JP7013796B2 - Ultrasonic flaw detection method - Google Patents

Ultrasonic flaw detection method Download PDF

Info

Publication number
JP7013796B2
JP7013796B2 JP2017211684A JP2017211684A JP7013796B2 JP 7013796 B2 JP7013796 B2 JP 7013796B2 JP 2017211684 A JP2017211684 A JP 2017211684A JP 2017211684 A JP2017211684 A JP 2017211684A JP 7013796 B2 JP7013796 B2 JP 7013796B2
Authority
JP
Japan
Prior art keywords
flaw
cross
flaw detection
test material
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017211684A
Other languages
Japanese (ja)
Other versions
JP2019086288A (en
Inventor
充 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2017211684A priority Critical patent/JP7013796B2/en
Publication of JP2019086288A publication Critical patent/JP2019086288A/en
Application granted granted Critical
Publication of JP7013796B2 publication Critical patent/JP7013796B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、一次元アレイ型超音波探触子等の超音波探触子を用いて、管など断面略円形の被探傷材や、平面視矩形の板材である被探傷材を超音波探傷する方法に関する。特に、本発明は、断面略円形の被探傷材の軸方向など、予め定めた基準方向に対して傾斜した方向に延びる傾斜きずを高精度に検出可能な超音波探傷方法に関する。 INDUSTRIAL APPLICABILITY The present invention uses an ultrasonic probe such as a one-dimensional array type ultrasonic probe to perform ultrasonic flaw detection on a flaw-detected material having a substantially circular cross section such as a tube or a plate material having a rectangular plan view. Regarding the method. In particular, the present invention relates to an ultrasonic flaw detection method capable of detecting inclined flaws extending in a direction inclined with respect to a predetermined reference direction, such as the axial direction of a flawed material having a substantially circular cross section, with high accuracy.

従来、複数の振動子が一列に配列された一次元アレイ型超音波探触子を用いた超音波探傷方法として、複数の振動子が被探傷材からエコーを受信して得られる探傷信号に信号処理を施すことで、被探傷材の一次元アレイ型超音波探触子に対向する方向の断面についての探傷信号の2次元画像である断面画像を生成し、該断面画像を用いてきずを検出する超音波探傷方法が知られている。この断面画像の生成方法としては、例えば、開口合成法、ゾーンフォーカス法、ダイナミックデプスフォーカス法等が知られている。この断面画像では、探傷信号の強度(振幅)が画素の濃度として表され、探傷信号の強度が大きいほど画素の濃度が高いのが一般的である。 Conventionally, as an ultrasonic flaw detection method using a one-dimensional array type ultrasonic probe in which a plurality of oscillators are arranged in a row, a signal is sent to a flaw detection signal obtained by receiving an echo from a material to be detected by a plurality of oscillators. By applying the treatment, a cross-sectional image which is a two-dimensional image of the flaw detection signal for the cross section in the direction facing the one-dimensional array type ultrasonic probe of the flaw-detected material is generated, and the flaw is detected by using the cross-sectional image. An ultrasonic flaw detection method is known. As a method for generating this cross-sectional image, for example, an aperture synthesis method, a zone focus method, a dynamic depth focus method, and the like are known. In this cross-sectional image, the intensity (amplitude) of the flaw detection signal is expressed as the pixel density, and it is general that the higher the intensity of the flaw detection signal, the higher the pixel density.

一方、特許文献1には、一次元アレイ型超音波探触子(特許文献1では、フェイズドアレイ探触子)が具備する各振動子(特許文献1では、エレメント)からの超音波の送受信を制御し、傾斜きずを検出する超音波探傷方法が提案されている。
傾斜きずを精度良く検出するため、特許文献1に記載の超音波探傷方法に上記の開口合成法等の断面画像生成方法を適用することが考えられる。具体的には、例えば、被探傷材が断面略円形であり、被探傷材の軸方向に対して傾斜した方向に延びる傾斜きずを検出する場合には、一次元アレイ型超音波探触子が具備する複数の振動子の配列方向が被探傷材の軸方向に沿うように一次元アレイ型超音波探触子を被探傷材の外面に対向配置した状態で、複数の振動子から被探傷材に対して超音波を送信し、複数の振動子が被探傷材からエコーを受信して得られる探傷信号に信号処理を施すことで、被探傷材の断面についての探傷信号の断面画像を生成し、該断面画像を用いて被探傷材の傾斜きずを検出することが考えられる。
On the other hand, in Patent Document 1, ultrasonic waves are transmitted and received from each oscillator (element in Patent Document 1) included in the one-dimensional array type ultrasonic probe (phased array probe in Patent Document 1). An ultrasonic flaw detection method that controls and detects tilted flaws has been proposed.
In order to detect tilted flaws with high accuracy, it is conceivable to apply a cross-sectional image generation method such as the above-mentioned aperture synthesis method to the ultrasonic flaw detection method described in Patent Document 1. Specifically, for example, when the scratched material has a substantially circular cross section and an inclined flaw extending in a direction inclined with respect to the axial direction of the scratched material is detected, a one-dimensional array type ultrasonic probe is used. A one-dimensional array type ultrasonic probe is placed facing the outer surface of the flaw-detected material so that the arrangement direction of the plurality of vibrators is along the axial direction of the flaw-detected material, and the flaw-detected material is arranged from the plurality of vibrators. By transmitting ultrasonic waves to the target and performing signal processing on the flaw detection signal obtained by receiving echoes from the flawed material by multiple oscillators, a cross-sectional image of the flaw detection signal for the cross section of the flaw-detected material is generated. It is conceivable to detect the inclined flaw of the scratched material by using the cross-sectional image.

しかしながら、本発明者らが検討したところ、傾斜きずの傾斜角(傾斜きずの延びる方向と被探傷材の予め定めた基準方向との成す角度)に応じて傾斜きずからのエコーが最大強度となる超音波の伝搬経路が異なることや、一次元アレイ型超音波探触子の指向性に起因して、送信した超音波の波面の広がり方向(振動子の配列方向)のエネルギーが不均一であること等の理由により、互いに同じ寸法(長さ、幅、深さ)の傾斜きずであっても、傾斜きずの傾斜角や、一次元アレイ型超音波探触子と傾斜きずとの位置関係に応じて、傾斜きずからのエコー強度が異なり、断面画像における傾斜きずに対応するきず画素領域の濃度が異なることが分かった。これは、前述した例のように、被探傷材が断面略円形であり、被探傷材の軸方向に対して傾斜した方向に延びる傾斜きずを検出する場合に限らず、被探傷材が断面略円形であり、被探傷材の径方向に対して傾斜した方向に延びる傾斜きずを検出する場合も同様である。また、被探傷材が平面視矩形の板材であり、被探傷材の長手方向に対して傾斜した方向に延びる傾斜きずを検出する場合や、被探傷材が平面視矩形の板材であり、被探傷材の厚み方向に対して傾斜した方向に延びる傾斜きずを検出する場合も同様である。
被探傷材の品質保証においては、きずの有害度(きずの寸法)に応じて被探傷材の良否判定を行うことが求められる場合も多いが、上記のように、傾斜きずの寸法が互いに同じであるにも関わらず、傾斜きずの傾斜角等に応じて、傾斜きずからのエコー強度が異なったり、きず画素領域の濃度が異なると、傾斜きずを検出するために探傷信号に設定する強度のしきい値や、断面画像に設定する濃度のしきい値を適切に設定することが困難となる。
However, as a result of the study by the present inventors, the echo from the inclined flaw becomes the maximum intensity according to the inclined angle of the inclined flaw (the angle formed by the extending direction of the inclined flaw and the predetermined reference direction of the scratched material). Due to the different propagation paths of ultrasonic waves and the directivity of the one-dimensional array type ultrasonic probe, the energy in the spreading direction (arrangement direction of the transducer) of the transmitted ultrasonic waves is non-uniform. For some reason, even if the tilted flaws have the same dimensions (length, width, depth), the tilt angle of the tilted flaws and the positional relationship between the one-dimensional array type ultrasonic probe and the tilted flaws It was found that the echo intensity from the tilted flaw was different, and the density of the flaw pixel region corresponding to the tilted flaw in the cross-sectional image was different. This is not limited to the case where the scratched material has a substantially circular cross section and an inclined flaw extending in a direction inclined with respect to the axial direction of the scratched material is detected as in the above-mentioned example, and the scratched material has a substantially circular cross section. The same applies to the case where an inclined flaw that is circular and extends in an inclined direction with respect to the radial direction of the scratched material is detected. Further, when the material to be detected is a plate material having a rectangular shape in a plan view and an inclined flaw extending in a direction inclined with respect to the longitudinal direction of the material to be detected is detected, or when the material to be detected is a plate material having a rectangular shape in a plan view and is injured. The same applies to the case of detecting an inclined flaw extending in an inclined direction with respect to the thickness direction of the material.
In the quality assurance of the scratched material, it is often required to judge the quality of the scratched material according to the degree of harmfulness of the scratch (scratch size), but as described above, the dimensions of the inclined scratches are the same. However, if the echo intensity from the tilted flaw differs or the density of the flaw pixel area differs depending on the tilt angle of the tilted flaw, the intensity set in the flaw detection signal to detect the tilted flaw is high. It becomes difficult to appropriately set the threshold value and the threshold value of the density set in the cross-sectional image.

断面画像におけるきず画素領域の濃度の不均一を補正する方法として、例えば、特許文献2に記載の方法が提案されている。
特許文献2に記載の方法は、振動子配列方向に沿った複数の位置に人工きずを設けた対比試験片を探傷して断面画像を生成し、この断面画像における各人工きずに対応する画素の濃度を用いて補間演算することで、振動子配列方向のきず画素濃度分布を推定し、推定したきず画素濃度分布から補正係数分布を取得する。そして、実際の被探傷材について得られた断面画像を、取得した補正係数分布を用いて補正する方法である。
As a method for correcting the non-uniformity of the density of the scratch pixel region in the cross-sectional image, for example, the method described in Patent Document 2 has been proposed.
In the method described in Patent Document 2, a comparison test piece provided with artificial flaws at a plurality of positions along the oscillator arrangement direction is detected to generate a cross-sectional image, and a pixel corresponding to each artificial flaw in the cross-sectional image is generated. By performing interpolation calculation using the density, the flaw pixel density distribution in the oscillator array direction is estimated, and the correction coefficient distribution is obtained from the estimated flaw pixel density distribution. Then, it is a method of correcting the cross-sectional image obtained about the actual scratched material by using the acquired correction coefficient distribution.

特許文献2に記載の方法を断面画像を用いた傾斜きずの超音波探傷に適用する場合、少なくとも検出対象とする傾斜きずの最大傾斜角までの範囲でそれぞれが異なる傾斜角を有する複数の人工きずを設ける必要がある。設けることが可能な人工きずの傾斜角は有限であるため、人工きずを設けていない傾斜角については補間演算をせざるを得ない。しかしながら、本発明者らが検討したところ、傾斜きずの傾斜角に応じたきず画素領域の濃度変化の傾向は予め予想することが困難であるため、補間演算を精度良く行うことも困難である。傾斜角の異なる多数の人工きずを設けることも考えられるが、キャリブレーションに要する時間の増大や、人工きずを設けるコストの増加等を考えると、現実的ではない。 When the method described in Patent Document 2 is applied to ultrasonic flaw detection of tilted flaws using a cross-sectional image, a plurality of artificial flaws each having a different tilt angle within a range of at least up to the maximum tilt angle of the tilted flaw to be detected. It is necessary to provide. Since the inclination angle of the artificial flaw that can be provided is finite, the interpolation calculation must be performed for the inclination angle without the artificial flaw. However, as a result of the study by the present inventors, it is difficult to predict in advance the tendency of the density change of the scratch pixel region according to the tilt angle of the tilt flaw, so that it is also difficult to perform the interpolation calculation with high accuracy. It is conceivable to provide a large number of artificial flaws with different inclination angles, but this is not realistic considering the increase in the time required for calibration and the increase in the cost of providing the artificial flaws.

特開2002-228640号公報Japanese Patent Application Laid-Open No. 2002-228640 特開2014-55880号公報Japanese Unexamined Patent Publication No. 2014-55580

本発明は、上記従来技術の問題点に鑑みなされたものであり、一次元アレイ型超音波探触子等の超音波探触子を用いて、被探傷材の予め定めた基準方向に対して傾斜した方向に延びる傾斜きずを高精度に検出可能な超音波探傷方法を提供することを課題とする。 The present invention has been made in view of the above-mentioned problems of the prior art, and uses an ultrasonic probe such as a one-dimensional array type ultrasonic probe with respect to a predetermined reference direction of the scratched material. An object of the present invention is to provide an ultrasonic flaw detection method capable of detecting an inclined flaw extending in an inclined direction with high accuracy.

前記課題を解決するため、本発明は、超音波探触子を断面略円形の被探傷材の外面に対向配置し、前記超音波探触子を前記被探傷材の軸方向及び周方向に沿って相対移動させて、前記被探傷材の方向に対して傾斜した方向に延びる傾斜きずを検出する超音波探傷方法であって、前記被探傷材と材質及び断面寸法が同等の材料に、径方向に延びる断面略円形の穴からなる無指向性人工きずを設た第1試験材を準備する準備工程と、前記超音波探触子を前記第1試験材の外面に対向配置し、前記超音波探触子を前記第1試験材の軸方向及び周方向に沿って相対移動させて前記第1試験材を探傷することで、前記第1試験材についての探傷信号から得られる複数の第1試験材断面画像を生成する第1試験材断面画像生成工程と、前記複数の第1試験材断面画像を合成することで、前記無指向性人工きずに対応する画素領域である合成きず画素領域を含む無指向性人工きず画像を生成する無指向性人工きず画像生成工程と、前記合成きず画素領域内の各画素について、以下の式(1)に基づき補正係数を算出する補正係数算出工程と、前記被探傷材を探傷することで、前記被探傷材についての探傷信号から得られる被探傷材断面画像を生成する被探傷材断面画像生成工程と、前記被探傷材断面画像における前記合成きず画素領域と同座標に位置する補正画素領域に、以下の式(2)に基づく補正を施すことで、補正後の被探傷材断面画像を生成する補正工程と、前記補正後の被探傷材断面画像を用いて前記被探傷材の傾斜きずを検出する傾斜きず検出工程と、を有する、超音波探傷方法を提供する。
X=20・log(A/B) ・・・(1)
D=C・10 (X/20) ・・・(2)
上記の式(1)及び(2)において、Xは前記補正係数である。上記の式(1)において、Aは前記合成きず画素領域内の画素の最大濃度であり、Bは前記合成きず画素領域内の各画素の濃度である。上記の式(2)において、Cは前記補正画素領域内の補正前の各画素の濃度であり、Dは前記補正画素領域内の補正後の各画素の濃度である。
In order to solve the above problems, in the present invention, the ultrasonic probe is arranged to face the outer surface of the flawed material having a substantially circular cross section, and the ultrasonic probe is placed along the axial direction and the circumferential direction of the flawed material. This is an ultrasonic flaw detection method that detects tilted flaws extending in a direction inclined with respect to the axial direction of the flawed material by moving them relative to each other. The preparatory step of preparing a first test material provided with an omnidirectional artificial flaw having a hole having a substantially circular cross section extending in the direction, and the ultrasonic probe being arranged facing the outer surface of the first test material, the above-mentioned By relatively moving the ultrasonic probe along the axial direction and the circumferential direction of the first test material to detect the first test material, a plurality of first test materials obtained from the flaw detection signals of the first test material . By synthesizing the first test material cross- sectional image generation step of generating one test material cross-sectional image and the plurality of first test material cross-sectional images, a synthetic flaw pixel region which is a pixel region corresponding to the omnidirectional artificial flaw. An omnidirectional artificial flaw image generation step of generating an omnidirectional artificial flaw image including the above, and a correction coefficient calculation step of calculating a correction coefficient based on the following equation (1) for each pixel in the composite flaw pixel region. , The flaw-detected material cross- sectional image generation step of generating a cross- sectional image of the flaw-detected material obtained from the flaw-detecting signal of the flaw-detected material by detecting the flaw-detected material, and the synthetic flaw pixel in the flaw -detected material cross-sectional image. A correction step of generating a corrected cross- sectional image of the scratched material by applying a correction based on the following equation (2) to the corrected pixel region located at the same coordinates as the region, and a cross-sectional image of the damaged material after the correction. Provided is an ultrasonic flaw detecting method comprising an inclined flaw detecting step of detecting an inclined flaw of the flaw-to-be-detected material.
X = 20 ・ log (A / B) ・ ・ ・ (1)
D = C ・ 10 (X / 20) ・ ・ ・ (2)
In the above equations (1) and (2), X is the correction coefficient. In the above formula (1), A is the maximum density of the pixels in the synthetic flaw pixel region, and B is the density of each pixel in the synthetic flaw pixel region. In the above equation (2), C is the density of each pixel in the correction pixel region before correction, and D is the density of each pixel in the correction pixel region after correction.

本発明によれば、準備工程において、被探傷材と材質及び断面寸法が同等の材料に無指向性人工きずを設け第1試験材を準備する。この無指向性人工きずは、第1試験材の径方向(第1試験材が管である場合は肉厚方向)に延びる断面略円形の穴である。断面略円形の穴は、その周縁の接線方向が360°連続的に変化する。したがって、傾斜きず検出工程で検出対象とする傾斜きずの最大傾斜角が如何なる値であろうとも、断面略円形の穴の周縁の接線方向と第1試験材の基準方向(軸方向)との成す角度は、傾斜きず検出工程で検出対象とする傾斜きずの最大傾斜角までの範囲で連続的に変化することになる。断面略円形の穴は、容易に加工できる点で、第1試験材に設ける無指向性人工きずとして好ましい。
このため、第1試験材断面画像生成工程において、超音波探触子で第1試験材を探傷して第1試験材の断面についての複数の第1試験材断面画像を生成すると、単一の無指向性人工きずであっても、少なくとも検出対象とする傾斜きずの最大傾斜角までの範囲でそれぞれが異なる傾斜角を有する複数の人工きずを設けて探傷した場合と同等の第1試験材断面画像が得られることになる。また、各第1試験材断面画像は、被探傷材を探傷する場合と同様に、超音波探触子を第1試験材の軸方向及び周方向に沿って相対移動させて第1試験材を探傷することで生成される。このため、各第1試験材断面画像における無指向性人工きずに対応するきず画素領域の位置も変化し、無指向性人工きず画像生成工程において、各第1試験材断面画像を合成(例えば、各第1試験材断面画像内の対応する各画素の濃度を加算する処理)して生成される無指向性人工きず画像には、特許文献2のように複数の異なる位置に互いに同じ寸法の人工きずを設けて探傷する場合と同様に、超音波探触子と無指向性人工きずとの位置関係を変更して探傷した場合のきず画素領域(各第1試験材断面画像のきず画素領域が合成された合成きず画素領域)が含まれることになる。
According to the present invention, in the preparation step, a first test material in which an omnidirectional artificial flaw is provided on a material having the same material and cross-sectional dimensions as the scratch-detected material is prepared. This omnidirectional artificial flaw is a hole having a substantially circular cross section extending in the radial direction of the first test material (in the wall thickness direction when the first test material is a tube). The tangential direction of the peripheral edge of the hole having a substantially circular cross section continuously changes by 360 °. Therefore, regardless of the maximum inclination angle of the inclination flaw to be detected in the inclination flaw detection step, the tangential direction of the peripheral edge of the hole having a substantially circular cross section and the reference direction (axial direction) of the first test material are formed. The angle continuously changes in the range up to the maximum inclination angle of the inclination flaw to be detected in the inclination flaw detection step. A hole having a substantially circular cross section is preferable as an omnidirectional artificial flaw provided in the first test material because it can be easily machined.
Therefore, in the process of generating a cross- sectional image of the first test material, when the first test material is flawed with an ultrasonic probe to generate a plurality of cross-sectional images of the first test material for the cross section of the first test material, a single cross-sectional image is generated . Even if it is an omnidirectional artificial flaw, the cross section of the first test material is equivalent to the case where a plurality of artificial flaws having different tilt angles are provided and flaws are detected at least in the range up to the maximum tilt angle of the tilted flaw to be detected. An image will be obtained. Further, in each cross-sectional image of the first test material, the ultrasonic probe is relatively moved along the axial direction and the circumferential direction of the first test material in the same manner as in the case of detecting the flawed material, to obtain the first test material. Generated by detecting flaws. Therefore, the position of the flaw pixel region corresponding to the omnidirectional artificial flaw in each first test material cross-sectional image also changes, and each first test material cross-sectional image is synthesized (for example, in the omnidirectional artificial flaw image generation step). The omnidirectional artificial flaw image generated by (processing of adding the density of each corresponding pixel in each first test material cross-sectional image) has artificial flaws having the same dimensions at a plurality of different positions as in Patent Document 2. Similar to the case where a flaw is provided and flaw detection is performed, the flaw pixel region when flaw detection is performed by changing the positional relationship between the ultrasonic probe and the omnidirectional artificial flaw (the flaw pixel region of each first test material cross-sectional image is The combined composite flaw pixel area) will be included.

次いで、本発明によれば補正係数算出工程において、指向性人工きず画像の合成きず画素領域内の各画素ついて、式(1)に基づき補正係数を算出する。換言すれば、合成きず画素領域内の各画素の濃度に補正係数を用いた補正を施した場合に合成きず画素領域内の各画素の濃度が互いに同等となる補正係数を、合成きず画素領域内の各画素について算出する。すなわち、この補正係数を用いて合成きず画素領域内の各画素の濃度を補正すれば、種々の傾斜角を有する人工きず(無指向性人工きず)であっても、また、超音波探触子と無指向性人工きずとの位置関係に関わらず、互いに同じ無指向性人工きずであれば、合成きず画素領域内の各画素が同等の濃度になることになる。
このように、補正係数は、それぞれが異なる傾斜角を有する複数の人工きずを設けて探傷した場合と同等の第1試験材断面画像を用いて算出される。このため、被探傷材断面画像生成工程において被探傷材についての探傷信号から生成した被探傷材断面画像に対して、補正工程において、被探傷材断面画像における合成きず画素領域と同座標に位置する補正画素領域に、式(2)に基づく補正を施す、すなわち、補正画素領域内の各画素の濃度に、補正係数算出工程で算出した各画素の補正係数を用いて補正を施せば、補正後の被探傷材断面画像における補正画素領域内に傾斜きずに対応する画素領域が存在した場合、この傾斜きずの傾斜角に関わらず、また、超音波探触子と傾斜きずとの位置関係に関わらず(補正後の被探傷材断面画像における傾斜きずに対応する画素領域の位置に関わらず)、傾斜きずが互いに同じ寸法であれば、同等の濃度を有する被探傷材断面画像に補正できることが期待できる。
したがい、傾斜きず検出工程において、補正後の被探傷材断面画像を用いて被探傷材の傾斜きずを検出する際、しきい値を適切に設定することが可能である。
本発明によれば、例えば、合成きず画素領域内にある一の画素の濃度Bが最大濃度Aに等しい(すなわち、B=Aである)場合、式(1)により、補正係数X=0となり、式(2)により、D=Cとなる。すなわち、補正画素領域内の当該一の画素に対応する画素の濃度は補正前後で変化しないことになる。一方、合成きず画素領域内にある他の画素の濃度Bが最大濃度Aの1/10である(すなわち、B=0.1Aである)場合、式(1)により、補正係数X=20となり、式(2)により、D=10・Cとなる。すなわち、補正前の濃度を10倍にする補正が施されることになる。換言すれば、合成きず画素領域内にある画素の濃度を全て最大濃度Aに統一するような補正が、被探傷材断面画像における補正画素領域内の各画素に施されることになる。このため、被探傷材に存在する傾斜きずが互いに同じ寸法であれば、補正画素領域内の当該傾斜きずに対応する画素領域の濃度が同等になり、精度良く傾斜きずを検出可能になることが期待できる。
Next, according to the present invention, in the correction coefficient calculation step, the correction coefficient is calculated based on the equation (1) for each pixel in the composite flaw pixel region of the omnidirectional artificial flaw image . In other words, when the density of each pixel in the composite flaw pixel region is corrected by using the correction coefficient, the correction coefficient in which the density of each pixel in the composite flaw pixel region is equal to each other is set in the composite flaw pixel region. Calculate for each pixel of. That is, if the density of each pixel in the composite flaw pixel region is corrected using this correction coefficient, even if the artificial flaw has various tilt angles (omnidirectional artificial flaw), the ultrasonic probe can also be used. Regardless of the positional relationship between the omnidirectional artificial flaw and the omnidirectional artificial flaw, if the omnidirectional artificial flaws are the same as each other, each pixel in the composite flaw pixel region will have the same density.
As described above, the correction coefficient is calculated by using the first test material cross- sectional image equivalent to the case where a plurality of artificial flaws, each having a different inclination angle, are provided and flaw detection is performed . Therefore , in the correction step, the flaw-detected material cross- sectional image generated from the flaw-finding signal of the flaw-detected material is located at the same coordinates as the composite flaw pixel region in the flaw-detected material cross-sectional image. If the correction pixel area is corrected based on the equation (2), that is, the density of each pixel in the correction pixel area is corrected by using the correction coefficient of each pixel calculated in the correction coefficient calculation step, the correction is performed. If there is a pixel region corresponding to the tilted flaw in the corrected pixel region in the scratched material cross-sectional image, regardless of the tilt angle of the tilted flaw, and regardless of the positional relationship between the ultrasonic probe and the tilted flaw. (Regardless of the position of the pixel area corresponding to the tilted flaw in the corrected cross-sectional image of the scratched material), if the tilted flaws have the same dimensions, it is expected that the cross- sectional image of the damaged material with the same density can be corrected. can.
Therefore, in the tilted flaw detection step, it is possible to appropriately set the threshold value when detecting the tilted flaw of the flawed material using the corrected cross- sectional image of the flawed material.
According to the present invention, for example, when the density B of one pixel in the composite flaw pixel region is equal to the maximum density A (that is, B = A), the correction coefficient X = 0 according to the equation (1). , D = C according to the equation (2). That is, the density of the pixel corresponding to the one pixel in the correction pixel area does not change before and after the correction. On the other hand, when the density B of the other pixels in the composite flaw pixel region is 1/10 of the maximum density A (that is, B = 0.1A), the correction coefficient X = 20 according to the equation (1). , D = 10 · C according to the equation (2). That is, the correction is performed to increase the density before the correction by 10 times. In other words, a correction is applied to each pixel in the corrected pixel region in the cross-sectional image of the scratched material so as to unify the densities of all the pixels in the composite flaw pixel region to the maximum density A. Therefore, if the tilted flaws existing in the scratched material have the same dimensions, the density of the pixel region corresponding to the tilted flaw in the correction pixel region becomes the same, and the tilted flaw can be detected with high accuracy. You can expect it.

以上のように、本発明によれば、超音波探触子を用いて、被探傷材の予め定めた基準方向(軸方向)に対して傾斜した方向に延びる傾斜きずを高精度に検出可能である。
なお、本発明の第1試験材断面画像生成工程では、被探傷材を探傷する際と同等の探傷条件で第1試験材を探傷することが好ましいが、この探傷条件には、以下のような内容を含む。
(1)超音波探触子と材料(被探傷材、第1試験材)の外面との離間距離や、材料の基準方向(軸方)から見た超音波の屈折角など、超音波探触子と材料との配置関係。
(2)超音波探触子が具備する各振動子の制御方法(各振動子の超音波の送受信タイミングの制御など)。
(3)探傷信号の2次元画像である断面画像を生成する際の、開口合成法、ゾーンフォーカス法、ダイナミックデプスフォーカス法など、断面画像生成方法の種類。
本発明では、第1試験材断面画像生成工程において、上記のような探傷条件を被探傷材を探傷する際と同等にして第1試験材を探傷し、第1試験材断面画像を生成することにより、補正の精度を高めることが可能である。
なお、本発明における「傾斜きず」には、傾斜角が0°のきず(すなわち、被探傷材の基準方向(軸方向)に対して平行に延びるきず)も含まれる。
As described above, according to the present invention, the ultrasonic probe can be used to detect tilted flaws extending in a direction tilted with respect to a predetermined reference direction (axial direction) of the scratched material with high accuracy. be.
In the process of generating a cross- sectional image of the first test material of the present invention, it is preferable to detect the first test material under the same flaw detection conditions as when detecting the flawed material. The flaw detection conditions are as follows. Includes content.
(1) Ultrasonic probe such as the distance between the ultrasonic probe and the outer surface of the material (damaged material, first test material) and the refraction angle of ultrasonic waves seen from the reference direction (axial direction ) of the material. Arrangement relationship between tentacles and materials.
(2) A control method for each vibrator provided by the ultrasonic probe (control of ultrasonic transmission / reception timing of each vibrator, etc.).
(3) Types of cross-sectional image generation methods such as aperture synthesis method, zone focus method, and dynamic depth focus method when generating a cross-sectional image that is a two-dimensional image of a flaw detection signal.
In the present invention, in the first test material cross- sectional image generation step, the first test material is detected by making the above-mentioned flaw detection conditions equivalent to those when the flaw-detected material is detected, and the first test material cross- sectional image is generated. Therefore, it is possible to improve the accuracy of the correction.
The "tilt flaw" in the present invention also includes a flaw having an inclination angle of 0 ° (that is, a flaw extending parallel to the reference direction (axial direction) of the material to be detected).

ここで、本発明者らが検討した結果によれば、無指向性人工きずとしての断面略円形の穴を探傷する場合に必要となる超音波探触子の探傷感度(探傷信号の増幅度)と、被探傷材の検出対象とする実際の傾斜きずを探傷する場合に必要となる超音波探触子の探傷感度とは、大きな差があることが分かった。具体的には、断面略円形の穴と実際の傾斜きずとについて同等の強度の探傷信号を得るには、実際の傾斜きずを探傷する場合の超音波探触子の探傷感度を無指向性人工きずを探傷する場合の超音波探触子の探傷感度よりも小さくする必要のあることが分かった。或いは、探傷感度を同等に設定する場合には、実際の傾斜きずを検出するためのしきい値を無指向性人工きずを検出するためのしきい値よりも高める必要のあることが分かった。
したがい、仮に、第1試験材断面画像生成工程において第1試験材を探傷する(無指向性人工きずを探傷する)際の探傷感度と同じ探傷感度に設定した超音波探触子を用いて、被探傷材断面画像生成工程において被探傷材を探傷すると、検出する必要のない浅い傾斜きずや傾斜きず以外のノイズを過検出してしまうおそれがある。傾斜きず検出工程において無指向性人工きずを検出するためのしきい値で傾斜きずを検出する場合にも、同様に過検出が生じるおそれがある。
Here, according to the results examined by the present inventors, the flaw detection sensitivity (amplification degree of the flaw detection signal) of the ultrasonic probe required for flaw detection of a hole having a substantially circular cross section as an omnidirectional artificial flaw. It was found that there is a large difference between the flaw detection sensitivity of the ultrasonic probe and the flaw detection required when detecting the actual tilted flaws to be detected by the flaw-detected material. Specifically, in order to obtain a flaw detection signal of the same strength as a hole having a substantially circular cross section and an actual tilted flaw, the flaw detection sensitivity of the ultrasonic probe when detecting the actual tilted flaw is omnidirectional artificial. It was found that it was necessary to make it smaller than the flaw detection sensitivity of the ultrasonic probe when detecting flaws. Alternatively, it was found that when the flaw detection sensitivity is set to be the same, the threshold value for detecting an actual tilted flaw needs to be higher than the threshold value for detecting an omnidirectional artificial flaw.
Therefore, using an ultrasonic probe set to the same flaw detection sensitivity as when detecting flaws in the first test material (detecting omnidirectional artificial flaws) in the process of generating a cross- sectional image of the first test material, When the flawed material is detected in the process of generating a cross- sectional image of the flawed material, there is a possibility that noise other than shallow inclined flaws and inclined flaws that do not need to be detected may be over-detected. Similarly, over-detection may occur when the tilted flaw is detected at the threshold value for detecting the omnidirectional artificial flaw in the tilted flaw detecting step.

上記のような過検出のおそれを低減するには、前記準備工程において、記第1試験材に、前記被探傷材の検出対象とする傾斜きずの最大傾斜角の範囲内の傾斜角を有し、前記傾斜きずを模擬したノッチ設け、前記第1試験材断面画像生成工程において、前記ノッチ設けた前記第1試験材を探傷することで、前記ノッチの探傷信号から得られるノッチ断面画像を生成し、前記ッチ断面画像に基づき、前記被探傷材断面画像生成工程における前記超音波探触子の探傷感度を設定するか、又は、前記傾斜きず検出工程における前記傾斜きずを検出するためのしきい値を設定することが好ましい。 In order to reduce the risk of over-detection as described above, in the preparation step, the first test material has an inclination angle within the range of the maximum inclination angle of the inclination flaw to be detected of the scratched material. Then , a notch simulating the inclined flaw is provided, and in the first test material cross- sectional image generation step, the notch cross- sectional image obtained from the flaw detection signal of the notch is obtained by detecting the first test material provided with the notch. Is generated, and the flaw detection sensitivity of the ultrasonic probe in the flaw-detected material cross-section image generation step is set based on the notch cross-section image , or the tilt flaw is detected in the tilt flaw detection step. It is preferable to set a threshold value for this.

上記の好ましい方法によれば、第1試験材に、無指向性人工きずを設けることに加えて傾斜きずを模擬したノッチを設け、この第1試験材を探傷することでノッチの探傷信号から得られるノッチ断面画像を用いて、超音波探触子の探傷感度を設定するか、又は傾斜きずを検出するためのしきい値を設定するため、過検出のおそれを低減可能である。 According to the above preferred method, in addition to providing an omnidirectional artificial flaw, a notch simulating an inclined flaw is provided in the first test material, and the first test material is flaw-detected to obtain a flaw detection signal of the notch. Since the flaw detection sensitivity of the ultrasonic probe is set or the threshold value for detecting the tilted flaw is set by using the notch cross- sectional image , the risk of over-detection can be reduced.

なお、上記の好ましい方法では、第1試験材に無指向性人工きず及び傾斜きずを模擬したノッチを設けているが、これに限るものではなく、無指向性人工きずを設けた第1試験材とは別にノッチを設けた第2試験材を用意し、この第2試験材を用いて超音波探触子の探傷感度を設定したり、傾斜きずを検出するためのしきい値を設定することも可能である。
すなわち、前記準備工程において、前記被探傷材と材質及び断面寸法が同等の材料に、前記被探傷材の検出対象とする傾斜きずの最大傾斜角の範囲内の傾斜角を有し、前記傾斜きずを模擬したノッチを設た第2試験材を準備し、前記超音波探触子を前記第2試験材の外面に対向配置し、前記超音波探触子を前記第2試験材の軸方向及び周方向に沿って相対移動させて前記第2試験材を探傷することで、前記第2試験材についての探傷信号から得られる第2試験材探傷データを生成する第2試験材探傷データ生成工程を更に含み、
第2試験材探傷データに基づき、前記被探傷材断面画像生成工程における前記超音波探触子の探傷感度を設定するか、又は、前記傾斜きず検出工程における前記傾斜きずを検出するためのしきい値を設定することも可能である。
In the above preferred method, the first test material is provided with a notch simulating an omnidirectional artificial flaw and an inclined flaw, but the present invention is not limited to this, and the first test material provided with the omnidirectional artificial flaw is provided. Separately, prepare a second test material with a notch, and use this second test material to set the flaw detection sensitivity of the ultrasonic probe and set the threshold value for detecting tilted flaws. Is also possible.
That is, in the preparatory step, the material having the same material and cross-sectional dimensions as the scratched material has an tilt angle within the range of the maximum tilt angle of the tilted flaw to be detected by the flawed material, and the tilted flaw. A second test material having a notch simulating the above is prepared, the ultrasonic probe is placed facing the outer surface of the second test material, and the ultrasonic probe is placed in the axial direction of the second test material. The second test material flaw detection data generation step of generating the second test material flaw detection data obtained from the flaw detection signal for the second test material by relatively moving along the circumferential direction to detect the second test material. Including
Based on the second test material flaw detection data, the flaw detection sensitivity of the ultrasonic probe in the flaw detected material cross- sectional image generation step is set, or the tilt flaw is detected in the tilt flaw detection step. It is also possible to set a threshold.

本発明によれば、一次元アレイ型超音波探触子等の超音波探触子を用いて、被探傷材の予め定めた基準方向(軸方向)に対して傾斜した方向に延びる傾斜きずを高精度に検出可能である。 According to the present invention, an ultrasonic probe such as a one-dimensional array type ultrasonic probe is used to create an inclined flaw extending in a direction inclined with respect to a predetermined reference direction (axial direction) of the material to be detected. It can be detected with high accuracy.

本発明の第1実施形態に係る超音波探傷方法に用いる超音波探傷装置の概略構成を示す模式図である。It is a schematic diagram which shows the schematic structure of the ultrasonic flaw detection apparatus used in the ultrasonic flaw detection method which concerns on 1st Embodiment of this invention. 評価試験において、内面に設けた各傾斜きずを探傷した際に生成された断面画像の例を示す。An example of a cross-sectional image generated when each inclined flaw provided on the inner surface is detected in an evaluation test is shown. 図2に示す各断面画像における傾斜きずに対応するきず画素領域F内の画素の最大濃度と、傾斜きずの傾斜角θとの関係を示す図である。It is a figure which shows the relationship between the maximum density | concentration of the pixel in the flaw pixel area F corresponding to the tilted flaw in each cross-sectional image shown in FIG. 2 and the tilt angle θ of the tilted flaw. 第1試験材探傷データ生成工程における複数の第1試験材断面画像生成手順を説明する説明図である。It is explanatory drawing explaining the procedure of generating the cross-sectional image of a plurality of 1st test material in the 1st test material flaw detection data generation process. 第1試験材探傷データ生成工程で生成する複数の第1試験材断面画像の例を示す。An example of a plurality of first test material cross-sectional images generated in the first test material flaw detection data generation step is shown. 無指向性人工きず画像の例を示す。An example of an omnidirectional artificial flaw image is shown. 補正係数算出工程の手順を説明する説明図である。It is explanatory drawing explaining the procedure of the correction coefficient calculation process. 補正工程の手順を説明する説明図である。It is explanatory drawing explaining the procedure of a correction process. 第1実施形態に係る超音波探傷方法による補正の効果を確認する試験の条件及び方法を説明する説明図である。It is explanatory drawing explaining the condition and method of the test which confirms the effect of the correction by the ultrasonic flaw detection method which concerns on 1st Embodiment. 図9に示す試験の結果を示す図である。It is a figure which shows the result of the test shown in FIG. 第2実施形態に係る超音波探傷方法による補正の効果を確認する試験の条件及び方法、並びに第1試験材探傷データ生成工程の結果の例を示す図である。It is a figure which shows the condition and method of the test which confirms the effect of the correction by the ultrasonic flaw detection method which concerns on 2nd Embodiment, and the example of the result of the 1st test material flaw detection data generation process. 図11に示す試験の結果を示す図である。It is a figure which shows the result of the test shown in FIG.

以下、添付図面を適宜参照しつつ、本発明の実施形態に係る超音波探傷方法について説明する。第1実施形態では、探傷信号から得られる断面画像を用いて傾斜きずを検出する場合について、第2実施形態では、探傷信号から得られる断面画像を用いずに、探傷信号そのものを用いて傾斜きずを検出する場合について、それぞれ説明する。 Hereinafter, the ultrasonic flaw detection method according to the embodiment of the present invention will be described with reference to the accompanying drawings as appropriate. In the first embodiment, the tilted flaw is detected by using the cross-sectional image obtained from the flaw detection signal, and in the second embodiment, the tilted flaw is detected by using the flaw detection signal itself without using the cross-sectional image obtained from the flaw detection signal. Each of the cases of detecting the above will be described.

<第1実施形態>
まず、第1実施形態に係る超音波探傷方法に用いる超音波探傷装置の構成について説明する。
[第1実施形態に係る超音波探傷装置の構成]
図1は、本発明の第1実施形態に係る超音波探傷方法に用いる超音波探傷装置の概略構成を示す模式図である。図1では、被探傷材及び第1試験材が断面略円形の管であり、軸方向に対して傾斜した方向に延びる傾斜きずを検出する(基準方向が被探傷材及び第1試験材の軸方向である)場合を例に挙げて図示している。図1(a)は管の軸方向から見た図を、図1(b)は管の軸方向に略直交する方向から見た斜視正面図を示す。
図1に示すように、本実施形態に係る超音波探傷装置100は、一列に配列された複数の振動子10を具備する一次元アレイ型超音波探触子(以下、適宜、「超音波探触子」と略称する)1と、制御・信号処理手段2とを備えている。
<First Embodiment>
First, the configuration of the ultrasonic flaw detector used in the ultrasonic flaw detection method according to the first embodiment will be described.
[Structure of ultrasonic flaw detector according to the first embodiment]
FIG. 1 is a schematic diagram showing a schematic configuration of an ultrasonic flaw detector used in the ultrasonic flaw detection method according to the first embodiment of the present invention. In FIG. 1, the scratched material and the first test material are tubes having a substantially circular cross section, and an inclined flaw extending in a direction inclined with respect to the axial direction is detected (the reference direction is the axis of the scratched material and the first test material). The case (direction) is shown as an example. FIG. 1A shows a view seen from the axial direction of the pipe, and FIG. 1B shows a perspective front view seen from a direction substantially orthogonal to the axial direction of the pipe.
As shown in FIG. 1, the ultrasonic flaw detector 100 according to the present embodiment is a one-dimensional array type ultrasonic probe having a plurality of oscillators 10 arranged in a row (hereinafter, appropriately, “ultrasonic detector”. (Abbreviated as "touching element") 1 and a control / signal processing means 2 are provided.

超音波探触子1は、複数の振動子10の配列方向が被探傷材P1の軸方向(図1のX方向)に沿うように、被探傷材P1の外面に対向配置される。具体的には、超音波探触子1は、例えば、被探傷材P1と共に、水などの接触媒質が溜められた槽内に配置される。これにより、超音波探触子1が具備する各振動子10から送信された超音波は、接触媒質を介して被探傷材P1に入射され、被探傷材P1からのエコーは、接触媒質を介して各振動子10に受信される。 The ultrasonic probe 1 is arranged to face the outer surface of the scratched material P1 so that the arrangement direction of the plurality of oscillators 10 is along the axial direction of the scratched material P1 (X direction in FIG. 1). Specifically, the ultrasonic probe 1 is arranged in a tank in which a contact medium such as water is stored together with the scratched material P1, for example. As a result, the ultrasonic waves transmitted from each oscillator 10 included in the ultrasonic probe 1 are incident on the flawed material P1 via the contact medium, and the echo from the flawed material P1 is transmitted through the contact medium. Is received by each oscillator 10.

超音波探触子1は、適宜の駆動機構(図示せず)によって、被探傷材P1の軸方向及び周方向に沿って相対移動し、これにより、被探傷材P1の全面が探傷される。具体的には、超音波探触子1は、例えば、一軸ステージに取り付けられており、一軸ステージが駆動することによって、被探傷材P1の軸方向に沿って移動する。一方、被探傷材P1は、例えば、被探傷材P1の下方に配置された回転ローラによって支持され、回転ローラが回転することによって周方向に回転する。超音波探触子1が被探傷材P1の軸方向に沿って移動すると共に、被探傷材P1が周方向に回転することにより、超音波探触子1の探傷範囲は被探傷材P1の軸方向に沿って螺旋状に移動することになる。この際、超音波探触子1の移動速度及び被探傷材P1の回転速度は、螺旋状に移動する超音波探触子1の探傷範囲が被探傷材P1の外面全体をカバーできるように(未探傷領域が生じないように)設定され、これにより被探傷材P1の全面を探傷可能とされている。
なお、上記の例では、超音波探触子1が被探傷材P1の軸方向に沿って移動し、被探傷材P1が周方向に回転する場合について説明したが、本発明はこれに限るものではなく、超音波探触子1が被探傷材P1の周方向に沿って回転し、被探傷材P1が軸方向に移動する態様や、超音波探触子1の位置を固定し、被探傷材P1が周方向に回転しながら軸方向に移動する態様や、被探傷材P1の位置を固定し、超音波探触子1が被探傷材P1の周方向に沿って回転しながら被探傷材P1の軸方向に沿って移動する態様など、超音波探触子1が被探傷材P1に対して被探傷材P1の軸方向及び周方向に沿って相対移動する限りにおいて、種々の態様を採用可能である。
The ultrasonic probe 1 relatively moves along the axial direction and the circumferential direction of the scratched material P1 by an appropriate drive mechanism (not shown), whereby the entire surface of the scratched material P1 is detected. Specifically, the ultrasonic probe 1 is attached to, for example, a uniaxial stage, and when the uniaxial stage is driven, the ultrasonic probe 1 moves along the axial direction of the scratched material P1. On the other hand, the scratched material P1 is supported by, for example, a rotating roller arranged below the scratched material P1, and the rotating roller rotates to rotate in the circumferential direction. The ultrasonic probe 1 moves along the axial direction of the flawed material P1 and the flawed material P1 rotates in the circumferential direction, so that the flaw detection range of the ultrasonic probe 1 is the axis of the flawed material P1. It will move spirally along the direction. At this time, the moving speed of the ultrasonic probe 1 and the rotation speed of the flawed material P1 are set so that the flaw detection range of the ultrasonic probe 1 moving in a spiral shape can cover the entire outer surface of the flawed material P1 ( It is set so that an undetected area does not occur), so that the entire surface of the detected material P1 can be detected.
In the above example, the case where the ultrasonic probe 1 moves along the axial direction of the flawed material P1 and the flawed material P1 rotates in the circumferential direction has been described, but the present invention is limited to this. Instead, the ultrasonic probe 1 rotates along the circumferential direction of the flawed material P1 and the flawed material P1 moves in the axial direction, and the position of the ultrasonic probe 1 is fixed to detect the flaw. The mode in which the material P1 moves in the axial direction while rotating in the circumferential direction, and the position of the flaw-detected material P1 is fixed, and the ultrasonic probe 1 rotates along the circumferential direction of the flaw-detected material P1 to detect the flaw-detected material. Various modes are adopted as long as the ultrasonic probe 1 moves relative to the scratched material P1 along the axial direction and the circumferential direction of the scratched material P1, such as a mode of moving along the axial direction of P1. It is possible.

制御・信号処理手段2は、超音波探触子1が具備する各振動子10からの超音波の送受信を制御すると共に、各振動子10が被探傷材P1からエコーを受信して得られる探傷信号に信号処理を施すことで、被探傷材P1の断面についての探傷信号の断面画像(例えば、開口合成像)を生成し、該断面画像を用いて被探傷材P1の軸方向に対して傾斜した方向に延びる傾斜きずを検出する。 The control / signal processing means 2 controls transmission / reception of ultrasonic waves from each oscillator 10 included in the ultrasonic probe 1, and each oscillator 10 receives an echo from the flaw-detected material P1 to obtain a flaw detector. By applying signal processing to the signal, a cross-sectional image (for example, an aperture composite image) of the flaw-detecting signal for the cross-section of the flaw-detected material P1 is generated, and the cross-sectional image is used to incline the flaw-detected material P1 in the axial direction. Detects tilted flaws extending in the desired direction.

制御・信号処理手段2は、一次元アレイ型超音波探触子を用いた一般的な超音波探傷装置でも慣用されている、超音波を送受信する振動子10の選択・切り替えを行う(一度に使用する振動子10の選択・切り替えを行う)スイッチング回路や、選択された振動子10から超音波を送信させるためのパルサー、選択された振動子10に被探傷材P1からのエコーを受信させるためのレシーバー、レシーバーから出力される探傷信号を増幅する増幅器、増幅器から出力された探傷信号をデジタルデータに変換するA/D変換器など、一般的な超音波探傷装置と同様の公知の構成要素を具備する。また、制御・信号処理手段2は、パルサー、レシーバー及びA/D変換器に接続された汎用のパーソナルコンピュータを具備する。このパーソナルコンピュータには、A/D変換器からデジタルデータが入力されると共に、パルサー及びレシーバーを制御(各振動子10の超音波の送受信タイミングの制御など)したり、入力されたデジタルデータを2次元画像化する演算(開口合成演算など)を行うための所定のプログラムがインストールされている。また、このパーソナルコンピュータは、2次元画像である断面画像を表示するためのモニターを具備する。 The control / signal processing means 2 selects and switches the vibrator 10 for transmitting and receiving ultrasonic waves, which is commonly used in a general ultrasonic flaw detector using a one-dimensional array type ultrasonic probe (at once). A switching circuit (which selects and switches the oscillator 10 to be used), a pulsar for transmitting ultrasonic waves from the selected oscillator 10, and for the selected oscillator 10 to receive echoes from the damaged material P1. The same known components as general ultrasonic flaw detectors, such as the receiver of, an amplifier that amplifies the flaw detection signal output from the receiver, and an A / D converter that converts the flaw detection signal output from the amplifier into digital data. Equipped. Further, the control / signal processing means 2 includes a general-purpose personal computer connected to a pulsar, a receiver, and an A / D converter. Digital data is input to this personal computer from the A / D converter, and the pulsar and receiver are controlled (control of the transmission / reception timing of ultrasonic waves of each transducer 10), and the input digital data is input to 2. A predetermined program for performing an operation for converting to a dimensional image (such as an aperture synthesis operation) is installed. Further, this personal computer is provided with a monitor for displaying a cross-sectional image which is a two-dimensional image.

なお、第1実施形態に係る超音波探傷装置100では、図1に示すように、超音波探触子1の被探傷材P1に対向する側と反対側に超音波の仮想集束点Cが位置するように、制御・信号処理手段2によって各振動子10の送信タイミングが制御されることで、超音波探触子1から被探傷材P1に対して扇形の波面の超音波が一度に送信される場合を例に挙げる。また、制御・信号処理手段2が行う2次元画像化の手法が開口合成法である場合を例に挙げる。 In the ultrasonic flaw detector 100 according to the first embodiment, as shown in FIG. 1, the virtual focusing point C of ultrasonic waves is located on the side of the ultrasonic probe 1 facing the flawed material P1 and on the opposite side. By controlling the transmission timing of each oscillator 10 by the control / signal processing means 2, the ultrasonic probe 1 transmits ultrasonic waves having a fan-shaped wave surface to the flawed material P1 at once. Take the case as an example. Further, a case where the two-dimensional imaging method performed by the control / signal processing means 2 is an aperture synthesis method will be given as an example.

以上に説明した構成を有する超音波探傷装置100を用いて、第1実施形態に係る超音波探傷方法は実行される。以下、第1実施形態に係る超音波探傷方法について説明する。 The ultrasonic flaw detection method according to the first embodiment is executed by using the ultrasonic flaw detector 100 having the configuration described above. Hereinafter, the ultrasonic flaw detection method according to the first embodiment will be described.

[第1実施形態に係る超音波探傷方法の内容]
最初に、超音波探傷装置100を用いて、傾斜角度の異なる複数の傾斜きずを探傷して得られた断面画像を、補正せずにそのまま評価した結果について説明する。
被探傷材P1(外径:193.7mm、肉厚:12.7mmの管)の内面及び外面に、傾斜きずとして、傾斜角θ=0°、15°、30°、45°のノッチ(長さ:12.7mm、深さ:被探傷材P1の肉厚の5%)を設け、超音波探傷装置100を用いて、静止した状態の被探傷材P1の各傾斜きずを探傷し、断面画像(開口合成像)を生成した。
[Details of ultrasonic flaw detection method according to the first embodiment]
First, the result of evaluating a cross-sectional image obtained by detecting a plurality of inclined flaws having different inclination angles using an ultrasonic flaw detector 100 without correction will be described.
Notches (lengths) with inclination angles θ = 0 °, 15 °, 30 °, and 45 ° on the inner and outer surfaces of the flaw-detected material P1 (outer diameter: 193.7 mm, wall thickness: 12.7 mm) as inclined flaws. S: 12.7 mm, depth: 5% of the wall thickness of the flawed material P1), and the ultrasonic flaw detector 100 is used to detect each inclined flaw of the flawed material P1 in a stationary state, and a cross-sectional image. (Aperture synthesis image) was generated.

図2は、上記の評価試験において、内面に設けた各傾斜きずを探傷した際に生成された断面画像の例を示す。図2(a)は傾斜角θ=0°の傾斜きずを探傷した際に生成された断面画像を、図2(b)は傾斜角θ=15°の傾斜きずを探傷した際に生成された断面画像を、図2(c)は傾斜角θ=30°の傾斜きずを探傷した際に生成された断面画像を、図2(d)は傾斜角θ=45°の傾斜きずを探傷した際に生成された断面画像を示す。各断面画像の横軸は被探傷材P1の軸方向位置を、縦軸は被探傷材P1の肉厚方向位置を示す。なお、図2に示す断面画像は、実際には、制御・信号処理手段2が具備するモニターにおいて、各画素の濃度に応じて異なる色が付されて表示されている。本明細書に添付の図2はモノクロ表示であるため分かり難いが、傾斜きずに対応するきず画素領域F内の画素の濃度は他の画素領域内の画素の濃度に比べて高くなっており、その高い濃度に対応する色が色付けされている。後述の図5、図6、図7、図8についても同様である。
図3は、図2に示す各断面画像における傾斜きずに対応するきず画素領域F内の画素の最大濃度と、傾斜きずの傾斜角θとの関係を示す図である。図3の縦軸であるきず画素領域F内の画素の最大濃度は、傾斜きずの傾斜角θ=0°の場合の最大濃度を基準にして、dB単位に換算している。なお、図3には、外面に設けた各傾斜きずを探傷した場合の同様の結果についても図示している。
FIG. 2 shows an example of a cross-sectional image generated when each inclined flaw provided on the inner surface is detected in the above evaluation test. FIG. 2 (a) is a cross-sectional image generated when a tilted flaw with an inclination angle θ = 0 ° is detected, and FIG. 2 (b) is generated when a flaw is detected with an inclination angle θ = 15 °. A cross-sectional image is shown in FIG. 2 (c), a cross-sectional image generated when an inclined flaw with an inclination angle of θ = 30 ° is detected, and FIG. 2 (d) is an inclining flaw with an inclination angle of θ = 45 °. The cross-sectional image generated in is shown in. The horizontal axis of each cross-sectional image shows the axial position of the scratched material P1, and the vertical axis shows the wall thickness direction position of the scratched material P1. The cross-sectional image shown in FIG. 2 is actually displayed in a monitor provided with the control / signal processing means 2 with different colors depending on the density of each pixel. Although it is difficult to understand because FIG. 2 attached to the present specification is a monochrome display, the density of the pixels in the scratch pixel region F corresponding to the tilted scratches is higher than the density of the pixels in the other pixel regions. The color corresponding to the high density is colored. The same applies to FIGS. 5, 6, 7, and 8 described later.
FIG. 3 is a diagram showing the relationship between the maximum density of pixels in the flaw pixel region F corresponding to the tilted flaw in each cross-sectional image shown in FIG. 2 and the tilt angle θ of the tilted flaw. The maximum density of the pixels in the scratch pixel region F on the vertical axis of FIG. 3 is converted into dB units based on the maximum density when the tilt angle θ = 0 ° of the tilted flaw. Note that FIG. 3 also shows the same result when each inclined flaw provided on the outer surface is detected.

図3に示すように、互いに同じ寸法の傾斜きずであっても、傾斜きずの傾斜角θに応じて、断面画像における傾斜きずに対応するきず画素領域Fの濃度が異なることが分かる。また、傾斜きずの傾斜角θに応じたきず画素領域Fの濃度変化の傾向は予め予想することが困難であることが分かる。したがい、傾斜きずを検出するために断面画像に設定する濃度のしきい値を適切に設定することが困難である。
このため、第1実施形態に係る超音波探傷方法では、傾斜きずが互いに同じ寸法であれば、断面画像におけるきず画素領域が同等の濃度になるように、以下に説明する工程を含むことを特徴としている。
As shown in FIG. 3, it can be seen that the density of the flaw pixel region F corresponding to the tilted flaw in the cross-sectional image differs depending on the tilted angle θ of the tilted flaw even if the tilted flaws have the same dimensions. Further, it can be seen that it is difficult to predict in advance the tendency of the density change of the scratch pixel region F according to the tilt angle θ of the tilt flaw. Therefore, it is difficult to appropriately set the density threshold value set in the cross-sectional image in order to detect the inclined flaw.
Therefore, the ultrasonic flaw detection method according to the first embodiment is characterized by including the steps described below so that the flaw pixel regions in the cross-sectional image have the same density if the tilted flaws have the same dimensions. It is supposed to be.

第1実施形態に係る超音波探傷方法は、少なくとも、準備工程と、第1試験材探傷データ生成工程(第1実施形態では、第1試験材断面画像生成工程)と、無指向性人工きずデータ生成工程(第1実施形態では、無指向性人工きず画像生成工程)と、補正係数算出工程と、被探傷材探傷データ生成工程(第1実施形態では、被探傷材断面画像生成工程)と、補正工程と、傾斜きず検出工程と、を有する。以下、各工程について、順次説明する。
The ultrasonic flaw detection method according to the first embodiment includes at least a preparation step, a first test material flaw detection data generation step (in the first embodiment, a first test material cross-sectional image generation step) , and omnidirectional artificial flaw data. A generation step (in the first embodiment, an omnidirectional artificial flaw image generation step) , a correction coefficient calculation step, a flaw detection data generation step (in the first embodiment, a flaw detection material cross-section image generation step) , and It has a correction step and a tilt flaw detection step. Hereinafter, each step will be described in sequence.

(準備工程)
準備工程では、被探傷材P1と材質及び断面寸法(外径、内径)が同等の材料に無指向性人工きずを設けて形成した管である第1試験材を準備する。この第1試験材に設けられる無指向性人工きずは、その周縁の接線方向と第1試験材の基準方向(軸方向)との成す角度が、少なくとも後述の傾斜きず検出工程で検出対象とする傾斜きずの最大傾斜角θmaxまでの範囲で連続的に変化するきずである。より具体的には、超音波探触子1を用いて第1試験材を探傷する際に、きずに入射する超音波の波面に直交する方向から見たきずの周縁が、その接線方向が上記のように変化するきずである。例えば、傾斜きずの最大傾斜角θmax(絶対値)が45°であるとすれば、準備工程では、無指向性人工きずの周縁の接線方向と第1試験材の基準方向(軸方向)との成す角度θfが、少なくとも-45°≦θf≦45°の範囲で連続的に変化するようなきずを設けることを意味する。
(Preparation process)
In the preparatory step, a first test material, which is a tube formed by providing an omnidirectional artificial flaw to a material having the same material and cross-sectional dimensions (outer diameter, inner diameter) as the scratched material P1, is prepared. In the omnidirectional artificial flaw provided on the first test material, the angle formed by the tangential direction of the peripheral edge thereof and the reference direction (axial direction) of the first test material is at least a detection target in the inclined flaw detection step described later. It is a flaw that changes continuously in the range up to the maximum tilt angle θmax of the tilt flaw. More specifically, when the first test material is detected by using the ultrasonic probe 1, the peripheral edge of the flaw seen from the direction orthogonal to the wavefront of the ultrasonic wave incident on the flaw is tangential to the above. It is a flaw that changes like this. For example, assuming that the maximum inclination angle θmax (absolute value) of the inclined flaw is 45 °, in the preparation step, the tangential direction of the peripheral edge of the omnidirectional artificial flaw and the reference direction (axial direction) of the first test material are set. This means that a flaw is provided such that the angle θf formed is continuously changed in the range of at least −45 ° ≦ θf ≦ 45 °.

上記のような無指向性人工きずとしては、例えば、第1試験材の径方向(肉厚方向)に延びる断面略円形の穴が好適に用いられる。断面略円形の穴は、その周縁の接線方向が360°連続的に変化する。このため、後述の傾斜きず検出工程で検出対象とする傾斜きずの最大傾斜角θmaxが如何なる値であろうとも、断面略円形の穴の周縁の接線方向と第1試験材の基準方向(軸方向)との成す角度は、最大傾斜角θmaxまでの範囲で連続的に変化することになる。断面略円形の穴は、容易に加工できる点で、第1試験材に設ける無指向性人工きずとして好ましい。ただし、本発明の準備工程で第1試験材に設ける無指向性人工きずは、これに限られるものではなく、断面略半円形の穴など、種々の人工きずを無指向性人工きずとして設けることが可能である。 As the omnidirectional artificial flaw as described above, for example, a hole having a substantially circular cross section extending in the radial direction (thickness direction) of the first test material is preferably used. The tangential direction of the peripheral edge of the hole having a substantially circular cross section continuously changes by 360 °. Therefore, regardless of the value of the maximum inclination angle θmax of the inclination flaw to be detected in the inclination flaw detection step described later, the tangential direction of the peripheral edge of the hole having a substantially circular cross section and the reference direction (axial direction) of the first test material. ) Will change continuously in the range up to the maximum tilt angle θmax. A hole having a substantially circular cross section is preferable as an omnidirectional artificial flaw provided in the first test material because it can be easily machined. However, the omnidirectional artificial flaw provided in the first test material in the preparation step of the present invention is not limited to this, and various artificial flaws such as a hole having a substantially semicircular cross section shall be provided as the omnidirectional artificial flaw. Is possible.

なお、本実施形態では、好ましい方法として、準備工程において、無指向性人工きずを設けた第1試験材に被探傷材P1の検出対象とする傾斜きずを模擬したノッチを更に設ける。具体的には、例えば、第1試験材の無指向性人工きずを設けた部位とは別の部位に、検出対象とする傾斜きずの最大傾斜角θmaxの範囲の傾斜角θ(例えば、θ=0°、45°など)を有するノッチを少なくとも1つ設ける。 In the present embodiment, as a preferred method, in the preparatory step, a notch simulating an inclined flaw to be detected by the flaw-detected material P1 is further provided on the first test material provided with the omnidirectional artificial flaw. Specifically, for example, the inclination angle θ (for example, θ =) in the range of the maximum inclination angle θmax of the inclination flaw to be detected at a portion different from the portion where the omnidirectional artificial flaw of the first test material is provided. At least one notch with (0 °, 45 °, etc.) is provided.

(第1試験材探傷データ生成工程)
図4は、第1試験材探傷データ生成工程における複数の第1試験材断面画像生成手順を説明する説明図である。図4は、超音波探触子1と第1試験材P2との対向方向(本実施形態では上下方向)から見た図である。
第1試験材探傷データ生成工程では、図4に示すように、超音波探触子1を第1試験材P2の外面に対向配置して第1試験材P2の軸方向及び周方向に沿って相対移動させて第1試験材P2を探傷することで、第1試験材P2の断面についての探傷信号から得られる第1試験材探傷データとしての複数の第1試験材断面画像を生成する。具体的には、無指向性人工きず(本実施形態では、第1試験材P2の内面から肉厚方向に延びる断面略円形の穴)に対応するきず画素領域が何れの断面画像にも存在するように、超音波探触子1を第1試験材P2の軸方向及び周方向に沿って相対移動させて第1試験材P2を探傷する。これにより、制御・信号処理手段2によって第1試験材P2の断面についての複数の2次元画像である第1試験材断面画像を生成する。すなわち、超音波探触子1の各相対移動位置において第1試験材断面画像を生成し、超音波探触子1の相対移動位置を順次変更することで複数の第1試験材断面画像を得る。
(First test material flaw detection data generation process)
FIG. 4 is an explanatory diagram illustrating a plurality of first test material cross-sectional image generation procedures in the first test material flaw detection data generation step. FIG. 4 is a view seen from the opposite direction (vertical direction in this embodiment) between the ultrasonic probe 1 and the first test material P2.
In the first test material flaw detection data generation step, as shown in FIG. 4, the ultrasonic probe 1 is arranged to face the outer surface of the first test material P2 along the axial direction and the circumferential direction of the first test material P2. By relatively moving the first test material P2 for flaw detection, a plurality of first test material cross-sectional images as first test material flaw detection data obtained from the flaw detection signal for the cross section of the first test material P2 are generated. Specifically, a flaw pixel region corresponding to an omnidirectional artificial flaw (in this embodiment, a hole having a substantially circular cross section extending from the inner surface of the first test material P2 in the wall thickness direction) is present in any cross-sectional image. As described above, the ultrasonic probe 1 is relatively moved along the axial direction and the circumferential direction of the first test material P2 to detect the first test material P2. As a result, the control / signal processing means 2 generates a first test material cross-sectional image which is a plurality of two-dimensional images of the cross section of the first test material P2. That is, a cross-sectional image of the first test material is generated at each relative movement position of the ultrasonic probe 1, and a plurality of cross-sectional images of the first test material are obtained by sequentially changing the relative movement position of the ultrasonic probe 1. ..

この際、第1試験材P2は、被探傷材P1を探傷する際と同等の探傷条件で探傷する。具体的には、超音波探触子1と第1試験材P2の外面との離間距離を、被探傷材P1を探傷する際の超音波探触子1と被探傷材P1の外面との離間距離と同等に設定する。また、第1試験材P2の軸方向から見た超音波の屈折角を、被探傷材P1を探傷する際の被探傷材P1の軸方向から見た超音波の屈折角(図1(a)に示す角度α)と同等に設定する。また、制御・信号処理手段2における各振動子10の制御方法(各振動子10の超音波の送受信タイミングの制御など)を同等にし、超音波探触子1から第1試験材P2に対して扇形の波面の超音波が一度に送信されるように設定する。さらに、被探傷材P1を探傷する際と同様に、制御・信号処理手段2において探傷信号を2次元画像化する手法として開口合成法を用いる。なお、開口合成法の具体的内容については、例えば、特開2014-55885号公報に記載のような公知の方法を適用可能であるため、ここではその詳細な説明を省略する。 At this time, the first test material P2 detects the flaw under the same flaw detection conditions as when the flaw-detected material P1 is detected. Specifically, the distance between the ultrasonic probe 1 and the outer surface of the first test material P2 is the distance between the ultrasonic probe 1 and the outer surface of the flawed material P1 when detecting the flawed material P1. Set equal to the distance. Further, the refraction angle of the ultrasonic wave seen from the axial direction of the first test material P2 is the refraction angle of the ultrasonic wave seen from the axial direction of the flaw-detected material P1 when the flaw-detected material P1 is detected (FIG. 1A). Set the same as the angle α) shown in. Further, the control method of each oscillator 10 in the control / signal processing means 2 (control of the transmission / reception timing of ultrasonic waves of each oscillator 10, etc.) is made the same, and the ultrasonic probe 1 to the first test material P2 are used. Set the ultrasonic waves of the fan-shaped wavefront to be transmitted at one time. Further, the aperture synthesis method is used as a method for two-dimensionally imaging the flaw detection signal in the control / signal processing means 2 as in the case of flaw detection of the flaw detection material P1. As for the specific content of the aperture synthesis method, for example, a known method as described in Japanese Patent Application Laid-Open No. 2014-55885 can be applied, and therefore detailed description thereof will be omitted here.

ただし、第1試験材探傷データ生成工程で生成する第1試験材断面画像は、後述のように、合成して補正係数の算出に用いるものである。このため、各第1試験材断面画像における無指向性人工きずに対応するきず画素領域の位置が小さいピッチで変化するように、超音波探触子1を第1試験材P2の軸方向及び周方向に沿って相対移動させる速度を、被探傷材P1を探傷する際の速度よりも低速にすることが好ましい。或いは、超音波探触子1を第1試験材P2の軸方向及び周方向に沿って間欠的に(移動と停止とを繰り返すように)相対移動させる場合には、第1試験材断面画像を生成する停止位置のピッチを小さくすることが好ましい。 However, the cross-sectional image of the first test material generated in the process of generating the flaw detection data of the first test material is synthesized and used for calculating the correction coefficient, as will be described later. Therefore, the ultrasonic probe 1 is moved in the axial direction and the circumference of the first test material P2 so that the position of the flaw pixel region corresponding to the omnidirectional artificial flaw in each first test material cross-sectional image changes at a small pitch. It is preferable that the speed of relative movement along the direction is slower than the speed at which the flaw-detected material P1 is detected. Alternatively, in the case of intermittently (repeating movement and stop) relative movement of the ultrasonic probe 1 along the axial direction and the circumferential direction of the first test material P2, the cross-sectional image of the first test material is displayed. It is preferable to reduce the pitch of the generated stop position.

図5は、第1試験材探傷データ生成工程で生成する複数の第1試験材断面画像の例を示す。各第1試験材断面画像の横軸は第1試験材の軸方向位置を、縦軸は第1試験材の肉厚方向位置を示す。図5に示すように、各第1試験材断面画像は、超音波探触子1を第1試験材の軸方向及び周方向に沿って相対移動させて第1試験材を探傷することで生成されるため、各第1試験材断面画像における無指向性人工きずに対応するきず画素領域Fの位置も超音波探触子1の相対移動位置に応じて変化することになる。 FIG. 5 shows an example of a plurality of first test material cross-sectional images generated in the first test material flaw detection data generation step. The horizontal axis of each first test material cross-sectional image indicates the axial position of the first test material, and the vertical axis indicates the position of the first test material in the wall thickness direction. As shown in FIG. 5, each first test material cross-sectional image is generated by relatively moving the ultrasonic probe 1 along the axial direction and the circumferential direction of the first test material to detect the first test material. Therefore, the position of the flaw pixel region F corresponding to the omnidirectional artificial flaw in each first test material cross-sectional image also changes according to the relative movement position of the ultrasonic probe 1.

本実施形態では、好ましい方法として、第1試験材探傷データ生成工程において、ノッチを更に設けた第1試験材を探傷することで、ノッチの探傷信号から得られるノッチ探傷データを生成する。具体的には、無指向性人工きずの場合と同様に、超音波探触子1を第1試験材の外面に対向配置して第1試験材の軸方向及び周方向に沿って相対移動させて第1試験材を探傷することで、第1試験材に設けられたノッチの探傷信号から得られるノッチ探傷データとしての複数のノッチ断面画像を生成する。より具体的には、準備工程で設けた傾斜きずを模擬したノッチに対応する画素領域が何れの断面画像にも存在するように、超音波探触子1を第1試験材の軸方向及び周方向に沿って相対移動させて第1試験材を探傷する。これにより、制御・信号処理手段2によって第1試験材の断面についての複数の2次元画像であるノッチ断面画像を生成する。すなわち、超音波探触子1の各相対移動位置においてノッチ断面画像を生成し、超音波探触子1の相対移動位置を順次変更することで複数のノッチ断面画像を得る。 In the present embodiment, as a preferred method, in the first test material flaw detection data generation step, the notch flaw detection data obtained from the notch flaw detection signal is generated by detecting the first test material further provided with the notch. Specifically, as in the case of an omnidirectional artificial flaw, the ultrasonic probe 1 is placed facing the outer surface of the first test material and relatively moved along the axial direction and the circumferential direction of the first test material. By detecting the first test material, a plurality of notch cross-sectional images as notch flaw detection data obtained from the flaw detection signal of the notch provided in the first test material are generated. More specifically, the ultrasonic probe 1 is placed in the axial direction and circumference of the first test material so that a pixel region corresponding to a notch simulating an inclined flaw provided in the preparation step exists in any cross-sectional image. The first test material is detected by moving it relative to each other along the direction. As a result, the control / signal processing means 2 generates a notch cross-sectional image which is a plurality of two-dimensional images of the cross-section of the first test material. That is, a notch cross-sectional image is generated at each relative movement position of the ultrasonic probe 1, and a plurality of notch cross-sectional images are obtained by sequentially changing the relative movement position of the ultrasonic probe 1.

第1試験材探傷データ生成工程において、ノッチ断面画像を生成する際、超音波探触子1の探傷感度を適宜変更し、各探傷感度で生成されたノッチ断面画像を比較することにより、ノッチを検出するのに適した探傷感度を特定する。或いは、超音波探触子1の探傷感度は一定のままとし、生成されたノッチ断面画像においてノッチを検出するのに適したしきい値を特定する。 In the first test material flaw detection data generation step, when generating a notch cross-sectional image, the flaw detection sensitivity of the ultrasonic probe 1 is appropriately changed, and the notch is created by comparing the notch cross-section images generated by each flaw detection sensitivity. Identify suitable flaw detection sensitivities for detection. Alternatively, the flaw detection sensitivity of the ultrasonic probe 1 remains constant to identify a threshold suitable for detecting a notch in the generated notch cross-section image.

(無指向性人工きずデータ生成工程)
無指向性人工きずデータ生成工程では、生成した複数の第1試験材探傷データに基づき、無指向性人工きずに対応する探傷信号の強度に関わる無指向性人工きずデータを生成する。具体的には、本実施形態では、制御・信号処理手段2によって図5に示すような複数の第1試験材断面画像を合成する(各第1試験材断面画像内の対応する各画素の濃度を加算する)ことで、図6に示すような無指向性人工きずデータとしての無指向性人工きず画像を生成する。無指向性人工きず画像の横軸は第1試験材の軸方向位置を、縦軸は第1試験材の肉厚方向位置を示す。図6に符号FTで示す領域が、無指向性人工きず画像における無指向性人工きずに対応する合成きず画素領域である。合成きず画素領域FTは、後述のように、補正係数の算出に用いるものであるため、無指向性人工きず画像の横軸方向にも縦軸方向にもできるだけ広がっていることが好ましい。合成きず画素領域FTの横軸方向の広がりは、各第1試験材断面画像を生成する際の超音波探触子1の第1試験材の軸方向に沿った相対移動距離の範囲に応じて変化し、合成きず画素領域FTの縦軸方向の広がりは、各第1試験材断面画像を生成する際の超音波探触子1の第1試験材の周方向に沿った相対移動距離の範囲に応じて変化する。したがい、無指向性人工きず画像における合成きず画素領域FTが無指向性人工きず画像の横軸方向にも縦軸方向にもできるだけ広がるように、第1試験材の軸方向及び周方向に沿った超音波探触子1の相対移動距離の範囲を設定することが好ましい。
(Anidirectional artificial flaw data generation process)
In the omnidirectional artificial flaw data generation step, omnidirectional artificial flaw data related to the strength of the flaw detection signal corresponding to the omnidirectional artificial flaw is generated based on the generated first test material flaw detection data. Specifically, in the present embodiment, a plurality of first test material cross-sectional images as shown in FIG. 5 are synthesized by the control / signal processing means 2 (concentration of each corresponding pixel in each first test material cross-sectional image). Is added) to generate an omnidirectional artificial flaw image as omnidirectional artificial flaw data as shown in FIG. The horizontal axis of the omnidirectional artificial flaw image indicates the axial position of the first test material, and the vertical axis indicates the position of the first test material in the wall thickness direction. The region indicated by the reference numeral FT in FIG. 6 is a composite flaw pixel region corresponding to the omnidirectional artificial flaw in the omnidirectional artificial flaw image. Since the composite flaw pixel region FT is used for calculating the correction coefficient as described later, it is preferable that the composite flaw pixel region FT extends as much as possible in the horizontal axis direction and the vertical axis direction of the omnidirectional artificial flaw image. The spread of the synthetic flaw pixel region FT in the horizontal axis direction depends on the range of the relative movement distance along the axial direction of the first test material of the ultrasonic probe 1 when generating the cross-sectional image of each first test material. The spread of the synthetic flaw pixel region FT in the vertical axis direction is the range of the relative movement distance along the circumferential direction of the first test material of the ultrasonic probe 1 when generating the cross-sectional image of each first test material. It changes according to. Therefore, the composite flaw pixel region FT in the omnidirectional artificial flaw image is along the axial direction and the circumferential direction of the first test material so as to spread as much as possible in the horizontal axis direction and the vertical axis direction of the omnidirectional artificial flaw image. It is preferable to set the range of the relative movement distance of the ultrasonic probe 1.

(補正係数算出工程)
補正係数算出工程では、生成した無指向性人工きずデータ(無指向性人工きず画像)に基づき、補正係数を算出する。具体的には、無指向性人工きず画像における合成きず画素領域FT内の各画素の濃度に補正係数を用いた補正を施した場合に合成きず画素領域FT内の各画素の濃度が互いに同等となる前記補正係数を、制御・信号処理手段2が合成きず画素領域FT内の各画素毎に算出する。以下、より具体的に説明する。
(Correction coefficient calculation process)
In the correction coefficient calculation step, the correction coefficient is calculated based on the generated omnidirectional artificial scratch data (omnidirectional artificial scratch image). Specifically, when the density of each pixel in the composite flaw pixel region FT in the omnidirectional artificial flaw image is corrected by using the correction coefficient, the density of each pixel in the composite flaw pixel region FT is equal to each other. The correction coefficient 2 is calculated for each pixel in the composite flaw pixel region FT by the control / signal processing means 2. Hereinafter, a more specific description will be given.

図7は、補正係数算出工程の手順を説明する説明図である。図7(a)は無指向性人工きず画像の例を、図7(b)は合成きず画素領域FTを抽出した例を、図7(c)は合成きず画素領域FT内の各画素の補正係数を画像で表示した例を示す。
図7に示すように、本実施形態の補正係数算出工程では、図7(a)に示す無指向性人工きず画像の各画素のうち、所定のしきい値を超える濃度を有する画素を合成きず画素領域FTとして抽出し、残りの画素をノイズ成分として濃度を0にする(図7(b))。なお、図7(b)では、合成きず画素領域FT以外の画素(図7(b)の上方に位置する画素)も抽出されているが、本例では、管の内面近傍が探傷範囲と予め設定されており、抽出された合成きず画素領域FT以外の画素は探傷範囲外であるため、補正係数算出には使用しない。
そして、本実施形態の補正係数算出工程では、抽出した合成きず画素領域FT内の画素の最大濃度をAとし、合成きず画素領域FT内の各画素の濃度をBとすると、以下の式(1)に基づき、合成きず画素領域FT内の各画素毎に補正係数Xを算出する。
X=20・log(A/B) ・・・(1)
FIG. 7 is an explanatory diagram illustrating the procedure of the correction coefficient calculation process. 7 (a) is an example of an omnidirectional artificial flaw image, FIG. 7 (b) is an example of extracting a synthetic flaw pixel region FT, and FIG. 7 (c) is a correction of each pixel in the synthetic flaw pixel region FT. An example of displaying the coefficient as an image is shown.
As shown in FIG. 7, in the correction coefficient calculation step of the present embodiment, among the pixels of the omnidirectional artificial flaw image shown in FIG. 7A, the pixels having a density exceeding a predetermined threshold value are combined. It is extracted as a pixel region FT, and the remaining pixels are used as noise components to set the density to 0 (FIG. 7 (b)). In addition, in FIG. 7 (b), pixels other than the composite flaw pixel region FT (pixels located above FIG. 7 (b)) are also extracted, but in this example, the vicinity of the inner surface of the tube is defined as the flaw detection range in advance. Since the pixels other than the extracted composite flaw pixel region FT are out of the flaw detection range, they are not used for calculating the correction coefficient.
Then, in the correction coefficient calculation step of the present embodiment, assuming that the maximum density of the pixels in the extracted composite flaw pixel region FT is A and the density of each pixel in the composite flaw pixel region FT is B, the following equation (1) ), The correction coefficient X is calculated for each pixel in the composite flaw pixel region FT.
X = 20 ・ log (A / B) ・ ・ ・ (1)

図7(c)は、上記の式(1)に基づき合成きず画素領域FT内の各画素毎に算出した補正係数Xを所定の換算式に従い各画素の濃度に換算して表示している。なお、探傷範囲(本例では管の内面近傍)内の画素であって且つ合成きず画素領域FT外の画素については、上記の式(1)で表わされる補正係数Xは算出せずに、後述の補正工程において補正後の濃度が全て0となるように補正する。
算出された補正係数Xは、制御・信号処理手段2に記憶される。
FIG. 7 (c) displays the correction coefficient X calculated for each pixel in the composite flaw pixel region FT based on the above formula (1) after converting it into the density of each pixel according to a predetermined conversion formula. For pixels within the flaw detection range (near the inner surface of the tube in this example) and outside the composite flaw pixel region FT, the correction coefficient X represented by the above equation (1) is not calculated and will be described later. In the correction step of, the correction is made so that the corrected densities are all 0.
The calculated correction coefficient X is stored in the control / signal processing means 2.

(被探傷材探傷データ生成工程)
被探傷材探傷データ生成工程では、超音波探触子1を被探傷材P1の外面に対向配置して被探傷材P1の軸方向及び周方向に沿って相対移動させて被探傷材P1を探傷することで、制御・信号処理手段2によって被探傷材P1の断面についての探傷信号から得られる被探傷材探傷データを生成する。すなわち、本実施形態では、被探傷材P1の断面についての2次元画像である被探傷材断面画像を生成する。
前述の第1試験材探傷データ生成工程において、ノッチを検出するのに適した探傷感度を特定した場合、被探傷材探傷データ生成工程では、超音波探触子1の探傷感度として、この特定した探傷感度を用いる。すなわち、第1試験材探傷データ生成工程で特定した探傷感度を設定した超音波探触子1で被探傷材P1を探傷する。
(Scratch-detected material flaw detection data generation process)
In the process of generating flaw detection data for the flawed material, the ultrasonic probe 1 is arranged facing the outer surface of the flawed material P1 and relatively moved along the axial direction and the circumferential direction of the flawed material P1 to detect the flawed material P1. By doing so, the control / signal processing means 2 generates the flaw detection data obtained from the flaw detection signal for the cross section of the flaw detection material P1. That is, in the present embodiment, a cross-sectional image of the scratched material, which is a two-dimensional image of the cross section of the scratched material P1, is generated.
When the flaw detection sensitivity suitable for detecting the notch is specified in the first test material flaw detection data generation step described above, this is specified as the flaw detection sensitivity of the ultrasonic probe 1 in the flaw detection material generation data generation step. Use flaw detection sensitivity. That is, the flaw-detected material P1 is flaw-detected by the ultrasonic probe 1 having the flaw-detection sensitivity set specified in the first test material flaw-detection data generation step.

(補正工程)
補正工程では、生成した被探傷材探傷データ(被探傷材断面画像)に算出した補正係数を用いて補正を施すことで、補正後の被探傷材探傷データ(被探傷材断面画像)を生成する。具体的には、制御・信号処理手段2によって、被探傷材P1の被探傷材断面画像における合成きず画素領域FTに対応する補正画素領域内の各画素の濃度に、補正係数算出工程で算出した各画素の補正係数Xを用いて補正を施すことで、補正後の被探傷材断面画像を生成する。被探傷材P1の被探傷材断面画像は、超音波探触子1の相対移動に伴って逐次生成されるため、補正後の被探傷材断面画像も逐次生成されることになる。以下、補正工程について、より具体的に説明する。
(Correction process)
In the correction step, the corrected flaw detection data (cross-sectional image of the flaw-detected material) is generated by making corrections using the correction coefficient calculated for the generated flaw-detection data (cross-sectional image of the flaw-detected material). .. Specifically, the control / signal processing means 2 calculated the density of each pixel in the correction pixel region corresponding to the composite flaw pixel region FT in the scratched material cross-sectional image of the scratched material P1 in the correction coefficient calculation step. By performing correction using the correction coefficient X of each pixel, a corrected cross-sectional image of the damaged material is generated. Since the cross-sectional image of the scratched material P1 is sequentially generated along with the relative movement of the ultrasonic probe 1, the corrected cross-sectional image of the scratched material is also sequentially generated. Hereinafter, the correction process will be described more specifically.

図8は、補正工程の手順を説明する説明図である。図8(a)は被探傷材P1の被探傷材断面画像の例を、図8(b)は補正後の被探傷材断面画像の例を示す。
本実施形態の補正工程では、図8(a)に示す被探傷材断面画像における補正画素領域(図7に示す合成きず画素領域FTと同座標に位置する画素領域)内の各画素の濃度に、補正係数算出工程で算出され記憶されている各画素の補正係数を用いて制御・信号処理手段2が補正を施し、図8(b)に示す補正後の被探傷材断面画像を生成する。本実施形態の補正工程では、補正画素領域内の各画素の濃度をCとすると、以下の式(2)に基づき、補正後の各画素の濃度Dを算出する、
D=C・10(X/20) ・・・(2)
なお、実際には、制御・信号処理手段2は、補正画素領域内の各画素の濃度だけではなく、探傷範囲(本例では管の内面近傍)内の全ての画素の濃度に対して補正演算を行う。ただし、前述のように、探傷範囲内の画素であって且つ合成きず画素領域FT外の画素については、補正後の濃度が全て0となるように補正する。
また、上記の式(2)に基づき算出した補正後の濃度Dが、制御・信号処理手段2で設定可能な濃度の最大値(例えば、濃度を8ビットで表わす場合、最大値は255)を超える場合には、予め式(1)で算出する補正係数Xの値を一律に小さく設定(例えば、X-6などに設定)しておけばよい。
FIG. 8 is an explanatory diagram illustrating the procedure of the correction step. FIG. 8A shows an example of a cross-sectional image of the damaged material P1 to be detected, and FIG. 8B shows an example of a corrected cross-sectional image of the material to be detected.
In the correction step of the present embodiment, the density of each pixel in the correction pixel region (pixel region located at the same coordinate as the synthetic flaw pixel region FT shown in FIG. 7) in the scratch-detected material cross-sectional image shown in FIG. 8A is adjusted. The control / signal processing means 2 makes corrections using the correction coefficients of each pixel calculated and stored in the correction coefficient calculation step, and generates a corrected cross-sectional image of the scratched material shown in FIG. 8 (b). In the correction step of the present embodiment, assuming that the density of each pixel in the correction pixel region is C, the density D of each corrected pixel is calculated based on the following equation (2).
D = C ・ 10 (X / 20)・ ・ ・ (2)
In reality, the control / signal processing means 2 corrects not only the density of each pixel in the correction pixel area but also the density of all the pixels in the flaw detection range (near the inner surface of the tube in this example). I do. However, as described above, the pixels within the flaw detection range and outside the composite flaw pixel region FT are corrected so that the corrected density is all 0.
Further, the corrected density D calculated based on the above equation (2) is the maximum value of the density that can be set by the control / signal processing means 2 (for example, when the density is represented by 8 bits, the maximum value is 255). If it exceeds the value, the value of the correction coefficient X calculated in the equation (1) may be uniformly set small (for example, set to X-6 or the like).

図8(a)に示すきずに対応するきず画素領域Fと、図8(b)に示すきず画素領域Fとを比較すれば、補正によってきず画素領域F内の画素の濃度が変化していることが分かる。 Comparing the flaw pixel region F corresponding to the flaw shown in FIG. 8 (a) with the flaw pixel region F shown in FIG. 8 (b), the density of the pixels in the flaw pixel region F is changed by the correction. You can see that.

(傾斜きず検出工程)
傾斜きず検出工程では、補正後の被探傷材探傷データを用いて被探傷材P1の傾斜きずを検出する。すなわち、図8(b)に示すような補正後の被探傷材断面画像を用いて、制御・信号処理手段2が被探傷材P1の傾斜きずを検出する。具体的には、補正後の被探傷材断面画像を予め設定した所定のしきい値と比較し、所定のしきい値を超える濃度を有する画素を傾斜きずとして検出する。
前述の第1試験材探傷データ生成工程において、ノッチを検出するのに適したしきい値を特定した場合、傾斜きず検出工程では、この特定したしきい値を用いる。
(Inclination flaw detection process)
In the tilted flaw detection step, the tilted flaw of the flawed material P1 is detected by using the corrected flaw detection data of the flawed material. That is, the control / signal processing means 2 detects the inclined flaw of the scratched material P1 by using the corrected cross-sectional image of the scratched material as shown in FIG. 8B. Specifically, the corrected cross-sectional image of the scratched material is compared with a predetermined threshold value set in advance, and pixels having a density exceeding the predetermined threshold value are detected as tilted flaws.
When a threshold value suitable for detecting a notch is specified in the first test material flaw detection data generation step described above, this specified threshold value is used in the tilt flaw detection step.

以上に説明した第1実施形態に係る超音波探傷方法によれば、準備工程において、被探傷材P1と材質及び断面寸法が同等の管に無指向性人工きずを設けて形成した第1試験材を準備し、第1試験材探傷データ生成工程において、超音波探触子1で第1試験材を探傷して第1試験材断面画像を生成する。このため、単一の無指向性人工きずであっても、それぞれが異なる傾斜角を有する複数の人工きずを設けて探傷した場合と同等の断面画像が得られることになる。また、各第1試験材断面画像は、被探傷材P1を探傷する場合と同様に、超音波探触子1を第1試験材の軸方向及び周方向に沿って相対移動させて第1試験材を探傷することで生成される。このため、各第1試験材断面画像におけるきず画素領域Fの位置も変化し、無指向性人工きずデータ生成工程において、各第1試験材断面画像を合成して生成される無指向性人工きず画像には、複数の位置に互いに同じ寸法の無指向性人工きずを設けて探傷する場合と同様に、超音波探触子1と無指向性人工きずとの位置関係を変更して探傷した場合のきず画素領域(合成きず画素領域FT)が含まれることになる。 According to the ultrasonic flaw detection method according to the first embodiment described above, in the preparatory step, a first test material formed by providing an omnidirectional artificial flaw in a tube having the same material and cross-sectional dimensions as the flaw-detected material P1. In the first test material flaw detection data generation step, the first test material is flawed with the ultrasonic probe 1 to generate a cross-sectional image of the first test material. Therefore, even if it is a single omnidirectional artificial flaw, a cross-sectional image equivalent to that in the case where a plurality of artificial flaws having different inclination angles are provided and flaw detection can be obtained. Further, in the cross-sectional image of each first test material, the ultrasonic probe 1 is relatively moved along the axial direction and the circumferential direction of the first test material in the same manner as in the case of detecting the flawed material P1, in the first test. It is generated by searching for scratches on the material. Therefore, the position of the flaw pixel region F in each first test material cross-sectional image also changes, and in the omnidirectional artificial flaw data generation step, an omnidirectional artificial flaw generated by synthesizing each first test material cross-sectional image. In the same way as when omnidirectional artificial flaws of the same dimensions are provided at multiple positions in the image for flaw detection, when the positional relationship between the ultrasonic probe 1 and the omnidirectional artificial flaw is changed and flaw detection is performed. The flaw pixel region (composite flaw pixel region FT) is included.

次いで、本実施形態に係る超音波探傷方法によれば、補正係数算出工程において、無指向性人工きず画像における合成きず画素領域FT内の各画素の濃度に補正係数を用いた補正を施した場合に合成きず画素領域FT内の各画素の濃度が互いに同等となる補正係数を、合成きず画素領域FT内の各画素毎に算出する。すなわち、この補正係数を用いて合成きず画素領域FT内の各画素の濃度を補正すれば、種々の傾斜角を有する人工きず(無指向性人工きず)であっても、また、超音波探触子1と無指向性人工きずとの位置関係に関わらず、互いに同じ無指向性人工きずであれば、合成きず画素領域FT内の各画素が同等の濃度になることになる。 Next, according to the ultrasonic flaw detection method according to the present embodiment, in the correction coefficient calculation step, when the density of each pixel in the synthetic flaw pixel region FT in the omnidirectional artificial flaw image is corrected using the correction coefficient. A correction coefficient is calculated for each pixel in the composite flaw pixel region FT so that the densities of the pixels in the composite flaw pixel region FT are equal to each other. That is, if the density of each pixel in the synthetic flaw pixel region FT is corrected using this correction coefficient, even if the artificial flaw has various tilt angles (omnidirectional artificial flaw), ultrasonic detection can be performed. Regardless of the positional relationship between the child 1 and the omnidirectional artificial flaw, if they are the same omnidirectional artificial flaw, each pixel in the composite flaw pixel region FT will have the same density.

そして、本実施形態に係る超音波探傷方法によれば、被探傷材探傷データ生成工程において、超音波探触子1を被探傷材P1の軸方向及び周方向に沿って相対移動させて被探傷材P1を探傷することで、被探傷材P1の断面についての被探傷材断面画像を生成し、補正工程において、被探傷材P1の断面についての被探傷材断面画像における合成きず画素領域FTに対応する補正画素領域内の各画素の濃度に、補正係数算出工程で算出した各画素の補正係数を用いて補正を施す。このため、被探傷材P1の断面についての補正後の被探傷材断面画像における補正画素領域内に傾斜きずに対応する画素領域Fが存在した場合、この傾斜きずの傾斜角に関わらず、また、超音波探触子1と傾斜きずとの位置関係に関わらず(補正後の被探傷材断面画像におけるきず画素領域Fの位置に関わらず)、傾斜きずが互いに同じ寸法であれば、同等の濃度になることが期待できる。
したがい、傾斜きず検出工程において、補正後の被探傷材断面画像を用いて被探傷材P1の傾斜きずを検出する際、補正後の被探傷材断面画像に設定するしきい値を適切に設定することが可能である。
Then, according to the ultrasonic flaw detection method according to the present embodiment, in the flaw detection data generation step, the ultrasonic probe 1 is relatively moved along the axial direction and the circumferential direction of the flaw detectable material P1 to be flawed. By detecting the material P1, a cross-sectional image of the flawed material P1 is generated, and in the correction step, the composite flaw pixel region FT in the cross-section image of the flawed material P1 is supported. The density of each pixel in the correction pixel area to be corrected is corrected by using the correction coefficient of each pixel calculated in the correction coefficient calculation step. Therefore, when the pixel region F corresponding to the tilted flaw exists in the corrected pixel region in the corrected cross-sectional image of the flawed material P1 with respect to the cross section of the flawed material P1, the tilt angle of the tilted flaw does not matter. Regardless of the positional relationship between the ultrasonic probe 1 and the tilted flaw (regardless of the position of the flaw pixel region F in the corrected cross-sectional image of the scratched material), if the tilted flaws have the same dimensions, the same density is obtained. Can be expected to become.
Therefore, in the tilted flaw detection step, when detecting the tilted flaw of the flawed material P1 using the corrected cross-sectional image of the scratched material, the threshold value set in the corrected cross-sectional image of the flawed material is appropriately set. It is possible.

以上のように、第1実施形態に係る超音波探傷方法によれば、超音波探触子1によって得られる探傷信号の断面画像(補正工程における補正後の断面画像)を用いて、管の軸方向に対して傾斜した方向に延びる傾斜きずを高精度に検出可能である。
なお、本実施形態では、被探傷材P1及び第1試験材が管である場合を例に挙げて説明したが、本発明はこれに限るものではなく、被探傷材P1及び第1試験材が断面略円形の棒材である場合にも適用可能である。
As described above, according to the ultrasonic flaw detection method according to the first embodiment, the cross-sectional image of the flaw detection signal obtained by the ultrasonic probe 1 (the cross-sectional image after correction in the correction step) is used for the shaft of the tube. It is possible to detect tilted flaws extending in a direction tilted with respect to the direction with high accuracy.
In the present embodiment, the case where the scratched material P1 and the first test material are pipes has been described as an example, but the present invention is not limited to this, and the scratched material P1 and the first test material are used. It can also be applied to a bar having a substantially circular cross section.

また、本実施形態では、断面略円形の被探傷材P1の軸方向に対して傾斜した方向に延びる傾斜きずを検出する場合(基準方向が被探傷材P1の軸方向である場合)を例に挙げて説明したが、本発明はこれに限るものではなく、断面略円形の被探傷材P1の径方向(肉厚方向)に対して傾斜した方向に延びる傾斜きずを検出する場合(基準方向が被探傷材P1の径方向である場合)にも適用可能である。ただし、この場合には、超音波探触子1が具備する複数の振動子10の配列方向が被探傷材P1や第1試験材の周方向に沿うように超音波探触子1を被探傷材P1や第1試験材の外面に対向配置した状態で探傷する必要がある。また、この場合に第1試験材に設ける無指向性人工きずは、第1試験材の軸方向に延びる断面略円形の穴とすることが好ましい。 Further, in the present embodiment, an example is a case where an inclined flaw extending in a direction inclined with respect to the axial direction of the scratched material P1 having a substantially circular cross section is detected (when the reference direction is the axial direction of the scratched material P1). As described above, the present invention is not limited to this, and is a case where an inclined flaw extending in an inclined direction with respect to the radial direction (thickness direction) of the scratched material P1 having a substantially circular cross section is detected (the reference direction is). It can also be applied (when it is in the radial direction of the scratched material P1). However, in this case, the ultrasonic probe 1 is to be detected so that the arrangement direction of the plurality of vibrators 10 included in the ultrasonic probe 1 is along the circumferential direction of the to be detected material P1 and the first test material. It is necessary to detect flaws while facing the outer surface of the material P1 or the first test material. Further, in this case, the omnidirectional artificial flaw provided on the first test material is preferably a hole having a substantially circular cross section extending in the axial direction of the first test material.

また、超音波探傷装置100は、断面略円形の被探傷材P1の軸方向に対して傾斜した方向に延びる傾斜きずを検出可能であるものの、超音波探傷装置100が検出可能な傾斜きずの傾斜角には実際には範囲が存在する。このため、超音波探触子1の配置方向(複数の振動子10の配列方向)は、検出対象とする傾斜きずの傾斜角に基づいて設定される。本実施形態では、断面略円形の被探傷材P1の軸方向に対して傾斜した方向に延びる検出対象とする傾斜きずの傾斜角が、断面略円形の被探傷材P1の軸方向に沿って配置された超音波探触子1を具備する超音波探傷装置100の検出可能な範囲内である場合について説明したが、本発明はこれに限られることはない。すなわち、断面略円形の被探傷材P1の軸方向に対して傾斜した方向に延びる検出対象とする傾斜きずの傾斜角が、超音波探傷装置100が検出可能な傾斜きずの傾斜角の範囲内である場合、超音波探触子1は断面略円形の被探傷材P1の軸方向に沿って配置することが好ましい。一方、断面略円形の被探傷材P1の軸方向に対して傾斜した方向に延びる検出対象とする傾斜きずの傾斜角が、超音波探傷装置100が検出可能な傾斜きずの傾斜角の範囲を超えている場合、超音波探触子1は周方向に沿って配置することが好ましい。具体的には、超音波探傷装置100が検出可能な傾斜きずの傾斜角の範囲が±45°の範囲であって、検出対象とする傾斜きずが断面略円形の被探傷材P1の軸方向に対して±45°の範囲内で傾斜する場合、基準方向が被探傷材P1及び第1試験材の軸方向となり、超音波探触子1は断面略円形の被探傷材P1の軸方向に沿って配置される。一方、超音波探傷装置100が検出可能な傾斜きずの傾斜角の範囲が±45°の範囲であって、検出対象とする傾斜きずが断面略円形の被探傷材P1の軸方向に対して±45°の範囲を超えて傾斜する場合(傾斜きずが断面略円形の被探傷材P1の周方向に対して±45°の範囲で傾斜する場合)、基準方向が被探傷材P1及び第1試験材の周方向となり、超音波探触子1は断面略円形の被探傷材P1の周方向に沿って配置される。 Further, although the ultrasonic flaw detector 100 can detect an inclined flaw extending in a direction inclined with respect to the axial direction of the flawed material P1 having a substantially circular cross section, the ultrasonic flaw detector 100 can detect an inclined flaw. There is actually a range at the corner. Therefore, the arrangement direction of the ultrasonic probe 1 (the arrangement direction of the plurality of oscillators 10) is set based on the inclination angle of the inclination flaw to be detected. In the present embodiment, the inclination angle of the inclined flaw to be detected extending in the direction inclined with respect to the axial direction of the scratched material P1 having a substantially circular cross section is arranged along the axial direction of the scratched material P1 having a substantially circular cross section. Although the case where the ultrasonic flaw detector 100 including the ultrasonic probe 1 is within the detectable range has been described, the present invention is not limited to this. That is, the inclination angle of the inclined flaw to be detected extending in the direction inclined with respect to the axial direction of the flawed material P1 having a substantially circular cross section is within the range of the inclination angle of the inclined flaw that can be detected by the ultrasonic flaw detector 100. In some cases, the ultrasonic probe 1 is preferably arranged along the axial direction of the scratched material P1 having a substantially circular cross section. On the other hand, the inclination angle of the inclined flaw to be detected extending in the direction inclined with respect to the axial direction of the flawed material P1 having a substantially circular cross section exceeds the range of the inclination angle of the inclined flaw that can be detected by the ultrasonic flaw detector 100. If so, it is preferable to arrange the ultrasonic probe 1 along the circumferential direction. Specifically, the range of the tilt angle of the tilted flaws that can be detected by the ultrasonic flaw detector 100 is in the range of ± 45 °, and the tilted flaws to be detected are in the axial direction of the flawed material P1 having a substantially circular cross section. On the other hand, when tilted within a range of ± 45 °, the reference direction is the axial direction of the flawed material P1 and the first test material, and the ultrasonic probe 1 is along the axial direction of the flawed material P1 having a substantially circular cross section. Is placed. On the other hand, the range of the tilt angle of the tilted flaw that can be detected by the ultrasonic flaw detector 100 is within ± 45 °, and the tilted flaw to be detected is ± with respect to the axial direction of the flawed material P1 having a substantially circular cross section. When tilting beyond the range of 45 ° (when the tilted flaw tilts within the range of ± 45 ° with respect to the circumferential direction of the flawed material P1 having a substantially circular cross section), the reference direction is the flawed material P1 and the first test. The ultrasonic probe 1 is arranged in the circumferential direction of the material along the circumferential direction of the flawed material P1 having a substantially circular cross section.

さらに、本発明は、被探傷材P1及び第1試験材が断面略円形である場合に限るものではなく、被探傷材P1及び第1試験材が平面視矩形の板材である場合にも適用可能である。被探傷材P1及び第1試験材が平面視矩形の板材のとき、傾斜きずが被探傷材P1の長手方向に対して傾斜した方向に延びる場合(基準方向が被探傷材P1の長手方向である場合)には、超音波探触子1が具備する複数の振動子10の配列方向が被探傷材P1や第1試験材の長手方向に沿うように超音波探触子1を被探傷材P1や第1試験材の外面に対向配置した状態で探傷することになる。また、傾斜きずが被探傷材P1の長手方向に対して傾斜した方向に延びる場合、第1試験材に設ける無指向性人工きずは、第1試験材の厚み方向に延びる断面略円形の穴とすることが好ましい。
一方、被探傷材P1及び第1試験材が平面視矩形の板材のとき、傾斜きずが被探傷材P1の厚み方向に対して傾斜した方向に延びる場合(基準方向が被探傷材P1の厚み方向である場合)には、超音波探触子1が具備する複数の振動子10の配列方向が被探傷材P1や第1試験材の短手方向に沿うように超音波探触子1を被探傷材P1や第1試験材の外面に対向配置した状態で探傷することになる。また、傾斜きずが被探傷材P1の厚み方向に対して傾斜した方向に延びる場合、第1試験材に設ける無指向性人工きずは、第1試験材の長手方向に延びる断面略円形の穴とすることが好ましい。
Further, the present invention is not limited to the case where the scratched material P1 and the first test material have a substantially circular cross section, and can be applied to the case where the scratched material P1 and the first test material are rectangular plates in a plan view. Is. When the scratched material P1 and the first test material are rectangular plates in a plan view, the inclined flaw extends in a direction inclined with respect to the longitudinal direction of the scratched material P1 (the reference direction is the longitudinal direction of the scratched material P1). In the case), the ultrasonic probe 1 is placed on the flawed material P1 so that the arrangement direction of the plurality of vibrators 10 included in the ultrasonic probe 1 is along the longitudinal direction of the flawed material P1 and the first test material. Or, the flaw is detected in a state where it is arranged facing the outer surface of the first test material. Further, when the inclined flaw extends in the direction inclined with respect to the longitudinal direction of the scratched material P1, the omnidirectional artificial flaw provided in the first test material has a hole having a substantially circular cross section extending in the thickness direction of the first test material. It is preferable to do so.
On the other hand, when the flaw-detected material P1 and the first test material are plate materials having a rectangular shape in a plan view, when the inclined flaw extends in the direction inclined with respect to the thickness direction of the flaw-detected material P1 (the reference direction is the thickness direction of the flaw-detected material P1). In the case of The flaw is detected in a state of being arranged facing the outer surface of the flaw detection material P1 or the first test material. Further, when the inclined flaw extends in the direction inclined with respect to the thickness direction of the scratched material P1, the omnidirectional artificial flaw provided in the first test material has a hole having a substantially circular cross section extending in the longitudinal direction of the first test material. It is preferable to do so.

以下、被探傷材P1及び第1試験材として平面視矩形の板材Sを用いて、第1実施形態に係る超音波探傷方法による補正の効果を確認する試験を行った結果について説明する。
図9は、試験の条件及び方法を説明する説明図である。図9に示すように、板材Sの底面側から厚み方向に延びる断面略円形の穴を設けて、これを無指向性人工きずとして用いた(本実施形態の準備工程に相当)。この無指向性人工きずを板材Sに対向配置した超音波探触子1を用いて探傷することにより、複数の第1試験材断面画像を生成し、これらを合成することで無指向性人工きず画像を生成した(本実施形態の第1試験材探傷データ生成工程及び無指向性人工きずデータ生成工程に相当)。次いで、生成した無指向性人工きず画像における合成きず画素領域内の各画素毎に、式(1)によって補正係数を算出した(本実施形態の補正係数算出工程に相当)。
Hereinafter, the results of a test for confirming the effect of correction by the ultrasonic flaw detection method according to the first embodiment will be described using the flaw-detected material P1 and the plate material S having a rectangular plan view as the first test material.
FIG. 9 is an explanatory diagram illustrating the test conditions and methods. As shown in FIG. 9, a hole having a substantially circular cross section extending from the bottom surface side of the plate material S in the thickness direction was provided, and this was used as an omnidirectional artificial flaw (corresponding to the preparation step of the present embodiment). A plurality of first test material cross-sectional images are generated by detecting this omnidirectional artificial flaw using the ultrasonic probe 1 arranged opposite to the plate material S, and the omnidirectional artificial flaw is synthesized by synthesizing these. An image was generated (corresponding to the first test material flaw detection data generation step and the omnidirectional artificial flaw data generation step of the present embodiment). Next, the correction coefficient was calculated by the equation (1) for each pixel in the composite flaw pixel region in the generated omnidirectional artificial flaw image (corresponding to the correction coefficient calculation step of the present embodiment).

一方、同じ板材Sの別の部位に、超音波探触子1が具備する振動子配列方向(図9の板材Sの長手方向であるX方向)に対して傾斜角0~45°の範囲で傾斜する複数の傾斜きず(人工きず)を板材Sの底面側に設け、超音波探触子1を用いて探傷することにより、傾斜きず毎に被探傷材断面画像を生成した(本実施形態の被探傷材探傷データ生成工程に相当)。次いで、この各被探傷材断面画像における補正画素領域(合成きず画素領域に対応する領域)内の各画素の濃度に、算出した各画素の補正係数を用いて、式(2)で表わされる補正を施すことで、補正後の被探傷材断面画像を生成した(本実施形態の補正工程に相当)。 On the other hand, in another portion of the same plate material S, the inclination angle is in the range of 0 to 45 ° with respect to the oscillator arrangement direction (the X direction which is the longitudinal direction of the plate material S in FIG. 9) included in the ultrasonic probe 1. By providing a plurality of inclined flaws (artificial flaws) on the bottom surface side of the plate material S and detecting flaws using the ultrasonic probe 1, a cross-sectional image of the flawed material was generated for each inclined flaw (in the present embodiment). Corresponds to the flaw detection data generation process for the flawed material). Next, the correction coefficient represented by the formula (2) is used for the density of each pixel in the correction pixel region (region corresponding to the composite flaw pixel region) in each of the cross-sectional images of the scratched material, using the calculated correction coefficient of each pixel. A cross-sectional image of the scratched material after correction was generated (corresponding to the correction step of the present embodiment).

そして、補正前後の各被探傷材断面画像に対して、傾斜きずに対応するきず画素領域内の画素の最大濃度と、傾斜きずの傾斜角との関係を評価した。 Then, the relationship between the maximum density of the pixels in the flaw pixel region corresponding to the tilted flaw and the tilted angle of the tilted flaw was evaluated for each of the cross-sectional images of the scratched material before and after the correction.

図10は、上記試験の結果を示す図である。図10の縦軸であるきず画素領域内の画素の最大濃度は、傾斜きずの傾斜角が0°の場合の最大濃度を基準にして、dB単位に換算している。
図10に示すように、本実施形態に係る超音波探傷方法によれば、補正を施すことにより、互いに同じ寸法の傾斜きずであればその傾斜角に関わらず、被探傷材断面画像における傾斜きずに対応するきず画素領域の濃度変化を±1dB以内に抑えられることを確認できた。
FIG. 10 is a diagram showing the results of the above test. The maximum density of the pixels in the flaw pixel region on the vertical axis of FIG. 10 is converted into dB units based on the maximum density when the tilt angle of the tilted flaw is 0 °.
As shown in FIG. 10, according to the ultrasonic flaw detection method according to the present embodiment, by applying the correction, if the tilt flaws have the same dimensions as each other, the tilt flaws in the cross-sectional image of the flawed material are shown regardless of the tilt angle. It was confirmed that the density change in the scratch pixel region corresponding to the above can be suppressed within ± 1 dB.

<第2実施形態>
次に、第2実施形態に係る超音波探傷方法について、第1実施形態に係る超音波探傷方法との相違点を中心にして説明し、同じ点については基本的に説明を割愛する。
第2実施形態に係る超音波探傷方法も、第1実施形態に係る超音波探傷方法と同様に、一次元アレイ型超音波探触子1と、制御・信号処理手段2とを備える超音波探傷装置100を用いて実行されるが、第2実施形態に係る超音波探傷方法では、第1実施形態のように探傷信号から得られる断面画像を用いずに、探傷信号(信号波形)そのものを用いて傾斜きずを検出する。
第2実施形態に係る超音波探傷方法も、第1実施形態に係る超音波探傷方法と同様に、少なくとも、準備工程と、第1試験材探傷データ生成工程と、無指向性人工きずデータ生成工程と、補正係数算出工程と、被探傷材探傷データ生成工程と、補正工程と、傾斜きず検出工程とを含む。準備工程では、第1実施形態と同様に、無指向性人工きずを設けた第1試験材の別の部位に、検出対象とする傾斜きずを模擬したノッチを設けることが好ましい。第2実施形態に係る超音波探傷方法は、準備工程より後の各工程の具体的な内容が第1実施形態と異なる。具体的には、以下の通りである。
<Second Embodiment>
Next, the ultrasonic flaw detection method according to the second embodiment will be described focusing on the differences from the ultrasonic flaw detection method according to the first embodiment, and the same points will be basically omitted.
Similar to the ultrasonic flaw detection method according to the first embodiment, the ultrasonic flaw detection method according to the second embodiment also includes an ultrasonic flaw detector 1 for a one-dimensional array type and a control / signal processing means 2. Although it is executed using the device 100, in the ultrasonic flaw detection method according to the second embodiment, the flaw detection signal (signal waveform) itself is used without using the cross-sectional image obtained from the flaw detection signal as in the first embodiment. Detects tilted flaws.
Similar to the ultrasonic flaw detection method according to the first embodiment, the ultrasonic flaw detection method according to the second embodiment also has at least a preparation step, a first test material flaw detection data generation step, and an omnidirectional artificial flaw data generation step. It includes a correction coefficient calculation step, a flaw detection data generation step for the scratched material, a correction step, and a tilt flaw detection step. In the preparatory step, as in the first embodiment, it is preferable to provide a notch simulating an inclined flaw to be detected at another portion of the first test material provided with the omnidirectional artificial flaw. The ultrasonic flaw detection method according to the second embodiment is different from the first embodiment in the specific contents of each step after the preparation step. Specifically, it is as follows.

第2実施形態では、第1試験材探傷データ生成工程において、第1試験材探傷データとして、所定の探傷条件毎に第1試験材の断面についての探傷信号の最大強度を生成する。この所定の探傷条件として、本実施形態では、超音波探触子1をセクタースキャンする際の超音波の波面の偏向角γを用いている。
また、第2実施形態でも、第1試験材探傷データ生成工程において、ノッチを更に設けた第1試験材を探傷することで、ノッチの探傷信号から得られるノッチ探傷データを生成することが好ましい。第2実施形態では、超音波探触子1を第1試験材の外面に対向配置して第1試験材の軸方向及び周方向に沿って相対移動させて第1試験材を探傷することで、第1試験材に設けられたノッチの探傷信号から得られるノッチ探傷データとして、所定の探傷条件毎に第1試験材の断面についての探傷信号の最大強度(ノッチについての探傷信号の最大強度)を生成する。第1試験材探傷データ生成工程において、第1試験材の断面についての探傷信号の最大強度(ノッチについての探傷信号の最大強度)を生成する際、超音波探触子1の探傷感度を適宜変更し、各探傷感度で生成された探傷信号の最大強度を比較することにより、ノッチを検出するのに適した探傷感度を特定する。或いは、超音波探触子1の探傷感度は一定のままとし、生成された探傷信号の最大強度においてノッチを検出するのに適したしきい値を特定する。
In the second embodiment, in the first test material flaw detection data generation step, the maximum strength of the flaw detection signal for the cross section of the first test material is generated as the first test material flaw detection data for each predetermined flaw detection condition. As this predetermined flaw detection condition, in the present embodiment, the deflection angle γ of the ultrasonic wavefront when the ultrasonic probe 1 is sector-scanned is used.
Further, also in the second embodiment, it is preferable to generate notch flaw detection data obtained from the flaw detection signal of the notch by detecting the first test material further provided with the notch in the first test material flaw detection data generation step. In the second embodiment, the ultrasonic probe 1 is arranged facing the outer surface of the first test material and relatively moved along the axial direction and the circumferential direction of the first test material to detect the first test material. As the notch flaw detection data obtained from the notch flaw detection signal provided in the first test material, the maximum strength of the flaw detection signal for the cross section of the first test material (maximum strength of the flaw detection signal for the notch) for each predetermined flaw detection condition. To generate. In the first test material flaw detection data generation step, when the maximum strength of the flaw detection signal for the cross section of the first test material (maximum strength of the flaw detection signal for the notch) is generated, the flaw detection sensitivity of the ultrasonic probe 1 is appropriately changed. Then, by comparing the maximum intensities of the flaw detection signals generated at each flaw detection sensitivity, the flaw detection sensitivity suitable for detecting the notch is specified. Alternatively, the flaw detection sensitivity of the ultrasonic probe 1 remains constant to specify a threshold suitable for detecting a notch in the maximum intensity of the generated flaw detector signal.

また、第2実施形態では、無指向性人工きずデータ生成工程において、生成した所定の探傷条件毎の最大強度に基づき、無指向性人工きずデータとして、所定の各探傷条件(偏向角γ)と無指向性人工きずに対応する探傷信号の各最大強度との対応関係を生成する。
また、第2実施形態では、補正係数算出工程において、生成した対応関係における無指向性人工きずに対応する探傷信号の各最大強度に補正係数を用いた補正を施した場合に各最大強度が互いに同等となる補正係数を、各探傷条件毎に算出する。
Further, in the second embodiment, in the omnidirectional artificial flaw data generation step, based on the maximum strength for each predetermined flaw detection condition generated, the omnidirectional artificial flaw data is set to each predetermined flaw detection condition (deflection angle γ). Generates a correspondence with each maximum intensity of the corresponding flaw detection signal for omnidirectional artificial flaws.
Further, in the second embodiment, in the correction coefficient calculation step, when the maximum intensities of the flaw detection signals corresponding to the omnidirectional artificial flaws in the generated correspondence relationship are corrected by using the correction coefficients, the maximum intensities are mutually exclusive. Equivalent correction coefficients are calculated for each flaw detection condition.

また、第2実施形態では、被探傷材探傷データ生成工程において、被探傷材探傷データとして、所定の探傷条件(偏向角γ)での被探傷材P1の断面についての探傷信号の最大強度を生成する。前述の第1試験材探傷データ生成工程において、ノッチを検出するのに適した探傷感度を特定した場合、被探傷材探傷データ生成工程では、超音波探触子1の探傷感度として、この特定した探傷感度を用いる。すなわち、第1試験材探傷データ生成工程で特定した探傷感度を設定した超音波探触子1で被探傷材P1を探傷する。
また、第2実施形態では、補正工程において、所定の探傷条件(偏向角γ)での被探傷材P1の断面についての探傷信号の最大強度に、算出した当該所定の探傷条件(偏向角γ)の補正係数を用いて補正を施すことで、補正後の探傷信号の最大強度を生成する。
さらに、第2実施形態では、傾斜きず検出工程において、補正後の探傷信号の最大強度を用いて被探傷材P1の傾斜きずを検出する。前述の第1試験材探傷データ生成工程において、ノッチを検出するのに適したしきい値を特定した場合、傾斜きず検出工程では、この特定したしきい値を用いる。
Further, in the second embodiment, in the flaw detection data generation step of the flaw detection material, the maximum strength of the flaw detection signal for the cross section of the flaw detection material P1 under a predetermined flaw detection condition (deflection angle γ) is generated as the flaw detection data. do. When the flaw detection sensitivity suitable for detecting the notch is specified in the first test material flaw detection data generation step described above, this is specified as the flaw detection sensitivity of the ultrasonic probe 1 in the flaw detection material generation data generation step. Use flaw detection sensitivity. That is, the flaw-detected material P1 is flaw-detected by the ultrasonic probe 1 having the flaw-detection sensitivity set specified in the first test material flaw-detection data generation step.
Further, in the second embodiment, in the correction step, the predetermined flaw detection condition (deflection angle γ) calculated to the maximum intensity of the flaw detection signal for the cross section of the flawed material P1 under the predetermined flaw detection condition (deflection angle γ). By making a correction using the correction coefficient of, the maximum intensity of the corrected flaw detection signal is generated.
Further, in the second embodiment, in the inclined flaw detection step, the inclined flaw of the flaw-detected material P1 is detected by using the maximum strength of the corrected flaw detection signal. When a threshold value suitable for detecting a notch is specified in the first test material flaw detection data generation step described above, this specified threshold value is used in the tilt flaw detection step.

そして、第2実施形態の補正係数算出工程においては、前記対応関係における無指向性人工きずに対応する探傷信号の各最大強度の最大値をAとし、前記対応関係における無指向性人工きずに対応する探傷信号の各最大強度をBとすると、以下の式(1)に基づき、各探傷条件(偏向角γ)毎に補正係数Xを算出する。
また、第2実施形態の補正工程においては、所定の探傷条件(偏向角γ)での被探傷材P1の断面についての探傷信号の最大強度をCとすると、当該所定の探傷条件(偏向角γ)の補正係数Xを用いて、以下の式(2)に基づき、補正後の探傷信号の最大強度Dを算出する。
X=20・log(A/B) ・・・(1)
D=C・10(X/20) ・・・(2)
Then, in the correction coefficient calculation step of the second embodiment, the maximum value of each maximum intensity of the flaw detection signal corresponding to the omnidirectional artificial flaw in the correspondence relationship is set to A, and the omnidirectional artificial flaw in the correspondence relationship is dealt with. Assuming that each maximum intensity of the flaw detection signal is B, the correction coefficient X is calculated for each flaw detection condition (deflection angle γ) based on the following equation (1).
Further, in the correction step of the second embodiment, assuming that the maximum intensity of the flaw detection signal for the cross section of the flawed material P1 under the predetermined flaw detection condition (deflection angle γ) is C, the predetermined flaw detection condition (deflection angle γ). ) Is used to calculate the maximum intensity D of the corrected flaw detection signal based on the following equation (2).
X = 20 ・ log (A / B) ・ ・ ・ (1)
D = C ・ 10 (X / 20)・ ・ ・ (2)

以下、被探傷材P1及び第1試験材として平面視矩形の板材Sを用いて、第2実施形態に係る超音波探傷方法による補正の効果を確認する試験を行った結果等について説明する。
最初に、第2実施形態に係る超音波探傷方法における第1試験材探傷データ生成工程の内容及び結果の例について説明する。
図11は、第2実施形態に係る超音波探傷方法による補正の効果を確認する試験の条件及び方法、並びに第1試験材探傷データ生成工程の結果の例を示す図である。図11(a)は、補正の効果を確認する試験の条件及び方法を示し、図11(b)は、第1試験材探傷データ生成工程の結果の例を示す。
図11(a)に示すように、板材Sの底面側から厚み方向に延びる断面略円形の穴を設けて、これを無指向性人工きずとして用いた(本実施形態の準備工程に相当)。この無指向性人工きずを板材Sに対向配置した超音波探触子1を用いて偏向角γを0~32°の範囲で2°ピッチで変更しながらセクタースキャンで順次探傷することにより、偏向角γ毎に各測定点での無指向性人工きずに対応する探傷信号の強度を複数生成し、これら複数の強度を互いに比較することで、偏向角γ毎の探傷信号の最大強度(第1試験材探傷データに相当)を生成した(本実施形態の第1試験材探傷データ生成工程に相当)。そして、これらに基づき、各偏向角γと無指向性人工きずに対応する探傷信号の各最大強度との対応関係を生成した(本実施形態の無指向性人工きずデータ生成工程に相当)。
一方、同じ板材Sの別の部位に、超音波探触子1が具備する振動子配列方向(図11(a)の板材Sの長手方向であるX方向)に対して傾斜角0~45°の範囲で7.5°ピッチで傾斜する複数のノッチを板材Sの底面側に設け、超音波探触子1を用いて前述と同様のセクタースキャンで探傷することにより、偏向角γ毎に各測定点でのノッチに対応する探傷信号の強度を複数生成し、これら複数の強度を互いに比較することで、偏向角γ毎の探傷信号の最大強度(ノッチ探傷データに相当)を生成した(本実施形態の第1試験材探傷データ生成工程に相当)。
Hereinafter, the results of a test for confirming the effect of the correction by the ultrasonic flaw detection method according to the second embodiment will be described using the flaw-detected material P1 and the plate material S having a rectangular plan view as the first test material.
First, an example of the contents and results of the first test material flaw detection data generation step in the ultrasonic flaw detection method according to the second embodiment will be described.
FIG. 11 is a diagram showing an example of test conditions and methods for confirming the effect of correction by the ultrasonic flaw detection method according to the second embodiment, and the result of the first test material flaw detection data generation step. FIG. 11A shows the test conditions and methods for confirming the effect of the correction, and FIG. 11B shows an example of the result of the first test material flaw detection data generation step.
As shown in FIG. 11A, a hole having a substantially circular cross section extending from the bottom surface side of the plate material S in the thickness direction was provided, and this was used as an omnidirectional artificial flaw (corresponding to the preparation step of the present embodiment). This omnidirectional artificial flaw is deflected by sequentially detecting flaws by sector scan while changing the deflection angle γ in the range of 0 to 32 ° at a pitch of 2 ° using an ultrasonic probe 1 in which the omnidirectional artificial flaw is arranged facing the plate material S. By generating multiple strengths of the flaw detection signal corresponding to the omnidirectional artificial flaw at each measurement point for each angle γ and comparing these multiple strengths with each other, the maximum strength of the flaw detection signal for each deflection angle γ (first). (Corresponding to the test material flaw detection data) was generated (corresponding to the first test material flaw detection data generation step of the present embodiment). Then, based on these, a correspondence relationship between each deflection angle γ and each maximum intensity of the flaw detection signal corresponding to the omnidirectional artificial flaw was generated (corresponding to the omnidirectional artificial flaw data generation step of the present embodiment).
On the other hand, an inclination angle of 0 to 45 ° with respect to the oscillator arrangement direction (X direction which is the longitudinal direction of the plate material S in FIG. 11A) provided in the ultrasonic probe 1 at another portion of the same plate material S. A plurality of notches inclined at a pitch of 7.5 ° are provided on the bottom surface side of the plate material S in the range of By generating multiple strengths of the flaw detection signal corresponding to the notch at the measurement point and comparing these multiple strengths with each other, the maximum strength of the flaw detection signal (corresponding to the notch flaw detection data) for each deflection angle γ was generated (this book). Corresponds to the first test material flaw detection data generation step of the embodiment).

図11(b)において「○」でプロットしたデータは、第1試験材探傷データ生成工程において、各偏向角γで探傷したときの無指向性人工きずに対応する探傷信号の最大強度を示す。換言すれば、「〇」でプロットしたデータは、無指向性人工きずデータ生成工程によって生成した、各偏向角γと無指向性人工きずに対応する探傷信号の各最大強度との対応関係を示している。また、「◇」でプロットしたデータは、第1試験材探傷データ生成工程において、各偏向角γで探傷したときの各ノッチに対応する探傷信号の最大強度を示す。各ノッチに対応する探傷信号の最大強度の近傍に記載の数値は各ノッチの傾斜角θを表している。図11(b)の縦軸である探傷信号の最大強度は、傾斜角θ=0°のノッチを偏向角γ=0°で探傷したときの探傷信号の最大強度を基準(0dB)にして、dB単位に換算している。
図11(b)に示すように、傾斜きずを模擬したノッチを探傷する場合と、無指向性人工きずを探傷する場合とで、セクタースキャンの偏向角γに応じた探傷信号の最大強度の変化の傾向は同様になるものの、超音波探触子1の探傷感度が同等であれば、探傷信号の最大強度は18dB程度の大きな差があることが分かった。このため、前述のように、第1試験材探傷データ生成工程において、ノッチを検出するのに適した探傷感度か、ノッチを検出するのに適したしきい値を特定する必要がある。図11(b)に示す結果からすれば、ノッチを検出するのに適した探傷感度は、無指向性人工きずを検出するのに適した探傷感度よりも18dB程度小さくなる。また、ノッチを検出するのに適したしきい値は、無指向性人工きずを検出するのに適したしきい値よりも18dB程度高くなる。そして、被探傷材探傷データ生成工程で、第1試験材探傷データ生成工程で特定した探傷感度を超音波探触子1の探傷感度として用いるか、傾斜きず検出工程で、第1試験材探傷データ生成工程で特定したしきい値を用いる必要がある。以下に示す例では、被探傷材探傷データ生成工程で、第1試験材探傷データ生成工程で特定した探傷感度を超音波探触子1の探傷感度として用いている。
The data plotted by “◯” in FIG. 11B shows the maximum strength of the flaw detection signal corresponding to the omnidirectional artificial flaw when flaw detection is performed at each deflection angle γ in the first test material flaw detection data generation step. In other words, the data plotted with "○" shows the correspondence between each deflection angle γ generated by the omnidirectional artificial flaw data generation process and each maximum intensity of the flaw detection signal corresponding to the omnidirectional artificial flaw. ing. Further, the data plotted by "◇" indicates the maximum intensity of the flaw detection signal corresponding to each notch when flaw detection is performed at each deflection angle γ in the first test material flaw detection data generation step. The numerical value described near the maximum intensity of the flaw detection signal corresponding to each notch represents the inclination angle θ of each notch. The maximum intensity of the flaw detection signal, which is the vertical axis of FIG. 11B, is based on the maximum intensity of the flaw detection signal (0 dB) when a notch having an inclination angle θ = 0 ° is flawed at a deflection angle γ = 0 °. Converted to dB unit.
As shown in FIG. 11B, the maximum intensity of the flaw detection signal changes according to the deflection angle γ of the sector scan between the case of detecting a notch simulating a tilted flaw and the case of detecting an omnidirectional artificial flaw. However, if the flaw detection sensitivities of the ultrasonic probe 1 are the same, it was found that the maximum intensity of the flaw detection signal has a large difference of about 18 dB. Therefore, as described above, in the first test material flaw detection data generation step, it is necessary to specify the flaw detection sensitivity suitable for detecting the notch or the threshold value suitable for detecting the notch. From the results shown in FIG. 11B, the flaw detection sensitivity suitable for detecting a notch is about 18 dB smaller than the flaw detection sensitivity suitable for detecting an omnidirectional artificial flaw. Further, the threshold value suitable for detecting the notch is about 18 dB higher than the threshold value suitable for detecting the omnidirectional artificial flaw. Then, the flaw detection sensitivity specified in the first test material flaw detection data generation step is used as the flaw detection sensitivity of the ultrasonic probe 1 in the flaw detection data generation step, or the first test material flaw detection data is used in the tilt flaw detection step. It is necessary to use the threshold value specified in the generation process. In the example shown below, the flaw detection sensitivity specified in the first test material flaw detection data generation step is used as the flaw detection sensitivity of the ultrasonic probe 1 in the flaw detection data generation step.

本試験では、上記のようにして生成した対応関係(図11(b)において、「〇」でプロットしたデータ)を用いて、偏向角γ毎に、式(1)によって補正係数を算出した(本実施形態の補正係数算出工程に相当)。
また、準備工程で第1試験材に設け、第1試験材探傷データ生成工程で用いた複数のノッチを被探傷材P1(板材S)に存在する傾斜きずと考え、図11(b)において「◇」でプロットしたデータを被探傷材P1についての偏向角γ毎の探傷信号の最大強度としても用いた(本実施形態の被探傷材探傷データ生成工程に相当)。
次いで、この所定の偏向角γでの探傷信号の最大強度に、算出した当該所定の偏向角γの補正係数を用いて、式(2)で表わされる補正を施すことで、補正後の探傷信号の最大強度を生成した(本実施形態の補正工程に相当)。
In this test, the correction coefficient was calculated by the equation (1) for each deflection angle γ using the correspondence relationship generated as described above (data plotted by “◯” in FIG. 11 (b)) (the correction coefficient was calculated for each deflection angle γ). Corresponds to the correction coefficient calculation process of this embodiment).
Further, a plurality of notches provided in the first test material in the preparatory step and used in the first test material flaw detection data generation step are considered to be inclined flaws existing in the flaw detected material P1 (plate material S), and in FIG. 11 (b), " The data plotted in "◇" was also used as the maximum intensity of the flaw detection signal for each deflection angle γ for the flaw detectable material P1 (corresponding to the flaw detection data generation step of the present embodiment).
Next, the maximum intensity of the flaw detection signal at the predetermined deflection angle γ is corrected by the equation (2) using the calculated correction coefficient of the predetermined deflection angle γ, whereby the corrected flaw detection signal is applied. Generated the maximum intensity of (corresponding to the correction step of this embodiment).

図12は、上記試験の結果を示す図である。図12には、各偏向角γで探傷したときの各傾斜きず(ノッチ)の探傷信号の最大強度の補正前後の値を示している。図12に示すように、本実施形態に係る超音波探傷方法によれば、補正前には傾斜角θに応じて最大で4.4dBの最大強度の差があったものが、補正を施すことで、互いに同じ寸法の傾斜きずであればその傾斜角θに関わらず、2.0dB以下の最大強度の差に抑えられることを確認できた。 FIG. 12 is a diagram showing the results of the above test. FIG. 12 shows the values before and after the correction of the maximum intensity of the flaw detection signal of each inclined flaw (notch) when flaw detection is performed at each deflection angle γ. As shown in FIG. 12, according to the ultrasonic flaw detection method according to the present embodiment, the correction is performed when there is a difference in maximum intensity of 4.4 dB at the maximum depending on the inclination angle θ before the correction. It was confirmed that the difference in maximum strength of 2.0 dB or less can be suppressed regardless of the inclination angle θ if the inclination flaws have the same dimensions.

なお、第1及び第2実施形態に係る超音波探傷方法では、超音波探触子として、一列に配列された複数の振動子10を具備する一次元アレイ型超音波探触子1を用いる例について説明したが、本発明はこれに限るものではない。例えば、マトリックス状に配列された複数の振動子を具備する二次元アレイ型超音波探触子を用いることも可能である。また、単一の振動子を具備する超音波探触子を一次元又は二次元に複数配置したものを用いることも可能である。 In the ultrasonic flaw detection method according to the first and second embodiments, an example in which a one-dimensional array type ultrasonic probe 1 including a plurality of vibrators 10 arranged in a row is used as the ultrasonic probe. However, the present invention is not limited to this. For example, it is also possible to use a two-dimensional array type ultrasonic probe having a plurality of oscillators arranged in a matrix. It is also possible to use a plurality of ultrasonic probes having a single oscillator arranged one-dimensionally or two-dimensionally.

1・・・一次元アレイ型超音波探触子
2・・・制御・信号処理手段
10・・・振動子
100・・超音波探傷装置
P1・・・被探傷材
P2・・・第1試験材
1 ... One-dimensional array type ultrasonic probe 2 ... Control / signal processing means 10 ... Oscillator 100 ... Ultrasonic flaw detector P1 ... flaw detector P2 ... First test material

Claims (3)

超音波探触子を断面略円形の被探傷材の外面に対向配置し、前記超音波探触子を前記被探傷材の軸方向及び周方向に沿って相対移動させて、前記被探傷材の方向に対して傾斜した方向に延びる傾斜きずを検出する超音波探傷方法であって、
前記被探傷材と材質及び断面寸法が同等の材料に、径方向に延びる断面略円形の穴からなる無指向性人工きずを設た第1試験材を準備する準備工程と、
前記超音波探触子を前記第1試験材の外面に対向配置し、前記超音波探触子を前記第1試験材の軸方向及び周方向に沿って相対移動させて前記第1試験材を探傷することで、前記第1試験材についての探傷信号から得られる複数の第1試験材断面画像を生成する第1試験材断面画像生成工程と、
前記複数の第1試験材断面画像を合成することで、前記無指向性人工きずに対応する画素領域である合成きず画素領域を含む無指向性人工きず画像を生成する無指向性人工きず画像生成工程と、
前記合成きず画素領域内の各画素について、以下の式(1)に基づき補正係数を算出する補正係数算出工程と、
前記被探傷材を探傷することで、前記被探傷材についての探傷信号から得られる被探傷材断面画像を生成する被探傷材断面画像生成工程と、
前記被探傷材断面画像における前記合成きず画素領域と同座標に位置する補正画素領域に、以下の式(2)に基づく補正を施すことで、補正後の被探傷材断面画像を生成する補正工程と、
前記補正後の被探傷材断面画像を用いて前記被探傷材の傾斜きずを検出する傾斜きず検出工程と、を有する、超音波探傷方法。
X=20・log(A/B) ・・・(1)
D=C・10 (X/20) ・・・(2)
上記の式(1)及び(2)において、Xは前記補正係数である。上記の式(1)において、Aは前記合成きず画素領域内の画素の最大濃度であり、Bは前記合成きず画素領域内の各画素の濃度である。上記の式(2)において、Cは前記補正画素領域内の補正前の各画素の濃度であり、Dは前記補正画素領域内の補正後の各画素の濃度である。
The ultrasonic probe is placed facing the outer surface of the flawed material having a substantially circular cross section, and the ultrasonic probe is relatively moved along the axial and circumferential directions of the flawed material to obtain the flawed material. It is an ultrasonic flaw detection method that detects tilted flaws extending in a direction tilted with respect to the axial direction.
A preparatory step for preparing a first test material provided with an omnidirectional artificial flaw composed of a hole having a substantially circular cross section extending in the radial direction in a material having the same material and cross-sectional dimensions as the scratched material.
The ultrasonic probe is placed facing the outer surface of the first test material, and the ultrasonic probe is relatively moved along the axial direction and the circumferential direction of the first test material to move the first test material. A first test material cross- sectional image generation step of generating a plurality of first test material cross- sectional images obtained from a flaw detection signal for the first test material by detecting a flaw,
An omnidirectional artificial flaw image generation that generates an omnidirectional artificial flaw image including a synthetic flaw pixel region which is a pixel region corresponding to the omnidirectional artificial flaw by synthesizing the plurality of first test material cross-sectional images. Process and
A correction coefficient calculation step of calculating a correction coefficient based on the following equation (1) for each pixel in the composite flaw pixel region, and a correction coefficient calculation step.
A process of generating a cross-sectional image of the material to be detected, which generates a cross- sectional image of the material to be detected obtained from a flaw detection signal of the material to be detected, by detecting the material to be detected.
A correction step of generating a corrected cross- sectional image of the scratched material by applying a correction based on the following equation (2) to the corrected pixel region located at the same coordinates as the synthetic flaw pixel region in the cross-sectional image of the scratched material. When,
An ultrasonic flaw detection method comprising a tilted flaw detecting step of detecting an inclined flaw of the flawed material using the corrected cross- sectional image of the flawed material.
X = 20 ・ log (A / B) ・ ・ ・ (1)
D = C ・ 10 (X / 20) ・ ・ ・ (2)
In the above equations (1) and (2), X is the correction coefficient. In the above formula (1), A is the maximum density of the pixels in the synthetic flaw pixel region, and B is the density of each pixel in the synthetic flaw pixel region. In the above equation (2), C is the density of each pixel in the correction pixel region before correction, and D is the density of each pixel in the correction pixel region after correction.
前記準備工程において、記第1試験材に、前記被探傷材の検出対象とする傾斜きずの最大傾斜角の範囲内の傾斜角を有し、前記傾斜きずを模擬したノッチ設け、
前記第1試験材断面画像生成工程において、前記ノッチ設けた前記第1試験材を探傷することで、前記ノッチの探傷信号から得られるノッチ断面画像を生成し、
前記ッチ断面画像に基づき、前記被探傷材断面画像生成工程における前記超音波探触子の探傷感度を設定するか、又は、前記傾斜きず検出工程における前記傾斜きずを検出するためのしきい値を設定する請求項に記載の超音波探傷方法。
In the preparatory step, the first test material is provided with a notch having an inclination angle within the range of the maximum inclination angle of the inclination flaw to be detected and simulating the inclination flaw.
In the first test material cross- sectional image generation step, by detecting the first test material provided with the notch , a notch cross- sectional image obtained from the flaw detection signal of the notch is generated.
Based on the notch cross- sectional image , a threshold for setting the flaw detection sensitivity of the ultrasonic probe in the flaw-detected material cross-section image generation step or detecting the tilted flaw in the tilted flaw detecting step. The ultrasonic flaw detection method according to claim 1 , wherein a value is set.
前記準備工程において、前記被探傷材と材質及び断面寸法が同等の材料に、前記被探傷材の検出対象とする傾斜きずの最大傾斜角の範囲内の傾斜角を有し、前記傾斜きずを模擬したノッチを設た第2試験材を準備し、
前記超音波探触子を前記第2試験材の外面に対向配置し、前記超音波探触子を前記第2試験材の軸方向及び周方向に沿って相対移動させて前記第2試験材を探傷することで、前記第2試験材についての探傷信号から得られる第2試験材探傷データを生成する第2試験材探傷データ生成工程を更に含み、
第2試験材探傷データに基づき、前記被探傷材断面画像生成工程における前記超音波探触子の探傷感度を設定するか、又は、前記傾斜きず検出工程における前記傾斜きずを検出するためのしきい値を設定する請求項に記載の超音波探傷方法。
In the preparatory step, a material having the same material and cross-sectional dimensions as the scratched material has an tilt angle within the range of the maximum tilt angle of the tilted flaw to be detected of the scratched material, and the tilted flaw is simulated. Prepare the second test material with the notch ,
The ultrasonic probe is placed facing the outer surface of the second test material, and the ultrasonic probe is relatively moved along the axial direction and the circumferential direction of the second test material to move the second test material. Further including a second test material flaw detection data generation step of generating a second test material flaw detection data obtained from the flaw detection signal for the second test material by flaw detection.
Based on the second test material flaw detection data, the flaw detection sensitivity of the ultrasonic probe in the flaw detected material cross- sectional image generation step is set, or the tilt flaw is detected in the tilt flaw detection step. The ultrasonic flaw detection method according to claim 1 , wherein a threshold value is set.
JP2017211684A 2017-11-01 2017-11-01 Ultrasonic flaw detection method Active JP7013796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017211684A JP7013796B2 (en) 2017-11-01 2017-11-01 Ultrasonic flaw detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017211684A JP7013796B2 (en) 2017-11-01 2017-11-01 Ultrasonic flaw detection method

Publications (2)

Publication Number Publication Date
JP2019086288A JP2019086288A (en) 2019-06-06
JP7013796B2 true JP7013796B2 (en) 2022-02-01

Family

ID=66762825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017211684A Active JP7013796B2 (en) 2017-11-01 2017-11-01 Ultrasonic flaw detection method

Country Status (1)

Country Link
JP (1) JP7013796B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228640A (en) 2001-02-05 2002-08-14 Mitsubishi Heavy Ind Ltd Method and apparatus for detecting flaw by phased array
JP2006234701A (en) 2005-02-28 2006-09-07 Hitachi Ltd Ultrasonic test device and ultrasonic test method
JP2008224232A (en) 2007-03-08 2008-09-25 Daido Steel Co Ltd Ultrasonic flaw detection device, sensitivity correction method therefor and ultrasonic flaw detection method
JP2014055885A (en) 2012-09-13 2014-03-27 Nippon Steel & Sumitomo Metal Ultrasonic flaw detection device and method
JP2014055880A (en) 2012-09-13 2014-03-27 Nippon Steel & Sumitomo Metal Ultrasonic flaw detection method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4173139A (en) * 1978-04-21 1979-11-06 Armco Steel Corporation Ultrasonic reference standard and the methods of construction and use thereof
JPS56122954A (en) * 1980-02-29 1981-09-26 Kawasaki Steel Corp Correction method for sensibility of ultrasonic defectoscope
JPS6196461A (en) * 1984-10-18 1986-05-15 Canon Inc Ultrasonic reflectoscope
JPH1172486A (en) * 1997-08-28 1999-03-16 Hitachi Constr Mach Co Ltd Ultrasonic video inspection device and method for correcting its video

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228640A (en) 2001-02-05 2002-08-14 Mitsubishi Heavy Ind Ltd Method and apparatus for detecting flaw by phased array
JP2006234701A (en) 2005-02-28 2006-09-07 Hitachi Ltd Ultrasonic test device and ultrasonic test method
JP2008224232A (en) 2007-03-08 2008-09-25 Daido Steel Co Ltd Ultrasonic flaw detection device, sensitivity correction method therefor and ultrasonic flaw detection method
JP2014055885A (en) 2012-09-13 2014-03-27 Nippon Steel & Sumitomo Metal Ultrasonic flaw detection device and method
JP2014055880A (en) 2012-09-13 2014-03-27 Nippon Steel & Sumitomo Metal Ultrasonic flaw detection method

Also Published As

Publication number Publication date
JP2019086288A (en) 2019-06-06

Similar Documents

Publication Publication Date Title
US7454973B2 (en) Ultrasonic inspection method and ultrasonic inspection equipment
JP5535044B2 (en) Circuit device for ultrasonic nondestructive testing of subjects
CN109425657B (en) Linear scanning ultrasonic flaw detection device and linear scanning ultrasonic flaw detection method
JP6989416B2 (en) Linear scan ultrasonic flaw detector and linear scan ultrasonic flaw detector method
JP6896489B2 (en) Ultrasonic flaw detector, ultrasonic flaw detection method and product manufacturing method
US11439368B2 (en) Acoustic wave processing device, signal processing method for acoustic wave processing device, and program
US20100251821A1 (en) Ultrasonic Measurement Method, Ultrasonic Measurement Apparatus, and Ultrasonic Sensor
JP2013079949A (en) Imaging system and method
JP2008122209A (en) Ultrasonic flaw inspection device and method
JP5871274B2 (en) Ultrasonic flaw detection apparatus and method
JP5183422B2 (en) Three-dimensional ultrasonic imaging method and apparatus
US10980515B2 (en) Acoustic wave processing apparatus, signal processing method, and program for acoustic wave processing apparatus
JP2009281805A (en) Ultrasonic flaw detecting method and ultrasonic flaw detector
JP3091473B2 (en) Ultrasound diagnostic equipment
JP7013796B2 (en) Ultrasonic flaw detection method
JP2005351718A (en) Omnidirectional flaw detection probe
US10383601B2 (en) Acoustic wave processing apparatus, signal processing method, and program for acoustic wave processing apparatus
JP6779727B2 (en) Ultrasonic flaw detector, data processing device and ultrasonic flaw detector
JP5689227B2 (en) Ultrasonic measurement method and apparatus
JP6871534B2 (en) Comparison test piece and ultrasonic phased array flaw detection test method
JP5588918B2 (en) Ultrasonic inspection method
JP2016090272A (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP6517539B2 (en) Ultrasonic flaw detection apparatus and method
JP2016118514A (en) Ultrasonic flaw detection device and ultrasonic flaw detection method
JP2015190954A (en) External surface corrosion inspection device and external surface corrosion inspection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220103