JP7015674B2 - 制御性t細胞の分化誘導剤及び分化誘導方法 - Google Patents

制御性t細胞の分化誘導剤及び分化誘導方法 Download PDF

Info

Publication number
JP7015674B2
JP7015674B2 JP2017208544A JP2017208544A JP7015674B2 JP 7015674 B2 JP7015674 B2 JP 7015674B2 JP 2017208544 A JP2017208544 A JP 2017208544A JP 2017208544 A JP2017208544 A JP 2017208544A JP 7015674 B2 JP7015674 B2 JP 7015674B2
Authority
JP
Japan
Prior art keywords
cells
lactobacillus plantarum
cell
differentiation
regulatory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017208544A
Other languages
English (en)
Other versions
JP2019080497A (ja
Inventor
恭久 長▲崎▼
泰生 溝田
篤史 大木
克利 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Foods Holdings Co Ltd
Original Assignee
Nissin Foods Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Foods Holdings Co Ltd filed Critical Nissin Foods Holdings Co Ltd
Priority to JP2017208544A priority Critical patent/JP7015674B2/ja
Publication of JP2019080497A publication Critical patent/JP2019080497A/ja
Application granted granted Critical
Publication of JP7015674B2 publication Critical patent/JP7015674B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

NPMD NITE P-01603
本発明は、乳酸菌であるラクトバチラス・プランタラムを含有する制御性T細胞を分化誘導剤、分化誘導方法及び当該分化誘導剤を含む飲食品に関するものである。
古来から人類が食してきた発酵食品には、多くの有用微生物が含まれており、そのひとつとして乳酸菌がある。乳酸菌は、伝統的な日本食である漬物などにも多く含まれ、古くから日常的に食されてきた有用微生物である。
乳酸菌は, 食品の保存性や風味を向上させるだけでなく, 菌体そのものもしくは生成物により、種々の「カラダによい作用をもたらす」効果を持っており, プロバイオティクスとして有用な微生物でもある。近年、これらの乳酸菌が免疫を調整することも可能な点が指摘されている。
すなわち、免疫反応の主要な応答経路の一つとして、ヘルパーT細胞が関与するものが知られている。ヘルパーT細胞には、インターフェロン(IFN)-γおよびインターロイキン(IL)-2を産生するTh1細胞, IL-4, IL-5およびIL-13を産生するTh2細胞等が存在する。
Th1細胞は主に細胞性免疫や感染防御に、Th2細胞は体液性免疫に関与する。Th1細胞とTh2細胞は互いの機能を抑制しあって免疫反応をコントロールしており, その平衡関係はTh1/Th2バランスと称されている。近年, ストレスや化学物質, 食生活などにより, Th1/Th2バランスが崩れ, Th2優位の現代人が増えている。Th2優位になると, かゆみや炎症, 浸出液を伴う, いわゆるアトピーやアレルギー性鼻炎, 喘息を発症しやすいと言われている。
これらの免疫反応を抑制するものとして、坂口志文教授らによって発見された制御性T細胞(Treg)が知られている。制御性T細胞(Treg)は、Th1, Th2細胞等の過剰な反応を抑制し、免疫応答の抑制的制御(免疫寛容)に寄与する。このようなTh1/Th2細胞の過剰な反応を抑制する観点から、制御性T細胞の役割が注目されている。
そして、この制御性T細胞(Treg)の分化誘導作用に関連して乳酸菌を利用する先行技術が開示されている。例えば、以下の先願特許が挙げられる。
特開2015-130842
上記特許出願は、免疫寛容増強効果を有する乳酸菌の菌株及び豆乳発酵物についてのスクリーニング等に関するものである。一方、他の乳酸菌においても制御性T細胞(Treg)の分化誘導作用を有することも期待される。
そこで、本発明は、制御性T細胞の分化誘導を促す新たな乳酸菌を見出し、当該乳酸菌を用いた制御性T細胞の分化誘導剤を開発することを課題とした。
本発明者らは、上記課題を解決すべく、種々の食品等を分離源として、乳酸菌について検討を行った結果、自然界から分離されたラクトバチラス・プランタラムに制御性T細胞を分化誘導作用があることを見出した。さらに、これに関連して当該菌株に抗アレルギー作用およびアレルギー性気管支ぜんそくを抑えるという機能を見出し、本発明を完成するに至った。
すなわち、本願第一の発明は、制御性T細胞を分化誘導作用を有するラクトバチラス・プランタラムに属する乳酸菌を含む制御性T細胞の分化誘導剤、本願第二の発明は、本願第一の発明に記載のラクトバチラス・プランタラムが、ラクトバチラス・プランタラム LP14株(NITE P-01603)に関するものである。
また、本発明者らは、前記第一の発明又は第2の発明に記載の制御性T細胞の分化誘導剤を含有する飲食品も意図している。
加えて、本発明者らは、ラクトバチラス・プランタラムに属する乳酸菌を利用した制御性T細胞の分化誘導方法、についても意図している。
本発明の制御性T細胞の分化誘導剤は高い制御性T細胞の分化誘導作用を有する。本発明を利用することで抗炎症、抗アレルギー等に繋がる飲食品・医薬品を開発することに繋がる可能性を有する。
各種乳酸菌におけるヒト制御性T細胞(Treg)の分化誘導作用を比較し、ラクトバチラス・プランタラムLP14が最も高いことを示す図である。尚、左軸はTreg(% of control)でありbarで結果を示す、右軸はCell Viabilityでありdotで結果を示す。 ラクトバチラス・プランタラムLP14がTh1またはTh2細胞分化に及ぼす影響を表した図である。 ラクトバチラス・プランタラムLP14がTh2細胞分化条件下でIL-4およびIFN-gの分泌に及ぼす影響を表した図である。 ラクトバチラス・プランタラムLP14を用いた動物実験におけるスケジュールを表した図である。 ラクトバチラス・プランタラムLP14を用いた動物実験でのBALF中総細胞数, 好酸球 (Eos.), 好中球 (Neut.), リンパ球 (Lym.)およびマクロファージ (Mac.)数 (n=5)を表した図である。 ラクトバチラス・プランタラムLP14を用いた動物実験での気道抵抗値 (Airway hyperresponsiveness; AHR, n=5-8) を示した図である。 ラクトバチラス・プランタラムLP14を用いた動物実験でのBALF中サイトカイン (IL-17, 4, 5, 10, 13, 1β, and 6)の濃度 (n=5)の図である。 ラクトバチラス・プランタラムLP14を用いた動物実験での肺の病理組織学的評価 (HE染色)の図である。 ラクトバチラス・プランタラムLP14を用いた動物実験での血清中の総IgEおよびOVA特異的IgE (n=3)である。 ラクトバチラス・プランタラムLP14を用いた動物実験での血清中IgG1/IgG2aの比 (n=3)である。 図11は、ラクトバチラス・プランタラムLP14を用いた動物実験での脾臓細胞培養上清中のIL-5濃度 (ex vivo 評価, n=5)である。 図12は、ラクトバチラス・プランタラムLP14を用いた動物実験での脾臓細胞培養上清中のIFN-γ濃度 (ex vivo 評価, n=5)である。
1.ラクトバチルス・プランタラムLP14株(NITE P-01603)
本発明に利用される乳酸菌は、ラクトバチルス・プランタラム(Lactobacillus plantarum)である。特にラクトバチルス・プランタラムに属する乳酸菌のうち、ラクトバチルス・プランタラムLP14株である。
本株は東京農業大学の岡田早苗教授が発見・単離した乳酸菌株であり、自然界における植物(プチトマト)より分離することによって発見された。本株は東京農業大学から分譲されたものであり、LP14の記号は日清食品ホールディングス株式会社で独自に菌株に付与した番号である。
本発明に利用されるラクトバチルス・プランタラムLP14株は、平成25年5月8日に、独立行政法人製品評価技術基盤機構特許微生物寄託センターにNITE P-01603(寄託番号)として寄託されている。
本発明に利用されるラクトバチルス・プランタラムLP14株の菌学的性質は以下の表1(性状等)及び表2(糖類発酵性)に示す通りである。本菌学的性質は、Bergey’s manual of systematic bacteriology Vol.2(1986)に記載の方法による。
Figure 0007015674000001


Figure 0007015674000002
2.制御性T細胞の分化誘導作用
本発明に利用するラクトバチラス・プランタラムに属する乳酸菌を含有する制御性T細胞の分化誘導剤は、過剰な免疫反応を抑制する。
Th1, Th2細胞等の細胞は、病原体等の排除に寄与するが、過剰に応答すると、炎症やアレルギー等に繋がる場合がある。
一方、制御性T細胞(Treg)は、このようなTh1, Th2細胞等の過剰な反応を抑制し、免疫応答の抑制的制御(免疫寛容)に寄与する。制御性T細胞(Treg)はこのようなTh1/Th2細胞の過剰な反応を抑制する観点から、重要な役割が認識されている。
本発明に利用されるラクトバチラス・プランタラムに属する乳酸菌を含有する制御性T細胞の分化誘導剤は、種々の乳酸菌に比べて高い制御性T細胞の分化誘導の機能を有することが判明した。
3.抗アレルギー作用
本発明に利用されるラクトバチラス・プランタラムは、制御性T細胞を分化誘導するとともに、Th1細胞分化促進及びTh2細胞分化抑制効果を有し、抗アレルギー作用を有する。Th1細胞は主に細胞性免疫や感染防御に, Th2細胞は体液性免疫に関与する。Th1細胞とTh2細胞は互いの機能を抑制しあって免疫反応をコントロールしており, その平衡関係はTh1/Th2バランスと称されている。ストレスや化学物質, 食生活などにより, Th1/Th2バランスが崩れ, Th2優位となる。
Th2優位になると, かゆみや炎症, 浸出液を伴う, いわゆるアトピーやアレルギー性鼻炎, 喘息を発症しやすいとされている。
本発明に含有されるラクトバチラス・プランタラムは、ヒト末梢血単核細胞を用いたTh1/Th2細胞分化の評価 (細胞実験)においてTh1細胞分化促進及びTh2細胞分化抑制効果を有し、Th2優位による過剰な抗体による防御反応(アレルギー)を抑制する効果を有することを見出した。
さらに、アレルギー性気管支喘息モデルを用いた動物実験(マウス)においても、通常であればマウスにオボアルブミン(OVA)全身投与(腹腔内投与)の後, 再度気道経由でOVA吸入させるとマウスは気管支喘息を起こすところ、本発明に含有されるラクトバチラス・プランタラムを投与した場合、その症状が軽減されることを確認した(気道抵抗値 (Airway hyperresponsiveness; AHR)。
また、これとともにマウスより気管支肺胞洗浄液(BALF)を回収して、当該BALF中のサイトカイン (IL-17, 4, 5, 10, 13, 1β, and 6)の濃度を調べたところ、Th2サイトカインであるIL-4, IL-5及びIL-13について、再度気道経由でのOVA吸入によっていずれのサイトカインも上昇するところ、本発明に含有されるラクトバチラス・プランタラムを投与したマウスの場合、減少傾向が見られた。
次に、血清中の総IgEおよびOVA特異的IgEは, OVA吸入によって, さらにはラクトバチラス・プランタラムLP14投与によって変化は認められなかった。また、Th1/2バランスの指標となるIgG1/IgG2aについてもOVA吸入, ラクトバチラス・プランタラムLP14投与によって変化はみられなかった。
さらに、OVA感作及びラクトバチラス・プランタラムLP14を投与したマウスから、脾臓を回収し、OVAおよびAPC細胞(抗原提示細胞)存在下で72または96時間培養した時の培養上清中のサイトカイン量を調べたところ、OVA吸入によって増加した好酸球量およびIL-5量が, ラクトバチラス・プランタラムLP14投与によって減少していた。
また、Th1サイトカインであるIL-2およびIFN-γについて, IL-2はLP14摂取により変化は認められなかったが, IFN-γはラクトバチラス・プランタラムLP14により有意に上昇していた.
このように、アレルギー性気管支喘息モデルを用いた動物実験の結果からも本発明に含有されるラクトバチラス・プランタラムはTh1細胞分化促進及びTh2細胞分化抑制効果を有し、抗アレルギー作用を有することが判明した。
4.飲食品
本発明の制御性T細胞の分化誘導剤は飲食品に含有せしめて使用することができる。具体的には本発明に利用される乳酸菌そのものを飲料に用いることができる。乳酸菌は特に飲料に好適に用いることができるが、例えば、発酵乳及び乳酸菌飲料が考えられる。
現行の乳及び乳製品の成分規格等に関する省令では、成分規格として発酵乳(無脂乳固形分8.0%以上のもの)や乳製品乳酸菌飲料(無脂乳固形分3.0%以上のもの)であれば1.0×10/ml以上、乳酸菌飲料(無脂乳固形分3.0%未満のもの)であれば1.0×10/ml以上必要とされるが、乳などのはっ酵液中で増殖させたり、最終製品の形態で増殖させるによって上記の菌数を実現することができる。
また、発酵乳及び乳酸菌飲料以外にも、バター等の乳製品、マヨネーズ等の卵加工品、バターケーキ等の菓子パン類等にも利用することができる。また、即席麺やクッキー等の加工食品にも好適に利用することができる。上記の他、本発明の制御性T細胞の分化誘導剤として乳酸菌菌体を乾燥して粉末化等したものを利用することも可能である。
また、本発明の制御性T細胞の分化誘導剤は、前記乳酸菌菌体と共に、必要に応じて適当な担体及び添加剤を添加して製剤化された形態(例えば、粉末、顆粒、カプセル、錠剤等)であってもよい。
本発明の制御性T細胞の分化誘導剤を含有する食品は、一般の飲料や食品以外にも特定保健用食品、栄養補助食品等としても有用である。
以下、本発明の実施例を示すが、本発明は以下の実施例に限定されるものではない。
1.制御性T細胞の分化誘導作用
本発明に利用されるラクトバチラス・プランタラムLP14は、高い制御性T細胞の分化誘導作用を有する。本分化誘導作用の確認については以下のin vitro ヒトTreg誘導活性評価法によって行った。
<各種乳酸菌の調製>
ラクトバチラス・プランタラムLP14及び試験に供与した各乳酸菌は, MRS液体培地を用いて48時間培養し, 超純水で2回洗浄した後, 100℃, 20分加熱処理した. 加熱死菌処理の後, 凍結乾燥し, 乳酸菌サンプルとした。
また、試験した乳酸菌は、Bifidobacterium breve(2種類)、Bifidobacterium longum(3種類)、Lactobacillus lactis(2種類)、Lactobacillus plantarum(2種類)の計9種類を実施した。
<ヒトナイーブCD4+ T細胞の調製>
以下の方法でヒト末梢血単核細胞よりナイーブCD4+ T細胞を精製した.
(1)37 ℃下で溶解した凍結ヒト末梢血単核細胞 (Veritas;ST-70025)を5mLチューブ (Corning;352058)に回収し、MojoSort Buffer (Biolegend;480017)で1 x 107 cells/mLに希釈した後、500 x g, 5分間, 4 ℃下で遠心した.
(2)上清をデカント除去後, 1 x 107 cells/mLとなるようMojoSort Bufferに再懸濁した.
(3)MojoSort Human CD4 Naive T Cell Isolation Kit (Biolegend;480041)付属の Biotin-Antibody Cocktailを添加し,on iceで15分間インキュベーションした.添加量は1.5μL/107 cellsとした.
(4)MojoSort Human CD4 Naive T Cell Isolation Kit付属のStreptavidin Nanobeadsを添加し, on iceでさらに15分間インキュベーションした.添加量は1.5μL/107 cellsとした.
(5)MojoSort Bufferを3mL加えた後,チューブをMojoSort Magnet (Biolegende;480019)に装着し,5分間, 4 ℃下で静置した.
(6)MojoSort MagnetにFACS tubeを装着したまま, 新しい5mL チューブに細胞溶液をデカントで回収し, 得られた細胞をナイーブCD4+ T細胞とした.
(7)ナイーブCD4+ T細胞の細胞数をカウントし,500 x g, 5分間, 4 ℃下で遠心した.
(8)上清を除去後,細胞数が5 x 105 cells/mLとなるようTreg分化誘導用培地※に懸濁した.
※Treg分化誘導用培地
Figure 0007015674000003
<細胞播種および抗CD3抗体、抗CD28抗体の添加>
(1)調製した細胞を96well U底プレート(Corning;7007)に100 μL/wellずつ播種した.
(2)播種した細胞に対し, Treg分化誘導用培地で懸濁したHuman T-Activator CD3/CD28 (Veritas;DB11131)を2 μL/wellずつ添加した.
<サンプル添加>
(1)調製した乳酸菌を1mg/mLとなるようPBS(-)を加えソニケーションにて分散させた後, Treg分化誘導用培地を用いて20μg/mLに希釈した.
(2)最終濃度 10μg/mLとなるよう播種した細胞溶液と等量 (100μL/well)添加した. 陰性対照は,乳酸菌懸濁液の代わりにPBS(-)を用いること以外同様の操作を行った.
<プレート交換>
(1)細胞播種およびサンプル添加から3日後 (Day3), 24well プレート(Corning;3526)に細胞を移し, 400μL/wellのTreg分化誘導培地を各wellに添加した.
Treg分化誘導用培地を用いて20μg/mLに希釈した乳酸菌懸濁液を, 最終濃度 10μg/mLとなるよう添加した培地と等量 (400μL/well)添加した. 陰性対照は, 乳酸菌懸濁液の代わりにPBS(-)を用いること以外同様の操作を行った.
<Treg分化誘導の評価>
(1)細胞播種およびサンプル添加から6日後 (Day6), FACS tubeに細胞を回収し, 2mLのPBS (-) に細胞を懸濁した後, MojoSort MagnetにFACS tubeを1分間装着した.
(2)MojoSort MagnetにFACS tubeを装着したまま, デカントにより新しいFACS tubeへ細胞懸濁液を回収し, 500 x g, 5分間, 4℃下で遠心した.
(3)アスピレーターを用いて上清を除去後, 50μLの牛胎児血清 (FBS)に細胞を再懸濁した.
(4)Zombie NIR (Biolegend;423105)を1μLずつ添加し, 室温で5分間インキュベートした.
(5)PerFix-nc Kit (Beckman coulter;B31167)付属のPerFix-nc Buffer 1を5μLずつ添加し, さらに室温で15分間インキュベートした.
(6)130μLのPerFix-nc Kit付属PerFix-nc Buffer 2, およびPerCP/Cy5.5-CD3 (Biolegend; 317336), FITC-CD4 (Biolegend; 300506), BV 421-CD25 (Biolegend; 356114), PE-Foxp3 (eBioscience;12-4776)を各5μLずつ各tubeに添加し, 暗所, 4℃下で60分間インキュベートした.
(7)3mLのPBS (-)を添加し, 500 x g, 5分間, 4℃下で遠心した.
(8)上清を除去し, PerFix-nc Kit付属PerFix-nc Buffer 3 (1x) を3mL添加し, 500 x g, 5分間, 4℃下で遠心した.
(9)上清を除去し, 0.3mLのPerFix-nc Kit付属PerFix-nc Buffer 3 (1x)に再懸濁した.
(10)解析には, CytoFLEXフローサイトメーター (Beckman coulter)を用いた.Treg細胞数は、CD3+ CD4+細胞集団におけるCD25+ FOXP3+細胞の割合を解析後、Control(PBS)を100とした相対値を算出し、Cell viabilityは、総細胞のうち、Zombie NIRにより染色されなかった細胞数の割合として算出した。結果を表3及び図1に示す。
Figure 0007015674000004
<結果および考察>
本発明に利用するラクトバチラス・プランタラムLP14は、高い制御性T細胞(Treg)の分化誘導能を示した。また、総生存細胞数が減少することはなかった。
2.ヒト末梢血単核細胞を用いたTh1/Th2細胞分化の評価 (細胞実験)
本発明に利用されるラクトバチラス・プランタラムLP14は、後述する実験例に示すように、制御性T細胞の分化誘導能とともに抗アレルギー作用を有する。細胞を用いた活性の確認については以下の試験方法によって行った。
<ラクトバチラス・プランタラムLP14の調製>
ラクトバチラス・プランタラムLP14は, MRS液体培地を用いて48時間培養し, 超純水で2回洗浄した後, 100℃, 20分加熱処理した. 加熱死菌処理の後, 凍結乾燥し, 乳酸菌サンプルとした。
<ヒト末梢血単核細胞の精製>
ヒト末梢血単核細胞の精製からTh1/2細胞分化の評価までの一連の方法については, Ito ら(2008)の方法に従った.
(1)ヒト肘窩静脈から, ヘパリン処理したシリンジおよび翼状針を用いて, 各人15mL採血し, 濾過滅菌した1x D-PBS (Sigma; D1408) 15mLと混合した.
(2)Ficoll-Paque Plus (GE Healthcare; 17-1440-02) 10mLを入れた遠沈管へ, Iで混合した末梢血15mLを, Ficoll-Paque Plusの液面を揺らさないようゆっくり流し込み, 2,000rpm, 30分間室温下で遠心した.
(3)リンパ球の層を回収し、D-PBSで希釈後、1,500rpm、10分間、4℃下で遠心した.
(4)上清をデカント除去し, 3%FCS (BioWhittaker(登録商標); SF50602; Lot No. 14-502FM)を含むMACS buffer※を10mL添加した後, 細胞数を測定し, 1,200rpm, 5分間, 4 ℃下で遠心した.
※MACS buffer: PBS(-)に2mMとなるようEDTA-Na溶液を加え, オートクレーブ滅菌したバッファー
<ナイーブCD4+ (CD8-/CD45RO-)T細胞の調製>
以下の方法でナイーブCD4+ (CD8-/CD45RO-)T細胞を単離した .
(1)上記遠心後の細胞にCD8-FITC (BD Pharmingen; 555366)およびCD45RO-FITC (BD Pharmingen; 555492), CD4-APC (BD Pharmingen; 555349)を添加し, on iceで40-60分間インキュベーションした. 添加量は2μL/107 cellsとした.
(2)3%FCSを含むMACS bufferを10mL加え, 1,200rpm, 5分間, 4 ℃下で遠心した.
(3)上清をデカント除去後, Anti-FITC Beads (MACS Miltenyi Biotec; 120-000-293)を添加し, on iceで30分間インキュベーションした. 添加量は10μL/107とした.
(4)3%FCSを含むMACS bufferを10mL加え, 1,200rpm, 5分間, 4 ℃下で遠心した.
(5)上清をデカント除去後, 3%FCSを含むMACS bufferを4mL加え, 滅菌済ナイロンメッシュを通した.
(6)autoMACS Pro Separator (MACS Miltenyi Biotec)を用いて, CD8-/CD45RO-の細胞を分離し, ナイーブCD4+ T細胞とした (CD4+/CD8-/ CD45RO-細胞の解析にはBD FACS CantoIITM フローサイトメーター (BD Biosciences)を用いた).
(7)ナイーブCD4+T細胞の細胞数をカウントし, 再度1,200rpm, 5分間, 4 ℃下で遠心した.
(8)上清を除去後, 細胞数が2x106 cells/mLになるようComplete Medium※を加えた.
Complete Medium: 下記を混合したメディウム
Figure 0007015674000005
<抗CD3抗体の固相化および細胞播種>
サイモグロブリン(登録商標),Genzyme; C1310NB)を滅菌水にて5mg/mLに調製し, さらに1x D-PBSで20μg/mLに希釈した溶液を, 48wellプレートに各100μL添加し, 1-3時間室温に置いて抗CD3抗体を固相化した. Complete Mediumで2回洗浄した後, 使用した.
Th1細胞またはTh2細胞分化条件培地を下記のように調製し (/well), それぞれを, 抗CD3抗体を固相化した48wellプレートに播種した.
Figure 0007015674000006

Figure 0007015674000007

※1 それぞれのstock solutionは下記の濃度になるように各々Complete Mediumで調製し, 1mLずつ分注して-80℃で保存. Stock solution 1mLをComplete Medium 49mLに添加し(x50), 使用.

Figure 0007015674000008

※2 anti-IL-4 (BD Pharmingen; 554481)およびanti-IFN-γ (BD Pharmingen; 554547)はそのまま使用.
<サンプル添加>
調製したラクトバチラス・プランタラムLP14を1mg/mLとなるようComplete Mediumを加えソニケーションにて分散させた. 細胞播種後, 最終濃度1, 3, 10および30 μg/mLとなるよう培地に添加した.陽性対照として, MRS液体培地を用いた.
<プレート交換 (Destimulation)および培地交換>
─Th1細胞─
細胞播種およびサンプル添加から2日後 (Day2), 無処理のプレートに細胞を移し, さらにIL-2 (10,000 U/mL) 250μL + IL-12 (200 ng/mL) 250μLを各wellに添加した. その後, Day 4, 5, 6に適宜培地交換を行った.
─Th2細胞─
細胞播種およびサンプル添加から2日後 (Day2), 無処理のプレートに細胞を移し, さらにIL-2 (10,000 U/mL) 250μL + IL-4 (200 ng/mL) 250μLを各wellに添加した. その後, Day 4, 5, 6に適宜培地交換を行った.
Day 7に各wellの細胞を回収し, 1,200rpm, 5分間, 4℃下で遠心した. 上清を除去した後, 下記Th2細胞分化条件培地を添加し, 再度抗CD3抗体で固相化したプレートに播種した.

Figure 0007015674000009

Day 9に無処理のプレートに細胞を移し, さらにIL-2 (10,000 U/mL) 250μL + IL-4 (200 ng/mL) 250μLを各wellに添加した. その後, Day 11, 12, 13に適宜培地交換を行った.
<Th1細胞分化およびTh2細胞分化の評価>
下記方法で, 刺激および分化評価を行った.
(1)Th1細胞はDay7, Th2細胞はDay 14に, FACS tubeに細胞を回収し, 1,200rpm, 5分間, 4℃下で遠心した.
(2)上清を除いた後, phorbol 12- myristate 13-acetate (PMA, Sigma; P1585), イオノマイシン(MERCK; 407952)およびモネンシン(Sigma; M5273)を下記濃度になるよう調製したComplete Mediumを1mL添加し, 再度プレートに播種して37 ℃, 4-5時間インキュベーションした. 刺激後, 再度FACS tubeに細胞を回収し, 1,200rpm, 5分間, 4 ℃下で遠心した.
Figure 0007015674000010
(3)アスピレーターを用いて上清を除去後, BD Cytofix/Cytoperm solution (BD Fixation / Permeabilization solution kit, BD; 554714)を250μLずつ添加し, on iceで20分間インキュベーションした.
(4)1x wash buffer (BD Fixation / Permeabilization solution kit, BD; 554714)を1mL添加し, 1,200rpm, 5分間, 4 ℃下で遠心した.
(5)上清を除去し, 再度1x wash bufferを1mL添加し, 1,200rpm, 5分間, 4 ℃下で遠心した.
(6)上清を除去後, IFN-γ-FITC/IL-4-PE (BD fastimmuneTM; 340456) 4μLおよびCD4-APC (BD PharmingenTM; 555349) 4μLを各tubeに添加し, よくタッピングした後, on iceで40分間インキュベーションし, 染色した.
(7)解析には, BD FACSCantoIITM フローサイトメーター (BD Biosciences)を用いた.
<結果および考察>
ラクトバチラス・プランタラムLP14およびMRS (陽性対照)のTh1//2細胞分化の評価には, 26~35歳の7名の健常者に協力いただいた (被験者A-G). IFN-γ産生細胞の割合を測定することによりTh1細胞の分化を, IL-4産生細胞の割合を求めることによりTh2細胞の分化の度合いを測定した. LP14各濃度について, Th1細胞分化促進/Th2細胞分化抑制の程度が分かりやすく判断できるよう図2にまとめた. 各被験者のcontrol値を100とした時の分化促進/抑制率を求め, その値から-100 (Δ100)した値を記している. 被験者BやGのようにどの濃度でもコンスタントに効果を示すヒト, 被験者Fのように低濃度で効果を示すヒト, 被験者CやEのように高濃度で効果を示すヒトがいることが分かった.
ラクトバチラス・プランタラムLP14の特徴として, Th2細胞培養条件下でも, すべてのヒトにおいてTh1細胞分化を促進することが分かった (図3, 赤線). この結果からもラクトバチラス・プランタラムLP14に強いTh1細胞分化促進能があることが考えられる.
3.アレルギー性気管支喘息モデルを用いた評価 (動物実験)
<目的>
ヒト末梢血単核細胞を用いた細胞実験により, ラクトバチラス・プランタラムLP14には, Th1/Th2バランスを調整する働きが示唆された. そこで, 実際にアレルギー性気管支喘息モデルマウスを用いて, 抗アレルギー効果の有無を確かめることとした. 本試験では, オボアルブミン(OVA)によりアレルギー性気管支喘息を惹起させ, ラクトバチラス・プランタラムLP14摂取により症状が軽減されるかを検証した.
<試験方法>
─乳酸菌の調製─
ラクトバチラス・プランタラムLP14は, MRS液体培地を用いて48時間培養し, 超純水で2回洗浄した後, 100℃, 20分加熱処理した. 加熱死菌処理の後, 凍結乾燥し, 乳酸菌サンプルとした(Lot No. 141020).
─実験動物─
実験動物として、雌性BALB/cマウス, 6週齢 (日本クレア)を用いた。マウスは千葉大学医学部付属動物実験施設のSPF環境下で飼育し, マウスの処置は千葉大学の動物実験ガイドラインに基づいて行った.
─馴化, 群分けおよび個体識別─
5日間の馴化後, 動物を無作為に群分けした. 個体識別は耳パンチ法を用いた.
─群構成および匹数─
予備試験気管支肺胞浸潤液(BALF)回収用: n=3として実施した以下に詳細を示す。
Vehicle: OVA ip※1 +0.5% CMC※2
Control: OVA ip + inhalation※3 +0.5% CMC
0.1mg LP14: OVA ip + inhalation +LP14 0.1mg/mouse/day
0.3mg LP14: OVA ip + inhalation +LP14 0.3mg/mouse/day
1mg LP14: OVA ip + inhalation +LP14 1mg/mouse/day

気道抵抗値測定用: n=4~8
本試験BALF回収用: n=5
病理組織標本作製用: n=1
Vehicle: OVA ip +0.5% CMC
Control: OVA ip + inhalation +0.5% CMC
LP14: OVA ip + inhalation +LP14 1mg/mouse/day

※1 ip: intraperitoneal administration; 腹腔内投与
※2 CMC: カルボキシメチルセルロース, 投与溶媒
※3 inhalation: 吸入
─被験サンプルの投与─
乳鉢を用いて調製したラクトバチラス・プランタラムLP14を塊がなくなる程度まで摩砕し, 0.5%カルボキシメチルセルロース(CMC)溶液で5, 1.5および0.5 mg/mLになるよう調製した. 調製したラクトバチラス・プランタラムLP14溶液を200μL/mouse/day, 1日1回, 週5回(月~金), 胃ゾンデを用いて強制経口投与した.
─オボアルブミンの腹腔内投与および吸入─
腹腔内投与(ip)用としてオボアルブミン(OVA, Sigma; A5503)をPBSで10mg/mLに調製した. またアジュバントとして水酸化アルミニウム(Injection Alum, PIERCE; 77161)を用いた. (10mg/mL OVA 10μL + Injection Alum 100μL + PBS 90μL)/mouseとなるよう調製し, ボルテックスを用いて30分間混合した. これをDay0および7に腹腔内投与(ip)した.
─吸入(inhalation)用─
Control群およびラクトバチラス・プランタラムLP14群のマウスをすべて1つのケージに入れ, アルミ箔でケージを覆った. OVAを生理食塩水で0.25%に調製し, Day 14および16に噴霧器(Omron; NE-U07)を用いて, 30分間吸入(inhalation)させた.
─気道抵抗値(airway hyperreactivity: AHR)の評価─
メサコリン誘導性の気道狭窄により, 気道抵抗値を評価した. その評価方法として, 機械制御型小動物用人工呼吸器 (Flexivent; Scireq, Montreal, Canada) による気道抵抗値の測定を用いた. 最後のOVA吸入から24時間後, 生理食塩水で5倍希釈したペントバルビタールNa (70-90 mg/kg) を腹腔内投与して麻酔し, ステンレス製18ゲージのカニューレを気管挿入して固定した. 一回換気量を10 ml/kg, 180 回/minの頻度で機械的人工呼吸を行い, 呼気終末陽圧を2-4 cm H2Oで負荷した. マウスの気道過敏性を比較するために (3-48 mg/ml) のメサコリン濃度で一回換気量30 ml/kg, 60 回/minの頻度で15秒間噴霧させた. 各メサコリン濃度での気道抵抗値に関して生理食塩水を噴霧させたときの気道抵抗値 (baseline) で補正した.
─BALF回収および採血─
最後のOVA吸入から48時間後, 生理食塩水で5倍希釈したペントバルビタールNa (70-90 mg/kg) を腹腔内投与して麻酔し, Insyte-W TM (BD Biosciences)および1mLシリンジを用いて, 気管へ1mLの生理食塩水を注入し回収した. 回収したBALFはすぐに3,000 rpm, 10分間, 4℃下で遠心を行い, 上清を除いた細胞にfetal calf serum (FCS)を100μL添加した. 上清は-80℃保存した. BALF回収後, 後大静脈から1mLシリンジおよび23Gニードルにて血液を採取し, 3,000rpm, 15分間, 4℃下で遠心分離を行い, 血清を得た. 得た血清は測定に供すまで-20℃保存とした.
─BALF中全細胞数の測定─
FCSに懸濁したBALF中の細胞の一部をチュルク液にて染色し, ヘモサイトメーターを用いて総細胞数を計測した.
─BALF中細胞(好酸球, 好中球, リンパ球, マクロファージ)の固定および染色横K
FCSに懸濁したBALF中の細胞をE2cytofunnels (Thermo)およびCYTOSPIN4 (Thermo)を用いてスライドガラスに塗沫し, 20分以上風乾した後, ディフクイック(Diff-Quik stainTM, シスメックス)を用いて固定および染色を行った. 静止画を撮影し, Image J (NIH)を用いて, 好酸球(Eos), 好中球(Neu), リンパ球(Lym)およびマクロファージ(Mac)それぞれの細胞数を計測した.
─BALF中サイトカイン量の測定─
BALF中のサイトカイン量(IFN-γ, IL-17, 4, 5, 10, 13, 1βおよび6)測定には, BD Cytometric Beads Array (CBA) Mouse Enhanced Sensitivity Master Buffer kit (BD; 562246)を用いた. 解析には, BD FACS VerseTM フローサイトメーター (BD Biosciences)を用いた.
─肺の病理組織切片の作製─
マウスの心臓右心室より1x PBSで灌流後, 肺を4% Paraformaldehydeで固定した. パラフィンブロック作製後, 両肺5葉それぞれについて, 最大面の切片を作製, ヘマトキシリン・エオジン(HE)染色を行った.
─血清中総IgEおよびOVA特異的IgE, IgG1/IgG2aの測定─
血清中のイムノグロブリンについては, 試験で得た血清を用いて測定した (n=3).
─ex vivo評価─
OVA感作およびラクトバチラス・プランタラムLP14投与したマウスから, 以下の方法で脾臓を回収し, ex vivo評価を行った.
(1)最後のOVA吸入から24時間後(AHR評価と同タイミング), control群およびラクトバチラス・プランタラムLP14群の脾臓を4匹分回収した(poolで使用).
(2)スライドガラスを用いてすり潰した後, ACK lysing buffer (Life Technologies, A10492-01) にて細胞を単離した.
(3)Mouse用Complete Medium※で反応を止めた後, 1,200 rpm, 5分間, 4℃下で遠心した.
(4)3%FCSを含むMACS bufferを10mL加え, 再度1,200rpm, 5分間, 4 ℃下で遠心した.
(5)CD4+ T cell isolation kit (MACS Miltenyi Biotec, 130-104-454) およびauto MACS Pro Separatorを用いてナイーブCD4+ T細胞を得た.
(6)別途, 抗原提示細胞(APC細胞)を得るため, 無処理のBALB/cAマウス3匹から脾臓を回収した.
(7)(2)から(4)と同様にして, 細胞を単離し, Thy1.2-FITC (1 μL/spleen/300μL MACS buffer) を添加し, 氷上で20分間インキュベーションした.
(8)3%FCSを含むMACS bufferを10mL加え, 1,200rpm, 5分間, 4 ℃下で遠心した後, Anti-FITC Beads (20 μL/spleen/300μL MACS buffer)を加えて氷上で15分間インキュベーションした.
(9)3%FCSを含むMACS bufferを10mL加え, 1,200rpm, 5分間, 4 ℃下で遠心した後, autoMACS Pro Separatorを用いて細胞を得た.
(10)得た細胞を3,000 radでラジエーションし, これをAPC細胞とした.
(11)96wellプレートにAPC細胞を5 x 106 cell/50μL/well播種した.
(12)OVA 0または100 μg/mL下で, control群, ラクトバチラス・プランタラムLP14群それぞれの脾臓細胞を4 x 105 cell/50μL/wellまたは8 x 105 cell/50μL/wellで播種した.
(13)72および96時間後に, 培養上清を回収し, 各種サイトカインIL-2, IL-4, IL-5, IL-13およびIFN-γの濃度をELISA法にて測定した.
※Mouse用Complete Medium (ヒト末梢血単核細胞の培地とはFBSが異なる.)
Final conc.
RPMI1640 (Sigma; R8758)
Sodium pyruvate(Gibco; 11360-070) 1%
MEM NEAA (Gibco; 11140-050) 1%
HEPES (Gibco; 15630-080)1%
2- Mercaptoethanol(Gibco; 21985023) 0.1%
Fetal bovine serum(BioWhittaker; 14-502FM) 10%
(Lot No. SF50602)
Penicillin-streptomycin(Gibco; 15070-063) 1%
L-Glutamine (Gibco; 25030-081) 1%

─ELISA法によるサイトカイン量測定─
下記に1次および2次抗体を示す. IL-13はDuoSet kit (R&D Systems, DY008)を用いた.
1st 使用濃度
IL-2 (BD Pharmingen; 18161D) x500
IL-4 (BD Pharmingen; 554387) x500
IL-5 (BD Pharmingen; 554393) x500
IFN-γ (BD Pharmingen; 551216) x500

2nd 使用濃度
IL-2 (BD Pharmingen; 554426) x1000
IL-4 (BD Pharmingen; 554390) x1000
IL-5 (BD Pharmingen; 554397) x500
IFN-γ (BD Pharmingen; 554410) x1000
─統計処理─
値はすべて平均値±標準誤差で表した.Vehicle群とControl群, Control群とラクトバチラス・プランタラムLP14群の比較は, F検定で等分散検定を行った後, 等分散であればstudent’s t-testで2群間比較を行った.
Control群とラクトバチラス・プランタラムLP14 1.0 mg/mouse群については, バートレット検定により等分散検定を行った後, 等分散であればdunnet’s testで多群間比較を行った.
<結果および考察>
OVA全身投与(腹腔内投与)の後, 再度気道経由でOVA吸入させるとマウスは気管支喘息を起こす. すると, 細気管支周囲に好酸球を主体とした細胞浸潤を特徴とする気道炎症が惹起され(BALF中の細胞数が増加する), また気管支や肺が硬化することによりAHRが上昇する.
BALF中総細胞数の結果を図5に示した. OVA吸入により, 総細胞数, 好酸球(Eos), 好中球(Neut)およびリンパ球(Lym)の細胞数は有意に増加し, マクロファージ(Mac)は増加傾向がみられた. さらにラクトバチラス・プランタラムLP14を摂取させることで, OVA吸入で増加した総細胞数は用量依存的に減少し, ラクトバチラス・プランタラムLP14の1.0 mg/mouse投与群ではcontrol群に比べて, 総細胞数, Mac, NeutおよびLymで有意な減少, Eosでも有意な減少傾向(p=0.06)が認められた. この結果より, ラクトバチラス・プランタラムLP14に気道炎症抑制作用があることが示唆された. またAHRについては, OVA吸入により有意に気道抵抗値が増加し, ラクトバチラス・プランタラムLP14摂取によりVehicle群と同等の値まで有意に減少させた (図6).
フローサイトメーターによる多項目同時定量解析方法により, BALF中のサイトカインIFN-γ, IL-17, IL-4, IL-5, IL-10, IL-13, IL-1βおよびIL-6を測量した. IFN-γは測定限界を下回ったため, 結果から除外した. Th2サイトカインであるIL-4, IL-5およびIL-13について, OVA吸入により, いずれのサイトカイン量も上昇したが, ラクトバチラス・プランタラムLP14摂取により, 減少傾向にあった (IL-4; p=0.05, IL-5; p=0.098, IL-13; p=0.09, 図7). 炎症性サイトカインであるIL-1βやIL-6はOVA吸入によって有意に濃度が上昇するものの, ラクトバチラス・プランタラムLP14投与で変化は認められなかった.図8には肺組織をヘマトキシリン・エオジン(HE)染色した図を示した. Vehicle群にはみられなかった細胞浸潤が, Control群ではみられ, ラクトバチラス・プランタラムLP14投与により消失していた.
血清中の総IgEおよびOVA特異的IgEは, OVA吸入によって, さらにはラクトバチラス・プランタラムLP14投与によって変化は認められなかった (図9). Th1/2バランスの指標となるIgG1/IgG2aについてもOVA吸入, ラクトバチラス・プランタラムLP14投与によって変化はみられなかった (図10).
次に、OVA感作及びラクトバチラス・プランタラムLP14を投与したマウスから、脾臓を回収し、すり潰した後に細胞を単離しex vivo評価を行った。ex vivo評価の結果を図11~12に示した. いずれもOVAおよびAPC細胞(抗原提示細胞)存在下で72または96時間培養した時の培養上清中のサイトカイン量の測定を行った。
Th2サイトカインであるIL-5は好酸球に作用して好酸球浸潤や好酸球の分化誘導を促し, 遅延型アレルギーを引き起こすと言われている.
本試験では, 脾臓細胞培養上清中およびBALF中いずれにおいても, OVA吸入によって増加した好酸球量およびIL-5量が, ラクトバチラス・プランタラムLP14投与によって減少していた(図7及び図11)。
このことから, ラクトバチラス・プランタラムLP14がIL-5産生抑制に働いたと考えられる. Th1サイトカインであるIL-2およびIFN-γについて, IL-2はラクトバチラス・プランタラムLP14摂取により変化は認められなかったが, IFN-γはラクトバチラス・プランタラムLP14により有意に上昇していた (図12). また, データは示さないがOVA非存在下で培養した後のIL-2量 (8 x 105 cell/well, 72h培養)およびIFN-γ量 (8 x 105 cell/well, 72hおよび96h培養)は, ラクトバチラス・プランタラムLP14摂取により有意に増加していた。

Claims (3)

  1. ラクトバチラス・プランタラムLP14株(NITE P-01603)を含有する制御性T細胞の分化誘導剤。
  2. 請求項1に記載の制御性T細胞の分化誘導剤を含有する抗炎症又は抗アレルギー機能を有する飲食品又は医薬品
  3. ラクトバチラス・プランタラムLP14株(NITE P-01603)を利用した制御性T細胞の分化誘導方法。
JP2017208544A 2017-10-27 2017-10-27 制御性t細胞の分化誘導剤及び分化誘導方法 Active JP7015674B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017208544A JP7015674B2 (ja) 2017-10-27 2017-10-27 制御性t細胞の分化誘導剤及び分化誘導方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017208544A JP7015674B2 (ja) 2017-10-27 2017-10-27 制御性t細胞の分化誘導剤及び分化誘導方法

Publications (2)

Publication Number Publication Date
JP2019080497A JP2019080497A (ja) 2019-05-30
JP7015674B2 true JP7015674B2 (ja) 2022-02-15

Family

ID=66669266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017208544A Active JP7015674B2 (ja) 2017-10-27 2017-10-27 制御性t細胞の分化誘導剤及び分化誘導方法

Country Status (1)

Country Link
JP (1) JP7015674B2 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015080433A (ja) 2013-10-22 2015-04-27 日清ヨーク株式会社 新規乳酸菌
WO2017034460A1 (en) 2015-08-25 2017-03-02 Shahram Aghaibeik-Lavasani Composition and method for treatment and prophylaxis of intestinal infection and inflammation
WO2018143678A1 (ko) 2017-01-31 2018-08-09 경희대학교 산학협력단 신규 유산균 및 이의 용도

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015080433A (ja) 2013-10-22 2015-04-27 日清ヨーク株式会社 新規乳酸菌
WO2017034460A1 (en) 2015-08-25 2017-03-02 Shahram Aghaibeik-Lavasani Composition and method for treatment and prophylaxis of intestinal infection and inflammation
WO2018143678A1 (ko) 2017-01-31 2018-08-09 경희대학교 산학협력단 신규 유산균 및 이의 용도

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Bioscience Biotechnology & Biochemistry,2009年,Vol.73, No.2,p.457-460
Bioscience Biotechnology & Biochemistry,2013年,Vol.77, No.9,p.1826-1831
Clinical & Experimental Allergy,2009年,Vol.40,p.103-110

Also Published As

Publication number Publication date
JP2019080497A (ja) 2019-05-30

Similar Documents

Publication Publication Date Title
CN111944725B (zh) 一种副干酪乳杆菌207-27及其应用
KR101300086B1 (ko) 자가면역질환의 치료를 위한 락토바실러스의 용도
EP1915058B1 (en) Use of specific lactic bacteria for the preparation of immunomodulating compositions
TR201809987T4 (tr) Probiyotik bileşimler ve yöntemler.
RU2671209C2 (ru) Lactobacillus rhamnosus rht-3201, конъюгированные с полисахаридным полимерным связующим и их применение для профилактики или лечения атопических заболеваний
TW200829175A (en) Anti-allergy lactic acid bacteria
EP2220210B1 (en) Strains of lactobacillus plantarum as probiotics with immunomodulatory specific effect
US9644210B2 (en) Probiotic gram-positive bacteria for the prophylaxis, suppression, or elimination of allergic reactions in human
JP7358001B2 (ja) 乳酸菌、インターロイキン-22産生誘導剤、皮膚バリア機能増強剤
CN106262931A (zh) 植物乳杆菌在制备抗过敏产品中的应用
JP7015674B2 (ja) 制御性t細胞の分化誘導剤及び分化誘導方法
TWI642363B (zh) Qol改善或維持劑
JP2010150206A (ja) 粘膜免疫賦活作用および免疫バランス調整作用を有する経腸栄養剤
EP2332557A1 (en) Probiotic lactic acid bacteria
JP7225364B1 (ja) 乳酸菌
JP2006257040A (ja) アレルゲン特異的IgE抗体産生抑制剤、及びアレルゲン特異的IgE抗体産生抑制のために用いられる飲食品
KR100854816B1 (ko) 항알레르기용 조성물
CN118161534A (zh) 弗格森埃希菌及其产品在炎症疾病中的用途
JP2021101645A (ja) 免疫バランスの調節のための組成物
PL212183B1 (pl) Zastosowanie Lactobacillus casei ŁOCK 0900, Lactobacillus casei ŁOCK 0908 i Lactobacillus paracasei ŁOCK 0919
ITRM20130174A1 (it) Ceppo di lactobacillus e suo uso come probiotico

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210518

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220124

R150 Certificate of patent or registration of utility model

Ref document number: 7015674

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150