass of combustion coal. A step of preparing a mixture by mixing so that the combustion auxiliary agent is in a proportion of 3 to 25% by mass, and this mixture is a fluidized bed furnace, a circulating fluidized bed coal combustion furnace, a moving bed coal combustion furnace, an incinerator Or it is the combustion method of the coal for combustion including the process of supplying and burning to a gasification combustion furnace.

本発明の第の観点は、平均粒径が50mm以下の燃焼用石炭と第1の観点に記載の方法で製造された混焼用燃焼助剤とを、燃焼用石炭100質量%に対して混焼用燃焼助剤が3〜25質量%の割合となるように混合することにより混合物を調製する工程と、この混合物を微粉砕することにより混合・微粉砕物を調製する工程と、この混合・微粉砕物を微粉炭燃焼炉に供給して燃焼させる工程とを含む燃焼用石炭の燃焼方法である。 According to a fourth aspect of the present invention, a combustion coal having an average particle size of 50 mm or less and a combustion aid for mixed combustion produced by the method described in the first aspect are mixed with respect to 100% by mass of the combustion coal. A step of preparing a mixture by mixing so that the combustion aid is in a ratio of 3 to 25% by mass, a step of preparing a mixed and finely pulverized product by finely pulverizing the mixture, A method for burning combustion coal, including a step of supplying a pulverized product to a pulverized coal combustion furnace and burning the pulverized product.

本発明の第の観点は、平均粒径が50mm以下の燃焼用石炭と第の観点に記載の方法で製造された混焼用燃焼助剤とを、燃焼用石炭100質量%に対して混焼用燃焼助剤が3〜25質量%の割合となるように混合することにより混合物を調製する工程と、この混合物を微粉砕することにより混合・微粉砕物を調製する工程と、この混合・微粉砕物を微粉炭燃焼炉に供給して燃焼させる工程とを含む燃焼用石炭の燃焼方法である。なお、本明細書における燃焼用石炭、ペーパースラッジ、合成炭酸カルシウム等の粉末において平均粒径というときには、個数分布に基づく平均粒径をいい、200個の粉末の平均粒径である。 According to a fifth aspect of the present invention, a combustion coal having an average particle size of 50 mm or less and a combustion aid for mixed combustion produced by the method described in the first aspect are mixed with respect to 100% by mass of the combustion coal. A step of preparing a mixture by mixing so that the combustion aid is in a ratio of 3 to 25% by mass, a step of preparing a mixed and finely pulverized product by finely pulverizing the mixture, A method for burning combustion coal, including a step of supplying a pulverized product to a pulverized coal combustion furnace and burning the pulverized product. In the present specification, the average particle size in the powders of combustion coal, paper sludge, synthetic calcium carbonate and the like refers to the average particle size based on the number distribution, and is the average particle size of 200 powders.

本発明の第1の観点の混焼用燃焼助剤は、圧搾して脱水した後解砕したペーパースラッジと石炭粉末とを混合した混合物を所定の長さの棒状に押出し成形した後、この成形物を切断し乾燥して得られたスティック状の乾燥成形物であるので、この混焼用燃焼助剤の含水率は低くなり、この混焼用燃焼助剤を混合した燃焼用石炭の着火性及び燃焼性を的確に向上させることができる。この結果、燃焼灰(フライアッシュ)中に含まれる未燃分を低減して、混焼用燃焼助剤及び燃焼用石炭の燃焼の効率化を図ることができる。   The combustion aid for co-firing according to the first aspect of the present invention is obtained by extruding a mixture of paper sludge crushed and dewatered and then crushed and coal powder into a rod shape having a predetermined length, and then forming the molded product. This is a stick-shaped dry molded product obtained by cutting and drying, so that the moisture content of the combustion aid for mixed combustion becomes low, and the ignitability and combustibility of combustion coal mixed with this combustion aid for mixed combustion Can be improved accurately. As a result, it is possible to reduce the unburned content contained in the combustion ash (fly ash) and to improve the combustion efficiency of the combustion aid for mixed combustion and the coal for combustion.

また、上記ペーパースラッジには、セルロースやリグニン質等の繊維質バイオマス、合成された炭酸カルシウム、カオリン鉱物等が含まれており、乾燥した上記繊維質バイオマスは、含水率が低くかつ揮発分が多いので、この繊維質バイオマスの長炎燃焼(蒸発燃焼)により、揮発分の少ない燃焼用石炭を効率良く混焼できる。この結果、循環流動層石炭燃焼炉等のボイラーの効率化を図ることができるとともに、省エネルギー効果を奏することができる。また、繊維質バイオマスのより完全な熱利用が可能となる、即ち繊維質バイオマスの使用量に見合った熱回収(サーマルリサイクル)が可能となるので、燃焼用石炭の使用量を削減できる。更に、ペーパースラッジに含まれる極微粒な合成炭酸カルシウムに由来する酸化カルシウムが燃焼用石炭中の硫黄分等の有害成分と反応しこの有害成分を固定化して、燃焼用石炭中の有害成分の大気中への放出を抑制できるとともに、上記合成炭酸カルシウムに由来する酸化カルシウムの触媒的作用により、燃焼用石炭の燃焼特性又はガス化特性を向上でき、これにより燃焼灰(フライアッシュ)中に含まれる未燃成分を低減できる。なお、本明細書において『合成炭酸カルシウム』とは、石灰石(CaCO3)を1100℃で焼成して得られる生石灰(CaO)と二酸化炭素(CO2)のうち、前者の生石灰(CaO)を用いた消石灰(Ca(OH)2)懸濁液に二酸化炭素(CO2)を吹き込み、反応させて新たに合成したCaCO3をいう。また、『合成炭酸カルシウム』は、石灰岩から粉砕された重質炭酸カルシウムと区別して、軽質炭酸カルシウム又は沈殿性炭酸カルシウムとも呼ばれることもある。但し、本明細書では、ペーパースラッジに含まれる合成炭酸カルシウムについて記載しているけれども、通常ペーパースラッジには合成炭酸カルシウムの他に重質炭酸カルシウムも含まれるため、ペーパースラッジ中の炭酸カルシウムは、合成炭酸カルシウム、又は重質炭酸カルシウム、或いは合成炭酸カルシウム及び重質炭酸カルシウムの双方であってもよい。 The paper sludge contains fibrous biomass such as cellulose and lignin, synthesized calcium carbonate, kaolin mineral, etc., and the dried fibrous biomass has a low moisture content and a high volatile content. Therefore, combustion coal with a small amount of volatile matter can be efficiently co-fired by long flame combustion (evaporative combustion) of this fibrous biomass. As a result, the efficiency of the boiler such as the circulating fluidized bed coal combustion furnace can be improved, and an energy saving effect can be achieved. Further, more complete heat utilization of the fibrous biomass is possible, that is, heat recovery (thermal recycling) corresponding to the amount of fibrous biomass used is possible, so that the amount of combustion coal used can be reduced. In addition, calcium oxide derived from ultrafine synthetic calcium carbonate contained in the paper sludge reacts with harmful components such as sulfur in the combustion coal to immobilize this harmful component, and the harmful component atmosphere in the combustion coal In addition to being able to suppress the release into the interior, the catalytic action of calcium oxide derived from the synthetic calcium carbonate can improve the combustion characteristics or gasification characteristics of the combustion coal, thereby being contained in the combustion ash (fly ash) Unburned components can be reduced. In this specification, “synthetic calcium carbonate” refers to the former quick lime (CaO) among quick lime (CaO) and carbon dioxide (CO 2 ) obtained by firing limestone (CaCO 3 ) at 1100 ° C. Carbon dioxide (CO 2 ) is blown into a slaked lime (Ca (OH) 2 ) suspension and reacted to react with the newly synthesized CaCO 3 . “Synthetic calcium carbonate” is sometimes called light calcium carbonate or precipitated calcium carbonate, as distinguished from heavy calcium carbonate crushed from limestone. However, in this specification, although the synthetic calcium carbonate contained in the paper sludge is described, the paper sludge usually contains heavy calcium carbonate in addition to the synthetic calcium carbonate, so the calcium carbonate in the paper sludge is: It may be synthetic calcium carbonate, heavy calcium carbonate, or both synthetic and heavy calcium carbonate.

更に、本発明の第の観点の混焼用燃焼助剤は、乾燥成形物の含水率が7〜10%であって、この乾燥成形物を更にバインダレスで所定の圧力で圧縮成形して板状又はアーモンド状にしてなるので、一定の品質、形状及び寸法に形成でき、輸送やハンドリング等に耐え得る強度とその微粉砕性から、微粉炭火力発電所の既設粉砕設備で燃焼用石炭との混合微粉砕を経て直接的にバーナー燃焼炉への供給が可能となる。この混焼用燃焼助剤は、全国広く数多くの製紙工場から大量に排出される産業廃棄物のペーパースラッジの高次リサイクルを可能にする。 Furthermore, the combustion aid for co-firing according to the first aspect of the present invention has a moisture content of 7 to 10% in a dry molded product, and the dry molded product is further compression-molded at a predetermined pressure without a binder. Since it is shaped like an almond, it can be formed to a certain quality, shape and size, and it can withstand transportation and handling, etc. It becomes possible to supply directly to the burner combustion furnace through mixing and pulverization. This combustion aid for mixed firing enables high-order recycling of industrial waste paper sludge discharged in large quantities from many paper mills across the country.

本発明の第の観点の燃焼用石炭の燃焼方法では、平均粒径が50mm以下の燃焼用石炭と第1の観点に記載の方法で製造された混焼用燃焼助剤とを、燃焼用石炭100質量%に対して混焼用燃焼助剤が3〜25質量%の割合となるように混合することにより混合物を調製し、この混合物を循環流動層石炭燃焼炉等に供給して燃焼させるので、排ガス中のNOxを低減した状態で燃焼用石炭を燃焼することができ、燃焼用石炭から硫黄分をペーパースラッジ中の炭酸カルシウムが吸収・反応して効率良く除去でき、これまでの後流処理によるNOx及びSOxの低減法とは違った燃焼炉内処理の可能性を与える。また、この燃焼方法では、混焼用燃焼助剤を燃焼用石炭に混合して燃焼したときに、ペーパースラッジ中の炭酸カルシウムが燃焼用石炭中の微量の有害金属成分と反応してこの成分を固定化し、かつその燃焼性の改善によって燃焼灰(フライアッシュ)中の未燃分を低減でき、燃焼灰(フライアッシュ)を有効に利用し、その性状及び粒度構成等を改善できる。更に、循環流動層石炭燃焼炉での混焼(燃焼温度850℃程度)時に、燃焼灰(フライアッシュ)の低温焼結及び粗粒化で高温サイクロンによる粗いサイクロン灰を効率良く捕集でき、低温燃焼の燃焼灰(フライアッシュ)へのポゾラン反応性を促進できる。ここで、ポゾラン反応とは、燃焼灰(フライアッシュ)をセメントに混合して水を加えたときに、燃焼灰(フライアッシュ)に含まれる二酸化ケイ素がセメントの水和反応によって生じた水酸化カルシウムと反応し、緻密で耐久性に優れたケイ酸カルシウムの水和物が発生する反応をいう。 In the combustion coal combustion method according to the second aspect of the present invention, the combustion coal having an average particle size of 50 mm or less and the combustion aid for mixed combustion produced by the method according to the first aspect are used. Since a mixture is prepared by mixing so that the combustion aid for mixed combustion becomes a ratio of 3 to 25% by mass with respect to 100% by mass, and this mixture is supplied to a circulating fluidized bed coal combustion furnace or the like and burned, Combustion coal can be burned with NOx in the exhaust gas reduced, and sulfur content can be removed efficiently from the combustion coal by absorption and reaction of calcium carbonate in the paper sludge. Unlike the NOx and SOx reduction methods, it offers the possibility of in-combustion treatment. Also, with this combustion method, when mixed combustion aids are mixed with combustion coal and burned, calcium carbonate in the paper sludge reacts with trace amounts of harmful metal components in the combustion coal to fix this component. In addition, it is possible to reduce the unburned content in the combustion ash (fly ash) by improving the combustibility and to effectively use the combustion ash (fly ash), and to improve the properties, the particle size constitution, and the like. Furthermore, during mixed combustion in a circulating fluidized bed coal combustion furnace (combustion temperature of about 850 ° C), low-temperature sintering and coarsening of combustion ash (fly ash) enables efficient collection of coarse cyclone ash by high-temperature cyclone, and low-temperature combustion Can promote the reactivity of pozzolanic to combustion ash (fly ash). Here, the pozzolanic reaction is calcium hydroxide produced by the hydration reaction of silicon dioxide contained in combustion ash (fly ash) when water is added after mixing the combustion ash (fly ash) with cement. Reaction to produce a dense and durable calcium silicate hydrate.

本発明の第の観点の燃焼用石炭の燃焼方法では、平均粒径が50mm以下の燃焼用石炭と第の観点に記載の方法で製造された混焼用燃焼助剤とを、燃焼用石炭100質量%に対して混焼用燃焼助剤が3〜25質量%の割合となるように混合することにより混合物を調製し、この混合物を循環流動層石炭燃焼炉等に供給して燃焼させるので、上記第3の観点の燃焼方法による効果に加えて、上記第2の観点の燃焼方法による効果が得られる。 In the combustion method for combustion coal according to the third aspect of the present invention, combustion coal having an average particle size of 50 mm or less and the combustion aid for mixed combustion produced by the method according to the first aspect are used. Since a mixture is prepared by mixing so that the combustion aid for mixed combustion becomes a ratio of 3 to 25% by mass with respect to 100% by mass, and this mixture is supplied to a circulating fluidized bed coal combustion furnace or the like and burned, In addition to the effects of the combustion method of the third aspect, the effects of the combustion method of the second aspect can be obtained.

本発明の第の観点の燃焼用石炭の燃焼方法では、平均粒径が50mm以下の燃焼用石炭と第1の観点に記載の方法で製造された混焼用燃焼助剤とを、燃焼用石炭100質量%に対して混焼用燃焼助剤が3〜25質量%の割合となるように混合することにより混合物を調製し、この混合物を微粉砕することにより混合・微粉砕物を調製し、更にこの混合・微粉砕物を微粉炭燃焼炉に供給して燃焼させるので、混焼用燃焼助剤を難燃性の燃焼用石炭と混合し微粉砕するときに、微粉炭中に均一に分散した状態で燃焼炉に供給される。この結果、微粉炭燃焼炉内での混合・微粉砕物による複合燃焼場が形成され、この燃焼場での燃焼用石炭の微粒子(微粉炭)と混焼用燃焼助剤の組成物由来の微粒子との間の相互作用によって、燃焼用石炭の微粒子(微粉炭)のみの燃焼では期待できない、微粉炭燃焼炉内での燃焼性を改善できるとともに、排ガス中のNOx及びSOxを低減できる。また、微粉炭燃焼炉における混焼(燃焼温度1450℃程度)時に、炭酸カルシウムとともに加わる新たな鉱物学的組成により、燃焼灰(フライアッシュ)の性状及び粒度構成を改善できるとともに、上記鉱物学的組成による高温の燃焼灰(フライアッシュ)へのポゾラン反応性を促進できる。 In the combustion coal combustion method of the fourth aspect of the present invention, the combustion coal having an average particle size of 50 mm or less and the combustion aid for mixed combustion produced by the method described in the first aspect are used. A mixture is prepared by mixing so that the combustion aid for mixed firing is in a ratio of 3 to 25% by mass with respect to 100% by mass, and the mixture is pulverized to prepare a mixed and finely pulverized product. Since this mixed and finely pulverized product is supplied to the pulverized coal combustion furnace and combusted, when the co-firing combustion aid is mixed with the flame-retardant combustion coal and pulverized, it is uniformly dispersed in the pulverized coal. Is supplied to the combustion furnace. As a result, a combined combustion field is formed by mixing and finely pulverized product in the pulverized coal combustion furnace, and fine particles derived from the composition of the combustion coal fine particles (pulverized coal) and the mixed combustion combustion aid in the combustion field As a result of this interaction, it is possible to improve the combustibility in the pulverized coal combustion furnace, which cannot be expected by burning only the fine particles (pulverized coal) of the combustion coal, and to reduce NOx and SOx in the exhaust gas. In addition, the new mineralogical composition added together with calcium carbonate during co-firing in a pulverized coal combustion furnace (combustion temperature of about 1450 ° C.) can improve the properties and particle size composition of combustion ash (fly ash), and the mineralogical composition described above. Can promote pozzolanic reactivity to high-temperature combustion ash (fly ash).

本発明の第の観点の燃焼用石炭の燃焼方法では、平均粒径が50mm以下の燃焼用石炭と第の観点に記載の方法で製造された混焼用燃焼助剤とを、燃焼用石炭100質量%に対して混焼用燃焼助剤が3〜25質量%の割合となるように混合することにより混合物を調製し、この混合物を微粉砕することにより混合・微粉砕物を調製し、更にこの混合・微粉砕物を微粉炭燃焼炉に供給して燃焼させるので、上記第5の観点の燃焼方法による効果に加えて、上記第4の観点の燃焼方法による効果が得られる。
In the combustion coal combustion method according to the fifth aspect of the present invention, the combustion coal having an average particle size of 50 mm or less and the combustion aid for mixed combustion produced by the method according to the first aspect are used. A mixture is prepared by mixing so that the combustion aid for mixed firing is in a ratio of 3 to 25% by mass with respect to 100% by mass, and the mixture is pulverized to prepare a mixed and finely pulverized product. Since the mixed and finely pulverized product is supplied to the pulverized coal combustion furnace and combusted, the effect of the combustion method of the fourth aspect can be obtained in addition to the effect of the combustion method of the fifth aspect.

本発明実施形態の混焼用燃焼助剤を製造する工程と、この燃焼助剤を用いて燃焼用石炭を燃焼する工程を示すフローチャートである。It is a flowchart which shows the process of manufacturing the combustion adjuvant for mixed combustion of this invention embodiment, and the process of burning the coal for combustion using this combustion adjuvant. 循環流動層石炭燃焼炉の概略図である。It is the schematic of a circulating fluidized bed coal combustion furnace. 小型微粉炭燃焼炉の概略図である。It is the schematic of a small pulverized coal combustion furnace. 実施例1の混合成形物、比較例1のペーパースラッジ及び比較例2のKCM炭の時間経過に対する含水率の変化を示す図である。It is a figure which shows the change of the moisture content with respect to time passage of the mixed molding of Example 1, the paper sludge of Comparative Example 1, and the KCM charcoal of Comparative Example 2. 実施例4〜6の混合燃料の混焼及び比較例3の単一燃料の燃焼による排ガス中のSOx濃度及び脱硫率を示す図である。It is a figure which shows the SOx density | concentration and desulfurization rate in exhaust gas by the mixed combustion of the mixed fuel of Examples 4-6, and the combustion of the single fuel of the comparative example 3. 実施例4〜6の混合燃料の混焼及び比較例3の単一燃料の燃焼による排ガス中のNOx濃度を示す図である。It is a figure which shows the NOx density | concentration in the waste gas by the mixed combustion of the mixed fuel of Examples 4-6 and the combustion of the single fuel of the comparative example 3. FIG. (a)は実施例4の混合燃料の混焼及び比較例3の単一燃料の燃焼により得られたバグ灰の粒径分布を示す図であり、(b)は実施例4の混合燃料の混焼及び比較例3の単一燃料の燃焼により得られたサイクロン灰の粒径分布を示す図である。(A) is a figure which shows the particle size distribution of the bag ash obtained by the mixed combustion of the mixed fuel of Example 4, and the combustion of the single fuel of the comparative example 3, (b) is the mixed combustion of the mixed fuel of Example 4. 4 is a graph showing the particle size distribution of cyclone ash obtained by combustion of a single fuel in Comparative Example 3. FIG. (a)は実施例6の混合燃料の混焼及び比較例3の単一燃料の燃焼により得られたバグ灰の粒径分布を示す図であり、(b)は実施例6の混合燃料の混焼及び比較例3の単一燃料の燃焼により得られたサイクロン灰の粒径分布を示す図である。(A) is a figure which shows the particle size distribution of the bag ash obtained by the mixed combustion of the mixed fuel of Example 6, and the combustion of the single fuel of the comparative example 3, (b) is the mixed combustion of the mixed fuel of Example 6. 4 is a graph showing the particle size distribution of cyclone ash obtained by combustion of a single fuel in Comparative Example 3. FIG. 実施例4〜6の混合燃料の混焼及び比較例3の単一燃料の燃焼により得られたサイクロン灰の顕微鏡写真図である。It is a microscope picture figure of the cyclone ash obtained by co-firing of the mixed fuel of Examples 4-6 and combustion of the single fuel of the comparative example 3. 実施例4〜6の混合燃料の混焼及び比較例3の単一燃料の燃焼により得られたサイクロン灰及びバグ灰を用いたセメント硬化体の圧壊強度を示す図である。It is a figure which shows the crushing strength of the cement hardening body using the cyclone ash and bag ash obtained by the mixed combustion of the mixed fuel of Examples 4-6 and the combustion of the single fuel of the comparative example 3. 実施例7及び8の微粉砕混合燃料の混焼及び比較例4の微粉砕単一燃料の燃焼による排ガス中のNOx濃度を示す図である。It is a figure which shows the NOx density | concentration in the waste gas by combustion of the finely pulverized mixed fuel of Examples 7 and 8 and combustion of the finely pulverized single fuel of Comparative Example 4. 実施例7の微粉砕混合燃料の混焼及び比較例4の微粉砕単一燃料の燃焼により得られた燃焼灰の粒径分布を示す図である。It is a figure which shows the particle size distribution of the combustion ash obtained by the co-firing of the finely pulverized mixed fuel of Example 7 and the combustion of the finely pulverized single fuel of Comparative Example 4. 実施例7及び8の微粉砕混合燃料の混焼及び比較例4の微粉砕単一燃料の燃焼により得られた燃焼灰を用いたセメント硬化体の圧壊強度を示す図である。It is a figure which shows the crushing strength of the cement hardening body using the combustion ash obtained by combustion of the finely pulverized mixed fuel of Examples 7 and 8 and combustion of the finely pulverized single fuel of Comparative Example 4.

次に本発明を実施するための形態を図面に基づいて説明する。   Next, an embodiment for carrying out the present invention will be described with reference to the drawings.

本発明の混焼用燃焼助剤は、燃焼用石炭と混合してこの燃焼用石炭の燃焼を支援するために用いられる。また、本発明の混焼用燃焼助剤は、ペーパースラッジと石炭粉末とを混合して棒状に押出し成形した後、この成形物を切断し乾燥処理したスティック状の乾燥成形物である。   The combustion aid for mixed combustion of the present invention is used for mixing with combustion coal and assisting combustion of the combustion coal. The combustion aid for co-firing of the present invention is a stick-shaped dry molded product obtained by mixing paper sludge and coal powder and extrusion-molding it into a rod shape, and then cutting and drying this molded product.

<ペーパースラッジ及び原料ペーパースラッジの特性>
本発明のペーパースラッジは、製紙工程から排出される濃度4〜8%のスラリーを2.5〜4.0MPaの圧力で圧搾して脱水処理した含水率45〜60%の圧搾成形物である。また、原料ペーパースラッジは、製紙工程で使用される原料パルプ毎に異なるが、スラッジ全体を100質量%とするときに、セルロース・リグニン質繊維25〜50質量%、合成炭酸カルシウム25〜35質量%、カオリン鉱物等15〜25質量%を含有する。即ち、本発明のペーパースラッジは、木質繊維を多く含むとともに、それと電気的に結合した炭酸カルシウムやカオリン鉱物(カオリナイト粘土鉱物)等の微粒子の集合体である。乾燥前のペーパースラッジは含水率の高い有機スラッジであるけれども、一般の有機汚泥に比して低温領域(例えば25〜50℃)での乾燥特性、即ち風乾特性に優れるとともに、後述する本発明の混焼用燃焼助剤の原料としての特性を有する。
<Characteristics of paper sludge and raw paper sludge>
The paper sludge of the present invention is a compression molded product having a water content of 45 to 60% obtained by pressing and dehydrating slurry having a concentration of 4 to 8% discharged from the papermaking process at a pressure of 2.5 to 4.0 MPa. The raw paper sludge differs depending on the raw pulp used in the papermaking process, but when the entire sludge is 100% by mass, the cellulose / lignin fiber is 25-50% by mass, and the synthetic calcium carbonate is 25-35% by mass. And 15-25% by mass of kaolin mineral and the like. That is, the paper sludge of the present invention is an aggregate of fine particles such as calcium carbonate and kaolin mineral (kaolinite clay mineral) that are electrically coupled to the wood sludge while containing many wood fibers. Although the paper sludge before drying is an organic sludge having a high water content, it has excellent drying characteristics in a low temperature range (for example, 25 to 50 ° C.), that is, air drying characteristics, compared to general organic sludge. It has characteristics as a raw material for combustion aids for mixed combustion.

<石炭粉末>
本発明の混焼用燃焼助剤に含まれる石炭粉末に用いられる炭種としては、国内外炭の燃料比(工業分析:固定炭素/揮発分)が1.0前後である亜瀝青や瀝青炭であることが好ましく、炭質的には、ガス化反応性と深く係る燃焼性に優れ、低灰分、低硫黄分の比較的良質な非粘結性の石炭であることが望ましい。この炭質に該当する石炭としては、国内唯一の坑内生産の釧路コールマイン炭(以下、KCM炭という)があり、海外炭では、このような炭種は価格的及び量的に確保が難しくなる状況にある。その中で、上記の炭種に代わって調達の容易な石炭として、燃料比が1.5〜2.0程度の海外一般炭について、難燃性の燃焼用石炭の燃焼を支援するための混焼用燃焼助剤の原料として使用可能である。特に、上記KCM炭は、燃焼性の硫黄分が極めて少ない上に、循環流動層石炭燃焼炉等における高いボイラー効率化を図ることができるとともに、優れたガス化特性を有する石炭である。また、石炭粉末は、上記石炭をハンマーミル等の微粉炭機で平均粒径が2.0mm以下になるように粉砕し、また風乾又は加熱乾燥して含水率を5〜10%に調整することにより得られる。石炭粉末の平均粒径が2.0mmを超えると、ペーパースラッジと石炭粉末とを混合し高圧成形した成形物の圧壊強度が所望の値より低くなり、貯蔵、ハンドリング、輸送等に耐えられない。また含水率が5%未満であるか或いは10%を超えると、成形物の圧壊強度が所望の値より低くなり、貯蔵、ハンドリング、輸送等に耐えられない。
<Coal powder>
The coal types used in the coal powder contained in the combustion aid for mixed combustion of the present invention are sub-bituminous and bituminous coals having a fuel ratio (industrial analysis: fixed carbon / volatile content) of domestic and foreign coals of around 1.0. In terms of charcoal, it is desirable to be a non-caking coal having excellent gasification reactivity and deep combustibility, and a relatively good quality with low ash content and low sulfur content. As coal corresponding to this quality, there is Kushiro coal mine coal (hereinafter referred to as KCM coal), the only underground production in Japan, and it is difficult to secure such coal types in terms of price and quantity for overseas coal. It is in. Among them, as a coal that can be easily procured instead of the above-mentioned coal types, mixed combustion to support the combustion of flame retardant combustion coal for overseas steam coal with a fuel ratio of about 1.5 to 2.0 It can be used as a raw material for combustion aids. In particular, the above KCM coal is a coal having extremely low combustible sulfur content, high boiler efficiency in a circulating fluidized bed coal combustion furnace and the like, and excellent gasification characteristics. The coal powder should be pulverized with a pulverized coal machine such as a hammer mill so that the average particle size is 2.0 mm or less, and air-dried or heat-dried to adjust the moisture content to 5 to 10%. Is obtained. If the average particle diameter of the coal powder exceeds 2.0 mm, the crushing strength of the molded product obtained by mixing paper sludge and coal powder and molding at high pressure becomes lower than the desired value, so that it cannot withstand storage, handling, transportation and the like. On the other hand, if the moisture content is less than 5% or exceeds 10%, the crushing strength of the molded product becomes lower than a desired value, and it cannot withstand storage, handling, transportation and the like.

<ペーパースラッジと石炭粉末の複合成形物からなる混焼用燃焼助剤1>
上記ペーパースラッジと上記石炭粉末を、ペーパースラッジ:石炭粉末を質量比で(4:6)〜(6:4)の範囲内で混合して混合物を調製し、この混合物を直径5〜30mmの棒状に押出し成形した後に、長さ10〜30mmに切断し乾燥してスティック状の乾燥成形物を作製する。これにより混焼用燃焼助剤1が得られる。上記乾燥したスティック状の乾燥成形物の含水率は、7〜10%の範囲内であることが好ましい。また、上記乾燥したスティック状の乾燥成形物を、バインダレスでダイスにより低圧成形することにより、直径5〜10mmのペレット状に形成してもよい。ここで、ペーパースラッジ:石炭粉末を質量比で(4:6)〜(6:4)の範囲内に限定したのは、混焼用燃焼助剤中の原料の種類や、混焼用燃焼助剤の使用目的等によって適宜配合比が設定される。また、スティック状の乾燥成形物の含水率を7〜10%の範囲内に限定したのは、7%未満では混焼用燃焼助剤1の圧壊強度が所望の値より低くなり、貯蔵、ハンドリング、輸送等に耐えられず、10%を超えると混焼用燃焼助剤としての効果、即ち燃焼用石炭の燃焼性を向上させる効果が低下するからである。
<Combustion aid 1 for co-firing consisting of a composite molding of paper sludge and coal powder>
The paper sludge and the coal powder are mixed with paper sludge: coal powder in a mass ratio within the range of (4: 6) to (6: 4) to prepare a mixture, and the mixture is formed into a rod shape having a diameter of 5 to 30 mm. After extrusion molding, it is cut into a length of 10 to 30 mm and dried to produce a stick-shaped dry molded product. Thereby, the combustion aid 1 for mixed combustion is obtained. The moisture content of the dried stick-shaped dry molded product is preferably in the range of 7 to 10%. Moreover, you may form in the pellet form of diameter 5-10mm by carrying out the low-pressure shaping | molding of the said dried stick-shaped dry molding with a die | dye without a binder. Here, the paper sludge: coal powder was limited to a mass ratio within the range of (4: 6) to (6: 4) because of the types of raw materials in the mixed combustion combustion aid and the mixed combustion combustion aid. The mixing ratio is appropriately set depending on the purpose of use. Further, the moisture content of the stick-shaped dry molded product is limited to the range of 7 to 10% because the crushing strength of the combustion aid 1 for co-firing becomes lower than a desired value when the content is less than 7%, storage, handling, It is because it cannot endure transportation etc., and if it exceeds 10%, the effect as a combustion aid for mixed combustion, that is, the effect of improving the combustibility of combustion coal is reduced.

<混焼用燃焼助剤1の特性>
上記混焼用燃焼助剤1は含水率が低くなり、この混焼用燃焼助剤1を混合した燃焼用石炭の着火性及び燃焼性を的確に向上させることができる。この結果、燃焼灰(フライアッシュ)中に含まれる未燃分を低減して、混焼用燃焼助剤及び燃焼用石炭の燃焼の効率化を図ることができる。また、混焼用燃焼助剤1中のペーパースラッジに含まれる繊維質バイオマスは、含水率が低くかつ揮発分が多いので、この繊維質バイオマスの長炎燃焼(蒸発燃焼)により、揮発分の少ない燃焼用石炭を効率良く混焼できる。この結果、循環流動層石炭燃焼炉等のボイラーの効率化を図ることができるとともに、省エネルギー効果を奏することができる。また、繊維質バイオマスのより完全な熱利用が可能となる、即ち繊維質バイオマスの使用量に見合った熱回収(サーマルリサイクル)が可能となるので、燃焼用石炭の使用量を削減できる。更に、ペーパースラッジに含まれる極微粒な合成炭酸カルシウムに由来する酸化カルシウムが燃焼用石炭中の硫黄分等の有害成分と反応しこの有害成分を固定化して、燃焼用石炭中の有害成分の大気中への放出を抑制できるとともに、上記合成炭酸カルシウムに由来する酸化カルシウムの触媒的作用により、燃焼用石炭の燃焼特性又はガス化特性を向上でき、これにより燃焼灰(フライアッシュ)中に含まれる未燃成分を低減できる。
<Characteristics of combustion aid 1 for mixed firing>
The mixed combustion combustion aid 1 has a low moisture content, and can improve the ignitability and combustibility of the combustion coal mixed with the mixed combustion combustion aid 1. As a result, it is possible to reduce the unburned content contained in the combustion ash (fly ash) and to improve the combustion efficiency of the combustion aid for mixed combustion and the coal for combustion. In addition, since the fibrous biomass contained in the paper sludge in the mixed combustion combustion aid 1 has a low moisture content and a large amount of volatile matter, the combustion of the fibrous biomass with a small amount of volatile matter is caused by the long flame combustion (evaporative combustion). Coal fire can be efficiently mixed. As a result, the efficiency of the boiler such as the circulating fluidized bed coal combustion furnace can be improved, and an energy saving effect can be achieved. Further, more complete heat utilization of the fibrous biomass is possible, that is, heat recovery (thermal recycling) corresponding to the amount of fibrous biomass used is possible, so that the amount of combustion coal used can be reduced. In addition, calcium oxide derived from ultrafine synthetic calcium carbonate contained in the paper sludge reacts with harmful components such as sulfur in the combustion coal to immobilize this harmful component, and the harmful component atmosphere in the combustion coal In addition to being able to suppress the release into the interior, the catalytic action of calcium oxide derived from the synthetic calcium carbonate can improve the combustion characteristics or gasification characteristics of the combustion coal, thereby being contained in the combustion ash (fly ash) Unburned components can be reduced.

<ペーパースラッジと石炭粉末の高圧成形物からなる混焼用燃焼助剤2>
上記乾燥したスティック状の乾燥成形物を、バインダレスでダブルロール成形機を用いて3〜5トン/cmの圧力(線圧)で板状又はブリケット状に連続的に高圧成形する。これにより乾燥成形物が高圧複合造粒されて混焼用燃焼助剤2が得られる。この高圧成形特性の一つは、高い生産性で製造し得る点にある。また、押出し成形により既に圧密化された乾燥成形物は、高圧造粒過程での高圧下において良好な脱気状態を維持しながら、更なる圧密化が進み、その中に含有する木質繊維が成形物の強化材として大きく作用して、その圧壊強度が向上するとともに、耐水性も向上する。ここで、高圧成形の圧力が3トン/cm未満では成形物に所望の強度が得られず、輸送時やハンドリング時に成形物が崩れやすくなる。また高圧成形の圧力が5トン/cmを超えても成形物の強度はそれ程増大しない。
<Combustion aid 2 for co-firing consisting of high-pressure molding of paper sludge and coal powder>
The above-mentioned dried stick-shaped dry molding is continuously high-pressure molded into a plate or briquette at a pressure (linear pressure) of 3 to 5 tons / cm using a double roll molding machine without a binder. As a result, the dried molded product is subjected to high-pressure composite granulation to obtain a combustion aid 2 for mixed firing. One of the high pressure molding characteristics is that it can be manufactured with high productivity. In addition, dry molded products that have already been consolidated by extrusion molding are further consolidated while maintaining good degassing conditions under high pressure in the high-pressure granulation process, and the wood fibers contained therein are molded. It acts greatly as a material reinforcing material, and its crushing strength is improved, and water resistance is also improved. Here, if the pressure of the high pressure molding is less than 3 ton / cm, a desired strength cannot be obtained in the molded product, and the molded product tends to collapse during transportation or handling. Further, even if the pressure of high pressure molding exceeds 5 ton / cm, the strength of the molded product does not increase so much.

<混焼用燃焼助剤2の特性>
上記混焼用燃焼助剤2は、一定の品質、形状及び寸法に形成でき、輸送やハンドリング等に耐え得る強度とその微粉砕性から、微粉炭火力発電所の既設粉砕設備で燃焼用石炭との混合微粉砕を経て直接的にバーナー燃焼炉への供給が可能となる。また、混焼用燃焼助剤2は、全国広く数多くの製紙工場から大量に排出される産業廃棄物のペーパースラッジの高次リサイクルを可能にする。
<Characteristics of combustion aid 2 for mixed firing>
The combustion aid 2 for mixed combustion can be formed in a certain quality, shape and size, and is strong enough to withstand transportation and handling, and its fine pulverization property. It becomes possible to supply directly to the burner combustion furnace through mixing and pulverization. Moreover, the combustion aid 2 for mixed firing enables high-order recycling of paper sludge of industrial waste discharged in large quantities from many paper mills across the country.

<燃焼用石炭の燃焼方法>   <Combustion method of coal for combustion>

[1] 混焼用燃焼助剤1と燃焼用石炭との混合物の燃焼方法(図1)
平均粒径が50mm以下の燃焼用石炭と、スティック状又はペレット状の混焼用燃焼助剤1とを、燃焼用石炭100質量%に対して混焼用燃焼助剤1が3〜25質量%の割合となるように混合することにより混合物を調製する。そして、この混合物を流動床炉、循環流動層石炭燃焼炉、移床式石炭燃焼炉、焼却炉又はガス化燃焼炉に供給して燃焼させる。これにより排ガス中のNOxを低減した状態で燃焼用石炭を燃焼することができ、燃焼用石炭から硫黄分をペーパースラッジ中の炭酸カルシウムが吸収・反応して効率良く除去でき、これまでの後流処理によるNOx及びSOxの低減法とは違った、効率的な燃焼炉内処理が可能である。また、この燃焼方法では、混焼用燃焼助剤を燃焼用石炭に混合して燃焼したときに、ペーパースラッジ中の炭酸カルシウム由来の酸化カルシウムが燃焼用石炭中の微量の有害金属成分と反応してこの成分を固定化し、かつその燃焼性の改善によって燃焼灰(フライアッシュ)中の未燃分を低減でき、燃焼灰(フライアッシュ)を有効に利用し、その性状及び粒度構成等を改善できる。更に、循環流動層石炭燃焼炉での混焼(燃焼温度850℃程度)時に、燃焼灰(フライアッシュ)の低温焼結及び粗粒化で高温サイクロンによる粗いサイクロン灰を効率良く捕集でき、低温燃焼の燃焼灰(フライアッシュ)へのポゾラン反応性を促進できる。ここで、混焼用燃焼助剤1が3質量%未満であると、混合混焼用燃焼助剤によるガス化性能改効果がこの燃焼助剤中のバイオマスや炭酸カルシウム等の多少によって左右され、複合ガス化場での相互作用によるガス化反応性が低下するとともに、燃焼灰の溶融点が上昇してしまい、ガス化性能が低下してしまう。また、混焼用燃焼助剤1を難燃性の燃焼用石炭100質量%に対して10質量%であるとき所期の着火性や燃焼性を改善できるけれども、混焼用燃焼助剤1が25質量%を超えると、経済性に見合うだけのガス化性能の改善効果を期待できない。
[1] Combustion method of mixture of combustion aid 1 for co-firing and coal for combustion (FIG. 1)
Combustion coal with an average particle size of 50 mm or less and stick-like or pellet-like combustion aid 1 for mixed combustion A ratio of 3 to 25% by mass of combustion aid 1 for mixed combustion with respect to 100 mass% of combustion coal Prepare a mixture by mixing. Then, this mixture is supplied to a fluidized bed furnace, a circulating fluidized bed coal combustion furnace, a moving bed coal combustion furnace, an incinerator or a gasification combustion furnace and burned. As a result, combustion coal can be burned with NOx in the exhaust gas reduced, and sulfur from the combustion coal can be efficiently removed by absorption and reaction of calcium carbonate in the paper sludge. Unlike the method for reducing NOx and SOx by treatment, efficient in-furnace treatment is possible. In this combustion method, when the combustion aid for mixed combustion is mixed with combustion coal and burned, calcium oxide derived from calcium carbonate in the paper sludge reacts with a trace amount of harmful metal components in the combustion coal. By immobilizing this component and improving its combustibility, it is possible to reduce the unburned content in the combustion ash (fly ash), effectively use the combustion ash (fly ash), and improve its properties, particle size constitution and the like. Furthermore, during mixed combustion in a circulating fluidized bed coal combustion furnace (combustion temperature of about 850 ° C), low-temperature sintering and coarsening of combustion ash (fly ash) enables efficient collection of coarse cyclone ash by high-temperature cyclone, and low-temperature combustion Can promote the reactivity of pozzolanic to combustion ash (fly ash). Here, if the combustion aid 1 for mixed combustion is less than 3% by mass, the gasification performance improvement effect by the combustion aid for mixed combustion is influenced by the amount of biomass, calcium carbonate, etc. in the combustion aid, and composite gas. Gasification reactivity due to the interaction in the gasification field decreases, the melting point of the combustion ash increases, and gasification performance decreases. In addition, when the mixed combustion combustion aid 1 is 10% by mass with respect to 100% by mass of the flame-retardant combustion coal, the desired ignitability and combustibility can be improved. If it exceeds 50%, it cannot be expected that the gasification performance will be improved enough to be economical.

なお、流動床炉とは、加圧した空気を下から上に向けて吹上げる等して流動化させた高温の砂の中で燃料を燃やす仕組みの炉である。また、図2に示すように、循環流動層石炭燃焼炉10とは、燃焼炉本体13と1次サイクロン11とループシール14とを備え、高速のガス流に伴い流動子(微粒アルミナ等)17が燃料16とともに燃焼炉本体13と1次サイクロン11とループシール14との間を循環し、この循環中に燃料16が燃焼する仕組みの炉である。また、流動子(微粒アルミナ等)17は1次サイクロン11からその自重によりループシール14内に下降して炉内を循環し、排ガスは1次サイクロン11の上端から排出されて2次サイクロン12に流入する。そして、排ガス中の比較的重い灰(サイクロン灰)は2次サイクロン12で捕集され、この2次サイクロン12の上端から排出された排ガスはガスクーラ18及びバグフィルター19を通ってブロワ21により大気中に排出される。なお、バグフィルター19により比較的軽い灰(バグ灰)が捕集される。また、図2中の符号22は燃料16を貯留するホッパーであり、符号23は予熱器である。また、移床(ストーカ)式石炭燃焼炉とは、階段状の火格子であるストーカの上で、燃料を移動させながら燃焼させる炉である。また、焼却炉としては、大型・中型の各種焼却炉が挙げられる。更に、ガス化燃焼炉とは、1次炉で燃料の一部を燃焼させて可燃ガスを生成し、2次炉で可燃ガスを燃焼させるように構成された炉である。   The fluidized bed furnace is a furnace that burns fuel in high-temperature sand that has been fluidized by blowing up pressurized air from the bottom upward. As shown in FIG. 2, the circulating fluidized bed coal combustion furnace 10 includes a combustion furnace body 13, a primary cyclone 11, and a loop seal 14, and a fluidizer (fine alumina etc.) 17 along with a high-speed gas flow. Circulates between the combustion furnace main body 13, the primary cyclone 11 and the loop seal 14 together with the fuel 16, and the fuel 16 burns during this circulation. The fluidizer (fine alumina etc.) 17 descends into the loop seal 14 by its own weight from the primary cyclone 11 and circulates in the furnace, and the exhaust gas is discharged from the upper end of the primary cyclone 11 to the secondary cyclone 12. Inflow. The relatively heavy ash (cyclone ash) in the exhaust gas is collected by the secondary cyclone 12, and the exhaust gas discharged from the upper end of the secondary cyclone 12 passes through the gas cooler 18 and the bag filter 19 and is blown into the atmosphere by the blower 21. To be discharged. Note that relatively light ash (bug ash) is collected by the bag filter 19. Moreover, the code | symbol 22 in FIG. 2 is a hopper which stores the fuel 16, and the code | symbol 23 is a preheater. In addition, the moving bed (stalker) type coal combustion furnace is a furnace that burns while moving fuel on a stalker that is a staircase grate. Incinerators include various large and medium incinerators. Further, a gasification combustion furnace is a furnace configured to burn a part of fuel in a primary furnace to generate a combustible gas and to burn the combustible gas in a secondary furnace.

[2] 混焼用燃焼助剤2と燃焼用石炭との混合物の燃焼方法(図1)
平均粒径が50mm以下の燃焼用石炭と混焼用燃焼助剤2とを、燃焼用石炭100質量%に対して混焼用燃焼助剤2が3〜25質量%の割合となるように混合することにより混合物を調製する。そして、この混合物を流動床炉、循環流動層石炭燃焼炉、移床式石炭燃焼炉、焼却炉又はガス化燃焼炉に供給して燃焼させる。これにより上記[1]の混焼用燃焼助剤1と燃焼用石炭との混合物の燃焼方法による効果がえられる。また、混焼用燃焼助剤2は、一定の品質、形状及び寸法に成形でき、輸送やハンドリング等に耐え得る強度とその微粉砕性から、微粉炭火力発電所の既設粉砕設備で燃焼用石炭との混合微粉砕を経て直接的にバーナー燃焼炉への供給が可能となる。ここで、燃焼用石炭100質量%に対して混焼用燃焼助剤2を3〜25質量%の範囲内に限定したのは、燃焼用石炭100質量%に対して混焼用燃焼助剤1を3〜25質量%の範囲内に限定した理由と同一である。
[2] Combustion method of mixture of combustion aid 2 for co-firing and coal for combustion (FIG. 1)
Combusting coal having an average particle size of 50 mm or less and the co-firing combustion aid 2 are mixed so that the co-firing combustion aid 2 is in a ratio of 3 to 25 mass% with respect to 100 mass% of the combustion coal. Prepare the mixture by Then, this mixture is supplied to a fluidized bed furnace, a circulating fluidized bed coal combustion furnace, a moving bed coal combustion furnace, an incinerator or a gasification combustion furnace and burned. Thereby, the effect by the combustion method of the mixture of the combustion aid 1 for co-firing and the coal for combustion of [1] is obtained. Moreover, the combustion aid 2 for co-firing can be molded to a certain quality, shape and size, and can be used for combustion coal in existing pulverization facilities of pulverized coal-fired power plants because of its strength that can withstand transportation and handling and its fine pulverization properties. It becomes possible to supply to the burner combustion furnace directly after mixing and pulverizing. Here, the reason why the combustion aid 2 for co-firing is limited to the range of 3 to 25 mass% with respect to 100 mass% of the coal for combustion is that the combustion aid 1 for co-firing is 3 with respect to 100 mass% of the coal for combustion. It is the same as the reason limited within the range of ˜25% by mass.

[3] 混焼用燃焼助剤1と燃焼用石炭との混合・微粉砕物の燃焼方法(図1)
平均粒径が50mm以下の燃焼用石炭と混焼用燃焼助剤1とを、燃焼用石炭100質量%に対して混焼用燃焼助剤が3〜25質量%の割合となるように混合することにより混合物を調製し、この混合物を微粉砕することにより混合・微粉砕物を調製する。そして、この混合・微粉砕物を微粉炭燃焼炉に供給して燃焼させる。これにより、混焼用燃焼助剤1を難燃性の燃焼用石炭と混合し微粉砕するときに、微粉炭中に均一に分散した状態で燃焼炉に供給される。この結果、微粉炭燃焼炉内での混合・微粉砕物による複合燃焼場が形成され、この燃焼場での燃焼用石炭の微粒子(微粉炭)と混焼用燃焼助剤1の組成物由来の微粒子との間の相互作用によって、燃焼用石炭の微粒子(微粉炭)のみの燃焼では期待できない、微粉炭燃焼炉内での燃焼性を改善できるとともに、排ガス中のNOx及びSOxを低減できる。また、微粉炭燃焼炉における混焼(燃焼温度1450℃)時に、炭酸カルシウムとともに加わる新たな鉱物学的組成により、燃焼灰(フライアッシュ)の性状及び粒度構成を改善できるとともに、上記鉱物学的組成による高温の燃焼灰(フライアッシュ)へのポゾラン反応性を促進できる。なお、図3に示すように、微粉炭燃焼炉40とは、微粉炭燃料(混合・微粉砕物)41を空気とともに燃焼筒42内に供給してバーナー43により燃焼させる炉である。予熱器(図示せず)により加熱された1次空気は燃焼筒42の上端から微粉炭燃料(混合・微粉砕物)41とともに供給され、予熱器44により加熱された2次空気は燃焼筒42の上部に供給され、更に予熱器46により加熱された2段燃焼空気は燃焼筒42の上部及び中央部に供給される。これにより比較的高い温度で微粉炭燃料(混合・微粉砕物)41が燃焼するように構成される。図3中の符号47は微粉炭燃料(混合・微粉砕物)41を貯留するホッパーであり、符号48はサイクロンである。また、図3中の符号49はバグフィルターであり、符号51は複数の搬送空気導入口である。
[3] Combustion method of co-firing combustion aid 1 and combusting coal and combustion of finely pulverized product (Fig. 1)
By mixing the combustion coal having an average particle size of 50 mm or less and the combustion aid 1 for mixed combustion so that the combustion aid for mixed combustion becomes 3 to 25 mass% with respect to 100 mass% of combustion coal. A mixture is prepared, and this mixture is pulverized to prepare a mixed and pulverized product. Then, the mixed and finely pulverized product is supplied to the pulverized coal combustion furnace and burned. As a result, when the co-firing combustion aid 1 is mixed with the flame-retardant combustion coal and pulverized, it is supplied to the combustion furnace in a state of being uniformly dispersed in the pulverized coal. As a result, a composite combustion field is formed by mixing and pulverized product in the pulverized coal combustion furnace, and the fine particles derived from the composition of the combustion coal fine particles (pulverized coal) and the mixed combustion combustion aid 1 in this combustion field. As a result, it is possible to improve the combustibility in the pulverized coal combustion furnace, which cannot be expected only by burning only the fine particles (pulverized coal) of the combustion coal, and to reduce NOx and SOx in the exhaust gas. In addition, the new mineralogical composition added with calcium carbonate at the time of co-firing in the pulverized coal combustion furnace (combustion temperature 1450 ° C.) can improve the properties and particle size composition of the combustion ash (fly ash), and the above mineralogical composition. Pozzolanic reactivity to high-temperature combustion ash (fly ash) can be promoted. As shown in FIG. 3, the pulverized coal combustion furnace 40 is a furnace in which a pulverized coal fuel (mixed and finely pulverized product) 41 is supplied into the combustion cylinder 42 together with air and burned by the burner 43. Primary air heated by a preheater (not shown) is supplied from the upper end of the combustion cylinder 42 together with pulverized coal fuel (mixed and finely pulverized product) 41, and secondary air heated by the preheater 44 is combusted cylinder 42. The two-stage combustion air supplied to the upper part of the combustion chamber and further heated by the preheater 46 is supplied to the upper part and the central part of the combustion cylinder 42. Accordingly, the pulverized coal fuel (mixed and finely pulverized product) 41 is configured to burn at a relatively high temperature. Reference numeral 47 in FIG. 3 is a hopper for storing pulverized coal fuel (mixed and finely pulverized product) 41, and reference numeral 48 is a cyclone. Further, reference numeral 49 in FIG. 3 is a bag filter, and reference numeral 51 is a plurality of carrier air introduction ports.

[4] 混焼用燃焼助剤2と燃焼用石炭との混合・微粉砕物の燃焼方法(図1)
平均粒径が50mm以下の燃焼用石炭と混焼用燃焼助剤2とを、燃焼用石炭100質量%に対して混焼用燃焼助剤が3〜25質量%の割合となるように混合することにより混合物を調製し、この混合物を微粉砕することにより混合・微粉砕物を調製する。そして、この混合・微粉砕物を微粉炭燃焼炉に供給して燃焼させる。これにより、上記[3]の燃焼方法による効果に加えて、上記[2]の燃焼方法による効果が得られる。
[4] Combustion method for mixed and finely pulverized mixture of co-firing combustion aid 2 and combustion coal (Fig. 1)
By mixing the coal for combustion with an average particle size of 50 mm or less and the combustion aid 2 for mixed combustion so that the amount of the combustion aid for mixed combustion becomes 3 to 25 mass% with respect to 100 mass% of the coal for combustion. A mixture is prepared, and this mixture is pulverized to prepare a mixed and pulverized product. Then, the mixed and finely pulverized product is supplied to the pulverized coal combustion furnace and burned. Thereby, in addition to the effect by the combustion method of said [3], the effect by the combustion method of said [2] is acquired.

以下、本発明の実施例を比較例とともに示す。なお、本発明はこれらの実施例に限定されない。 Examples of the present invention are shown below together with comparative examples. The present invention is not limited to these examples.

初めに、実施例及び比較例で使用する製紙工場別のペーパースラッジの成分組成を表1に、また石炭の種類とその乾燥後の成分組成・性状を表2にそれぞれ示す。なお、表1中のPSはペーパースラッジである。   First, Table 1 shows the component composition of paper sludge by paper mill used in Examples and Comparative Examples, and Table 2 shows the type of coal and the component composition and properties after drying. In Table 1, PS is paper sludge.

表1において、「乾燥前の含水率(%)」は、製紙工程からの排出スラリーを圧縮脱水したときのペーパースラッジの含水率をいう。また「乾燥後の繊維質(質量%)」は、上記圧縮脱水物について105℃で乾燥し、その乾燥物を酸化雰囲気下で500℃で加熱処理し、そのときの減量分を繊維質(セルロース、リグニン質)の質量%として算出して得た値である。また「乾燥後の炭酸カルシウム(質量%)」は、上記500℃で加熱したものを更に900℃で加熱処理し、そのときの減量を炭酸カルシウム(CaCO3)から分解したCO2と見なして、CaO及びCO2の原子量比から炭酸カルシウムの質量%を算出して得た値である。更に「その他無機質(質量%)」は、上記繊維質と上記炭酸カルシウムを全組成100質量%から減じた残りとして算出して得た値である。なお、「その他無機質」の鉱物組成としては、主にカオリナイトをX線回折で同定した。 In Table 1, “moisture content before drying (%)” refers to the moisture content of the paper sludge when the slurry discharged from the papermaking process is compression-dehydrated. Further, “fiber after drying (mass%)” means that the above-mentioned compressed dehydrated product is dried at 105 ° C., and the dried product is heat-treated at 500 ° C. in an oxidizing atmosphere. , Lignin substance) is a value obtained by calculation. In addition, “calcium carbonate after drying (mass%)” is obtained by further heating at 500 ° C. and treating at 900 ° C. The weight loss at that time is regarded as CO 2 decomposed from calcium carbonate (CaCO 3 ). This is a value obtained by calculating the mass% of calcium carbonate from the atomic weight ratio of CaO and CO 2 . Furthermore, “other inorganic substances (mass%)” is a value obtained by calculating the remainder of the above-mentioned fibrous substance and calcium carbonate as subtracted from the total composition of 100 mass%. In addition, as a mineral composition of “other minerals”, kaolinite was mainly identified by X-ray diffraction.

表2において、「豪州炭A」は、オーストラリア産の一般炭であり、揮発分が低い上に、燃焼硫黄及び窒素分がともに高く、また膨張性及び弱粘結性を有するため、難燃焼性石炭に属する。これに対し、釧路コールマイン産の「KCM炭」及びオーストラリア産の「豪州炭B」は、いずれも揮発分が高く、非燃結性を有するため、燃焼し易い石炭に属し、特に「KCM炭」は、極めて硫黄分が少なく、燃焼に優れる石炭である。また「工業分析」は、JIS規格に基づく分析値であり、燃料比は、固定炭素/揮発分(無水無灰基(dry ash free basis))で測定した値である。   In Table 2, “Australian Coal A” is a steam coal produced in Australia, has low volatile content, high combustion sulfur and nitrogen content, and has expansibility and weak cohesion. Belongs to coal. In contrast, “KCM Coal” produced by Kushiro Coalmine and “Australian Coal B” produced by Australia are both volatile and non-flammable, and therefore belong to easily burnable coal. "Is a coal with extremely low sulfur content and excellent combustion. The “industrial analysis” is an analytical value based on JIS standards, and the fuel ratio is a value measured by fixed carbon / volatile matter (dry ash free basis).

<実施例1>
先ず、表1に示す2種類のペーパースラッジ(平均粒径:10mm以下)と、表2に示す3種類の石炭粉末(平均粒径2mm以下)とを用意した。次いで、上記ペーパースラッジと石炭粉末とを、質量比(乾燥ベース)が1:1となるように配合した。次に、上記ペーパースラッジを解しながら混合して混合物を調製した。更に、直径5mmのペレット状のダイスを複数個有する押し出し成形機を用いて、上記混合物をペレット状に成形し、ペレット状の混合成形物を得た。このペレット状の混合成形物を実施例1とした。
<Example 1>
First, two types of paper sludge (average particle size: 10 mm or less) shown in Table 1 and three types of coal powder (average particle size of 2 mm or less) shown in Table 2 were prepared. Next, the paper sludge and coal powder were blended so that the mass ratio (dry basis) was 1: 1. Next, the paper sludge was mixed while being mixed to prepare a mixture. Furthermore, the said mixture was shape | molded into the pellet form using the extrusion molding machine which has two or more pellet-shaped dice | dies with a diameter of 5 mm, and the pellet-form mixed molded product was obtained. This pellet-shaped mixed molded product was designated as Example 1.

<比較例1及び2>
上記B製紙工場から排出されたペーパースラッジ(平均粒径:10mm以下)を比較例1とし、上記石炭粉末のうちKCM炭(平均粒径2mm以下)を比較例2とした。
<Comparative Examples 1 and 2>
Paper sludge (average particle size: 10 mm or less) discharged from the B paper mill was used as Comparative Example 1, and KCM charcoal (average particle size of 2 mm or less) of the above coal powder was used as Comparative Example 2.

<試験1及び評価>
実施例1のペレット状の混合成形物と、比較例1のペーパースラッジと、比較例2の石炭粉末について、乾燥特性を測定した。具体的には、先ず、実施例1のペレット状の混合成形物を1個(5g)と、比較例1のペーパースラッジ及び比較例2の石炭粉末を5gずつ用意した。次に、これらを乾燥測定器で室温から105℃に到達するまで加熱したときの含水率(%)と乾燥時間の関係から、実施例1の混合成形物、比較例1のペーパースラッジ及び比較例2の石炭粉末の含水率についてそれぞれ測定した。その結果を図4に示す。なお、図4には、3回ずつ上記試験を行い、得られた3回のデータの平均値を示している。
<Test 1 and evaluation>
The drying characteristics of the pellet-shaped mixed molded product of Example 1, the paper sludge of Comparative Example 1, and the coal powder of Comparative Example 2 were measured. Specifically, first, one pellet-shaped mixed molded product of Example 1 (5 g), 5 g of paper sludge of Comparative Example 1 and 5 g of coal powder of Comparative Example 2 were prepared. Next, from the relationship between the moisture content (%) and the drying time when heated from room temperature to 105 ° C. with a dryness measuring device, the mixed molded product of Example 1, the paper sludge of Comparative Example 1, and the Comparative Example The moisture content of coal powder No. 2 was measured. The result is shown in FIG. FIG. 4 shows the average value of three data obtained by performing the above test three times.

図4から明らかなように、実施例1の混合成形物は、室温から加熱して、含水率が約10%までの定率乾燥を経て、目標とする含水率8.0%の減率乾燥までは、比較例1のペーパースラッジとほぼ同じ乾燥速度を示した。これは、ペーパースラッジの乾燥速度がその成形圧密化による影響は受けないことを意味する。従って、実施例1の混合成形物の乾燥特性は、ペーパースラッジの有効利用、特に高次リサイクルに向けた原料化前処理のためのハンドリング・設備等に係る乾燥コストの大幅な低減をもたらす点で極めて重要な知見である。また、実施例1の混合成形物の乾燥特性によって、ペーパースラッジに含まれる繊維質も乾燥によるクリーンな木質バイオマスエネルギーとして、その高効率的なサーマルリサイクルが可能になる。なお、ペレット状の混合成形物を実施例1としたが、厳密には、乾燥後の混合成形物、即ち乾燥成形物(混焼用燃焼助剤)が実施例1となる。   As is clear from FIG. 4, the mixed molded product of Example 1 was heated from room temperature, passed through constant rate drying with a moisture content of about 10%, and reduced to drying with a target moisture content of 8.0%. Showed almost the same drying rate as the paper sludge of Comparative Example 1. This means that the drying rate of the paper sludge is not affected by its compaction. Therefore, the drying characteristics of the mixed molded product of Example 1 are the points that bring about a significant reduction in the drying cost related to the effective use of paper sludge, especially the handling and equipment for the pre-treatment of raw materials for higher recycling. This is an extremely important finding. Further, the drying characteristics of the mixed molded product of Example 1 enable highly efficient thermal recycling of the fiber contained in the paper sludge as clean woody biomass energy by drying. In addition, although the pellet-shaped mixed molded product was used in Example 1, strictly speaking, the mixed molded product after drying, that is, the dried molded product (combustion aid for mixed firing) is used in Example 1.

<実施例2>
直径5mmのダイスを複数個有する押し出し成形機を用いて、実施例1の混合物をスティック状に成形することにより、ペレット状の混合成形物を作製した後に、この混合成形物を振動コンベア上に載せて所定距離(2.0m)だけ振動コンベア上を通過させ、更にペレット状の混合成形物とこの混合成形物の一部が砕けた破片をそのままオーブンで乾燥して、混焼用燃焼助剤を得た。この混焼用燃焼助剤を実施例2とした。
<Example 2>
A mixture of Example 1 was formed into a stick shape by using an extrusion molding machine having a plurality of dies having a diameter of 5 mm to produce a pellet-shaped mixed molded product, and then the mixed molded product was placed on a vibrating conveyor. Then, the mixture is passed through a vibrating conveyor for a predetermined distance (2.0 m), and the pellet-shaped mixed molded product and a fragment of the mixed molded product partially broken are dried in an oven as they are to obtain a combustion aid for mixed firing. It was. This combustion aid for co-firing was designated as Example 2.

<試験2及び評価>
実施例2のスティック状の乾燥成形物からなる混焼用燃焼助剤と、上記振動コンベア上で混合成形物の一部が砕けた破片の乾燥物(粉化物)を、目開きが2.0mm、1.0mm、0.5mm及び0.25mmである篩で、振動機により5分間篩った後に粒径を計測した。その結果を表3に示す。
<Test 2 and evaluation>
Combustion aid for co-firing consisting of a stick-shaped dry molded product of Example 2 and a dried product (powdered product) of a fragment of the mixed molded product crushed on the vibration conveyor, with an opening of 2.0 mm, The particle size was measured after sieving with a vibrator having a size of 1.0 mm, 0.5 mm and 0.25 mm for 5 minutes with a vibrator. The results are shown in Table 3.

表3から明らかなように、0.25mm以下の粉化物が1.0%以下と極めて少なく、通常のハンドリング、貯蔵、輸送等に耐え得る強度を有し、特に実施例2のスティック状の混焼用燃焼助剤は木質バイオマスを多く含有するにも拘らず、耐湿性及び耐水性に優れる。従って、実施例2のスティック状の乾燥成形物は、そのまま、流動層、ストーカ式等の石炭混焼用燃焼助剤として使用する上での強度等を有することが分かった。   As is apparent from Table 3, the powdered material having a size of 0.25 mm or less is extremely low at 1.0% or less, and has a strength that can withstand normal handling, storage, transportation, etc. In particular, the stick-like mixed firing of Example 2 Despite the fact that the combustion aid contains a large amount of woody biomass, it is excellent in moisture resistance and water resistance. Accordingly, it was found that the stick-shaped dry molded product of Example 2 has strength and the like when used as a combustion aid for coal-fired coal such as a fluidized bed or a stoker type as it is.

<実施例3>
実施例2のスティック状の乾燥成形物をバインダレスでそのまま、ダブルロール式成形機により連続的に圧縮成形(線圧:3〜4トン/cm)して、板状の混焼用燃焼助剤を得た。この板状の混焼用燃焼助剤を実施例3とした。なお、上記ダブルロール式成形機の板状のキャビティの内容積は約1.0ccであった。
<Example 3>
The stick-shaped dry molded product of Example 2 was continuously compression-molded (linear pressure: 3 to 4 ton / cm) by a double roll type molding machine as it was without a binder, and a plate-like mixed combustion combustion aid was obtained. Obtained. This plate-like mixed combustion combustion aid was defined as Example 3. The internal volume of the plate-like cavity of the double roll type molding machine was about 1.0 cc.

<実施例4>
実施例2のスティック状の乾燥成形物をバインダレスでそのまま、ダブルロール式成形機により連続的に圧縮成形(線圧:3〜4トン/cm)して、アーモンド状の混焼用燃焼助剤を得た。このアーモンド状の混焼用燃焼助剤を実施例3とした。なお、上記ダブルロール式成形機のアーモンド状のキャビティの内容積は約6.0ccであった。
<Example 4>
The stick-shaped dry molded product of Example 2 was continuously compression-molded (linear pressure: 3 to 4 ton / cm) with a double roll molding machine as it was without a binder, and an almond-shaped combustion aid for mixed firing was obtained. Obtained. This almond-like mixed combustion combustion aid was defined as Example 3. The internal volume of the almond-shaped cavity of the double roll type molding machine was about 6.0 cc.

<試験3及び評価>
実施例3及び4の混焼用燃焼助剤の圧壊強度をそれぞれ測定した。具体的には、実施例3及び4の混焼用燃焼助剤をそれぞれ10個ずつ用意し、これらの各表面中心に鋼鉄製の球状圧子を押し込み、タブレットが破壊したときの荷重を圧壊強度とした。
<Test 3 and evaluation>
The crushing strengths of the combustion aids for mixed combustion of Examples 3 and 4 were measured. Specifically, 10 each of the combustion aids for mixed combustion of Examples 3 and 4 were prepared, a steel spherical indenter was pushed into the center of each surface, and the load when the tablet was broken was defined as the crushing strength. .

その結果、実施例3の板状の混焼用燃焼助剤の圧壊強度は40〜50kgであり、実施例4のアーモンド状の混焼用燃焼助剤の圧壊強度は100〜120kgであった。従って、板状の混焼用燃焼助剤及びアーモンド状の混焼用燃焼助剤は、実用に供する上での貯蔵、ハンドリング・輸送等に十分に耐え得るだけの強度を有することが分かった。   As a result, the crushing strength of the plate-shaped mixed combustion combustion aid of Example 3 was 40 to 50 kg, and the crushing strength of the almond-shaped mixed combustion combustion aid of Example 4 was 100 to 120 kg. Accordingly, it has been found that the plate-like mixed combustion combustion aid and the almond-like mixed combustion aid have sufficient strength to withstand storage, handling and transportation for practical use.

<実施例4>
先ず、表1のA製紙工場から排出されたペーパースラッジ(平均粒径:10mm以下)と、表2のKCM炭(平均粒径2mm以下)とを、質量比(乾燥ベース)が1:1となるように配合し、上記ペーパースラッジを解しながら混合して混合物を調製した。次いで、直径5mmのペレット状のダイスを複数個有する押し出し成形機を用いて、上記混合物をペレット状に成形し、ペレット状の混合成形物を作製した。次に、この混合成形物をオーブンで含水率が7〜8%になるように乾燥して乾燥成形物を作製した後に、ダブルロール式高圧成形機により圧縮成形(線圧:3〜4トン/cm)して板状の圧縮成形物からなる混焼用燃焼助剤を得た。この混焼用燃焼助剤を表2の豪州炭A(平均粒径5mm以下)に質量比で1:9となるように混合した。この混合燃料を実施例4とした。
<Example 4>
First, the paper sludge (average particle size: 10 mm or less) discharged from the A paper mill in Table 1 and the KCM charcoal (average particle size of 2 mm or less) in Table 2 have a mass ratio (dry basis) of 1: 1. It mix | blended so that it might become, and it mixed, dissolving the said paper sludge, and prepared the mixture. Subsequently, the said mixture was shape | molded into the pellet form using the extrusion molding machine which has two or more pellet-shaped dice | dies with a diameter of 5 mm, and the pellet-form mixed molded object was produced. Next, the mixed molded product was dried in an oven so that the water content was 7 to 8% to prepare a dried molded product, and then compression molded (linear pressure: 3 to 4 ton / s) by a double roll type high pressure molding machine. cm) to obtain a combustion aid for co-firing consisting of a plate-like compression molded product. This combustion aid for co-firing was mixed with Australian coal A (average particle size of 5 mm or less) in Table 2 so that the mass ratio was 1: 9. This mixed fuel was designated as Example 4.

<実施例5>
先ず、表1のA製紙工場から排出されたペーパースラッジ(平均粒径:10mm以下)と、表2の豪州炭B(平均粒径2mm以下)とを、質量比(乾燥ベース)が1:1となるように配合したこと以外は、実施例4と同様にして板状の圧縮成形物からなる混焼用燃焼助剤を得た。この混焼用燃焼助剤を表2の豪州炭A(平均粒径5mm以下)%に質量比で1:9となるように混合した。この混合燃料を実施例5とした。
<Example 5>
First, the paper sludge (average particle size: 10 mm or less) discharged from the A paper mill in Table 1 and Australian charcoal B (average particle size of 2 mm or less) in Table 2 have a mass ratio (dry basis) of 1: 1. A combustion aid for co-firing consisting of a plate-like compression-molded product was obtained in the same manner as in Example 4 except that it was blended so as to be. This combustion aid for co-firing was mixed with Australian coal A (average particle size of 5 mm or less)% in Table 2 at a mass ratio of 1: 9. This mixed fuel was designated as Example 5.

<実施例6>
先ず、表1のA製紙工場から排出されたペーパースラッジ(平均粒径:10mm以下)と、表2の豪州炭A(平均粒径2mm以下)とを、質量比(乾燥ベース)が1:1となるように配合したこと以外は、実施例4と同様にして板状の圧縮成形物からなる混焼用燃焼助剤を得た。この混焼用燃焼助剤を表2の豪州炭A(平均粒径5mm以下)%に質量比で1:9となるように混合した。この混合燃料を実施例6とした。
<Example 6>
First, the paper sludge (average particle size: 10 mm or less) discharged from the paper mill A in Table 1 and the Australian coal A (average particle size 2 mm or less) in Table 2 have a mass ratio (dry basis) of 1: 1. A combustion aid for co-firing consisting of a plate-like compression-molded product was obtained in the same manner as in Example 4 except that it was blended so as to be. This combustion aid for co-firing was mixed with Australian coal A (average particle size of 5 mm or less)% in Table 2 at a mass ratio of 1: 9. This mixed fuel was designated as Example 6.

<比較例3>
混焼用燃焼助剤を混合せずに、表2の豪州炭A粉末(平均粒径5mm以下)のみを用いて燃料とした。この単一燃料を比較例3とした。
<Comparative Example 3>
Without mixing the combustion aid for mixed combustion, only the Australian coal A powder shown in Table 2 (average particle size of 5 mm or less) was used as the fuel. This single fuel was designated as Comparative Example 3.

<試験4及び評価>
実施例4〜6の混合燃料と比較例3の単一燃料について燃焼試験を行った。この燃焼試験では、図2に示す循環流動層石炭燃焼炉10において、定点温度を850〜860℃の範囲に維持し、排ガス中の酸素濃度を3〜4%の範囲に維持した条件下で供給した燃料16を流動子(微粒アルミナ)17とともに、燃焼炉本体13、1次サイクロン11及びループシール14を通して循環させ、安定した燃焼が維持できる状態で、1時間当たりの給炭量を測定した。その結果を表4に示す。なお、排ガス中の酸素濃度は、2次サイクロン12から排出された排ガスが流入するガスクーラ18と、このガスクーラ18を通過した排ガスが流入するバグフィルター19との間の排気管から抽出して酸素濃度分析器により分析した。また、表4中のPSはペーパースラッジである。
<Test 4 and evaluation>
Combustion tests were performed on the mixed fuels of Examples 4 to 6 and the single fuel of Comparative Example 3. In the combustion test, in the circulating fluidized bed coal combustion furnace 10 shown in FIG. 2, the fixed point temperature is maintained in the range of 850 to 860 ° C., and the oxygen concentration in the exhaust gas is maintained in the range of 3 to 4%. The fuel 16 was circulated through the combustion furnace main body 13, the primary cyclone 11 and the loop seal 14 together with the fluidizer (fine alumina) 17, and the amount of coal supplied per hour was measured in a state where stable combustion could be maintained. The results are shown in Table 4. The oxygen concentration in the exhaust gas is extracted from the exhaust pipe between the gas cooler 18 into which the exhaust gas discharged from the secondary cyclone 12 flows and the bag filter 19 into which the exhaust gas that has passed through the gas cooler 18 flows. Analyzed by analyzer. Moreover, PS in Table 4 is paper sludge.

表4から明らかなように、燃焼用石炭に混焼用燃焼助剤(0%)を混合せずに燃焼用石炭のみを用いた比較例3の単一燃料では、同一燃焼維持に要する燃料の給炭量が4.8kg/時と多かったのに対し、燃焼用石炭に混焼用燃焼助剤(10%)を混合した実施例4〜6の混合燃料では、同一燃焼維持に要する燃料の給炭量が2.55〜2.78kg/時と大幅に低減した。これは、各燃料からの熱発生量の多少とは関係なく、また直接的な省エネルギーを意味するものでもなく、実施例4〜6の混合燃料では、循環流動層石炭燃焼炉の燃焼メカニズムにマッチした燃焼特性が、ペーパースラッジを原料とした混焼用燃焼助剤と燃焼用石炭との混合や、その混焼方法によってもたらされたものと考えられる。   As is clear from Table 4, in the single fuel of Comparative Example 3 in which only the combustion coal is used without mixing the combustion aid (0%) with the combustion coal, the fuel required for maintaining the same combustion is supplied. In the mixed fuels of Examples 4 to 6 in which the coal quantity was 4.8 kg / hour, while the combustion aid for mixed combustion (10%) was mixed with combustion coal, fuel supply required for maintaining the same combustion The amount was greatly reduced to 2.55 to 2.78 kg / hour. This is not related to the amount of heat generated from each fuel, and does not mean direct energy saving. The mixed fuels of Examples 4 to 6 match the combustion mechanism of a circulating fluidized bed coal combustion furnace. It is considered that the combustion characteristics obtained were brought about by mixing the combustion aid for co-firing with paper sludge as the raw material and coal for combusting, and the co-firing method.

<試験5及び評価>
上記試験4と同様に、実施例4〜6の混合燃料と比較例3の単一燃料について燃焼試験を行った。この燃焼試験では、図2に示す循環流動層石炭燃焼炉10において、定点温度を850〜860℃の範囲に維持し、排ガス中の酸素濃度を3〜4%の範囲に維持した条件下で供給した燃料16を流動子(微粒アルミナ)17とともに、燃焼炉本体13、1次サイクロン11及びループシール14を通して循環させ、循環流動層石炭燃焼炉10の循環燃焼系外に排出される排ガス中のSOx濃度及びNOx濃度を測定した。具体的には、1次サイクロン11から排出されて、2次サイクロン12、ガスクーラ18及びバグフィルター19を通過した排ガス中のSOx濃度及びNOx濃度を測定した。それらの結果を図5及び図6に示す。なお、排ガス中の酸素濃度は、2次サイクロン12から排出された排ガスが流入するガスクーラ18と、このガスクーラ18を通過した排ガスが流入するバグフィルター19との間の排気管から抽出して分析した。また、表4中のPSはペーパースラッジである。
<Test 5 and evaluation>
Similarly to the test 4, the combustion test was performed on the mixed fuels of Examples 4 to 6 and the single fuel of Comparative Example 3. In the combustion test, in the circulating fluidized bed coal combustion furnace 10 shown in FIG. 2, the fixed point temperature is maintained in the range of 850 to 860 ° C., and the oxygen concentration in the exhaust gas is maintained in the range of 3 to 4%. The fuel 16 is circulated through the combustion furnace main body 13, the primary cyclone 11 and the loop seal 14 together with the fluidizer (fine alumina) 17, and SOx in the exhaust gas discharged outside the circulating combustion system of the circulating fluidized bed coal combustion furnace 10. Concentration and NOx concentration were measured. Specifically, the SOx concentration and NOx concentration in the exhaust gas discharged from the primary cyclone 11 and passed through the secondary cyclone 12, the gas cooler 18, and the bag filter 19 were measured. The results are shown in FIGS. The oxygen concentration in the exhaust gas was extracted and analyzed from the exhaust pipe between the gas cooler 18 into which the exhaust gas discharged from the secondary cyclone 12 flows and the bag filter 19 into which the exhaust gas that passed through the gas cooler 18 flows. . Moreover, PS in Table 4 is paper sludge.

燃焼用石炭に混焼用燃焼助剤(0%)を混合せずに、燃焼用石炭のみを用い、かつ燃焼性硫黄分が0.48質量%(dry ash free)と多い豪州炭Aを用いた比較例3では、排ガス中のSO2濃度が370体積ppmと多かった。図5から明らかなように、燃焼性硫黄分が0.48質量%(dry ash free)と多い豪州炭Aを用いても、燃焼用石炭に混焼用燃焼助剤(10%)を混合した実施例4〜6では、排ガス中のSO2濃度が低下し、比較例3の脱硫率を基準(0%)としたときに、脱硫率が55〜69%に向上した。また、このとき燃料中の硫黄とカルシウムの比のCa/S値は、比較例3では0.2と小さかったのに対し、実施例4〜6では1.6〜2.2と大きくなった。このような脱硫効果は、排ガス中のSO2が混焼用燃焼助剤中において微粒であることと、反応性の高い合成炭酸カルシウムとの反応・固定化により奏したものと考えられる、即ちペーパースラッジの原料組成を生かした混焼用燃焼助剤の燃料用石炭との混焼によってもたらされたものと考えられる。 Combustion coal was not mixed with combustion aid (0%) for combustion, only combustion coal was used, and Australian coal A with a high combustible sulfur content of 0.48 mass% (dry ash free) was used. In Comparative Example 3, the SO 2 concentration in the exhaust gas was as high as 370 ppm by volume. As is clear from FIG. 5, even when Australian coal A having a high combustible sulfur content of 0.48 mass% (dry ash free) was used, the combustion coal for combustion (10%) was mixed with the combustion coal. In Examples 4 to 6, the SO 2 concentration in the exhaust gas decreased, and the desulfurization rate was improved to 55 to 69% when the desulfurization rate of Comparative Example 3 was taken as the standard (0%). At this time, the Ca / S value of the ratio of sulfur to calcium in the fuel was as small as 0.2 in Comparative Example 3, whereas it was as large as 1.6 to 2.2 in Examples 4 to 6. . Such a desulfurization effect is considered to be achieved by the fact that SO 2 in the exhaust gas is fine in the combustion aid for mixed combustion, and reaction and fixation with highly reactive synthetic calcium carbonate, that is, paper sludge. It is thought that this was brought about by co-firing the combustion aid for co-firing with the coal for fuel utilizing the raw material composition.

一方、図6から明らかなように、燃焼用石炭に混焼用燃焼助剤(0%)を混合せずに、燃焼用石炭のみを用いた比較例3では、排ガス中のNOx濃度が170ppm(酸素6%換算:140〜160ppm)であったのに対し、燃焼用石炭に混焼用燃焼助剤(10%)を混合した実施例4〜6では、排ガス中のNOx濃度が170〜220ppm(酸素濃度6%換算:160〜200ppm)と比較例3より若干増大した。このように燃焼用燃焼助剤と燃焼用石炭の混焼による燃焼性改善により、実施例4〜6では比較例3より排ガス中のNOx濃度は若干増大したけれども、その濃度は、排ガス量によって規制を受ける産業用ボイラーのうち、脱硝対策を要する中小型ボイラーの排出規模を十分にクリアする濃度であった。   On the other hand, as is clear from FIG. 6, in Comparative Example 3 in which only the combustion coal was used without mixing the combustion aid (0%) with the combustion coal, the NOx concentration in the exhaust gas was 170 ppm (oxygen) 6% conversion: 140 to 160 ppm), whereas in Examples 4 to 6 in which the combustion coal for combustion (10%) was mixed with the combustion coal, the NOx concentration in the exhaust gas was 170 to 220 ppm (oxygen concentration) 6% conversion: 160 to 200 ppm), which is slightly higher than Comparative Example 3. In this manner, the NOx concentration in the exhaust gas was slightly increased in Comparative Examples 3 to 6 in Examples 4 to 6 due to the improvement in combustibility by co-combustion of the combustion aid and combustion coal, but the concentration was regulated by the amount of exhaust gas. Among industrial boilers we received, the concentration was sufficient to clear the emission scale of small and medium boilers that require denitration measures.

<試験6及び評価>
上記試験4と同様に、実施例4〜6の混合燃料と比較例3の単一燃料について燃焼試験を行った。この燃焼試験では、図2に示す循環流動層石炭燃焼炉10において、定点温度を850〜860℃の範囲に維持し、排ガス中の酸素濃度を3〜4%の範囲に維持した条件下で供給した燃料16を流動子(微粒アルミナ)17とともに、燃焼炉本体13、1次サイクロン11及びループする14を通して循環させ、循環流動層石炭燃焼炉10の循環燃焼系外に排出されたサイクロン灰及びバグ灰を2次サイクロン12及びバグフィルター19によってそれぞれ回収し、サイクロン灰及びバグ灰の回収量を測定してそれらの回収割合を算出した。その結果を表5に示す。なお、排ガス中の酸素濃度は、2次サイクロン12から排出された排ガスが流入するガスクーラ18と、このガスクーラ18を通過した排ガスが流入するバグフィルター19との間の排気管から抽出して分析した。また、バグ灰は燃焼灰からの2次サイクロンによる、粒径10〜20μmをカットポイントとして分級された微粒子体である。更に、表4中のPSはペーパースラッジである。
<Test 6 and evaluation>
Similarly to the test 4, the combustion test was performed on the mixed fuels of Examples 4 to 6 and the single fuel of Comparative Example 3. In the combustion test, in the circulating fluidized bed coal combustion furnace 10 shown in FIG. 2, the fixed point temperature is maintained in the range of 850 to 860 ° C., and the oxygen concentration in the exhaust gas is maintained in the range of 3 to 4%. The fuel 16 is circulated through the combustion furnace main body 13, the primary cyclone 11 and the loop 14 together with the fluidizer (fine alumina) 17, and the cyclone ash and bugs discharged out of the circulating combustion system of the circulating fluidized bed coal combustion furnace 10. The ash was collected by the secondary cyclone 12 and the bag filter 19 respectively, and the collected amounts of the cyclone ash and the bag ash were measured to calculate the collection ratios. The results are shown in Table 5. The oxygen concentration in the exhaust gas was extracted and analyzed from the exhaust pipe between the gas cooler 18 into which the exhaust gas discharged from the secondary cyclone 12 flows and the bag filter 19 into which the exhaust gas that passed through the gas cooler 18 flows. . Bag ash is a fine particle classified by a secondary cyclone from combustion ash with a particle size of 10 to 20 μm as a cut point. Furthermore, PS in Table 4 is paper sludge.

表5から明らかなように、燃焼用石炭に混焼用燃焼助剤(0%)を混合せずに、燃焼用石炭のみを用いた比較例3では、バグ灰:サイクロン灰が質量比で34.8:65.2であったのに対し、燃焼用石炭に混焼用燃焼助剤(10%)を混合した実施例4〜6では、バグ灰:サイクロン灰が質量比で(15.5〜32.7):(86.0〜67.3)となり、実施例4〜6では、分配傾向がサイクロン灰への移行が多くなった。特に、KCM炭及び豪州炭Aを混焼用燃焼助剤の原料とする実施例4及び6ではその80%以上がサイクロン灰として回収され、豪州炭Aを混焼用燃焼助剤の原料とする実施例6ではその80%近くがサイクロン灰として回収された。   As is apparent from Table 5, in Comparative Example 3 in which only the combustion coal was used without mixing the combustion coal (0%) with the combustion coal, the mass ratio of bag ash: cyclone ash was 34. 8 to 65.2, but in Examples 4 to 6 in which combustion coal was mixed with combustion coal (10%), the mass ratio of bug ash: cyclone ash was (15.5 to 32). 7): (86.0 to 67.3), and in Examples 4 to 6, the distribution tendency increased to the cyclone ash. In particular, in Examples 4 and 6 in which KCM coal and Australian coal A are used as raw materials for combustion aids for mixed combustion, 80% or more of them are recovered as cyclone ash, and Examples in which Australian coal A is used as raw materials for combustion aids for mixed combustion In No. 6, nearly 80% was recovered as cyclone ash.

<試験7及び評価>
試験6にて回収された実施例4及び6の混合燃料の燃焼によるバグ灰と比較例3の単一燃料の燃焼によるバグ灰の粒径分布をそれぞれ測定した。その結果を図7(a)及び図8(a)に示す。また、循環流動層石炭燃焼炉におけるバグ灰の粒子密度(g/cm3)を測定した。その結果を表6に示す。
<Test 7 and evaluation>
The particle size distributions of bag ash obtained by burning the mixed fuels of Examples 4 and 6 recovered in Test 6 and bag ash obtained by burning the single fuel of Comparative Example 3 were measured. The results are shown in FIGS. 7 (a) and 8 (a). Moreover, the particle density (g / cm < 3 >) of the bag ash in a circulating fluidized bed coal combustion furnace was measured. The results are shown in Table 6.

図7(a)及び図8(a)から明らかなように、バグ灰は、混焼用燃焼助剤に使用する炭種及び炭質とは関係なく、混焼用燃焼助剤中の石炭粉末として易燃焼性のKCM炭(燃料比:0.98)を用いた実施例4、及び難燃焼性の豪州炭A(燃料比1.74)を用いた実施例6の混合燃料の混焼の場合、混焼用燃焼助剤を用いずに豪州炭Aのみを燃焼用石炭とした比較例3の単一燃料の燃焼と比較して、モード径(最高頻度%)がその値を増しながら、メジアン径とともに同じような値に移行する粒径分布を呈した。このように、実施例4及び6では、バグ灰のモード径が微粒側に移行しながら、しかも粒径分布幅も狭く、性状的に安定した微粉体の粒度構成を呈した。   As is clear from FIGS. 7 (a) and 8 (a), bag ash is easily burned as coal powder in the combustion aid for mixed combustion, regardless of the type and quality of coal used in the combustion aid for mixed combustion. In the case of mixed combustion of the mixed fuel of Example 4 using the natural KCM charcoal (fuel ratio: 0.98) and Example 6 using the non-combustible Australian coal A (fuel ratio 1.74) Compared with the combustion of single fuel of Comparative Example 3 in which only Australian coal A was used as combustion coal without using combustion aids, the mode diameter (maximum frequency%) increased with that value and the same as the median diameter. The particle size distribution shifted to the correct value. Thus, in Examples 4 and 6, the mode diameter of the bag ash was shifted to the fine particle side, and the particle size distribution range was narrow, and the particle size constitution of finely stable powder was exhibited.

表6では、混焼用燃焼助剤を燃焼用石炭に混合した実施例4〜6のバグ灰の粒子密度は、いずれも混焼用燃焼剤を燃焼用石炭に混合せずに燃焼用石炭のみを用いた比較例3のバグ灰の粒子密度と比較して、僅かな差ながらも大きくなり、その粒子密度値の有意差によって、上記バグ灰の粒径分布におけるモード径の微粒側への移行を裏付けている。   In Table 6, the particle densities of the bag ash of Examples 4 to 6 in which the combustion aid for mixed combustion is mixed with the combustion coal are all used only for the combustion coal without mixing the mixed combustion combustion agent with the combustion coal. Compared with the particle density of the bag ash of Comparative Example 3, the difference was larger, but a significant difference in the particle density value confirmed the transition of the mode diameter to the fine particle side in the particle size distribution of the bag ash. ing.

<試験8及び評価>
試験6にて回収された実施例4及び6の混合燃料の燃焼によるサイクロン灰と比較例3の単一燃料の燃焼によるサイクロン灰の粒径分布をそれぞれ測定した。その結果を図7(b)及び図8(b)に示す。また、試験6にて回収された実施例4〜6のサイクロン灰と比較例3のサイクロン灰の粒子径、形状及び粒子の集合状況等を顕微鏡で観察した。その結果を図9に示す。
<Test 8 and evaluation>
The particle size distributions of the cyclone ash by combustion of the mixed fuel of Examples 4 and 6 recovered in Test 6 and the cyclone ash by combustion of the single fuel of Comparative Example 3 were measured, respectively. The results are shown in FIGS. 7 (b) and 8 (b). Moreover, the particle diameter of the cyclone ash of Examples 4-6 collect | recovered in the test 6 and the cyclone ash of the comparative example 3, the shape, the aggregate | assembly condition of a particle, etc. were observed with the microscope. The result is shown in FIG.

図7(b)及び図8(b)から明らかなように、混焼用燃焼助剤を燃焼用石炭に混合した実施例4〜6のサイクロン灰の粒径分布は、粒径分布幅が広く、また混焼用燃焼剤を燃焼用石炭に混合せずに燃焼用石炭のみを用いた比較例3のサイクロン灰の粒径分布と比較して、メジアン径及びモード径がともに大きくなり、モード径はその頻度%を低めながら、粗粒側粒子径の頻度を高める特徴的な粒径分布を呈した。このように実施例4及び6のサイクロン灰は、比較例3のサイクロン灰より、全体として粗粒化した粒径分布となった。   As apparent from FIGS. 7B and 8B, the particle size distribution of the cyclone ash of Examples 4 to 6 in which the combustion aid for mixed combustion is mixed with the combustion coal has a wide particle size distribution range. Moreover, compared with the particle size distribution of the cyclone ash of Comparative Example 3 in which only the combustion coal is used without mixing the combustion agent for combustion with the combustion coal, both the median diameter and the mode diameter are increased. While decreasing the frequency%, a characteristic particle size distribution that increases the frequency of the coarse particle size was exhibited. Thus, the cyclone ash of Examples 4 and 6 had a particle size distribution that was coarser as a whole than the cyclone ash of Comparative Example 3.

図9から明らかなように、比較例3のサイクロン灰では、粒界の明瞭でない広い粒径範囲にわたる粒子の集合体として観察された(図9(a))。これに対して、実施例4〜6のサイクロン灰では、比較例3と同様に、粒径分布は広いけれども、粒子全体がその粒界をより明瞭にした集合体として観察された(図9(b)〜(d))。このことは、実施例4〜6では、サイクロン灰の粒子が燃焼中に軽度な焼結を受けるとともに、通常の循環流動層石炭燃焼炉の燃焼灰には見られない、灰粒子間の溶結による部分的な粗粒化も示唆し、混焼用燃焼助剤中のペーパースラッジの原料組成がもたらす粒度構成の改善効果として、その重要な知見が得られた。また、燃焼温度が850℃と比較的低く、燃焼灰が循環流動層石炭燃焼炉外で2次サイクロンとバグフィルター集塵機の2段階で回収されたものであるため、燃焼温度が1450℃以上の高温となる微粉炭燃焼炉における燃焼灰のように、石炭の含有鉱物、カオリナイト・イライト粘土鉱物等の形態変化(結晶構造の変化による別な鉱物生成:ムライト、無定形石英、アルミノ・けい酸塩等)は生成されないと考えられた。事実、いずれの灰とも、カオリナイトからメタ・カオリナイトの生成はX線回折分析により確認できたけれども、焼結・溶融によるムライト等の生成は見られなかった。   As is clear from FIG. 9, the cyclone ash of Comparative Example 3 was observed as an aggregate of particles over a wide particle size range with unclear grain boundaries (FIG. 9 (a)). On the other hand, in the cyclone ash of Examples 4 to 6, as in Comparative Example 3, although the particle size distribution was wide, the entire particles were observed as aggregates with clearer grain boundaries (FIG. 9 ( b) to (d)). This is because in Examples 4 to 6, the cyclone ash particles are slightly sintered during the combustion, and are not found in the combustion ash of a normal circulating fluidized bed coal combustion furnace, due to the welding between the ash particles. It also suggested partial coarsening, and the important findings were obtained as an effect of improving the particle size composition brought about by the raw material composition of the paper sludge in the combustion aid for mixed combustion. In addition, the combustion temperature is relatively low at 850 ° C., and the combustion ash is recovered outside the circulating fluidized bed coal combustion furnace in two stages, a secondary cyclone and a bag filter dust collector. Morphological changes such as coal-containing minerals, kaolinite illite clay minerals, etc. (other minerals generated by changes in crystal structure: mullite, amorphous quartz, aluminosilicates, etc.) Etc.) was not generated. In fact, in any ash, the formation of meta-kaolinite from kaolinite could be confirmed by X-ray diffraction analysis, but the formation of mullite or the like by sintering / melting was not observed.

<試験9及び評価>
試験6にて回収された、実施例4〜6の混合燃料の燃焼によるサイクロン灰及びバグ灰と、比較例3の単一燃料の燃焼によるサイクロン灰及びバグ灰とに、水及びセメントをそれぞれ貧配合して硬化体を調製し、この硬化体の圧壊強度をそれぞれ測定した。ここで、サイクロン灰については、上記硬化体の試験サンプルは、質量比で燃焼灰100%に、水30%を配合し、更にセメントの配合割合を0%、5%及び10%と変更して配合した後に混合して、押出し成形(低圧成形)することにより、直径、厚さ及び質量がそれぞれ25mm、約2mm及び3gである硬化体を作製した。また、バグ灰については、上記硬化体の試験サンプルは、質量比で燃焼灰100%に、水30%とセメント5%とを配合した後に混合して、押出し成形(低圧成形)することにより、直径、厚さ及び質量がそれぞれ25mm、約2mm及び3gである硬化体を作製した。そして、圧壊強度の測定は、硬化体を1週間静置した後に、鋼球状圧子の押込み法により行った。具体的には、硬化体上面に直径10mmの鋼球状圧子を押付けて、次第にその荷重を増加させていき、硬化体が破壊したときの荷重を圧壊強度とした。その結果を図10に示す。なお、上記圧壊強度は、燃焼灰(サイクロン灰及びバグ灰)毎やセメントの配合割合毎に5回ずつ行い、それらの平均値を算出した。一方、上記サイクロン灰及びバグ灰中のSiO2、Al23及びCaOの含有割合をそれぞれ分析した。その結果を表7に示す。なお、表7中のPSはペーパースラッジである。
<Test 9 and evaluation>
Water and cement were poor in the cyclone ash and bag ash obtained by burning the mixed fuels of Examples 4 to 6 and the cyclone ash and bag ash obtained by burning the single fuel of Comparative Example 3 collected in Test 6, respectively. The cured body was prepared by blending, and the crushing strength of the cured body was measured. Here, for the cyclone ash, the test sample of the above cured body was changed to a mass ratio of 100% combustion ash and 30% water, and the cement mixing ratio was changed to 0%, 5% and 10%. After mixing and mixing, extrusion molding (low pressure molding) was carried out to produce a cured product having a diameter, thickness and mass of 25 mm, about 2 mm and 3 g, respectively. In addition, for the bag ash, the test sample of the above-mentioned cured body was mixed by mixing 30% water and 5% cement with 100% combustion ash by mass ratio, and extrusion molding (low pressure molding). A cured body having a diameter, thickness and mass of 25 mm, approximately 2 mm and 3 g was produced. And the measurement of crushing strength was performed by the indentation method of the steel spherical indenter, after leaving a hardening body still for one week. Specifically, a steel spherical indenter having a diameter of 10 mm was pressed against the upper surface of the cured body to gradually increase the load, and the load when the cured body was broken was defined as the crushing strength. The result is shown in FIG. In addition, the said crushing strength was performed 5 times for every combustion ash (cyclone ash and bug ash) and every mixing ratio of cement, and those average values were calculated. On the other hand, the content ratios of SiO 2 , Al 2 O 3 and CaO in the cyclone ash and the bag ash were analyzed, respectively. The results are shown in Table 7. In Table 7, PS is paper sludge.

図10から明らかなように、サイクロン灰については、セメントを全く配合しなかった場合、実施例4〜6の混合燃料の燃焼によるサイクロン灰を用いた硬化体の圧壊強度は、比較例3の単一燃料の燃焼によるサイクロン灰を用いた硬化体の圧壊強度と略同一であった。しかし、セメントを貧配合(セメント配合:5%)した場合、比較例3の単一燃料の燃焼によるサイクロン灰を用いた硬化体の圧壊強度は0.6kgと低かったのに対し、実施例4〜6の混合燃料の燃焼によるサイクロン灰を用いた硬化体の圧壊強度は1.5〜4.1kgと増大した。また、セメントを貧配合(セメント配合:10%)した場合、比較例3の単一燃料の燃焼によるサイクロン灰を用いた硬化体の圧壊強度は2.4kgと低かったのに対し、実施例4〜6の混合燃料の燃焼によるサイクロン灰を用いた硬化体の圧壊強度は4.8〜11.2kgと増大した。その理由としては、実施例4〜6の混合燃料の燃焼によるサイクロン灰では、その粒界焼結によってポゾラン反応性が付与され、また表7に示すように、混焼用燃焼助剤中の炭酸カルシウム由来の硬化反応が硬化体の強度と深く関わり、生石灰の高い含有量に加え、粒度構成の改善等の燃焼灰の性状改善・改質によって、セメント貧配合の硬化体の強度が高められたと考えられる。   As is clear from FIG. 10, for the cyclone ash, when no cement was blended, the crushing strength of the cured body using the cyclone ash by the combustion of the mixed fuel of Examples 4 to 6 was the same as that of Comparative Example 3. It was almost the same as the crushing strength of the hardened body using cyclone ash by combustion of one fuel. However, when cement was poorly blended (cement blending: 5%), the crushing strength of the cured body using cyclone ash by combustion of a single fuel in Comparative Example 3 was as low as 0.6 kg, whereas Example 4 The crushing strength of the cured body using cyclone ash by combustion of the mixed fuel of -6 increased to 1.5-4.1 kg. In addition, when the cement was poorly blended (cement blending: 10%), the crushing strength of the cured body using cyclone ash by combustion of the single fuel of Comparative Example 3 was as low as 2.4 kg, whereas Example 4 The crushing strength of the cured product using cyclone ash by combustion of the mixed fuel of -6 increased to 4.8-11.2 kg. The reason for this is that in the cyclone ash produced by combustion of the mixed fuels of Examples 4 to 6, the pozzolanic reactivity is imparted by the grain boundary sintering, and as shown in Table 7, the calcium carbonate in the combustion aid for mixed combustion is used. It is thought that the strength of the hardened body containing poor cement was increased by the improvement of the properties of the combustion ash, such as the improvement of the particle size composition, in addition to the high content of quick lime, in addition to the high content of quicklime. It is done.

一方、バグ灰については、セメントを貧配合(セメント配合:5%)した場合、比較例3の単一燃料の燃焼によるバグ灰を用いた硬化体の圧壊強度は1.2kgと低かったのに対し、実施例4〜6の混合燃料の燃焼によるバグ灰を用いた硬化体の圧壊強度は2.2〜3.2kgと増大した。その理由としては、上記サイクロン灰を用いた硬化体に係る理由のうち、微粒体であるバグ灰では、特に灰粒界の軽度な焼結や、粒度構成の改善による影響が大きいと考えられる。   On the other hand, for the bag ash, when the cement was poorly blended (cement blend: 5%), the crushing strength of the cured body using the bag ash from the combustion of a single fuel in Comparative Example 3 was as low as 1.2 kg. On the other hand, the crushing strength of the cured body using bag ash by the combustion of the mixed fuels of Examples 4 to 6 increased to 2.2 to 3.2 kg. As the reason, among the reasons relating to the cured body using cyclone ash, it is considered that bug ash which is a fine particle is particularly affected by mild sintering of the ash grain boundary and improvement of the particle size composition.

<試験10及び評価>
試験6にて回収された実施例4及び6の混合燃料の燃焼によるサイクロン灰及びバグ灰と比較例3の単一燃料の燃焼によるサイクロン灰及びバグ灰における、溶出性微量金属成分を分析した。その結果を表8に示す。ここで、上記溶出性微量金属成分は、石炭燃焼灰の処理・利用にあたって、一般的に検討される溶出試験の5元素(ヒ素(As)、セレン(Se)、六価クロム(Cr6+)、ホウ素(B)及びフッ素(F))である。これらの元素は、燃焼過程での揮発し易さから、グループ1(非揮発性元素)のCr6+と、グループ2(揮発―凝縮性元素)のAs、B及びSeと、グループ3(揮発―非凝縮性)のFとに分類される。なお、表8中のPSはペーパースラッジである。
<Test 10 and evaluation>
The elution trace metal components in the cyclone ash and bag ash obtained by burning the mixed fuels of Examples 4 and 6 recovered in Test 6 and the cyclone ash and bag ash obtained by burning the single fuel of Comparative Example 3 were analyzed. The results are shown in Table 8. Here, the above-mentioned elution trace metal components are 5 elements (arsenic (As), selenium (Se), hexavalent chromium (Cr 6+ )) of elution tests generally examined in the treatment and utilization of coal combustion ash. , Boron (B) and fluorine (F)). These elements are easy to volatilize in the combustion process, so that Cr 6+ of group 1 (non-volatile element), As, B and Se of group 2 (volatile-condensable element), and group 3 (volatile) -Non-condensable) and F. In Table 8, PS is paper sludge.

表8から明らかなように、燃焼中での各元素の挙動を考察すると、揮発・非凝縮性元素のF(フッ素)は、比較例3では、サイクロン灰に捕捉されずに、その大部分がバグ灰への濃縮・付着したのに対し、実施例4〜6では、サイクロン灰及びバグ灰に捕捉され、固定化された。特に、混焼用燃焼助剤の石炭粉末としてKCM炭を用いた実施例4において、F(フッ素)の溶出が抑制されることが分かった。また、比較例3のサイクロン灰及びバグ灰には見らない非揮発性元素のCr6+(六価クロム)は、混焼用燃焼助剤の石炭粉末として豪州炭Bを用いた実施例5や、混焼用燃焼助剤の石炭粉末として豪州炭Aを用いた実施例6では、サイクロン灰及びバグ灰への土壌環境基準値以上の新たな濃縮が確認された。これは、混焼用燃焼助剤由来のCa(カルシウム)分による石炭由来のCr(クロム)の酸化が促進した結果であると推測する。このような燃焼灰の生成過程での微量元素の挙動は、難燃性の燃焼用石炭と混焼用燃焼助剤との混焼によって形成された複合燃焼場での各物質間の相互作用の証左として見ることができ、本願技術の複合系燃焼助剤(混焼用燃料助剤)の製造とその混焼方法による新規な燃焼メカニズム(複合燃焼場)からもたらされたものと考える。 As is apparent from Table 8, when the behavior of each element during combustion is considered, F (fluorine), which is a volatile / non-condensable element, is not captured by cyclone ash in Comparative Example 3 and most of it is captured. In contrast to concentration and adhesion to bag ash, in Examples 4 to 6, they were captured and immobilized by cyclone ash and bag ash. In particular, it was found that in Example 4 in which KCM coal was used as the coal powder for the combustion aid for mixed combustion, elution of F (fluorine) was suppressed. In addition, the non-volatile element Cr 6+ (hexavalent chromium) that is not found in the cyclone ash and the bag ash of Comparative Example 3 was used in Example 5 in which Australian Coal B was used as the coal powder for the combustion aid for mixed combustion. In Example 6 in which Australian coal A was used as the coal powder for the co-firing combustion aid, new concentration above the soil environment standard value in cyclone ash and bag ash was confirmed. This is presumed to be the result of the promotion of the oxidation of coal-derived Cr (chromium) by the Ca (calcium) content derived from the combustion aid for mixed combustion. The behavior of trace elements during the generation of such combustion ash is evidence of the interaction between each substance in the combined combustion field formed by the co-firing of flame-retardant combustion coal and co-firing combustion aid. It can be seen that this was brought about by the production of the composite combustion aid (fuel aid for co-firing) of the present technology and the new combustion mechanism (composite combustion field) by the co-firing method.

<実施例7>
先ず、表1のB製紙工場から排出されたペーパースラッジ(平均粒径:10mm以下)と、表2のKCM炭(平均粒径2mm以下)とを、質量比(乾燥ベース)が1:1となるように配合し、上記ペーパースラッジを解しながら混合して混合物を調製した。次いで、直径5mmのダイスを複数個有する押し出し成形機を用いて、上記混合物をペレット状に成形し、ペレット状の混合成形物を作製した。次に、この混合成形物をオーブンで含水率が7〜8%になるように乾燥して乾燥成形物を作製した後に、ダブルロール式高圧成形機により圧縮成形(線圧:3〜4トン/cm)して板状の圧縮成形物を作製した。そして、この板状の圧縮成形物を粉砕して、粒径5mm以下の混焼用燃焼助剤を得た。更に、この混焼用燃焼助剤を、5mm以下の粒径に調整した豪州炭Aと質量比で1:10の割合で混合した後に、この混合物において、粒径75μmの粉末が80%通過し、トップサイズが150μmとなり、平均粒径(Dp50)が約40μmとなるように微粉砕混合燃料を調整した。この微粉砕混合燃料を実施例7とした。
<Example 7>
First, the paper sludge (average particle diameter: 10 mm or less) discharged from the B paper mill in Table 1 and the KCM charcoal (average particle diameter of 2 mm or less) in Table 2 have a mass ratio (dry basis) of 1: 1. It mix | blended so that it might become, and it mixed, dissolving the said paper sludge, and prepared the mixture. Subsequently, the said mixture was shape | molded into the pellet form using the extrusion molding machine which has two or more dice | dies with a diameter of 5 mm, and the pellet-form mixed molded object was produced. Next, the mixed molded product was dried in an oven so that the water content was 7 to 8% to prepare a dried molded product, and then compression molded (linear pressure: 3 to 4 ton / s) by a double roll type high pressure molding machine. cm) to produce a plate-like compression molded product. Then, this plate-like compression molded product was pulverized to obtain a combustion aid for mixed firing having a particle size of 5 mm or less. Furthermore, after mixing this combustion aid for mixed combustion with Australian coal A adjusted to a particle size of 5 mm or less at a mass ratio of 1:10, 80% of powder having a particle size of 75 μm passes through this mixture. The finely pulverized mixed fuel was adjusted so that the top size was 150 μm and the average particle size (Dp50) was about 40 μm. This finely pulverized mixed fuel was designated as Example 7.

<実施例8>
先ず、表1のB製紙工場から排出されたペーパースラッジ(平均粒径:10mm以下)と、表2の豪州炭B(平均粒径2mm以下)とを、質量比(乾燥ベース)が1:1となるように配合したこと以外は、実施例7と同様にして圧縮成形物からなる混焼用燃焼助剤を得た。この混焼用燃焼助剤を、5mm以下の粒径に調整した豪州炭Aと質量比で1:10の割合で混合した後に、この混合物において、粒径75μmの粉末が80%通過し、トップサイズが150μmとなり、平均粒径(Dp50)が約40μmとなるように微粉砕混合燃料を調整した。この微粉砕混合燃料を実施例8とした。
<Example 8>
First, the paper sludge (average particle size: 10 mm or less) discharged from the B paper mill in Table 1 and Australian charcoal B (average particle size of 2 mm or less) in Table 2 have a mass ratio (dry basis) of 1: 1. A combustion aid for co-firing consisting of a compression-molded product was obtained in the same manner as in Example 7, except that it was blended so that After mixing this combustion aid for co-firing with Australian coal A adjusted to a particle size of 5 mm or less in a mass ratio of 1:10, 80% of powder with a particle size of 75 μm passes through the top size. The finely pulverized mixed fuel was adjusted so that the average particle size (Dp50) was about 40 μm. This finely pulverized mixed fuel was designated as Example 8.

<比較例4>
混焼用燃焼助剤を混合せずに、5mm以下の粒径に調整した豪州炭Aにおいて、粒径75μmの粉末が80%通過し、トップサイズが150μmとなり、平均粒径(Dp50)が約40μmとなるように微粉砕単一燃料を調整した。この微粉砕単一燃料を比較例4とした。
<Comparative example 4>
In Australian coal A adjusted to a particle size of 5 mm or less without mixing the combustion aid for mixed firing, 80% of the powder with a particle size of 75 μm passes, the top size becomes 150 μm, and the average particle size (Dp50) is about 40 μm. The finely pulverized single fuel was adjusted so that This finely pulverized single fuel was designated as Comparative Example 4.

<試験11及び評価>
実施例7及び8の微粉砕混合燃料と、比較例4の微粉砕単一燃料を、図3に示す小型微粉炭燃焼炉40に供給した。具体的には、上記燃料41を、火炉投入熱量を一定に保った条件下で(バーナー近傍温度:1400℃)、バーナー43に旋回を与えながら供給し、どの運転条件下においても、排ガス中の酸素濃度を4.2%に維持した状態で燃焼試験を行った。そして、上記燃料41の燃焼中の給炭速度を算出し、燃焼後の灰中の未燃分の測定し、この未燃分から燃焼効率を算出した。その結果を表9に示す。なお、灰中の未燃分は、微粉炭燃焼条件、1次及び2次空気をそれぞれ79.3%とし、二段燃焼空気を20.7%としたときの測定値である。また、二段燃焼させたときのNOx発生量(ppm)と未燃炭素率(%)の関係を図11に示す。
<Test 11 and evaluation>
The finely pulverized mixed fuel of Examples 7 and 8 and the finely pulverized single fuel of Comparative Example 4 were supplied to a small pulverized coal combustion furnace 40 shown in FIG. Specifically, the fuel 41 is supplied while keeping the furnace heat input constant (burner vicinity temperature: 1400 ° C.) while swirling the burner 43, and under any operating condition, A combustion test was conducted with the oxygen concentration maintained at 4.2%. Then, the coal feed rate during combustion of the fuel 41 was calculated, the unburned content in the ash after combustion was measured, and the combustion efficiency was calculated from this unburned content. The results are shown in Table 9. In addition, the unburned part in ash is a measured value when pulverized coal combustion conditions are 79.3% for primary and secondary air and 20.7% for two-stage combustion air. Further, FIG. 11 shows the relationship between the NOx generation amount (ppm) and the unburned carbon ratio (%) when two-stage combustion is performed.

表9から明らかなように、比較例4の微粉砕単一燃料の燃焼における給炭速度は、5.85kg/時であったのに対し、実施例7及び8の微粉砕混合燃料の燃焼における給炭速度は、それぞれ6.05kg/時及び6.00kg/時と僅かに増大した。しかし、実施例7及び8では、未燃分とこれから算出される燃焼効率から、燃焼性を改善できたことが分かった。従って、実施例7及び8では、微粉砕混合燃料中に非燃料のペーパースラッジを5%程度含むことを考え合せると、その混焼による効果の一つして燃焼用石炭の使用量の節減を期待できる。また、実施例7及び8では、乾燥ベースで、B製紙工場から排出されたペーパースラッジの木質繊維質が44質量%と、A製紙工場から排出されたペーパースラッジの木質繊維質29%より含有量が多く、その増量分によるサーマルリサイクルを期待できる。   As is clear from Table 9, the coal feed rate in the combustion of the finely pulverized single fuel of Comparative Example 4 was 5.85 kg / hour, whereas in the combustion of the finely pulverized mixed fuel of Examples 7 and 8 The coal feed rate increased slightly to 6.05 kg / hour and 6.00 kg / hour, respectively. However, in Examples 7 and 8, it was found that the combustibility could be improved from the unburned content and the combustion efficiency calculated therefrom. Therefore, in Examples 7 and 8, considering that about 5% of non-fuel paper sludge is contained in the finely pulverized mixed fuel, one of the effects of the mixed combustion is expected to reduce the use amount of combustion coal. it can. In Examples 7 and 8, 44% by mass of the wood sludge of paper sludge discharged from the B paper mill and 29% of the wood sludge of paper sludge discharged from the A paper mill on a dry basis. There are many, and thermal recycling with the increased amount can be expected.

図11から明らかなように、実施例7及び8の微粉砕混合燃料も比較例4の微粉砕単一燃料も燃焼(排ガス中の酸素濃度:4.2%)に要する空気量のうち、二段燃焼用空気量の占める割合が大きくなるとともに、NOxは減少したけれども、実測値の灰中未燃分からの未燃炭素率は増大した。そのような傾向を示す中で、実施例7及び8の微粉砕混合燃料は、比較例4の微粉砕単一燃料と比較して、未燃炭素率が2%以下の範囲内においてNOxが約100ppm低減することが分かった。また、難燃焼性の燃焼用石炭の燃焼における実用的な数値として、未燃炭素率を1.0%とすると、実施例7及び8の混焼用燃焼助剤を燃焼用石炭に混合して混焼したときのNOx濃度が約250ppmに止まるのに対し、比較例4の燃焼用石炭のみを燃焼したときのNOx濃度を約250ppmとするには、未燃炭素率を2.0%までに二段燃焼を強める必要がある。この未燃炭素率1%の差は、石炭使用量の節減及び燃焼灰の利用の性状・品質上、与える影響は大きい。即ち、予めペーパースラッジと石炭粉末とが均一に混合され、高圧成形された実施例7及び8の混焼用燃焼助剤は、事前の難燃性の燃焼用石炭との混合微粉砕時に、微粉炭中に均一に分散した状態で燃焼炉に供給される結果、微粉炭の粒子と、燃焼助剤の組成物由来の原料単独分離粒子と、その複合粒子との相互作用よる「複合燃焼場」の形成と深く係わると考えられる。従って、そのような燃焼場の形成は、乾燥・粉砕等の処理に技術上の大きな難点があるペーパースラッジの単なる難燃焼性の燃焼用石炭との混焼では難しく、本発明の混焼用燃焼助剤との混焼によってこそ、着火性及び燃焼性の改善とともに、燃焼灰の利用上の性状改善・改質に係る多面的効果がもたらされると考えられる。   As is apparent from FIG. 11, the finely pulverized mixed fuel of Examples 7 and 8 and the finely pulverized single fuel of Comparative Example 4 are two of the air amounts required for combustion (oxygen concentration in exhaust gas: 4.2%). Although the proportion of the stage combustion air amount increased and NOx decreased, the unburned carbon ratio from the unburned ash content in the measured value increased. In such a tendency, the finely pulverized mixed fuels of Examples 7 and 8 were compared with the finely pulverized single fuel of Comparative Example 4 and the NOx was about 2% within the range where the unburned carbon ratio was 2% or less. It was found to reduce by 100 ppm. Moreover, as a practical numerical value in the combustion of the incombustible combustion coal, when the unburned carbon ratio is 1.0%, the combustion aid for mixed combustion of Examples 7 and 8 is mixed with the combustion coal and mixed combustion. In order to reduce the NOx concentration to about 250 ppm when only the combustion coal of Comparative Example 4 is burned, while the NOx concentration is about 250 ppm, the unburned carbon ratio is reduced to 2.0%. It is necessary to strengthen combustion. This difference in the unburned carbon ratio of 1% has a great effect on the reduction of coal consumption and the properties and quality of the use of combustion ash. In other words, the co-firing combustion aids of Examples 7 and 8 in which paper sludge and coal powder were uniformly mixed in advance and formed at high pressure were mixed with pulverized coal in advance with the flame-retardant combustion coal. As a result of being supplied to the combustion furnace in a state of being uniformly dispersed therein, the pulverized coal particles, the single separated particles of the raw material derived from the composition of the combustion aid, and the interaction between the composite particles and the "composite combustion field" It is thought to be deeply related to formation. Therefore, it is difficult to form such a combustion field by co-firing paper sludge with mere non-combustible combustion coal, which has a great technical difficulty in processing such as drying and pulverization. It is thought that the co-firing together with the improvement of ignitability and flammability, as well as the multifaceted effects related to the property improvement / reformation in the use of combustion ash.

<試験12及び評価>
実施例7及び8の微粉砕混合燃料と、比較例4の微粉砕単一燃料を、図3に示す小型微粉炭燃焼炉40に供給して、各燃料41の微粉炭燃焼試験(一段燃焼条件)を行い、得られた排ガス中のSO2濃度を測定し、この排ガス中のSO2濃度と理論SO2濃度とから求められるSO2転換率を算出した。その結果を表10に示す。
<Test 12 and evaluation>
The finely pulverized mixed fuels of Examples 7 and 8 and the finely pulverized single fuel of Comparative Example 4 are supplied to the small pulverized coal combustion furnace 40 shown in FIG. The SO 2 concentration in the obtained exhaust gas was measured, and the SO 2 conversion rate obtained from the SO 2 concentration and the theoretical SO 2 concentration in the exhaust gas was calculated. The results are shown in Table 10.

表10から明らかなように、実施例7及び8と比較例4では、SO2転換率からの脱硫率が6.8〜15.2%となり、循環流動層石炭燃焼炉における高い脱硫率と比較して、混焼用燃焼助剤の燃焼用石炭との混焼による効果は明確に確認されなかった。これは、脱硫作用をもたらす混焼用燃焼助剤原料に含まれるペーパースラッジ中の炭酸カルシウム由来のCaO粒子が乱流炉内の高温部(1400℃付近)を通過することにより焼結して、反応性が低下したためであると考えられる。 As is clear from Table 10, in Examples 7 and 8 and Comparative Example 4, the desulfurization rate from the SO 2 conversion rate is 6.8 to 15.2%, which is compared with the high desulfurization rate in the circulating fluidized bed coal combustion furnace. Thus, the effect of co-firing with the combustion coal of the co-firing combustion aid was not clearly confirmed. This is because the calcium carbonate-derived CaO particles in the paper sludge contained in the combustion aid raw material for mixed combustion that brings about the desulfurization action sinters by passing through the high temperature part (around 1400 ° C.) in the turbulent flow furnace. This is thought to be due to a decrease in sex.

<試験13及び評価>
試験11にて回収された実施例7の微粉砕混合燃料の燃焼による燃焼灰と比較例4の微粉砕単一燃料の燃焼による燃焼灰の粒径分布をそれぞれ測定した。その結果を図12に示す。
<Test 13 and evaluation>
The particle size distributions of the combustion ash obtained by combustion of the finely pulverized mixed fuel of Example 7 recovered in Test 11 and the combustion ash obtained by combustion of the finely pulverized single fuel of Comparative Example 4 were measured. The result is shown in FIG.

図12から明らかなように、混焼用燃焼助剤を用いずに燃焼用石炭のみを用いた比較例4の微粉砕単一燃料を燃焼して得られた燃焼灰の粒度構成は、混焼用燃焼助剤を燃焼用石炭に混合した実施例7の微粉砕混合燃料の混焼により改善されたことが分かった。即ち、実施例7の混焼による燃焼灰では、比較例4の燃焼による燃焼灰と同様に約15μmをモード径として、その頻度を高めながら、実施例7の混焼による燃焼灰は、粗粒側の40〜160μm間の粒子が減少する粒径分布を呈した。これは、難燃焼性の豪州炭Aは揮発分が少ない上に、膨張性及び弱粘結性を有するため、実施例7の混焼による燃焼灰は、高温燃焼過程で、その粗粒側に入ってくる多孔質チャー(未燃炭素)及びガラス質溶融多発泡粒子が、燃焼助剤混焼によって粗粒子チャー生成の抑制とともに、発泡粗粒子の分裂が起こり、細粒側に移行したと考えられる。このような粒度構成の改善と燃焼性が深く係わるとすれば、それは、試験11における表9に示すように、微粉炭の燃焼灰中の未燃分の比較で、比較例4の燃焼による燃焼では9.4%と多かったのに対し、実施例7の混焼による燃焼では4.5%に減少したこともその裏付けと考えられる。   As is clear from FIG. 12, the particle size constitution of the combustion ash obtained by burning the finely pulverized single fuel of Comparative Example 4 using only the combustion coal without using the combustion aid for mixed combustion is the combustion for mixed combustion. It was found that this was improved by the co-firing of the finely pulverized mixed fuel of Example 7 in which the auxiliary agent was mixed with combustion coal. That is, in the combustion ash by the mixed combustion of Example 7, the combustion ash by the mixed combustion of Example 7 is on the coarse grain side while increasing the frequency with a mode diameter of about 15 μm as in the combustion ash by the combustion of Comparative Example 4. It exhibited a particle size distribution in which particles between 40 and 160 μm decreased. This is because the non-combustible Australian coal A has low volatility and also has expansibility and weak cohesion, so that the combustion ash produced by co-firing in Example 7 enters the coarse grain side during the high-temperature combustion process. It is considered that the porous char (unburned carbon) and the vitreous molten multi-foamed particles that are coming in are mixed with the combustion aid co-firing to suppress the formation of the coarse particle char, and the foamed coarse particles break up and shift to the fine particle side. If the improvement of the particle size composition and the combustibility are deeply related, as shown in Table 9 in Test 11, the combustion by combustion of Comparative Example 4 is a comparison of the unburned content in the combustion ash of pulverized coal. However, it is considered to be supported by the fact that it decreased to 4.5% in the combustion by the mixed combustion of Example 7 while it was as large as 9.4%.

<試験14及び評価>
試験11にて回収された実施例7及び8の微粉砕混合燃料の燃焼による燃焼灰と比較例4の微粉砕単一燃料の燃焼による燃焼灰に、水及びセメントをそれぞれ貧配合して硬化体を調製し、この硬化体の圧壊強度をそれぞれ測定した。ここで、上記硬化体の試験サンプルは、質量比で燃焼灰100%に、水30%及びセメント5%を配合した後に混合して、押出し成形(低圧成形)することにより、直径、厚さ及び質量がそれぞれ25mm、約2mm及び3gである硬化体を作製した。そして、圧壊強度の測定は、硬化体を1週間静置した後に、鋼球状圧子の押込み法により行った。具体的には、硬化体上面に直径10mmの鋼球状圧子を押付けて、次第にその荷重を増加させていき、硬化体が破壊したときの荷重を圧壊強度とした。その結果を図13に示す。なお、上記圧壊強度は、燃焼灰毎に5回ずつ行い、それらの平均値を算出した。一方、上記燃焼灰中のSiO2、Al23及びCaOの含有割合をそれぞれ分析した。その結果を表11に示す。なお、表11中のPSはペーパースラッジである。
<Test 14 and evaluation>
Cured ash obtained by burning the finely pulverized mixed fuel of Examples 7 and 8 recovered in Test 11 and the burned ash of the combusted ash of the finely pulverized single fuel of Comparative Example 4 by blending poorly with water and cement, respectively. Was prepared, and the crushing strength of the cured body was measured. Here, the test sample of the cured body was mixed by mixing 30% water and 5% cement with 100% combustion ash in a mass ratio, and extrusion molding (low pressure molding). Cured bodies having a mass of 25 mm, approximately 2 mm, and 3 g, respectively, were prepared. And the measurement of crushing strength was performed by the indentation method of the steel spherical indenter, after leaving a hardening body still for one week. Specifically, a steel spherical indenter having a diameter of 10 mm was pressed against the upper surface of the cured body to gradually increase the load, and the load when the cured body was broken was defined as the crushing strength. The result is shown in FIG. In addition, the said crushing strength was performed 5 times for every combustion ash, and those average values were computed. On the other hand, the content ratio of SiO 2 , Al 2 O 3 and CaO in the combustion ash was analyzed. The results are shown in Table 11. In Table 11, PS is paper sludge.

図13から明らかなように、セメントを貧配合(セメント配合:5%)した場合、比較例4の単一燃料の燃焼による燃焼灰を用いた硬化体の圧壊強度は3.8kgと低かったのに対し、実施例7及び8の混合燃料の燃焼による燃焼灰を用いた硬化体の圧壊強度は6.0kg及び6.8kgと増大した。また、破壊時のパターンも、比較例4の単一燃料の燃焼による燃焼灰を用いた硬化体では座屈破壊であったのに対し、実施例7及び8の混合燃料の燃焼による燃焼灰を用いた硬化体の圧壊では、脆性破壊であった。これは、ある程度の粒子間結合力を持った、実施例7及び8の混焼による燃焼灰への消石灰等の貧配合及び炭酸化処理による透水性及び保水性の新規な砂状造粒物の製造に関する可能性を示唆している。このような実施例7及び8の混焼による燃焼灰の硬化特性は、新規な燃焼助剤の混焼による性状、粒度構成の改善や、表11に示すように、上記混焼灰の主要化学組成分であるポゾラン反応性のシリカ(SiO2)、アルミナ(Al23)と燃焼助剤由来の消石灰(水酸化カルシウム:Ca(OH)2)の水和硬化反応によってもたらされたものと考える。 As is clear from FIG. 13, when the cement was poorly blended (cement blending: 5%), the crushing strength of the cured body using the combustion ash from the combustion of the single fuel of Comparative Example 4 was as low as 3.8 kg. On the other hand, the crushing strength of the hardened body using the combustion ash by the combustion of the mixed fuel of Examples 7 and 8 increased to 6.0 kg and 6.8 kg. Also, the pattern at the time of destruction was buckling failure in the cured body using the combustion ash from the combustion of a single fuel in Comparative Example 4, whereas the combustion ash from the combustion of the mixed fuel in Examples 7 and 8 was changed. The crushing of the cured body used was brittle fracture. This is the production of a novel sandy granulated product with water permeability and water retention by poor blending of slaked lime etc. to combustion ash by mixed firing of Examples 7 and 8 and carbonation treatment with a certain degree of interparticle bonding strength. Suggests possibilities. The curing characteristics of the combustion ash by the co-firing of Examples 7 and 8 described above are the improvement in the properties and particle size composition by the co-firing of the new combustion aid, and the main chemical composition of the co-fired ash as shown in Table 11. It is thought to be caused by a hydration hardening reaction of some pozzolanic reactive silica (SiO 2 ), alumina (Al 2 O 3 ) and slaked lime (calcium hydroxide: Ca (OH) 2 ) derived from a combustion aid.

<試験15及び評価>
試験11にて回収された実施例7及び8の微粉砕混合燃料の燃焼による燃焼灰と比較例4の微粉砕単一燃料の燃焼による燃焼灰における、溶出性微量金属成分を分析した。その結果を表12に示す。ここで、上記溶出性微量金属成分は、石炭燃焼灰の処理・利用にあたって、一般的に検討される溶出試験の5元素(ヒ素(As)、セレン(Se)、六価クロム(Cr6+)、ホウ素(B)及びフッ素(F))である。これらの元素は、燃焼過程での揮発し易さから、グループ1(非揮発性元素)のCr6+と、グループ2(揮発―凝縮性元素)のAs、B及びSeと、グループ3(揮発―非凝縮性)のFとに分類される。なお、表9中のPSはペーパースラッジである。また、表9の『<0.01』は土壌環境基準値であり、カッコ内の数値は実測値である。
<Test 15 and evaluation>
The elution trace metal component in the combustion ash by combustion of the finely pulverized mixed fuel of Examples 7 and 8 recovered in Test 11 and the combustion ash by combustion of the finely pulverized single fuel of Comparative Example 4 was analyzed. The results are shown in Table 12. Here, the above-mentioned elution trace metal components are 5 elements (arsenic (As), selenium (Se), hexavalent chromium (Cr 6+ )) of elution tests generally examined in the treatment and utilization of coal combustion ash. , Boron (B) and fluorine (F)). These elements are easy to volatilize in the combustion process, so that Cr 6+ of group 1 (non-volatile element), As, B and Se of group 2 (volatile-condensable element), and group 3 (volatile) -Non-condensable) and F. In Table 9, PS is paper sludge. Further, “<0.01” in Table 9 is a soil environment standard value, and the numerical value in parentheses is an actual measurement value.

表12から明らかなように、混焼用燃焼助剤を用いずに燃焼用石炭のみを用いた比較例4の微粉砕単一燃料の燃焼による燃焼灰では、上記5つの元素全てについて環境土壌基準値を超えたのに対して、混焼用燃焼助剤を燃焼用石炭に混合した実施例7及び8の微粉砕混合燃料の混焼による燃焼灰では、As(ヒ素)及びSe(セレン)とも環境土壌基準値未満であり、F(フッ素)の溶出量は比較例4より低減した。これは、実施例7及び8の混焼用燃焼助剤由来のCaOとの反応による難溶性の「Ca塩」化、例えばF(フッ素)がCaF2となって固定化したと考えられる。また、B(ホウ素)は、その溶出量は実施例7及び8と比較例4で変わらなかったのに対し、Cr6+(六価クロム)では、実施例7及び8が比較例4より増える結果となったけれども、これは、混焼用燃焼助剤由来のCaOによるCr(III)の酸化が促進した結果であると考えられる。このような各元素の挙動、溶出特性から、実施例7及び8の混焼用燃焼助剤の混焼による炉内処理だけでは、5元素全てを環境土壌基準値以下に低減することはできない。しかしながら、本発明の混焼技術による炉内処理では、燃焼灰の最終処理利用に向けた前処理への結び付けができることから、現状の性状、品質のバラつきの大きいものから、一定な幅を持った性状、品質のフライアッシュを安定的に量的供給する上で技術上の効果は大きい。 As is clear from Table 12, in the combustion ash produced by combustion of finely pulverized single fuel of Comparative Example 4 using only combustion coal without using the co-firing combustion aid, the environmental soil standard value for all the above five elements. In the combustion ash produced by co-firing the finely pulverized mixed fuel of Examples 7 and 8 in which the co-firing combustion aid is mixed with the coal for combustion, both As (arsenic) and Se (selenium) are environmental soil standards. The F (fluorine) elution amount was lower than that of Comparative Example 4. This is thought to be due to the insoluble “Ca salt” formed by the reaction with CaO derived from the combustion aid for mixed combustion in Examples 7 and 8, for example, F (fluorine) becomes CaF 2 and immobilized. In addition, the amount of elution of B (boron) did not change between Examples 7 and 8 and Comparative Example 4, whereas in Cr 6+ (hexavalent chromium), Examples 7 and 8 increased from Comparative Example 4. Although it was a result, it is thought that this is a result of promoting the oxidation of Cr (III) by CaO derived from the combustion aid for mixed combustion. From such behavior and elution characteristics of each element, all of the five elements cannot be reduced below the environmental soil standard value only by in-furnace treatment by co-firing of the combustion aids for co-firing in Examples 7 and 8. However, in the in-furnace treatment by the mixed combustion technology of the present invention, it can be linked to pretreatment for the final treatment use of combustion ash, so the current properties and quality variations have a certain range of properties. Therefore, the technical effect is large in stably supplying the fly ash of quality.

本発明の混焼用燃焼助剤は、全国広く、数多く立地する製紙工場から大量に排出するペーパースラッジの高次リサイクル、及び環境調和・省エネルギー型石炭利用分野における長年の緊急、かつ重要なニーズに対応する。このため製紙産業、石炭火力発電所を有する各種産業及び電力産業等の広い産業分野で大きな貢献をする。混焼用燃焼助剤の製造過程で同じく製造できる板状又はアーモンド状の高圧成形物は、流動床炉、循環流動層石炭燃焼炉、移床(ストーカ)式石炭燃焼炉、大型・中型の各種焼却炉、ガス化燃焼炉、及び微粉炭燃焼炉で利用でき、省エネルギー、環境対策上の寄与は大きい。   The combustion aid for co-firing of the present invention meets the long-standing urgent and important needs in the field of high-grade recycling of paper sludge discharged in large quantities from many paper mills nationwide and environmentally friendly and energy-saving coal applications. To do. For this reason, it contributes greatly in a wide industrial field such as paper industry, various industries having coal-fired power plants, and electric power industry. Plate-shaped or almond-shaped high-pressure molded products that can be produced in the same way as the combustion aids for mixed firing are fluidized bed furnaces, circulating fluidized bed coal combustion furnaces, moving bed (stoker) type coal combustion furnaces, and large and medium-sized incinerations. It can be used in furnaces, gasification combustion furnaces, and pulverized coal combustion furnaces, and contributes greatly to energy saving and environmental measures.

10 循環流動層石炭燃焼炉
16 燃料(燃焼用石炭と混焼用燃焼助剤の混合物)
40 微粉炭燃焼炉
41 微粉炭燃料(燃焼用石炭と混焼用燃焼助剤の混合・微粉砕物)
10 Circulating Fluidized Bed Coal Combustion Furnace 16 Fuel (mixture of combustion coal and co-firing combustion aid)
40 Pulverized coal combustion furnace 41 Pulverized coal fuel (mixed and finely pulverized product of combustion coal and co-firing combustion aid)

Claims (5)

燃焼用石炭と混合して前記燃焼用石炭の燃焼を支援するための混焼用燃焼助剤の製造方法であって、
圧搾して脱水した後解砕したペーパースラッジと石炭粉末とを混合した混合物を所定の長さの棒状に押出し成形した後、この成形物を切断し乾燥して含水率が7〜10%であるスティック状の乾燥成形物を製造し、この乾燥成形物を更にバインダレスで所定の圧力で圧縮成形して板状又はアーモンド状にしてなることを特徴とする混焼用燃焼助剤の製造方法
A method for producing a combustion aid for co-firing to mix with combustion coal and assist combustion of the combustion coal,
A mixture of paper sludge crushed and dehydrated and then pulverized and coal powder is extruded into a rod shape of a predetermined length, and then the molded product is cut and dried to have a moisture content of 7 to 10%. A method for producing a combustion aid for co-firing, characterized in that a stick-shaped dry molded article is produced, and the dry molded article is further compression-molded at a predetermined pressure without a binder to form a plate or almond .
平均粒径が50mm以下の燃焼用石炭と請求項1記載の方法で製造された混焼用燃焼助剤とを、前記燃焼用石炭100質量%に対して前記混焼用燃焼助剤が3〜25質量%の割合となるように混合することにより混合物を調製する工程と、
前記混合物を流動床炉、循環流動層石炭燃焼炉、移床式石炭燃焼炉、焼却炉又はガス化燃焼炉に供給して燃焼させる工程とを含む燃焼用石炭の燃焼方法。
Combustion coal having an average particle size of 50 mm or less and a combustion aid for mixed combustion produced by the method according to claim 1, wherein 3 to 25 mass of the combustion aid for mixed combustion is used with respect to 100 mass% of the combustion coal. A step of preparing a mixture by mixing in a ratio of%,
A method of burning coal for combustion, comprising a step of supplying the mixture to a fluidized bed furnace, a circulating fluidized bed coal combustion furnace, a moving bed coal combustion furnace, an incinerator or a gasification combustion furnace and burning the mixture.
平均粒径が50mm以下の燃焼用石炭と請求項記載の方法で製造された混焼用燃焼助剤とを、前記燃焼用石炭100質量%に対して前記混焼用燃焼助剤が3〜25質量%の割合となるように混合することにより混合物を調製する工程と、
前記混合物を流動床炉、循環流動層石炭燃焼炉、移床式石炭燃焼炉、焼却炉又はガス化燃焼炉に供給して燃焼させる工程とを含む燃焼用石炭の燃焼方法。
Combustion coal having an average particle size of 50 mm or less and a combustion aid for mixed combustion produced by the method according to claim 1 , wherein 3 to 25 mass of the combustion aid for mixed combustion is used with respect to 100 mass% of the combustion coal. A step of preparing a mixture by mixing in a ratio of%,
A method of burning coal for combustion, comprising a step of supplying the mixture to a fluidized bed furnace, a circulating fluidized bed coal combustion furnace, a moving bed coal combustion furnace, an incinerator or a gasification combustion furnace and burning the mixture.
平均粒径が50mm以下の燃焼用石炭と請求項1記載の方法で製造された混焼用燃焼助剤とを、前記燃焼用石炭100質量%に対して前記混焼用燃焼助剤が3〜25質量%の割合となるように混合することにより混合物を調製する工程と、
前記混合物を微粉砕することにより混合・微粉砕物を調製する工程と、
前記混合・微粉砕物を微粉炭燃焼炉に供給して燃焼させる工程とを含む燃焼用石炭の燃焼方法。
Combustion coal having an average particle size of 50 mm or less and a combustion aid for mixed combustion produced by the method according to claim 1, wherein 3 to 25 mass of the combustion aid for mixed combustion is used with respect to 100 mass% of the combustion coal. A step of preparing a mixture by mixing in a ratio of%,
A step of preparing a mixed and pulverized product by pulverizing the mixture;
A method for combusting coal for combustion, comprising a step of supplying the combusted and pulverized product to a pulverized coal combustion furnace and combusting it.
平均粒径が50mm以下の燃焼用石炭と請求項記載の方法で製造された混焼用燃焼助剤とを、前記燃焼用石炭100質量%に対して前記混焼用燃焼助剤が3〜25質量%の割合となるように混合することにより混合物を調製する工程と、
前記混合物を微粉砕することにより混合・微粉砕物を調製する工程と、
前記混合・微粉砕物を微粉炭燃焼炉に供給して燃焼させる工程とを含む燃焼用石炭の燃焼方法。
Combustion coal having an average particle size of 50 mm or less and a combustion aid for mixed combustion produced by the method according to claim 1 , wherein 3 to 25 mass of the combustion aid for mixed combustion is used with respect to 100 mass% of the combustion coal. A step of preparing a mixture by mixing in a ratio of%,
A step of preparing a mixed and pulverized product by pulverizing the mixture;
A method for combusting coal for combustion, comprising a step of supplying the combusted and pulverized product to a pulverized coal combustion furnace and combusting it.
JP2015078473A 2015-04-07 2015-04-07 Method for producing combustion aid for co-firing and combustion method for combustion coal using this combustion aid Active JP5941183B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015078473A JP5941183B1 (en) 2015-04-07 2015-04-07 Method for producing combustion aid for co-firing and combustion method for combustion coal using this combustion aid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015078473A JP5941183B1 (en) 2015-04-07 2015-04-07 Method for producing combustion aid for co-firing and combustion method for combustion coal using this combustion aid

Publications (2)

Publication Number Publication Date
JP5941183B1 true JP5941183B1 (en) 2016-06-29
JP2016199622A JP2016199622A (en) 2016-12-01

Family

ID=56244675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015078473A Active JP5941183B1 (en) 2015-04-07 2015-04-07 Method for producing combustion aid for co-firing and combustion method for combustion coal using this combustion aid

Country Status (1)

Country Link
JP (1) JP5941183B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108690675A (en) * 2017-04-12 2018-10-23 新疆八钢铁股份有限公司 Blast furnace dedusting ash as fuel water-tube boiler application
CN109731887A (en) * 2019-01-28 2019-05-10 宁夏然尔特工业产业研究院(有限公司) A kind of bottoms class treatment of wastes produced method and products thereof
CN110305707A (en) * 2019-07-06 2019-10-08 梁文静 A kind of production method of biomass environment-friendly fuel
CN114015489A (en) * 2021-11-16 2022-02-08 西安热工研究院有限公司 Method for relieving coal combustion contamination problem by using modified herbaceous biomass coke

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020169740A (en) * 2019-04-01 2020-10-15 王子ホールディングス株式会社 Device of combusting phosphorous-containing solid biomass, method of combusting the same, and method of recovering energy from phosphorous-containing biomass
KR102471400B1 (en) * 2022-07-20 2022-11-28 홍원방 Pre-Combustion of fossil fuel additive type combustion comburent and Desulfurization catalyst manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60166396A (en) * 1984-02-07 1985-08-29 Shine Kk Production of fuel from papermaking sludge as raw material
JP2003119479A (en) * 2001-10-15 2003-04-23 Nippon Paper Industries Co Ltd Solid fuel having desulfurizing function
JP2010194427A (en) * 2009-02-24 2010-09-09 Kitagawa Iron Works Co Ltd Preservation method for high water content organic matter and solid fuel produced from the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60166396A (en) * 1984-02-07 1985-08-29 Shine Kk Production of fuel from papermaking sludge as raw material
JP2003119479A (en) * 2001-10-15 2003-04-23 Nippon Paper Industries Co Ltd Solid fuel having desulfurizing function
JP2010194427A (en) * 2009-02-24 2010-09-09 Kitagawa Iron Works Co Ltd Preservation method for high water content organic matter and solid fuel produced from the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108690675A (en) * 2017-04-12 2018-10-23 新疆八钢铁股份有限公司 Blast furnace dedusting ash as fuel water-tube boiler application
CN109731887A (en) * 2019-01-28 2019-05-10 宁夏然尔特工业产业研究院(有限公司) A kind of bottoms class treatment of wastes produced method and products thereof
CN110305707A (en) * 2019-07-06 2019-10-08 梁文静 A kind of production method of biomass environment-friendly fuel
CN110305707B (en) * 2019-07-06 2022-01-07 梁文静 Production method of biomass environment-friendly fuel
CN114015489A (en) * 2021-11-16 2022-02-08 西安热工研究院有限公司 Method for relieving coal combustion contamination problem by using modified herbaceous biomass coke
CN114015489B (en) * 2021-11-16 2024-04-09 西安热工研究院有限公司 Method for relieving coal combustion pollution problem by utilizing modified herbal biomass coke

Also Published As

Publication number Publication date
JP2016199622A (en) 2016-12-01

Similar Documents

Publication Publication Date Title
JP5941183B1 (en) Method for producing combustion aid for co-firing and combustion method for combustion coal using this combustion aid
CN102206091B (en) Method for making ceramsite by using sludge
CN101503643B (en) Solid fuel for sludge anhydration
AU2005258956B2 (en) Fuel product and process
CN203683345U (en) System for drying domestic sludge by using afterheat of dry process cement kiln and carrying out direct blending combustion treatment
US20080022586A1 (en) Fuel Product and Process
CN105038891A (en) Low-sulfur and environment-friendly coal and processing method thereof
CN101886811A (en) Method for coprocessing sludge with high moisture content by novel dry-process rotary kiln
CN103756750A (en) Generative fuel produced by using industrial solid waste and preparation method thereof
CN105733734A (en) Method and device for preparing fuel by means of mixing coke powder with sludge from sewage plants
CN101818091A (en) Straw composite fuel and manufacture method thereof
Roskos et al. Identification and Verification of Self-Cementing Fly Ash Binders for" Green" Concrete
KR101104314B1 (en) Fuel composition for producing cement clinker using waste materials and producing process of cement clinker
JP2023181518A (en) Cement manufacturing method
CN102690698A (en) Sludge fuel and manufacturing method thereof
CN105542897A (en) RDF prepared from dust in calcium carbide furnace, coal slime and sludge and preparation method thereof
JP2007262283A (en) Waste-containing fuel, and its preparing method and using method
JP6118598B2 (en) Coal combustion aid composition, coal combustion aid using the composition, and method for burning coal using the coal combustion aid
Borowski et al. Using Agglomeration Techniques for Coal and Ash Waste Management in the Circular Economy
CN109385319A (en) Small towns house refuse couples the technique for preparing derivatived fuel RDF-5 with biomass
KR100796048B1 (en) Bottom ash aggregate in asphalt concrete compositions and method of the same
Goel et al. Paper mill sludge (PMS) and degraded municipal solid waste (DMSW) blended fired bricks–a review
CN113145611A (en) Method for cooperatively treating organic hazardous waste by utilizing coal combustion equipment
CN109504485A (en) Utilize the solid fuel and its preparation method and application of sewage plant sludge preparation
Akkapeddi Alternative solid fuels for the production of Portland cement

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160519

R150 Certificate of patent or registration of utility model

Ref document number: 5941183

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250