JP7014805B2 - データ解析装置、半導体製造システム、データ解析方法、及び半導体製造方法 - Google Patents

データ解析装置、半導体製造システム、データ解析方法、及び半導体製造方法 Download PDF

Info

Publication number
JP7014805B2
JP7014805B2 JP2019538784A JP2019538784A JP7014805B2 JP 7014805 B2 JP7014805 B2 JP 7014805B2 JP 2019538784 A JP2019538784 A JP 2019538784A JP 2019538784 A JP2019538784 A JP 2019538784A JP 7014805 B2 JP7014805 B2 JP 7014805B2
Authority
JP
Japan
Prior art keywords
data
wafer
parameters
exposure
devices
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019538784A
Other languages
English (en)
Other versions
JPWO2019043780A1 (ja
Inventor
豊 五十嵐
裕司 峰岸
理 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gigaphoton Inc
Original Assignee
Gigaphoton Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gigaphoton Inc filed Critical Gigaphoton Inc
Publication of JPWO2019043780A1 publication Critical patent/JPWO2019043780A1/ja
Application granted granted Critical
Publication of JP7014805B2 publication Critical patent/JP7014805B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/70508Data handling in all parts of the microlithographic apparatus, e.g. handling pattern data for addressable masks or data transfer to or from different components within the exposure apparatus
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/705Modelling or simulating from physical phenomena up to complete wafer processes or whole workflow in wafer productions
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/70525Controlling normal operating mode, e.g. matching different apparatus, remote control or prediction of failure
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/41875Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by quality surveillance of production
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/31From computer integrated manufacturing till monitoring
    • G05B2219/31308Capture image asynchronously with processing of analysis, identification
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45031Manufacturing semiconductor wafers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Quality & Reliability (AREA)
  • General Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Lasers (AREA)

Description

本開示は、データ解析装置、半導体製造システム、データ解析方法、及び半導体製造方法に関する。
近年、半導体露光装置(以下、「露光装置」という)においては、半導体集積回路の微細化および高集積化につれて、解像力の向上が要請されている。このため、露光用光源から放出される光の短波長化が進められている。一般的に、露光用光源には、従来の水銀ランプに代わってガスレーザ装置が用いられる。例えば、露光用のガスレーザ装置としては、波長248nmの紫外線のレーザ光を出力するKrFエキシマレーザ装置、ならびに波長193nmの紫外線のレーザ光を出力するArFエキシマレーザ装置が用いられる。
次世代の露光技術としては、露光装置側の露光用レンズとウエハとの間が液体で満たされる液浸露光が実用化されている。この液浸露光では、露光用レンズとウエハとの間の屈折率が変化するため、露光用光源の見かけの波長が短波長化する。ArFエキシマレーザ装置を露光用光源として液侵露光が行われた場合、ウエハには水中における波長134nmの紫外光が照射される。この技術をArF液浸露光(又はArF液浸リソグラフィー)という。
KrFエキシマレーザ装置およびArFエキシマレーザ装置の自然発振幅は、約350~400pmと広い。そのため、KrF及びArFレーザ光のような紫外線を透過する材料で投影レンズを構成すると、色収差が発生してしまう場合がある。その結果、解像力が低下し得る。そこで、ガスレーザ装置から出力されるレーザ光のスペクトル線幅を、色収差が無視できる程度となるまで狭帯域化する必要がある。そのため、ガスレーザ装置のレーザ共振器内には、スペクトル線幅を狭帯域化するために、狭帯域化素子(エタロン、グレーティング等)を有する狭帯域化モジュール(Line Narrow Module:LNM)が設けられる場合がある。以下では、スペクトル線幅が狭帯域化されるレーザ装置を狭帯域化レーザ装置という。
国際公開第2014/30645号 特開2013-174575号公報 特開2004-281461号公報 国際公開第2017/68619号
概要
本開示のデータ解析装置は、光源装置と、光源装置から出力されたパルス光によってウエハに対して露光を行う露光装置と、露光装置によって露光されたウエハの検査を行うウエハ検査装置とを含む複数の装置のそれぞれから、各装置の解析対象のパラメータ毎のデータを取得するデータ収集部と、データ収集部によって複数の装置から収集された複数のパラメータ毎のデータのそれぞれを、ウエハについて、ウエハ内の所定のエリア単位で可視化することにより画像化し、複数の装置のパラメータ毎の複数のマップ化画像を生成する画像生成部と、ウエハについて、複数のマップ化画像のうちの任意のマップ化画像同士をパターンマッチングし、複数の装置の複数のパラメータのうちの任意のパラメータ同士の相関値を求め、少なくとも、最も高い相関値が導出された1組のパラメータに関する情報を出力する相関演算部とを備える。
本開示の半導体製造システムは、光源装置と、光源装置から出力されたパルス光によってウエハに対して露光を行う露光装置と、露光装置によって露光されたウエハの検査を行うウエハ検査装置とを含む複数の装置と、複数の装置のそれぞれから、各装置の解析対象のパラメータ毎のデータを取得するデータ収集部と、データ収集部によって複数の装置から収集された複数のパラメータ毎のデータのそれぞれを、ウエハについて、ウエハ内の所定のエリア単位で可視化することにより画像化し、複数の装置のパラメータ毎の複数のマップ化画像を生成する画像生成部と、ウエハについて、複数のマップ化画像のうちの任意のマップ化画像同士をパターンマッチングし、複数の装置の複数のパラメータのうちの任意のパラメータ同士の相関値を求め、少なくとも、最も高い相関値が導出された1組のパラメータに関する情報を出力する相関演算部と、パラメータ同士の相関値に基づいて、複数の装置のうち、少なくとも1つの装置の制御に関するパラメータを変更する制御部とを備える。
本開示のデータ解析方法は、光源装置と、光源装置から出力されたパルス光によってウエハに対して露光を行う露光装置と、露光装置によって露光されたウエハの検査を行うウエハ検査装置とを含む複数の装置のそれぞれから、各装置の解析対象のパラメータ毎のデータを取得することと、複数の装置から取得された複数のパラメータ毎のデータのそれぞれを、ウエハについて、ウエハ内の所定のエリア単位で可視化することにより画像化し、複数の装置のパラメータ毎の複数のマップ化画像を生成することと、ウエハについて、複数のマップ化画像のうちの任意のマップ化画像同士をパターンマッチングし、複数の装置の複数のパラメータのうちの任意のパラメータ同士の相関値を求め、少なくとも、最も高い相関値が導出された1組のパラメータに関する情報を出力することとを含む。
本開示の半導体製造方法は、光源装置と、光源装置から出力されたパルス光によってウエハに対して露光を行う露光装置と、露光装置によって露光されたウエハの検査を行うウエハ検査装置とを含む複数の装置のそれぞれから、各装置の解析対象のパラメータ毎のデータを取得することと、複数の装置から取得された複数のパラメータ毎のデータのそれぞれを、ウエハについて、ウエハ内の所定のエリア単位で可視化することにより画像化し、複数の装置のパラメータ毎の複数のマップ化画像を生成することと、ウエハについて、複数のマップ化画像のうちの任意のマップ化画像同士をパターンマッチングし、複数の装置の複数のパラメータのうちの任意のパラメータ同士の相関値を求め、少なくとも、最も高い相関値が導出された1組のパラメータに関する情報を出力することと、パラメータ同士の相関値に基づいて、複数の装置のうち、少なくとも1つの装置の制御に関するパラメータを変更することとを含む。
本開示のいくつかの実施形態を、単なる例として、添付の図面を参照して以下に説明する。
図1は、比較例に係るレーザ装置、及びレーザ装置管理システムの一構成例を概略的に示す。 図2は、バースト運転によってレーザ装置が出力するパルスレーザ光の出力タイミングの一例を模式的に示す。 図3は、スキャン露光の概要を模式的に示す。 図4は、ウエハデータ収集制御部による端末装置の記憶部へのデータの書き込み制御の流れの一例を示すフローチャートである。 図5Aは、端末装置の記憶部に格納されるデータの一例を概略的に示す。 図5Bは、端末装置の記憶部に格納されるデータの一例を概略的に示す。 図6は、実施形態1に係る半導体製造システムの一構成例を概略的に示す。 図7は、実施形態1に係るデータ解析装置の一構成例を概略的に示す。 図8は、実施形態1に係るデータ解析装置による解析処理の流れの一例を示すフローチャートである。 図9は、図8に示したフローチャートにおけるステップS202の処理の詳細を示すサブのフローチャートである。 図10は、図8に示したフローチャートにおけるステップS203の処理の詳細を示すサブのフローチャートである。 図11は、マップ化画像の一例を概略的に示す。 図12は、図10に示したフローチャートのステップS221~S224における画像化処理の具体例を示すフローチャートである。 図13は、図8に示したフローチャートにおけるステップS204の処理の詳細を示すサブのフローチャートである。 図14は、デジタル画像フィルタ処理をしたマップ化画像の一例を概略的に示す。 図15は、レーザ装置のパラメータに基づいて生成されたデジタル画像フィルタ処理後のマップ化画像の一例を概略的に示す。 図16は、露光装置のパラメータに基づいて生成されたデジタル画像フィルタ処理後のマップ化画像の一例を概略的に示す。 図17は、ウエハ検査装置のパラメータに基づいて生成されたデジタル画像フィルタ処理後のマップ化画像の一例を概略的に示す。 図18は、図8に示したフローチャートにおけるステップS205の処理の詳細を示すサブのフローチャートである。 図19は、マップ化画像の組み合わせの一例と、各組み合わせに対応する相関係数の一例とを概略的に示す。 図20は、反転したマップ化画像の組み合わせの一例と、各組み合わせに対応する相関係数の一例とを概略的に示す。 図21は、図8に示したフローチャートにおけるステップS206の処理の詳細を示すサブのフローチャートである。 図22は、パラメータに関する情報として出力される一覧表の一例を概略的に示す。 図23は、パラメータに関する情報として出力されるマップ化画像と相関係数との一例を概略的に示す。 図24は、図8に示したフローチャートの変形例として追加される処理の一例を示すフローチャートである。 図25は、図24の変形例の処理によって求められるマップ化画像の組み合わせの一例と、各組み合わせに対応する相関係数の一例とを概略的に示す。 図26は、実施形態2に係る半導体製造システムの一構成例を概略的に示す。 図27は、実施形態2に係るデータ解析装置による解析処理の流れの一例を示すフローチャートである。 図28は、図27に示したフローチャートにおけるステップS208の処理の詳細を示すサブのフローチャートである。 図29は、スペクトル線幅Δλと形成パターン線幅Wとに関する回帰直線の一例を概略的に示す。
実施形態
<内容>
<1.比較例>(レーザ装置、及びレーザ装置管理システム)(図1~図5A,図5B)
1.1 構成
1.2 動作
1.3 課題
<2.実施形態1>(データ解析装置を含む半導体製造システム)(図6~図25)
2.1 構成
2.2 動作
2.3 作用・効果
2.4 変形例
<3.実施形態2>(パラメータのフィードバック制御を行う機能を備えたデータ解析装置、及び半導体製造システム)(図26~図29)
3.1 構成
3.2 動作
3.3 作用・効果
<4.その他>
以下、本開示の実施形態について、図面を参照しながら詳しく説明する。
以下に説明される実施形態は、本開示のいくつかの例を示すものであって、本開示の内容を限定するものではない。また、各実施形態で説明される構成及び動作の全てが本開示の構成及び動作として必須であるとは限らない。
なお、同一の構成要素には同一の参照符号を付して、重複する説明を省略する。
<1.比較例>(レーザ装置、及びレーザ装置管理システム)
[1.1 構成]
図1は、比較例に係るレーザ装置、及びレーザ装置管理システムの一構成例を概略的に示している。
なお、本明細書において、レーザ光の光路軸方向はZ方向である。Z方向に略直交する2つの方向は、H方向とV方向とであってもよい。H方向は、図1の紙面に略直交する方向である。また、以下の比較例及び実施形態では、露光装置4にパルス光を供給する装置としてレーザ装置1の例を示すが、この例に限定されない。露光装置4にパルス光を供給する装置が、例えば、極端紫外(EUV)光を生成するEUV光源装置であってもよい。本明細書では、露光装置4にパルス光を供給する装置を光源装置と定義する。
比較例に係るレーザ装置管理システムは、レーザ装置1と、端末装置111とを備える。端末装置111は、レーザ装置1のレーザメーカによって操作されるPC(パーソナルコンピュータ)等の端末である。端末装置111は、例えば、ネットワークを介してレーザ装置1を含む複数の装置に接続されたサーバであってもよい。
レーザ装置1は、パルス光としてパルスレーザ光Lpを出力する光源装置である。レーザ装置1は、レーザ発振を行い、露光装置4に向けてパルスレーザ光Lpを出力するレーザ出力部を備える。レーザ出力部は、レーザガスが供給されるレーザチャンバ20と、狭帯域化モジュール(LNM)10と、OC(出力結合器:outcoupler)としての出力結合ミラー35とを含む。
露光装置4は、ウエハ露光を行う装置である。ウエハ露光は、スキャン露光を行うことを含む。「スキャン露光」とは、パルスレーザ光Lpをスキャンさせながらウエハの露光領域を露光する方法のことである。
レーザ装置1は、露光装置4におけるウエハ露光に合わせてバースト運転がなされる。「バースト運転」とは、スキャン露光に合わせて狭帯域化したパルスレーザ光Lpを連続して発振するバースト期間と、発振休止する発振休止期間とを交互に繰り返す運転のことである。
ここで、レーザ装置管理システムの構成を説明するのに先だって、バースト運転、及びウエハ露光の概要を説明する。図2は、バースト運転によってレーザ装置1が出力するパルスレーザ光Lpの出力タイミングの一例を模式的に示している。図3は、スキャン露光の概要を模式的に示している。
図2において、1つの縦の線はパルスレーザ光Lpの1パルス分を示している。図2に示すように、レーザ装置1は、最初に調整発振を行い、所定期間の間隔を空けた後、1枚目のウエハ露光(Wafer#1)のためのバースト運転を行う。調整発振は、ウエハにはパルスレーザ光Lpを照射しないものの、調整用のパルスレーザ光Lpを出力する発振を行うことである。パルスレーザ光Lpは、例えば数百~数kHz程度の所定の周波数で出力される。ウエハ露光時には、バースト期間と発振休止期間とを繰り返すバースト運転を行うのが一般的である。調整発振においても、バースト運転が行われる。図2において、パルスが密集している区間は、所定期間連続してパルスレーザ光Lpを出力するバースト期間である。また、図2において、パルスが存在していない区間は、発振休止期間であってもよい。なお、調整発振では、パルスの各連続出力期間の長さは一定である必要はなく、調整のため、各連続出力期間の長さを異ならせて連続出力動作を行うようにしてもよい。
調整発振を行った後、比較的大きな間隔時間を空けて、露光装置4において1枚目のウエハ露光(Wafer#1)が行われる。ウエハ露光は、図3に示すように、ウエハを複数の所定の露光領域に分割して、ウエハ露光の開始(Wafer START)と終了(Wafer END)との間の期間に、各露光領域をスキャン露光することにより行われる。すなわち、ウエハ露光では、ウエハの第1の所定の露光領域を1回目のスキャン露光(Scan#1)で露光し、次いで、第2の所定の露光領域を2回目のスキャン露光(Scan#2)で露光するというステップを繰り返す。1回のスキャン露光中は、複数のパルスレーザ光Lp(Pulse#1,Pulse#2,…)が連続的にレーザ装置1から出力され得る。第1の所定の露光領域のスキャン露光(Scan#1)が終了したら、所定間隔を空けて第2の所定の露光領域のスキャン露光(Scan#2)が行われる。このスキャン露光を順次、繰り返し、1枚目のウエハの全露光領域をスキャン露光し終えたら、再度、調整発振を行った後、2枚目のウエハのウエハ露光(Wafer#2)が行われる。
レーザ装置管理システムは、以上のようなウエハ露光を行う際のレーザ装置1における各種のデータを収集して管理するシステムである。
図1に戻り、再び、レーザ装置管理システムの構成を説明する。
レーザ装置1は、レーザ制御部2と、ウエハデータ収集制御部3と、エネルギ制御部6と、スペクトル制御部7と、ビーム計測制御部8と、ガス制御部9とを、さらに含む。レーザ装置1は、モニタモジュール(MM)30と、ビーム計測器(BPM)40と、スペクトル可変部60と、充電器90と、レーザガス供給装置91と、レーザガス排気装置92とを、さらに含む。
レーザチャンバ20は、ウインドウ21,22と、1対の放電電極23,24と、電気絶縁部材25と、クロスフローファン(CFF)26と、モータ27と、パルスパワーモジュール(PPM)28とを含む。
電気絶縁部材25は、例えばアルミナセラミックスであってもよい。パルスパワーモジュール28は、スイッチ29を含み、電気絶縁部材25の図示しないフィードフルーを介して、放電電極23と接続される。放電電極24は、接地されたレーザチャンバ20と接続される。
狭帯域化モジュール10と出力結合ミラー35は光共振器を構成する。この共振器の光路上に1対の放電電極23,24の放電領域が配置されるように、レーザチャンバ20が配置される。出力結合ミラー35には、レーザチャンバ20内で発生したレーザ光の一部を反射し、一部を透過する多層膜がコートされている。
狭帯域化モジュール10は、グレーティング11と、プリズム12と、プリズム12を回転させる回転ステージ14とを含む。
プリズム12は、レーザチャンバ20から出力されたレーザ光のビームがプリズム12でビーム拡大されてグレーティング11に所定の角度で入射するように配置される。
回転ステージ14は、プリズム12が回転した時に、グレーティング11へのビームの入射角度が変化するように配置される。グレーティング11は、ビームの入射角度と回折角度とが同じ角度となるようにリトロー配置される。
充電器90とパルスパワーモジュール28は、図示しないパルスパワーモジュール28の容量C0の充電コンデンサを充電するように互いに電気的に接続される。充電器90は、充電電圧Vを示す充電電圧データDvをエネルギ制御部6から受信する。
レーザ制御部2には、露光装置4の露光装置制御部5から発光トリガ信号Strが入力される。エネルギ制御部6には、レーザ制御部2を介して発光トリガ信号Strが入力される。エネルギ制御部6とパルスパワーモジュール28は、発光トリガ信号Strに同期して、スイッチ29がオン/オフされるように電気的に接続される。
モニタモジュール30は、ビームスプリッタ31,32と、パルスエネルギ計測器33と、スペクトル計測器34とを含む。
ビームスプリッタ31は、出力結合ミラー35から出力されたパルスレーザ光Lpの光路上に配置される。ビームスプリッタ32は、ビームスプリッタ31で反射されたパルスレーザ光Lpの光路上に配置される。ビームスプリッタ32は、反射光がパルスエネルギ計測器33に入射し、透過光がスペクトル計測器34に入射するように配置される。
パルスエネルギ計測器33は、図示しない集光レンズと光センサとを含む。光センサは紫外光に耐性がある高速のフォトダイオードであってもよい。
スペクトル計測器34は、図示しないエタロンを含む分光器であってもよい。スペクトル計測器34は、例えば、図示しないモニタエタロンと、集光レンズと、モニタエタロンを透過し、集光レンズによって焦点面上に生成された干渉縞を計測するイメージセンサとを含むモニタエタロン分光器であってもよい。
ビーム計測器40は、偏光計測器41と、ビームポインティング計測器42と、ビームプロファイル計測器43と、ビームスプリッタ44とを含む。ビームスプリッタ44は、出力結合ミラー35から出力されたパルスレーザ光Lpの光路上に配置される。
ビーム計測制御部8は、ビーム計測器40で計測された画像データに基づいてビーム計測関連データDbを計算する。ビーム計測制御部8とレーザ制御部2との間、及びビーム計測制御部8とレーザ制御部2との間には、ビーム計測関連データDbをレーザ制御部2とウエハデータ収集制御部3とに送信する信号ラインが設けられている。
スペクトル制御部7と狭帯域化モジュール10の回転ステージ14との間には、回転ステージ14の回転ステージ角度θを制御するためのステージ角度制御信号Sθを、回転ステージ14に送信する信号ラインが設けられている。回転ステージ14の回転ステージ角度θは、スペクトル計測器34で検出された波長λに基づいて制御される。
また、スペクトル制御部7とレーザ制御部2との間、及びスペクトル制御部7とウエハデータ収集制御部3との間には、スペクトル計測器34による計測結果に基づくスペクトル制御関連データDλcをレーザ制御部2とウエハデータ収集制御部3とに送信する信号ラインが設けられている。
スペクトル可変部60は、レーザチャンバ20と出力結合ミラー35との間の光路上に配置される。スペクトル可変部60は、シリンドリカル凹レンズ61と、シリンドリカル凸レンズ62と、リニアステージ63とを含む。スペクトル可変部60の変形例として、レーザチャンバ20から最も遠い位置にあるシリンドリカル凸レンズ62の一方の面が平面であって、この平面に部分反射膜がコートされ、出力結合ミラーの機能も兼用する構成であってもよい。この場合は、出力結合ミラー35は配置しない。
シリンドリカル凹レンズ61とシリンドリカル凸レンズ62は、レーザチャンバ20と出力結合ミラー35との間の光路上に配置される。シリンドリカル凹レンズ61とシリンドリカル凸レンズ62とのレンズ間隔は、リニアステージ63によって変更する。
スペクトル制御部7とリニアステージ63との間には、リニアステージ63のステージ位置Xを制御するためのステージ位置制御信号をスペクトル制御部7からリニアステージ63に送信する信号ラインが設けられる。
エネルギ制御部6と充電器90との間には、充電電圧Vを示す充電電圧データDvをエネルギ制御部6から充電器90に送信する信号ラインが設けられている。充電電圧Vは、パルスエネルギ計測器33によって計測されたパルスエネルギEに基づいて制御される。充電電圧Vは、パルスパワーモジュール28の図示しない充電コンデンサを充電する電圧である。
エネルギ制御部6とレーザ制御部2との間、及びエネルギ制御部6とウエハデータ収集制御部3との間には、パルスエネルギ計測器33による計測結果に基づくエネルギ制御関連データDegをレーザ制御部2とウエハデータ収集制御部3とに送信する信号ラインが設けられている。
ガス制御部9とレーザ制御部2との間には、ガス制御関連データDgsをレーザ制御部2に送信する信号ラインが設けられている。
レーザガス供給装置91は、ガス制御部9からの制御信号に基づいて、レーザガスとして、バッファガスと、フッ素を含むガスとをそれぞれ、レーザチャンバ20内に供給できるように構成されている。バッファガスは、Ar+Ne混合ガスである。フッ素を含むガスは、Ar+Ne+F2混合ガスである。レーザガス供給装置91は、バッファガスとしてのAr+Ne混合ガスを供給するガスボンベ93と、フッ素を含むガスとしてのAr+Ne+F2混合ガスを供給するガスボンベ94とに接続される。レーザガス供給装置91は、ガスボンベ93からのAr+Ne混合ガスの供給を制御するバルブと、ガスボンベ94からのAr+Ne+F2混合ガスの供給を制御するバルブとを含む。
レーザガス排気装置92は、ガス制御部9からの制御信号によってレーザチャンバ20内のレーザガスを排気できるように構成されている。レーザガス排気装置92は、排気を制御するバルブと、排気ポンプと、排気ガス中のF2ガスをトラップするハロゲンフィルタとを含む。
ウエハデータ収集制御部3は、記憶部52を含む。記憶部52には、ウエハ毎データDwa、スキャン毎データDsc、及びパルス毎データDpuが格納される。記憶部52に格納されたウエハ毎データDwa、スキャン毎データDsc、及びパルス毎データDpuは、端末装置111から参照可能である。
レーザ制御部2は、記憶部51を含む。記憶部51には、各種データと各種パラメータのデータとが格納される。
レーザ制御部2とガス制御部9との間には、ガス制御を行うためのガス制御パラメータPgsをガス制御部9に送信する信号ラインが設けられている。
レーザ制御部2とエネルギ制御部6との間には、エネルギ制御を行うための目標パルスエネルギEtのデータをエネルギ制御部6に送信する信号ラインが設けられている。また、レーザ制御部2とエネルギ制御部6との間には、発光トリガ信号Strをエネルギ制御部6に送信する信号ラインが設けられている。
レーザ制御部2とスペクトル制御部7との間には、スペクトル制御を行うための目標波長λtのデータと目標スペクトル線幅Δλtのデータとをスペクトル制御部7に送信する信号ラインが設けられている。
レーザ制御部2とビーム計測器40との間には、発光トリガ信号Strをビーム計測器40に送信する信号ラインが設けられている。
レーザ制御部2とレーザチャンバ20のモータ27との間には、クロスフローファン26の回転数ωを制御するための回転数データDωをモータ27に送信する信号ラインが設けられている。
露光装置制御部5とレーザ制御部2との間には、各種目標データDtをレーザ制御部2に送信する信号ラインが設けられている。各種目標データDtには、目標パルスエネルギEtと目標波長λtと目標スペクトル線幅Δλtとが含まれている。
(データ管理)
レーザ制御部2は、各種データを、定期的、例えば一定時間周期、又は一定ショット数毎に記憶部51に保存する。各種データは、例えば、エネルギ制御関連データDeg、スペクトル制御関連データDλc、ガス制御関連データDgs、及びビーム計測関連データDbを少なくとも1つ、含む。
ウエハデータ収集制御部3は、図2に示すような露光パターンの発光トリガ信号Strを受信して、トリガ時間間隔を計測することによって、露光装置4におけるウエハ露光関連情報を認識可能な構成である。ウエハ露光関連情報は、ウエハ識別情報としてのウエハ番号♯wと、スキャン識別情報としてのスキャン番号♯sと、パルス識別情報としてのパルス番号♯pとを含む。
ウエハデータ収集制御部3は、上記した各種データを、上記したウエハ露光関連情報に関連付けるような計算処理をして、記憶部52に保存可能な構成である。
記憶部52に保存されたデータは、ウエハ毎データDwa、スキャン毎データDsc、及びパルス毎データDpuとして、端末装置111から参照可能な構成である。
ウエハ毎データDwa、スキャン毎データDsc、及びパルス毎データDpuは、互いに対応付けられた、露光装置4におけるウエハ露光関連情報とレーザ装置1におけるレーザ制御関連情報とを含む。ウエハ露光関連情報は、ウエハ識別情報としてのウエハ番号♯wと、スキャン識別情報としてのスキャン番号♯sと、パルス識別情報としてのパルス番号♯pとを含む。ウエハ露光関連情報に対応付けられるレーザ制御関連情報のデータは、例えば、エネルギ制御関連データDeg、スペクトル制御関連データDλc、ガス制御関連データDgs、及びビーム計測関連データDb等の各種制御関連データを少なくとも1つ、含む。
記憶部52は、ウエハ毎データDwa、スキャン毎データDsc、及びパルス毎データDpuを一時的に記憶する。ウエハ毎データDwaは、ウエハ露光を行う際のウエハ単位のデータである。スキャン毎データDscは、スキャン露光を行う際のスキャン単位のデータである。パルス毎データDpuは、スキャン露光を行う際の各パルスレーザ光単位のデータである。記憶部52におけるデータ保存期間は、あらかじめ決められたデフォルトの所定の期間である。
また、記憶部52におけるデータ保存期間は、端末装置111から設定、変更可能であってもよい。端末装置111とウエハデータ収集制御部3との間には、記憶部52におけるデータ保存期間の設定等の設定信号をウエハデータ収集制御部3に送信する信号ラインが設けられている。
露光装置制御部5とレーザ制御部2との間には、ウエハ番号♯wと、スキャン番号♯sと、パルス番号♯pとを含むウエハ露光関連情報のデータをレーザ制御部2に送信する信号ラインが設けられている。レーザ制御部2とウエハデータ収集制御部3との間には、ウエハ露光関連情報をレーザ制御部2を介してウエハデータ収集制御部3が受信するための信号ラインが設けられている。
ガス制御部9とウエハデータ収集制御部3との間には、ガス制御関連データDgsをウエハデータ収集制御部3に送信する信号ラインが設けられている。
[1.2 動作]
図4は、ウエハデータ収集制御部3による端末装置111の記憶部へのデータの書き込み制御の流れの一例を示すフローチャートである。図5A、及び図5Bは、端末装置111の記憶部に格納されるデータの一例を概略的に示している。
ウエハデータ収集制御部3は、図2に示したようなウエハ露光毎のバースト期間の先頭を検出する。バースト期間の先頭の検出は、スキャンの先頭を検出したか否かを判定することによって行う(ステップS101)。例えば、ウエハデータ収集制御部3は、レーザ制御部2を介して露光装置制御部5から最初のスキャン番号(Scan#1)を受信することによってスキャンの先頭を検出してもよい。また、ウエハデータ収集制御部3は、発振休止期間を計測して、所定期間以上、例えば0.1s以上の発振休止期間後の先頭パルスを検出することによって、バースト期間の先頭を検出してもよい。
ウエハデータ収集制御部3は、スキャンの先頭を検出していないと判定した場合(ステップS101;N)には、ステップS101の処理を繰り返す。
一方、スキャンの先頭を検出したと判定した場合(ステップS101;Y)には、ウエハデータ収集制御部3は、次に、レーザ制御部2を介して露光装置制御部5から受信したウエハ番号♯wと、スキャン番号♯sと、パルス番号♯pとの読み込みを行う(ステップS102)。
次に、ウエハデータ収集制御部3は、ステップS103~S106の処理を、少なくとも1つ行う。ウエハデータ収集制御部3は、ステップS103の処理として、ビーム計測関連データDbの収集と解析を行う。ウエハデータ収集制御部3は、ステップS104の処理として、エネルギ制御関連データDegの収集と解析を行う。ウエハデータ収集制御部3は、ステップS105の処理として、スペクトル制御関連データDλcの収集と解析を行う。ウエハデータ収集制御部3は、ステップS106の処理として、ガス制御関連データDgsの収集と解析を行う。
次に、ウエハデータ収集制御部3は、バースト期間の終了を検出する。バースト期間の終了の検出は、スキャンの終了を検出したか否かを判定することによって行う(ステップS107)。例えば、ウエハデータ収集制御部3は、露光装置制御部5から有効なスキャン番号が送信されなくなった場合にスキャンの終了を検出してもよい。また、ウエハデータ収集制御部3は、発振休止期間を計測して、所定期間以上、例えば0.1s以上の発振休止期間を検出することによって、バースト期間の終了を検出してもよい。
ウエハデータ収集制御部3は、スキャンの終了を検出していないと判定した場合(ステップS107;N)には、ステップS107の処理を繰り返す。
一方、スキャンの終了を検出したと判定した場合(ステップS107;Y)には、ウエハデータ収集制御部3は、収集、解析したデータを、端末装置111の記憶部に書き込む(ステップS108)。ウエハデータ収集制御部3が収集、解析したデータには、ウエハ番号♯wと、スキャン番号♯sと、パルス番号♯pとが含まれる。ウエハデータ収集制御部3が収集、解析したデータには、パルス毎の、ビーム計測関連データDb、エネルギ制御関連データDeg、スペクトル制御関連データDλc、及びガス制御関連データDgsが含まれている。ここで、図5A、及び図5Bに、端末装置111の記憶部に書き込まれたデータの一例を示す。図5A、及び図5Bに示すように、例えば、ビーム計測関連データDb、エネルギ制御関連データDeg、スペクトル制御関連データDλc、及びガス制御関連データDgsが、ウエハ番号♯wとスキャン番号♯sとパルス番号♯pとに関連付けられて、端末装置111の記憶部に書き込まれる。
次に、ウエハデータ収集制御部3は、データの収集を中止するか否かを判定する(ステップS109)。ウエハデータ収集制御部3は、データの収集を中止しないと判定した場合(ステップS109;N)には、ステップS101の処理に戻る。一方、データの収集を中止すると判定した場合(ステップS109;Y)には、ウエハデータ収集制御部3は、データの収集の処理を終了する。
(その他)
図1の構成例では、ArFエキシマレーザの例を示したが、この例に限定されることなく、例えば、KrF、XeCl、XeF等のエキシマレーザにも適用してもよい。レーザガスは、レアガス+バッファガスの混合ガスと、レアガス+バッファガス+ハロゲンガスの混合ガスをレーザチャンバ20内に所定量入れることによって、レーザガスを生成してもよい。
また、図1の構成例では、シングルチャンバ方式の例を示したが、この例に限定されることなく、例えば、出力結合ミラー35とモニタモジュール30との間の光路上に、もう1台のレーザチャンバと光共振器とを配置した増幅器を含むレーザ装置であってもよい。
[1.3 課題]
上記したレーザ装置管理システムは、管理されるデータのパラメータがレーザ装置1に関するパラメータであるが、半導体製造を行うシステム全体としては、レーザ装置1の他にも、露光装置4やウエハの検査装置等、複数の製造装置が存在する。半導体製造における露光プロセスにおいては、品質の向上、精度の追求が永遠の課題である。品質向上を行うためには、製造装置から得られるあらゆるデータを収集、分析し、製造プロセスへフィードバックすることを繰り返すことが必要である。レーザ装置1においても発光時にばらつきがあるが、これまでウエハ検査装置や露光装置4のようにウェハ単位でのデータ解析が十分に行えていなかった。このため、レーザ装置1において、ウエハ単位でのデータ解析を行えるようにしても、データの種類が多いため、発光時のどのばらつきが露光性能や最終的なウエハ品質に影響を与えるのかを判断するのが困難である。すなわち、半導体製造を行うシステム全体として、ウエハの品質の向上、及び製造精度の追求を行うための諸条件を効率的に把握しきれていない。
<2.実施形態1>(データ解析装置を含む半導体製造システム)
次に、本開示の実施形態1に係るレーザ装置、及びレーザ装置管理システムについて説明する。なお、以下では上記比較例に係るレーザ装置1、及びレーザ装置管理システムの構成要素と略同じ部分については、同一符号を付し、適宜説明を省略する。
[2.1 構成]
図6は、実施形態1に係る半導体製造システムの一構成例を概略的に示している。
半導体製造システムは、半導体製造を行うための複数の装置と、複数の装置のそれぞれから、各装置の解析対象のパラメータ毎のデータを、ウエハ毎、及びスキャン毎に取得して解析するデータ解析装置200とを備えている。データ解析装置200は、パーソナルコンピュータ等の端末であってもよい。
半導体製造を行うための複数の装置は、レーザ装置1と、露光装置4と、ウエハ検査装置201と、その他の製造装置202とを含んでいる。
レーザ装置1の構成、及び動作は、端末装置111に対する構成、及び動作を除き、上記比較例と略同様である。レーザ装置1における解析対象のパラメータ毎のデータは、レーザ関連データDlaである。レーザ関連データDlaには、例えば図5A、及び図5Bに示したウエハ毎、スキャン毎の、ビーム計測関連データDb、エネルギ制御関連データDeg、スペクトル制御関連データDλc、及びガス制御関連データDgsが含まれている。ビーム計測関連データDbは、パルスレーザ光Lpのビーム特性に関するデータであって、例えばビーム幅、及びビーム位置のデータを含んでいてもよい。エネルギ制御関連データDegは、パルスレーザ光LpのパルスエネルギEに関するデータである。スペクトル制御関連データDλcは、パルスレーザ光Lpのスペクトルに関するデータであって、例えば、波長λ、及びスペクトル線幅Δλのデータを含んでいてもよい。
露光装置4は、レーザ装置1から出力されたパルスレーザ光Lpによってウエハに対して露光を行う装置である。露光装置4における解析対象のパラメータ毎のデータは、露光条件データDexpである。露光条件データDexpには、例えば、ウエハ毎、スキャン毎の、目標パルスエネルギEt、目標波長λt、目標スペクトル線幅Δλt、露光装置4で計測されたパルスエネルギPex、ウエハのZ方向のフォーカス位置、及びウエハ面の高さ位置のデータが含まれていてもよい。
ウエハ検査装置201は、露光装置4によって露光されたウエハの検査を行う装置である。ウエハ検査装置201は、ウエハの表面にレーザ光を照射して散乱光強度信号の検出変動結果に基づいて、ウェハ面上におけるパターン線幅変動をウエハ毎、スキャン毎に検出する装置であってもよい。また、ウエハ検査装置201は、例えば、ウエハの表面の高さや、ウエハ上にある欠陥を計測する装置であって、欠陥の発生した場所や大きさをウエハ毎、スキャン毎に計測する装置であってもよい。ウエハ検査装置201における解析対象のパラメータ毎のデータは、検査データDmeである。検査データDmeは、ウエハ検査装置201における計測結果のデータとして、ウエハの形状に関するデータと、ウエハの欠陥に関するデータとを含んでいてもよい。ウエハの形状に関するデータは、例えば、ウエハの表面の高さのデータを含んでいてもよい。ウエハの欠陥に関するデータは、例えば、欠陥数、及びパターン線幅のデータを含んでいてもよい。
その他の製造装置202は、例えば、ウエハにレジストをコーティングする装置や、薄膜を形成するCVD(Chemical Vapor Deposition)装置であってもよい。その他の製造装置202における解析対象のパラメータ毎のデータは、製造データDmaである。製造データDmaには、その他の製造装置202において計測された、ウエハ毎、スキャン毎の、レジストの厚みや薄膜の厚みのデータが含まれていてもよい。
図7は、実施形態1に係るデータ解析装置200の一構成例を概略的に示している。
データ解析装置200は、データ収集部211と、画像生成部212と、フィルタ処理部213と、相関演算部214と、表示部215と、解析制御部216と、記憶部217とを備えている。
データ収集部211は、レーザ装置1と、露光装置4と、ウエハ検査装置201と、その他の製造装置202とを含む複数の装置のそれぞれから、各装置の解析対象のパラメータ毎のデータを取得する。
データ収集部211がレーザ装置1から取得するデータは、上述のレーザ関連データDlaである。データ収集部211が露光装置4から取得するデータは、上述の露光条件データDexpである。データ収集部211がウエハ検査装置201から取得するデータは、上述の検査データDmeである。データ収集部211がその他の製造装置202から取得するデータは、上述の製造データDmaである。
画像生成部212は、データ収集部によって複数の装置から収集された複数のパラメータ毎のデータのそれぞれを、ウエハについて、ウエハ内の所定のエリア単位で可視化することにより画像化し、複数の装置のパラメータ毎の複数のマップ化画像を生成する。
ここで、所定のエリアは、露光装置4による1回のスキャン露光が行われるエリアである。また、所定のエリアは、スキャン露光が行われるエリアをさらに分割して細分化されたエリアであってもよい。
画像生成部212は、データの違いを濃淡で表したマップ化画像を生成する。この場合において、画像生成部212は、各パラメータの目標値を濃淡の中央値にするようにしてもよい。
相関演算部214は、ウエハについて、複数のマップ化画像のうちの任意のマップ化画像同士をパターンマッチングし、複数の装置の複数のパラメータのうちの任意のパラメータ同士の相関値を求める。この場合において、相関演算部214は、複数の装置のうち、異なる装置間のパラメータ同士の相関値を求めるようにしてもよい。
相関演算部214は、少なくとも、最も高い相関値が導出された1組のパラメータに関する情報を出力するようにしてもよい。
相関演算部214は、相関値が高い順に、複数の組のパラメータに関する情報を出力するようにしてもよい。
表示部215は、相関演算部214から出力されたパラメータ同士の情報を表示する。表示部215は、例えば、パラメータ同士の相関値とマップ化画像とを表示するようにしてもよい。
フィルタ処理部213は、画像生成部212によって生成されたマップ化画像に対してデジタル画像フィルタ処理を行う。フィルタ処理部213は、デジタル画像フィルタとして、例えばメディアンフィルタや平均化フィルタを用いてもよい。
記憶部217は、例えば、フィルタ処理部213によるデジタル画像フィルタ処理後のマップ化画像を記憶する複数の記憶部A,B,C,Dを含む。
[2.2 動作]
図8は、実施形態1に係るデータ解析装置200による解析処理の流れの一例を示すフローチャートである。
まず、データ解析装置200は、ウエハの露光が終了したか否かを判定する(ステップS201)。データ解析装置200は、露光が終了していないと判定した場合(ステップS201;N)には、ステップS20の処理を繰り返す。
一方、露光が終了したと判定した場合(ステップS201;Y)には、データ解析装置200は、次に、データ収集部211において各装置からウエハ毎、スキャン毎のデータの収集を行う(ステップS202)。
次に、データ解析装置200は、画像生成部212において、各装置から得られた各々のパラメータのデータをウエハ状に描き画像化する(ステップS203)。これにより、画像生成部212において、マップ化画像を生成する。
次に、データ解析装置200は、フィルタ処理部213において、各マップ化画像に対して、デジタル画像フィルタ処理を行う(ステップS204)。
次に、データ解析装置200は、相関演算部214において、異なる装置間におけるフィルタ処理後のマップ化画像同士をパターンマッチングし、相関値を求める(ステップS205)。相関値は、例えば相関の度合いを示す%表示の相関係数であってもよい。
次に、データ解析装置200は、相関演算部214において、複数の組のパラメータに関する情報を、相関値が高い順に並べて出力し(ステップS206)、処理を終了する。出力する先は表示部215である。具体的には、データ解析装置200は、例えば、後述の図22及び図23に示すように、複数の組のパラメータに関する情報を、表示部215に表示する。
図9は、図8に示したフローチャートにおけるステップS202の処理の詳細を示すサブのフローチャートである。
まず、データ解析装置200は、データ収集部211において、レーザ装置1からウエハ毎、スキャン毎のレーザ関連データDlaの収集を行う(ステップS211)。
次に、データ解析装置200は、データ収集部211において、露光装置4からウエハ毎、スキャン毎の露光条件データDexpの収集を行う(ステップS212)。
次に、データ解析装置200は、データ収集部211において、ウエハ検査装置201からウエハ毎、スキャン毎の検査データDmeの収集を行う(ステップS213)。
次に、データ解析装置200は、データ収集部211において、その他の製造装置202からウエハ毎、スキャン毎の製造データDmaの収集を行う(ステップS214)。その後、ステップS202の処理を終了して、図8のメインルーチンに戻り、データ解析装置200は、図8のステップS203の処理を行う。

その後、ステップS202の処理を終了して、メインルーチンに戻りその後、データ解析装置200は、図8のステップS203の処理を行うってもよい。
図10は、図8に示したフローチャートにおけるステップS203の処理の詳細を示すサブのフローチャートである。
まず、データ解析装置200は、画像生成部212において、レーザ装置1からのna個のパラメータのレーザ関連データDlaをそれぞれ、ウエハ状に描き画像化し、各マップ化画像を、画像Ab1,画像Ab2,・・・,画像Abnaとして記憶部217に記憶する(ステップS221)。
次に、データ解析装置200は、画像生成部212において、露光装置4からのnb個のパラメータの露光条件Dexpをそれぞれ、ウエハ状に描き画像化し、各マップ化画像を、画像Bb1,画像Bb2,・・・,画像Bbnbとして記憶部217に記憶する(ステップS222)。
次に、データ解析装置200は、画像生成部212において、ウエハ検査装置201からのnc個のパラメータの検査データDmeをそれぞれ、ウエハ状に描き画像化し、各マップ化画像を、画像Cb1,画像Cb2,・・・,画像Cbncとして記憶部217に記憶する(ステップS223)。
次に、データ解析装置200は、画像生成部212において、その他の製造装置202からのnd個のパラメータの製造データDmaをそれぞれ、ウエハ状に描き画像化し、各マップ化画像を、画像Db1,画像Db2,・・・,画像Dbndとして記憶部217に記憶する(ステップS224)。その後、ステップS203の処理を終了して、図8のメインルーチンに戻り、データ解析装置200は、図8のステップS204の処理を行う。
図11は、画像生成部212によって生成されるマップ化画像の一例を概略的に示している。
図11のマップ化画像は、例えば1枚目のウエハ露光(Wafer#1)を行った際に得られた任意の1つのパラメータのデータをウエハ状に描き画像化した例である。
図12は、図10に示したフローチャートのステップS221~S224における各画像化処理の具体例を示すフローチャートである。
まず、画像生成部212は、パラメータの目標値Ptを読み込む(ステップS231)。パラメータの目標値Ptは、各装置からあらかじめ取得し、データ解析装置200の記憶部217に記憶しておく。パラメータの目標値Ptは、例えば目標スペクトル線幅Δλtbの値であってもよい。
次に、画像生成部212は、パラメータの目標値を階調の中央値とする(ステップS232)。画像生成部212は、例えば、256階調とすると、目標スペクトル線幅Δλtbの目標値を中央値の128とする。
次に、画像生成部212は、パラメータのデータDPの最大値Imaxと最小値Iminとを求める(ステップS233)。
次に、画像生成部212は、最大値Imax及び最小値Iminと目標値Ptとの比較を行う(ステップS234)。
ここで、Pt-Imin≧Imax-Ptの場合、画像生成部212は、次の式により、階調ピッチSを計算する(ステップS235)。
S=(Pt-Imin)/128
一方、Pt-Imin<Imax-Ptの場合、画像生成部212は、次の式により、階調ピッチSを計算する(ステップS236)。
S=(Imax-Pt)/128
ステップS235、又はステップS236における階調ピッチSを計算した後、次に、画像生成部212は、パラメータのデータDPの値と階調ピッチSとから画像の濃さを求める(ステップS237)。
次に、画像生成部212は、求めた濃さでウエハ上の位置に合わせて画像化する(ステップS238)。
図13は、図8に示したフローチャートにおけるステップS204の処理の詳細を示すサブのフローチャートである。
まず、データ解析装置200は、フィルタ処理部213において、レーザ装置1の各パラメータに基づく画像Ab1,Ab2,・・・,Abnaをそれぞれデジタル画像フィルタ処理し、得られた画像Aa1,Aa2,・・・,Aanaを記憶部217の記憶部Aに保存する(ステップS241)。
次に、データ解析装置200は、フィルタ処理部213において、露光装置4の各パラメータに基づく画像Bb1,Bb2,・・・,Bbnbをそれぞれデジタル画像フィルタ処理し、得られた画像Ba1,Ba2,・・・,Banbを記憶部217の記憶部Bに保存する(ステップS242)。
次に、データ解析装置200は、フィルタ処理部213において、ウエハ検査装置201の各パラメータに基づく画像Cb1,Cb2,・・・,Cbncをそれぞれデジタル画像フィルタ処理し、得られた画像Ca1,Ca2,・・・,Cancを記憶部217の記憶部Cに保存する(ステップS243)。
次に、データ解析装置200は、フィルタ処理部213において、その他の製造装置202の各パラメータに基づく画像Db1,Db2,・・・,Dbndをそれぞれデジタル画像フィルタ処理し、得られた画像Da1,Da2,・・・,Dandを記憶部217の記憶部Dに保存する(ステップS244)。その後、ステップS204の処理を終了して、図8のメインルーチンに戻り、データ解析装置200は、図8のステップS205の処理を行う。
図14は、フィルタ処理部213によってデジタル画像フィルタ処理をしたマップ化画像の一例を概略的に示している。
図14には、例えば1枚目のウエハ露光(Wafer#1)を行った際に得られたマップ化画像Abに対して、デジタル画像フィルタ処理を施したマップ化画像Aaの例を示す。
図15、図16、及び図17に、各装置の各パラメータのデータに基づいて、フィルタ処理部213によってデジタル画像フィルタ処理した画像の具体例を示す。なお、フィルタ処理部213によるデジタル画像フィルタ処理として、画像の階調を反転させて反転画像を生成する処理を行ってもよい。
図15は、レーザ装置1のパラメータに基づいて生成されたデジタル画像フィルタ処理後のマップ化画像の一例を概略的に示している。
図15には、一例として、スペクトル線幅Δλに関するマップ化画像と、パルスエネルギEに関するマップ化画像とを示す。
図16は、露光装置4のパラメータに基づいて生成されたデジタル画像フィルタ処理後のマップ化画像の一例を概略的に示している。
図16には、一例として、ウエハ上の露光エネルギdoseに関するマップ化画像と、ウエハのZ方向のフォーカス位置Zに関するマップ化画像とを示す。
図17は、ウエハ検査装置201のパラメータに基づいて生成されたデジタル画像フィルタ処理後のマップ化画像の一例を概略的に示している。
図17には、一例として、ウエハの高さHに関するマップ化画像と、パターン線幅に関するマップ化画像とを示す。
図18は、図8に示したフローチャートにおけるステップS205の処理の詳細を示すサブのフローチャートである。
まず、データ解析装置200は、相関演算部214において、記憶部Aに記憶されたマップ化画像と記憶部Bに記憶されたマップ化画像との組み合わせ同士をパターンマッチングし、相関値として相関係数を求めて記憶する(ステップS251)。
次に、データ解析装置200は、相関演算部214において、記憶部Aに記憶されたマップ化画像と記憶部Cに記憶されたマップ化画像との組み合わせ同士をパターンマッチングし、相関値として相関係数を求めて記憶する(ステップS252)。
次に、データ解析装置200は、相関演算部214において、記憶部Aに記憶されたマップ化画像と記憶部Dに記憶されたマップ化画像との組み合わせ同士をパターンマッチングし、相関値として相関係数を求めて記憶する(ステップS253)。
次に、データ解析装置200は、相関演算部214において、記憶部Bに記憶されたマップ化画像と記憶部Cに記憶されたマップ化画像との組み合わせ同士をパターンマッチングし、相関値として相関係数を求めて記憶する(ステップS254)。
次に、データ解析装置200は、相関演算部214において、記憶部Bに記憶されたマップ化画像と記憶部Dに記憶されたマップ化画像との組み合わせ同士をパターンマッチングし、相関値として相関係数を求めて記憶する(ステップS255)。
次に、データ解析装置200は、相関演算部214において、記憶部Cに記憶されたマップ化画像と記憶部Dに記憶されたマップ化画像との組み合わせ同士をパターンマッチングし、相関値として相関係数を求めて記憶する(ステップS256)。その後、ステップS205の処理を終了して、図8のメインルーチンに戻り、データ解析装置200は、図8のステップS206の処理を行う。
図19及び図20に、図18の処理によって得られるマップ化画像の組み合わせの一例と、各組み合わせに対応する相関係数の一例とを示す。特に、図20には、反転したマップ化画像を含む組み合わせの一例と、各組み合わせに対応する相関係数の一例とを示す。
図21は、図8に示したフローチャートにおけるステップS206の処理の詳細を示すサブのフローチャートである。
まず、データ解析装置200は、相関係数が高い組み合わせの順番に、組み合わせ情報と相関係数との一覧表を表示部215に表示する(ステップS261)。図22に、パラメータに関する情報として出力される一覧表の一例を示す。なお、一覧表の表示内容は、データ解析装置200のユーザの要求に応じて変更可能であってもよい。例えば、一覧表に表示する組み合わせの順番は、ユーザの要求に応じて変更可能であってもよい。また、ユーザが一覧表に表示する組み合わせの内容を選択可能であってもよい。また、一覧表に表示する組み合わせの数はユーザの要求に応じて変更可能であってもよい。
次に、データ解析装置200は、相関係数が高い組み合わせの順番に、組み合わせのマップ化画像と相関係数とを表示部215に表示する(ステップS262)。図23に、パラメータに関する情報として出力されるマップ化画像と相関係数との一例を示す。なお、マップ化画像と相関係数との表示内容は、データ解析装置200のユーザの要求に応じて変更可能であってもよい。例えば、表示する組み合わせの順番は、ユーザの要求に応じて変更可能であってもよい。また、ユーザが表示する組み合わせの内容を選択可能であってもよい。また、表示する組み合わせの数はユーザの要求に応じて変更可能であってもよい。
[2.3 作用・効果]
実施形態1のデータ解析装置200、及び半導体製造システムによれば、レーザ装置1や露光装置4といった複数の装置間で得られる解析対象のパラメータ毎のデータを画像化し、複数のマップ化画像のうちの任意のマップ化画像同士をパターンマッチングし、任意のパラメータ同士の相関値を求めることができる。これにより、複数の装置間の複数の組のパラメータに関する情報を、例えばパラメータ同士の相関を高い順に並べて表示することができる。これにより、製造現場では相関の高いパラメータから複数の装置間の問題を把握しやすくなり、効率良く品質の改善を行うことができる。
[2.4 変形例]
上記説明では、レーザ装置1と、露光装置4と、ウエハ検査装置201と、その他の製造装置202とを含む複数の装置をそれぞれ、データ解析装置200に直接接続した場合の例を示したが、この例に限定されることなく、複数の装置をサーバを介してデータ解析装置200に接続してもよい。この場合は、各装置からの解析対象のパラメータ毎のデータをサーバが受信し、一旦、データをサーバが保存してもよい。データ解析装置200は、サーバに保存された各装置からの解析対象のパラメータ毎のデータを、サーバから取得して解析してもよい。
また、上記説明では、相関演算部214は、図8のステップS205において、複数の装置のうち、異なる装置間のパラメータ同士の相関値を求めるようにしたが、さらに、同一の装置内のパラメータ同士の相関値を求めるようにしてもよい。
同一の装置内のパラメータの組は、例えばレーザ装置1におけるスペクトル計測器34とビーム計測器40とにおいてそれぞれ計測されたパラメータであってもよい。また、レーザ装置1におけるパルスエネルギ計測器33において計測されたパラメータと、ガス圧Pや充電電圧V等のパラメータとであってもよい。
また、レーザ装置1内だけでなく、露光装置4内やその他の製造装置202内のパラメータ同士の相関値を求めるようにしてもよい。
図24は、図8に示したフローチャートの変形例として追加される処理の一例を示すフローチャートである。図25は、図24の変形例の処理によって求められるマップ化画像の組み合わせの一例と、各組み合わせに対応する相関係数の一例とを概略的に示している。
図8のステップS205の処理の次に、図24のステップS205Aの処理を行ってもよい。ステップS205Aの処理は、サブルーチンとしてステップS251Aの処理を含んでもよい。
データ解析装置200は、相関演算部214において、同一装置内、例えばレーザ装置1内におけるフィルタ処理後のマップ化画像同士をパターンマッチングし、相関値として相関係数を求めるようにしてもよい(ステップS205A)。
この場合、データ解析装置200は、相関演算部214において、同一の記憶部、例えば記憶部Aに記憶された任意のマップ化画像の組み合わせ同士をパターンマッチングし、相関値として相関係数を求めて記憶するようにしてもよい(ステップS251A)。
<3.実施形態2>(パラメータのフィードバック制御を行う機能を備えたデータ解析装置、及び半導体製造システム)
次に、本開示の実施形態2に係るデータ解析装置、及び半導体製造システムについて説明する。なお、以下では上記比較例に係るレーザ装置、及びレーザ装置管理システム、又は実施形態1に係るデータ解析装置、及び半導体製造システムの構成要素と略同じ部分については、同一符号を付し、適宜説明を省略する。
[3.1 構成]
図26は、実施形態2に係る半導体製造システムの一構成例を概略的に示している。
実施形態2に係る半導体製造システムは、実施形態1に係る半導体製造システムに対して、データ解析装置200Aを備えている。データ解析装置200Aは、図7のデータ解析装置200と略同様の構成要素を備えている。
データ解析装置200Aは、各装置を解析したデータに基づいて、各装置の制御パラメータをフィードバック制御する。フィードバック制御するために、例えばデータ解析装置200Aとレーザ装置1との間には、データ解析装置200Aからレーザ装置1へと制御パラメータの更新データを送信する信号ラインが設けられている。また、データ解析装置200Aと露光装置4との間には、データ解析装置200Aから露光装置4へと制御パラメータの更新データを送信する信号ラインが設けられていてもよい。
データ解析装置200Aにおいて、図7の解析制御部216は、パラメータ同士の相関値に基づいて、複数の装置のうち、少なくとも1つの装置の制御に関するパラメータを変更する制御部である。また、解析制御部216は、ウエハ検査装置201によるウエハの検査結果に基づいて、少なくとも1つの装置の制御に関するパラメータを変更するように構成されている。
その他の構成は、上記実施形態1に係るデータ解析装置200、及び半導体製造システムと略同様である。
[3.2 動作]
図27は、実施形態2に係るデータ解析装置200Aによる解析処理の流れの一例を示すフローチャートである。
まず、データ解析装置200Aは、図8のステップS201~S206と略同様の処理を行う。次に、データ解析装置200Aは、ウエハ検査装置201の検査結果が許容範囲であるか否かを判定する(ステップS207)。
検査結果が許容範囲ではないと判定した場合(ステップS207;N)には、データ解析装置200Aは、次に、図7の解析制御部216において、相関性の高いパラメータに関連する装置の制御パラメータを変更する制御を行い(ステップS208)、ステップS201の処理に戻る。
検査結果が許容範囲である判定した場合(ステップS207;Y)には、データ解析装置200Aは、次に、データの収集処理を終了するか否かを判定する(ステップS209)。データの収集処理を終了しないと判定した場合(ステップS209;N)には、データ解析装置200Aは、ステップS201の処理に戻る。データの収集処理を終了すると判定した場合(ステップS209;Y)には、データ解析装置200Aは、処理を終了する。
図28は、図27に示したフローチャートにおけるステップS208の処理の詳細を示すサブのフローチャートである。図29は、スペクトル線幅Δλと形成パターン線幅Wとに関する回帰直線の一例を概略的に示している。
図28では、図27のステップS208の処理の具体例として、例えば、図23のように、レーザ装置1におけるスペクトル線幅Δλと、ウエハ検査装置201における形成ターン線幅Wとの相関性が最も高い場合を想定している。
ここで、図29において、以下のパラメータを定義する。
Δλtb:最初に設定された目標スペクトル線幅
Δλtbmax:最初に設定された最大スペクトル線幅
Δλtbmin:最初に設定された最小スペクトル線幅
Wtb:回帰直線から求められたΔλtbに対応する目標の形成パターン線幅
Wtbmax:回帰直線から求められたΔλtbmaxに対応する形成パターン線幅
Wtbmin:回帰直線から求められたΔλtbminに対応する形成パターン線幅
図29の回帰直線から、パターン形成線幅Wを、目標の形成パターン線幅Wtb付近の許容範囲内に収めるためには、目標スペクトル線幅Δλtbと、スペクトル線幅の範囲とを変更する必要がある。スペクトル線幅の範囲は、最大スペクトル線幅Δλtbmaxと最小スペクトル線幅Δλtbminとの間の範囲である。
まず、解析制御部216は、回帰直線から、目標の形成パターン線幅Wtrとなるような目標スペクトル線幅Δλtaを計算する(ステップS301)。
次に、解析制御部216は、回帰直線から、許容される最大の形成パターン線幅Wtrmaxとなるような最大スペクトル線幅Δλtamaxを計算する(ステップS302)。
次に、解析制御部216は、回帰直線から、許容される最小の形成パターン線幅Wtrminとなるような最小スペクトル線幅Δλtaminを計算する(ステップS303)。
次に、解析制御部216は、露光装置4に、新しい制御パラメータのデータを送信する(ステップS304)。新しい制御パラメータは、目標スペクトル線幅Δλta、最大スペクトル線幅Δλtamax、及び最小スペクトル線幅Δλtaminである。
露光装置4は、データ解析装置200Aから受信した制御パラメータの更新データをレーザ装置1に送信する。レーザ装置1は、更新データの範囲にスペクトル線幅Δλが入るようにスペクトル線幅Δλを制御する。その結果、形成パターン線幅Wは、目標の形成パターン線幅Wtbを中心に許容範囲内の形成パターン線幅Wとなる。この例では、露光装置4を介して、データ解析装置200Aからレーザ装置1の制御パラメータの更新データを送信するようにしたが、この例に限定されることなく、データ解析装置200Aからレーザ装置1に制御パラメータの更新データを送信してもよい。
その他の動作は、上記実施形態1に係るデータ解析装置200、及び半導体製造システムと略同様である。
[3.3 作用・効果]
実施形態2のレーザ装置1、及びレーザ装置管理システムによれば、データ解析装置200Aは、相関性の高いパラメータの組み合わせを選定し、そのパラメータを高精度に制御するように、例えば、レーザ装置1または露光装置4にフィードバック信号を送信することによって、ウエハの品質を改善させることができる。
(その他)
上記説明では、データ解析装置200Aが、レーザ装置1や露光装置4にフィードバック信号を送信したが、この例に限定されることなく、例えば、相関性のよいパラメータを選定し、表示部215に、そのパラメータを高精度に制御できるレーザ装置1や露光装置4における制御パラメータを表示してもよい。その結果、オペレータが判断して、レーザ装置1や露光装置4に制御パラメータの更新データを送信してもよい。
その他の作用・効果は、上記実施形態1に係るデータ解析装置200、及び半導体製造システムと略同様である。
<4.その他>
上記の説明は、制限ではなく単なる例示を意図している。従って、添付の特許請求の範囲を逸脱することなく本開示の実施形態に変更を加えることができることは、当業者には明らかであろう。
本明細書及び添付の特許請求の範囲全体で使用される用語は、「限定的でない」用語と解釈されるべきである。例えば、「含む」又は「含まれる」という用語は、「含まれるものとして記載されたものに限定されない」と解釈されるべきである。「有する」という用語は、「有するものとして記載されたものに限定されない」と解釈されるべきである。また、本明細書、及び添付の特許請求の範囲に記載される不定冠詞「1つの」は、「少なくとも1つ」又は「1又はそれ以上」を意味すると解釈されるべきである。

Claims (19)

  1. 光源装置と、前記光源装置から出力されたパルス光によってウエハに対して露光を行う露光装置と、前記露光装置によって露光された前記ウエハの検査を行うウエハ検査装置とを含む複数の装置のそれぞれから、前記各装置の解析対象のパラメータ毎のデータを取得するデータ収集部と、
    前記データ収集部によって前記複数の装置から収集された複数の前記パラメータ毎のデータのそれぞれを、前記ウエハについて、前記ウエハ内の所定のエリア単位で可視化することにより画像化し、前記複数の装置の前記パラメータ毎の複数のマップ化画像を生成する画像生成部と、
    前記ウエハについて、前記複数のマップ化画像のうちの任意のマップ化画像同士をパターンマッチングし、前記複数の装置の複数の前記パラメータのうちの任意のパラメータ同士の相関値を求め、少なくとも、最も高い相関値が導出された1組のパラメータに関する情報を出力する相関演算部と
    を備える
    データ解析装置。
  2. 請求項に記載のデータ解析装置であって、
    前記相関演算部は、相関値が高い順に、複数の組のパラメータに関する情報を出力する。
  3. 請求項に記載のデータ解析装置であって、
    前記相関演算部から出力された前記パラメータ同士の情報を表示する表示部、
    をさらに備える。
  4. 請求項に記載のデータ解析装置であって、
    前記表示部は、前記パラメータ同士の前記相関値と前記マップ化画像とを表示する。
  5. 請求項1に記載のデータ解析装置であって、
    前記画像生成部によって生成された前記マップ化画像に対してデジタル画像フィルタ処理を行うフィルタ処理部、
    をさらに備える。
  6. 請求項1に記載のデータ解析装置であって、
    前記露光装置は、スキャン露光を行い、
    前記所定のエリアは、前記露光装置による1回のスキャン露光が行われるエリアである。
  7. 請求項1に記載のデータ解析装置であって、
    前記パラメータ同士の相関値に基づいて、前記複数の装置のうち、少なくとも1つの装置の制御に関するパラメータを変更する制御部、
    をさらに備える。
  8. 請求項に記載のデータ解析装置であって、
    前記制御部は、前記ウエハ検査装置による前記ウエハの検査結果に基づいて、前記少なくとも1つの装置の制御に関するパラメータを変更する。
  9. 請求項1に記載のデータ解析装置であって、
    前記相関演算部は、前記複数の装置のうち、異なる装置間のパラメータ同士の相関値を求める。
  10. 請求項1に記載のデータ解析装置であって、
    前記相関演算部は、前記複数の装置のうち、同一の装置内のパラメータ同士の相関値を求める。
  11. 請求項1に記載のデータ解析装置であって、
    前記画像生成部は、データの違いを濃淡で表したマップ化画像を生成する。
  12. 請求項11に記載のデータ解析装置であって、
    前記画像生成部は、前記各パラメータの目標値を濃淡の中央値にする。
  13. 請求項1に記載のデータ解析装置であって、
    前記光源装置は、レーザ装置である。
  14. 請求項13に記載のデータ解析装置であって、
    前記データ収集部が前記レーザ装置から取得するデータは、
    前記パルス光のビーム特性に関するデータと、
    前記パルス光のパルスエネルギに関するデータと、
    前記パルス光のスペクトルに関するデータと
    を含む。
  15. 請求項1に記載のデータ解析装置であって、
    前記データ収集部が前記露光装置から取得するデータは、
    露光条件に関するデータ、
    を含む。
  16. 請求項1に記載のデータ解析装置であって、
    前記データ収集部が前記ウエハ検査装置から取得するデータは、
    前記ウエハの形状に関するデータと、
    前記ウエハの欠陥に関するデータと
    を含む。
  17. 光源装置と、前記光源装置から出力されたパルス光によってウエハに対して露光を行う露光装置と、前記露光装置によって露光された前記ウエハの検査を行うウエハ検査装置とを含む複数の装置と、
    前記複数の装置のそれぞれから、前記各装置の解析対象のパラメータ毎のデータを取得するデータ収集部と、
    前記データ収集部によって前記複数の装置から収集された複数の前記パラメータ毎のデータのそれぞれを、前記ウエハについて、前記ウエハ内の所定のエリア単位で可視化することにより画像化し、前記複数の装置の前記パラメータ毎の複数のマップ化画像を生成する画像生成部と、
    前記ウエハについて、前記複数のマップ化画像のうちの任意のマップ化画像同士をパターンマッチングし、前記複数の装置の複数の前記パラメータのうちの任意のパラメータ同士の相関値を求め、少なくとも、最も高い相関値が導出された1組のパラメータに関する情報を出力する相関演算部と、
    前記パラメータ同士の相関値に基づいて、前記複数の装置のうち、少なくとも1つの装置の制御に関するパラメータを変更する制御部と
    を備える
    半導体製造システム。
  18. 光源装置と、前記光源装置から出力されたパルス光によってウエハに対して露光を行う露光装置と、前記露光装置によって露光された前記ウエハの検査を行うウエハ検査装置とを含む複数の装置のそれぞれから、前記各装置の解析対象のパラメータ毎のデータを取得することと、
    前記複数の装置から取得された複数の前記パラメータ毎のデータのそれぞれを、前記ウエハについて、前記ウエハ内の所定のエリア単位で可視化することにより画像化し、前記複数の装置の前記パラメータ毎の複数のマップ化画像を生成することと、
    前記ウエハについて、前記複数のマップ化画像のうちの任意のマップ化画像同士をパターンマッチングし、前記複数の装置の複数の前記パラメータのうちの任意のパラメータ同士の相関値を求め、少なくとも、最も高い相関値が導出された1組のパラメータに関する情報を出力することと
    を含む
    データ解析方法。
  19. 光源装置と、前記光源装置から出力されたパルス光によってウエハに対して露光を行う露光装置と、前記露光装置によって露光された前記ウエハの検査を行うウエハ検査装置とを含む複数の装置のそれぞれから、前記各装置の解析対象のパラメータ毎のデータを取得することと、
    前記複数の装置から取得された複数の前記パラメータ毎のデータのそれぞれを、前記ウエハについて、前記ウエハ内の所定のエリア単位で可視化することにより画像化し、前記複数の装置の前記パラメータ毎の複数のマップ化画像を生成することと、
    前記ウエハについて、前記複数のマップ化画像のうちの任意のマップ化画像同士をパターンマッチングし、前記複数の装置の複数の前記パラメータのうちの任意のパラメータ同士の相関値を求め、少なくとも、最も高い相関値が導出された1組のパラメータに関する情報を出力することと、
    前記パラメータ同士の相関値に基づいて、前記複数の装置のうち、少なくとも1つの装置の制御に関するパラメータを変更することと
    を含む
    半導体製造方法。
JP2019538784A 2017-08-29 2017-08-29 データ解析装置、半導体製造システム、データ解析方法、及び半導体製造方法 Active JP7014805B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/030907 WO2019043780A1 (ja) 2017-08-29 2017-08-29 データ解析装置、半導体製造システム、データ解析方法、及び半導体製造方法

Publications (2)

Publication Number Publication Date
JPWO2019043780A1 JPWO2019043780A1 (ja) 2020-10-08
JP7014805B2 true JP7014805B2 (ja) 2022-02-01

Family

ID=65525213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019538784A Active JP7014805B2 (ja) 2017-08-29 2017-08-29 データ解析装置、半導体製造システム、データ解析方法、及び半導体製造方法

Country Status (4)

Country Link
US (1) US11353857B2 (ja)
JP (1) JP7014805B2 (ja)
CN (1) CN110799902B (ja)
WO (1) WO2019043780A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220097965A (ko) * 2019-12-11 2022-07-08 사이머 엘엘씨 버스트 통계 데이터 통합 필터
JP7447158B2 (ja) * 2020-02-12 2024-03-11 ギガフォトン株式会社 情報処理装置、情報処理方法、及び半導体製造システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006203123A (ja) 2005-01-24 2006-08-03 Nikon Corp 表示方法及びプログラム
JP2006237626A (ja) 2005-02-25 2006-09-07 Asml Netherlands Bv スキャッタメータを使用するリソグラフィ測定
JP2006237052A (ja) 2005-02-22 2006-09-07 Nikon System:Kk 情報表示方法、情報表示プログラム、情報表示装置及びデバイス製造システム、並びに基板処理装置
JP2017505460A (ja) 2014-02-12 2017-02-16 エーエスエムエル ネザーランズ ビー.ブイ. プロセスウィンドウを最適化する方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002040970A1 (en) * 2000-11-15 2002-05-23 Real Time Metrology, Inc. Optical method and apparatus for inspecting large area planar objects
JP4317701B2 (ja) 2003-03-12 2009-08-19 東京エレクトロン株式会社 処理結果の予測方法及び予測装置
JP2005064369A (ja) * 2003-08-19 2005-03-10 Nikon Corp 最適化方法、露光方法、最適化装置、露光装置、デバイス製造方法、及びプログラム、並びに情報記録媒体
US7308368B2 (en) * 2004-09-15 2007-12-11 Asml Netherlands B.V. Method and apparatus for vibration detection, method and apparatus for vibration analysis, lithographic apparatus, device manufacturing method, and computer program
US20130124141A1 (en) * 2010-02-25 2013-05-16 Nova Measuring Instruments Ltd. Method and system for measuring in patterned structures
JP2013174575A (ja) 2012-01-24 2013-09-05 Hitachi High-Technologies Corp パターン検査装置、及びこれを使用した露光装置の制御方法
WO2014030645A1 (ja) * 2012-08-23 2014-02-27 ギガフォトン株式会社 光源装置及びデータ処理方法
WO2015022239A1 (en) * 2013-08-13 2015-02-19 Asml Netherlands B.V. Method and inspection apparatus and computer program product for assessing a quality of reconstruction of a value of a parameter of interest of a structure
US10289109B2 (en) * 2015-10-01 2019-05-14 Globalfoundries Inc. Methods of error detection in fabrication processes
JP6671387B2 (ja) 2015-10-19 2020-03-25 ギガフォトン株式会社 レーザ装置管理システム
US9934351B2 (en) * 2015-11-09 2018-04-03 Applied Materials, Inc. Wafer point by point analysis and data presentation
US10043261B2 (en) * 2016-01-11 2018-08-07 Kla-Tencor Corp. Generating simulated output for a specimen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006203123A (ja) 2005-01-24 2006-08-03 Nikon Corp 表示方法及びプログラム
JP2006237052A (ja) 2005-02-22 2006-09-07 Nikon System:Kk 情報表示方法、情報表示プログラム、情報表示装置及びデバイス製造システム、並びに基板処理装置
JP2006237626A (ja) 2005-02-25 2006-09-07 Asml Netherlands Bv スキャッタメータを使用するリソグラフィ測定
JP2017505460A (ja) 2014-02-12 2017-02-16 エーエスエムエル ネザーランズ ビー.ブイ. プロセスウィンドウを最適化する方法

Also Published As

Publication number Publication date
CN110799902A (zh) 2020-02-14
WO2019043780A1 (ja) 2019-03-07
CN110799902B (zh) 2022-12-23
US11353857B2 (en) 2022-06-07
US20200133249A1 (en) 2020-04-30
JPWO2019043780A1 (ja) 2020-10-08

Similar Documents

Publication Publication Date Title
US9841684B2 (en) Light source apparatus and data processing method
JP5395269B2 (ja) 光源の能動スペクトル制御
CN110383955B (zh) 辐射源
JP7244436B2 (ja) エキシマレーザ装置、及び電子デバイスの製造方法
JP7014805B2 (ja) データ解析装置、半導体製造システム、データ解析方法、及び半導体製造方法
US20220373893A1 (en) Exposure system, laser control parameter production method, and electronic device manufacturing method
WO2017068619A1 (ja) レーザ装置管理システム
WO2023007685A1 (ja) 放電励起型レーザ装置の制御方法、放電励起型レーザ装置、及び電子デバイスの製造方法
CN107851955A (zh) 激光装置
TW595057B (en) Laser apparatus, exposure apparatus and method
US20220371121A1 (en) Exposure system, laser control parameter production method, and electronic device manufacturing method
JP2008140956A (ja) 露光装置
KR20190055250A (ko) 웨이퍼 스테이지를 위한 제어 기술
WO2021161416A1 (ja) 情報処理装置、情報処理方法、及び半導体製造システム
WO2022064594A1 (ja) 電子デバイスの製造方法
WO2022003901A1 (ja) 露光システム、露光方法、及び電子デバイスの製造方法
WO2021186740A1 (ja) 狭帯域化ガスレーザ装置、その制御方法、及び電子デバイスの製造方法
US20240044711A1 (en) Wavelength measurement apparatus, narrowed-line laser apparatus, and method for manufacturing electronic devices
JP7239485B2 (ja) エキシマレーザ装置、及び電子デバイスの製造方法
JP7419570B2 (ja) エタロンでの測定誤差の決定
WO2024214298A1 (ja) レーザ装置及び光学素子の劣化判定方法
WO2023166583A1 (ja) レーザ装置、スペクトル線幅の計測方法、及び電子デバイスの製造方法
JP2023507070A (ja) 光源装置用のエネルギー補正モジュール

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210406

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220120