JP7009180B2 - 測量装置 - Google Patents

測量装置 Download PDF

Info

Publication number
JP7009180B2
JP7009180B2 JP2017226752A JP2017226752A JP7009180B2 JP 7009180 B2 JP7009180 B2 JP 7009180B2 JP 2017226752 A JP2017226752 A JP 2017226752A JP 2017226752 A JP2017226752 A JP 2017226752A JP 7009180 B2 JP7009180 B2 JP 7009180B2
Authority
JP
Japan
Prior art keywords
unit
horizontal
measurement
data
vertical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017226752A
Other languages
English (en)
Other versions
JP2019095371A (ja
Inventor
薫 熊谷
健一郎 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2017226752A priority Critical patent/JP7009180B2/ja
Priority to US16/195,988 priority patent/US11143505B2/en
Priority to EP18208658.7A priority patent/EP3489625B1/en
Publication of JP2019095371A publication Critical patent/JP2019095371A/ja
Application granted granted Critical
Publication of JP7009180B2 publication Critical patent/JP7009180B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • G01C3/08Use of electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/002Active optical surveying means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/30Determination of transform parameters for the alignment of images, i.e. image registration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10028Range image; Depth image; 3D point clouds

Description

本発明は、測定対象物の点群データを取得可能な測量装置に関するものである。
測量装置として、トータルステーションや3次元レーザスキャナがある。トータルステーションは、測定対象点の測定を行う場合に用いられる。3次元レーザスキャナは、測定対象物の形状を3次元座標を有する無数の点の集まり、即ち3次元点群データとして取得する。
3次元レーザスキャナにより3次元点群データを取得する際、特に室内では部屋の形状や障害物等により、1箇所からの測定では部屋全体の3次元点群データを取得できない場合がある。この場合、複数箇所で3次元点群データを取得し、得られた複数の3次元点群データを結合(レジストレーション)することで、部屋全体の3次元点群データを取得している。
複数の3次元点群データをレジストレーションする手段としては、複数の3次元点群データに共通して含まれる点を結合点として複数箇所測定し、結合点同士を合致させてレジストレーションする方法がある。又、複数の3次元点群データを相互に共通部分を含む様に取得し、3次元点群データの共通部分を重ね合わせ、3次元点群データを所定ステップ毎に相対回転、相対移動させて形状を直接比較し、点群同士の位置ずれの誤差が最少となる様に3次元点群データ同士をレジストレーションする方法もある。
然し乍ら、結合点を用いてレジストレーションする方法の場合、レジストレーションの為の演算量は少ないものの、3次元点群データの測定に加えて結合点の3次元座標を別途測定する必要がある。この為、結合点を測定する為のトータルステーション等が別途必要となり、コストの増加を招いていた。
又、3次元点群データ同士を直接比較してレジストレーションする方法の場合、トータルステーション等の測量装置を用いる必要はないが、3次元点群データ間の相対回転、相対移動の度に、3次元点群データ同士が一致しているかを演算するので、レジストレーションの為の演算量が多くなる。この為、測量装置に用いられる演算装置を高性能なものとする必要があり、コストの増加を招いていた。
米国特許出願公開第2015/0160347号明細書
本発明は、コストを増加させることなく3次元点群データのレジストレーションが可能な測量装置を提供するものである。
本発明は、室内に設置され、複数の設置地点で測定を行う測量装置であって、托架部に設けられた第1測定部と第2測定部とを具備し、前記第1測定部は、前記托架部を鉛直軸心を中心に水平回転させる水平回転駆動部と、前記托架部の水平角を検出する水平角検出器と、所定の測定点を視準し第1測距光を発して測距する第1測距部を内蔵する望遠鏡部と、該望遠鏡部を水平軸心を中心に鉛直回転させる第1鉛直回転駆動部と、前記望遠鏡部の鉛直角を検出する第1鉛直角検出器と、制御部とを具備し、前記第2測定部は、パルス光である第2測距光を発しパルス光毎に測距を行う第2測距部と、前記第2測距光を鉛直面内に偏向する走査鏡と、該走査鏡を水平軸心を中心に鉛直回転させる第2鉛直回転駆動部と、前記走査鏡の鉛直角を検出する第2鉛直角検出器とを具備し、前記制御部は、各設置地点毎に前記第2測定部により前記室内全周の点群データを取得すると共に、前記第1測定部により前記室内の所定箇所を測定させ、前記第1測定部又は前記第2測定部の測定結果に基づき各設置地点毎に同一高さ且つ同一形状の外形データを作成し、各外形データを形状マッチングさせ、形状マッチングの際の移動量及び回転量に基づき各点群データをレジストレーションする様構成された測量装置に係るものである。
又本発明は、前記複数の設置地点の高さが同一であり、前記制御部は、前記第1測距光が前記室内の壁面に水平に照射される様前記第1測定部を制御する様構成された測量装置に係るものである。
又本発明は、前記制御部は、前記複数の設置地点で前記第1測定部がそれぞれ同一の基準測定点を測定する様前記第1測定部を制御する様構成された測量装置に係るものである。
又本発明は、前記第2測距光の光軸の水平角は、前記第1測距光の光軸の水平角よりも前記托架部の回転方向に所定角度オフセットされ、前記制御部は、先行して取得された点群データから前記室内の鉛直面と水平面の境界を検出し、前記第1測定部が前記境界から予め設定された距離だけ下方の前記鉛直面を測定する様前記第1測定部を制御する様構成された測量装置に係るものである。
又本発明は、前記第2測距光の光軸の水平角は、前記第1測距光の光軸の水平角よりも前記托架部の回転方向に所定角度オフセットされ、前記制御部は、先行して取得された点群データから前記室内の鉛直面と水平面の境界を検出し、前記第1測定部が前記境界から予め設定された距離だけ手前の前記水平面を測定する様前記第1測定部を制御する様構成された測量装置に係るものである。
更に又本発明は、前記鉛直面は壁面であり、前記水平面は天井である測量装置に係るものである。
本発明によれば、室内に設置され、複数の設置地点で測定を行う測量装置であって、托架部に設けられた第1測定部と第2測定部とを具備し、前記第1測定部は、前記托架部を鉛直軸心を中心に水平回転させる水平回転駆動部と、前記托架部の水平角を検出する水平角検出器と、所定の測定点を視準し第1測距光を発して測距する第1測距部を内蔵する望遠鏡部と、該望遠鏡部を水平軸心を中心に鉛直回転させる第1鉛直回転駆動部と、前記望遠鏡部の鉛直角を検出する第1鉛直角検出器と、制御部とを具備し、前記第2測定部は、パルス光である第2測距光を発しパルス光毎に測距を行う第2測距部と、前記第2測距光を鉛直面内に偏向する走査鏡と、該走査鏡を水平軸心を中心に鉛直回転させる第2鉛直回転駆動部と、前記走査鏡の鉛直角を検出する第2鉛直角検出器とを具備し、前記制御部は、各設置地点毎に前記第2測定部により前記室内全周の点群データを取得すると共に、前記第1測定部により前記室内の所定箇所を測定させ、前記第1測定部又は前記第2測定部の測定結果に基づき各設置地点毎に同一高さ且つ同一形状の外形データを作成し、各外形データを形状マッチングさせ、形状マッチングの際の移動量及び回転量に基づき各点群データをレジストレーションする様構成されたので、二次元の移動と回転のみにより各点群データのレジストレーションが可能であり、前記制御部に対する演算負荷が低減され、該制御部を高性能化する必要がなく、製作コストの低減を図ることができるという優れた効果を発揮する。
本発明の実施例に係る測量装置を示す正面図である。 本発明の第1の実施例に係るレジストレーション処理を説明するフローチャートである。 本発明の第1の実施例に係る部屋を示す平面図である。 本発明の第1の実施例に係る第1測距光の照射位置を示す正面図である。 第1の設置地点で取得された第1断面データを示す説明図である。 第2の設置地点で取得された第2断面データを示す説明図である。 断面データに於ける抜けを説明する説明図である。 本発明の第2の実施例に係る第1測距光の照射位置を示す正面図である。 本発明の第3の実施例に係る第1測距光の照射位置を示す正面図である。 本発明の第3の実施例に係るレジストレーション処理を説明するフローチャートである。 本発明の第4の実施例に係る第1測距光の照射位置を示す正面図である。 本発明の第4の実施例に係るレジストレーション処理を説明するフローチャートである。
以下、図面を参照しつつ本発明の実施例を説明する。
先ず、図1に於いて、本発明の第1の実施例に係る測量装置について説明する。
測量装置1は、図示しない三脚に取付けられた整準部2、該整準部2に設けられた測量装置本体3とを有している。該測量装置本体3は、第1測定部4としてのトータルステーションと、第2測定部5としての2次元レーザスキャナが一体化された構造となっている。尚、前記整準部2による整準は、手動で行ってもよいし、後述する制御部18によって自動で行われてもよい。
前記第1測定部4は、固定部6、托架部7、水平回転軸8、水平回転軸受9、水平回転駆動部としての水平回転モータ11、水平角検出器としての水平角エンコーダ12、第1鉛直回転軸13、第1鉛直回転軸受14、第1鉛直回転駆動部としての第1鉛直回転モータ15、第1鉛直角検出器としての第1鉛直角エンコーダ16、望遠鏡部17、前記制御部18、記憶部19、操作部21等を具備している。前記第1測定部4は、第1測定基準位置を有している。例えば、前記望遠鏡部17の光軸(第1測距光軸)と、前記第1鉛直回転軸13の軸心13aとが交差する点を第1測定基準位置とする。
前記水平回転軸受9は前記固定部6に固定され、前記水平回転軸8は鉛直な軸心8aを有し、前記水平回転軸受9に回転自在に支持される。又、前記托架部7は、前記水平回転軸8に支持され、前記托架部7は水平方向に前記水平回転軸8と一体に回転する様になっている。
前記水平回転軸受9と前記托架部7との間には前記水平回転モータ11が設けられ、該水平回転モータ11は前記制御部18によって制御される。前記制御部18は、前記水平回転モータ11を制御することにより、前記托架部7を前記水平回転軸8を中心に回転させる。
前記托架部7の前記固定部6に対する相対回転角は、前記水平角エンコーダ12によって検出される。該水平角エンコーダ12からの検出信号は前記制御部18に入力され、該制御部18により水平角データが演算される。該制御部18は、前記水平角データに基づき、前記水平回転モータ11に対するフィードバック制御を行う。
又、前記托架部7には凹部22が形成されている。該凹部22に前記第1鉛直回転軸13が延出し、該第1鉛直回転軸13は前記第1鉛直回転軸受14を介して前記托架部7に回転自在に設けられている。
前記第1鉛直回転軸13は、水平な前記軸心13aを有し、前記凹部22内に延出する一端部に前記望遠鏡部17が固着されている。又、前記第1鉛直回転軸13の他端部には、前記第1鉛直角エンコーダ16が設けられている。
前記第1鉛直回転軸13に前記第1鉛直回転モータ15が設けられ、該第1鉛直回転モータ15は前記制御部18に制御される。該制御部18は、前記第1鉛直回転モータ15を制御して前記第1鉛直回転軸13を回転させ、前記望遠鏡部17は前記第1鉛直回転軸13を中心に回転される。
前記望遠鏡部17の高低角(鉛直角)は、前記第1鉛直角エンコーダ16によって検出され、検出結果は前記制御部18に入力される。該制御部18は、前記第1鉛直角エンコーダ16の検出結果に基づき前記望遠鏡部17の第1鉛直角データを演算し、該第1鉛直角データに基づき前記第1鉛直回転モータ15に対するフィードバック制御を行う。
又、前記制御部18で演算された水平角データ、第1鉛直角データは前記記憶部19に保存される。該記憶部19は、HDD、メモリカード等種々の記憶手段が用いられる。該記憶部19は、前記托架部7に対して着脱可能であってもよく、或は所要の通信手段を介して外部記憶装置或は外部データ処理装置にデータを送出可能としてもよい。
前記操作部21は、例えばタッチパネルであり、該操作部21を介して測定条件の設定、測定の開始及び停止等が入力可能となっている。
次に、前記望遠鏡部17について説明する。
該望遠鏡部17は、視準望遠鏡23を具備し、又第1測距部(図示せず)を内蔵している。該第1測距部は、前記軸心13aと直交し前記軸心8aと交差する第1測距光軸と、該第1測距光軸に沿って第1測距光を射出する射出部(図示せず)と、測定対象物で反射された反射測距光を受光する受光部(図示せず)とを有している。
前記第1測距部は、前記射出部から射出された第1測距光の発光のタイミングと、測定対象物で反射された反射測距光の前記受光部への受光のタイミングの時間差(即ち、測距光の往復時間)に基づき、測定対象物の測距が実行され、測距結果は前記水平角データと前記第1鉛直角データに関連付けられて、又は座標値として前記記憶部19に保存される。
前記第2測定部5は、前記托架部7と、第2鉛直回転軸24、第2鉛直回転軸受25、第2鉛直回転駆動部としての第2鉛直回転モータ26、第2鉛直角検出器としての第2鉛直角エンコーダ27、走査鏡28、第2測距部29等を具備している。前記第2測定部5は、第2測定基準位置を有している。該第2測定基準位置は、例えば前記第2測定部5の測距光軸(第2測距光軸)が前記軸心8aと交差する点とする。尚、前記制御部18、前記記憶部19、前記操作部21は、前記第2測定部5に対しても共通して使用される。
前記第2測定部5の鉛直軸心(後述)は、前記水平回転軸8の軸心8aと合致しており、前記第2測定部5は前記水平回転軸8を中心に前記第1測定部4と一体に回転する様になっている。
ここで、前記鉛直軸心は鉛直方向に延出し、前記第2鉛直回転軸24の軸心24aと直交し、前記走査鏡28に測距光が入射する点を通過する。
前記第2鉛直回転軸24は、前記托架部7に前記第2鉛直回転軸受25を介して回転自在に支持されている。前記第2鉛直回転軸24の前記軸心24aは水平であり、一端部は前記凹部22内に延出し、前記一端部には前記走査鏡28が固着されている。又、前記第2鉛直回転軸24の他端部には、前記第2鉛直角エンコーダ27が設けられている。前記第2鉛直回転モータ26は、前記第2鉛直回転軸24を回転し、該第2鉛直回転軸24により前記走査鏡28は前記軸心24aを中心に回転される。
前記軸心8aと前記軸心24aとは、前記走査鏡28の反射面上で直交する様になっている。尚、前記軸心13aと前記軸心24aとは平行又は水平方向に所定角度オフセットされており、前記軸心13aと前記軸心24aとの間の距離は既知となっている。即ち、前記第1測距部の第1測定基準位置に対する前記第2測距部29の第2測定基準位置の位置は既知となっている。
前記走査鏡28の回転角は、前記第2鉛直角エンコーダ27によって検出され、検出結果は前記制御部18に入力される。該制御部18は、前記検出結果に基づき前記走査鏡28の第2鉛直角データを演算し、該第2鉛直角データに基づき前記第2鉛直回転モータ26をフィードバック制御する。尚、前記第2鉛直回転軸24は、図示しない高精度な傾斜センサ、例えばチルトセンサが設けられ、前記制御部18は前記傾斜センサの検出結果に基づき回転の際の軸ブレ等を補正可能となっている。
次に、前記第2測距部29について説明する。
発光素子31からパルス光の第2測距光が射出され、第2測距光は投光光学系32、ビームスプリッタ33を介して射出される。該ビームスプリッタ33から射出される第2測距光の第2測距光軸は、前記軸心24aと合致しており、第2測距光は前記走査鏡28によって直角に偏向される。該走査鏡28が前記軸心24aを中心に回転することで、第2測距光は前記軸心24aと直交し、且つ前記軸心8aを含む平面内を回転(走査)する。
測定対象物で反射された第2測距光(以下反射測距光)は、前記走査鏡28に入射し、該走査鏡28で偏向され、前記ビームスプリッタ33、受光光学系34を経て受光素子35で受光される。
前記制御部18は、前記発光素子31の発光タイミングと、前記受光素子35の受光タイミングの時間差(即ち、パルス光の往復時間)に基づき、測距光の1パルス光毎に測距を実行する(Time Of Flight)。尚、測距方法としては、測距光として連続光、又は断続光を照射し、射出光と反射光の位相差により測距を行ってもよい。
尚、前記第2測距部29には内部参照光学系(図示せず)が設けられ、第2測距光の一部が分割され、内部参照光学系を経て前記受光素子35で分割された第2測距光が受光される。前記内部参照光学系で受光した測距光の受光タイミングと、反射測距光の受光タイミングとの時間差により測距を行うことで高精度の測距が可能となる。
前記走査鏡28を鉛直方向に回転しつつ、測距を行うことで、第2鉛直角データと測距データが得られ、前記第2鉛直角データと前記測距データを基に2次元の点群データが取得できる。更に、該2次元点群データ取得時の水平角が前記水平角エンコーダ12によって取得される。
又、前記制御部18により演算された前記走査鏡28の第2鉛直角データ、前記第2測距部29で測定された測距データは関連付けられて前記記憶部19に記憶される。或は、測距データと第2鉛直角データ、水平角データで表される座標値として前記記憶部19に記憶される。
前記制御部18は、前記第1測定部4による測距、前記第1鉛直角エンコーダ16による鉛直角の検出結果及び前記水平角エンコーダ12による水平角の検出結果に基づき、所定の測定点(基準測定点)の3次元座標を測定する。又、前記制御部18は、前記第2測定部5の点群データ取得の為の制御を行うと共に、前記水平回転モータ11の制御も実行し、前記第2測定部5による鉛直方向の走査と、前記水平回転モータ11の水平方向の回転との協働により、2次元(水平、鉛直2方向)のスキャンが実行される。2次元のスキャンとパルス光毎の測距により、前記走査鏡28の鉛直角データ、前記水平角エンコーダ12の水平角データ、前記第2測距部29の測距データが取得でき、測定対象物に対応する3次元の点群データが取得できる。又、前記制御部18は、3次元点群データと前記第1測定部4が測定した前記基準測定点の3次元座標との関連付けを行う。
以下、前記測量装置1の作動について説明する。
先ず、前記第1測定部4により所定の測定点(以下基準測定点)の3次元測定を行う場合について説明する。測定に必要な情報、データ、例えば基準測定点の座標値が前記操作部21から入力され、前記制御部18は入力情報やデータに対応し、前記水平回転モータ11、前記第1鉛直回転モータ15、前記第1測距部に制御信号を送出する。
前記第1測定部4の水平回転、前記望遠鏡部17の鉛直回転の協働により、前記視準望遠鏡23が所定の測定点に向けられ、該視準望遠鏡23により前記測定点が視準される。測距光が前記視準望遠鏡23を介して前記測定点に照射され、該測定点の測距が実行される。測距データは前記記憶部19に入力され、該記憶部19に格納される。ここで、所定の測定点として、壁面にマーク等を設置してもよく、或は壁面の特徴的な箇所、例えばコーナ等を測定点として設定してもよい。
又、該測定点を測距した時の鉛直角が、前記第1鉛直角エンコーダ16によって検出され、水平角が前記水平角エンコーダ12によって検出され、第1鉛直角データと水平角データが前記記憶部19に格納される。又、測距データ、水平角データ、第1鉛直角データは相互に関連付けられる。
前記制御部18は、前記記憶部19に格納された前記測定点の測距データと、測距時の第1鉛直角データと水平角データとにより、前記測定点の3次元データ(即ち、3次元座標)を取得することができる。又、前記制御部18は、取得した前記測定点の3次元データを、前記記憶部19に格納する。測定すべき測定点が複数ある場合には、各測定点が順次視準され、測定が繰返される。
次に、前記第2測定部5により測定対象物の3次元の点群データを取得する場合について説明する。
前記第2測距部29から測距光が発せられた状態で、前記第2鉛直回転モータ26により前記走査鏡28が前記第2鉛直回転軸24を中心に回転される。更に、前記第2測定部5が前記第1測定部4と一体に前記水平回転モータ11により水平回転される。
前記走査鏡28の鉛直回転と、前記第1測定部4の水平回転の協働により、前記測距光は鉛直、水平の2方向に(2次元に)走査される。
測距光の1パルス光毎に測距が実行され、又1パルス光毎に鉛直角と水平角が検出される。1パルス光毎の測距データ、第2鉛直角データを基に、鉛直平面内の各2次元座標が取得される。又、該2次元座標と水平角データを基に、各測定点での3次元データが取得される。更に、測距光が鉛直、水平の2次元に走査されることで、測定対象物の3次元の点群データが取得できる。
尚、前記第1測距部で得られる3次元座標系の原点(第1測定基準点)と、前記第2測距部29で得られる2次元座標系の原点(第2測定基準点)との位置関係は既知となっている。
従って、前記第1測定基準点と前記第2測定基準点との位置関係と、前記走査鏡28の第2鉛直角データ及び前記水平角エンコーダ12の水平角データに基づき、前記制御部18により前記第2測定部5の座標系を前記第1測定部4の座標系へと変換することができる。従って、前記第2測定部5で取得された2次元データ及び前記水平角エンコーダ12で取得した水平角データに基づき座標変換し、点群データの各測定点の前記第1測定部4の座標系の3次元データを取得する様にしてもよい。
更に、前記制御部18は、前記第1測定部4で得られる基準測定点の3次元座標と、座標変換した3次元点群データ中の基準測定点の3次元座標に基づき、前記測定点の前記第1測定部4の測定結果と前記第2測定部5の測定結果を関連付ける。
次に、図2のフローチャート及び図3~図7に於いて、第1の実施例に係るレジストレーション方法について説明する。
第1の実施例に於いては、前記測量装置1の設置面(床面40)が水平であり、且つ前記測量装置1の複数の設置地点の高さが同一であり、更に各設置地点に於ける第1測定基準点、第2測定基準点の高さが同一であった場合の、室内の3次元点群データを取得する場合について説明する。図3は3次元点群データの取得対象である部屋の全体を示す平面図であり、図中36は部屋を示す。又、図4は、該部屋36の一部を示す正面図となっている。
図3中、37は第1設置地点を示し、38は第2設置地点を示している。前記第1設置地点37、前記第2設置地点38に前記測量装置1が順次設置され、前記第1設置地点37と前記第2設置地点38でそれぞれ3次元点群データが取得される様になっている。又、図4中、39は壁面を示し、40は床面を示し、41は天井を示し、42は柱を示し、43は出入り口を示し、44は窓を示している。
STEP:01 先ず、前記測量装置1を前記第1設置地点37に設置する。又、前記制御部18は、前記水平回転軸8の前記軸心8aが鉛直となる様、前記整準部2に整準させる。尚、前記測量装置1の整準は、作業者が手動で行ってもよい。
STEP:02 次に、前記制御部18は、前記望遠鏡部17から照射される第1測距光の光軸が水平となる様、前記第1測定部4を制御する。
STEP:03 前記制御部18は、前記水平回転モータ11を駆動させると共に前記第2鉛直回転モータ26を駆動させる。前記第1測定部4は水平方向に第1測距光を射出する。前記第1測定部4により、所定時間間隔又は所定角度ピッチで前記壁面39の測定(測距、測角)データ(第1測定データ)を取得する。更に、前記第1測定部4と並行して、前記第2測定部5は第2測距光を鉛直回転させつつ水平回転させ、回転照射する。前記第2測定部5により、前記部屋36内の3次元点群データ(第1点群データ)を取得する。
STEP:04 前記制御部18は、第1測定データから得られる第1測距光の軌跡48上の測定結果に基づき、或は該軌跡48上又は該軌跡48の近傍に位置する第1点群データに基づき、図5に示される様な、第1断面データ45を作成する。該第1断面データ45は、前記第1設置地点37に於ける前記第1測定部4により測定された前記第1測定基準点の高さの、前記部屋36内の前記壁面39の水平断面データとなっている。
尚、本実施例では、前記部屋36の形状により第1測距光及び第2測距光が遮られる場所があり、前記部屋36の全周を第1測距光及び第2測距光で走査することができず、前記第1断面データ45には欠損部45aが生じている。
STEP:05 前記第1断面データ45が作成されると、次に前記測量装置1を移動させ、前記第2設置地点38に設置する。又、前記制御部18は、前記水平回転軸8の前記軸心8aが鉛直となる様、前記整準部2に整準させる。尚、前記測量装置1の整準は、作業者が手動で行ってもよい。
STEP:06 次に、前記制御部18は、前記第1測定部4の第1測距光軸が水平となる様、前記第1鉛直回転モータ15を駆動させ、前記望遠鏡部17を鉛直回転させる。この時の第1測距光軸の高さは、設置面が水平であるので、前記第1設置地点37に於ける前記第1測距光軸の高さと同一となる。
STEP:07 前記制御部18は、前記水平回転モータ11及び前記第2鉛直回転モータ26を駆動させ、前記第1測定部4、前記第2測定部5にそれぞれSTEP:01~STEP:04と同様に測定させ、前記第2設置地点38に於ける測定データ(第2測定データ)と3次元点群データ(第2点群データ)を取得させる。
STEP:08 前記制御部18は、第2測定データから得られる前記軌跡48上の測定結果に基づき、或は該軌跡48上又は該軌跡48の近傍に位置する第2点群データに基づき、図6に示される様な、前記第2設置地点38に於ける第2断面データ46を作成する。該第2断面データ46は、前記第1断面データ45と同じ高さで作成された前記部屋36内の水平断面データとなっている。
尚、前記第2断面データ46に於いても、第1測距光及び第2測距光が遮られる場所があり、前記第1断面データ45と同様、前記部屋36の全周を第1測距光及び第2測距光で走査することはできず、前記第2断面データ46には欠損部46aが生じている。尚、前記第1断面データ45に於ける前記欠損部45aと、前記第2断面データ46に於ける前記欠損部46aとは異なる場所に発生している。
STEP:09 前記第1断面データ45と前記第2断面データ46が作成されると、前記制御部18は、前記第1断面データ45と前記第2断面データ46の形状マッチングを実行する。
第1の実施例では、前記測量装置1の設置面は水平であり、前記第1設置地点37と前記第2設置地点38の高さは同一となっている。この為、第1測距光が水平面内を回転する状態で取得された前記壁面39の測定位置の高さは、前記第1設置地点37と前記第2設置地点38とで同一となる。又、前記第1断面データ45と前記第2断面データ46は、同一高さに於ける前記部屋36の断面データであるので、同一の外形形状を有する外形データとなっている。
従って、第1の実施例に於いて、前記第1断面データ45と前記第2断面データ46の形状マッチングは、前記第1断面データ45と前記第2断面データ46の一方の、X軸及びY軸方向の移動と、Z軸を中心とした回転のみにより実行することができる。即ち、前記第1断面データ45と前記第2断面データ46の形状マッチングは、2次元の形状マッチングとなる。
前記第1断面データ45と前記第2断面データ46の形状マッチングにより、前記欠損部45aが前記第2断面データ46で補完され、前記欠損部46aが前記第1断面データ45で補完される。
STEP:10 最後に、前記制御部18は、前記第1断面データ45と前記第2断面データ46の形状マッチングを行なった際の、X軸方向及びY軸方向の移動量と、Z軸を中心とした回転量に基づき、前記第1点群データと前記第2点群データとをレジストレーション(結合)する。
前記第1点群データと前記第2点群データとのレジストレーションにより、前記部屋36内の欠損のない全周の3次元点群データが作成され、レジストレーション処理を終了する。
上述の様に、第1の実施例では、水平で高さが等しい2箇所の設置地点に於いて、前記第2測定部5による3次元点群データの取得と並行して、前記第1測定部4により前記壁面39の水平方向の3次元座標をそれぞれ測定し、測定した3次元座標に基づき前記第1断面データ45と前記第2断面データ46を作成し、前記第1断面データ45と前記第2断面データ46を形状マッチングしている。
上記した形状マッチングの際の、X軸及びY軸方向の移動量と、Z軸を中心とした回転量は、第1点群データと第2点群データとをレジストレーションする際の移動量、回転量としてそのまま適用可能である。即ち、第1点群データと第2点群データとのレジストレーション処理は、X軸及びY軸方向の移動量と、Z軸を中心とした回転量の、2次元の移動のみにより実行することができる。
従って、前記制御部18に対する演算負荷が低減されるので、該制御部18を高性能化する必要がなく、製作コストの低減を図ることができる。
又、第1の実施例では、点群データを取得した後に、結合点を別途測定する必要がないので、測定時間の短縮が図れ、作業性を向上させることができる。
尚、第1の実施例では、第1測距光を水平方向に射出した状態で、前記托架部7を回転させている。従って、第1測距光の高さによっては、前記出入り口43や前記窓44を通過することがある。この場合、前記第1断面データ45と前記第2断面データ46は、それぞれ前記出入り口43と窓44で抜けが生じたものとなる(図7参照)。
然し乍ら、前記第1断面データ45と前記第2断面データ46は、例えば75%程度のデータが取得できていれば、形状マッチングの実行に支障はないので、前記出入り口43と前記窓44の部分について、データに抜けが生じていたとしても、前記第1点群データと前記第2点群データとのレジストレーションを行うことができる。
又、第1の実施例では、前記第1設置地点37と前記第2設置地点38が水平面且つ同一平面であり、前記第1設置地点37と前記第2設置地点38に前記測量装置1を設置した場合には、第1測定基準点の高さ(前記軌跡48の高さ)が同一となることを前提としている。然し乍ら、前記測量装置1を設置する際の三脚(図示せず)の開き具合等により、前記第1設置地点37と前記第2設置地点38での前記第1測定基準点の高さが同一とならない場合がある。この場合、第1点群データと第2点群データの正確なレジストレーションが実行できない。
この為、例えば各設置地点で前記第1測定部4で前記床面40の任意の点を測定し、該床面40に対する第1測定基準点の高さをそれぞれ測定し、高さの差に基づき、例えば前記第2断面データ46を作成する高さを変更する。これにより、上記と同様に前記第1断面データ45と前記第2断面データ46を2次元で形状マッチングさせることができ、第1点群データと第2点群データとを正確にレジストレーションすることができる。
尚、前記第1設置地点37と前記第2設置地点38から、それぞれ共通する任意の基準測定点を前記第1測定部4で測定し、前記基準測定点の測定結果に基づき、前記第1設置地点37と前記第2設置地点38での第1測定基準点の高さの差を演算してもよい。
次に、図1及び図8に於いて、本発明の第2の実施例について説明する。尚、図8中、図4中と同等のものには同符号を付し、その説明を省略する。
第2の実施例では、第1設置地点37(図3参照)と第2設置地点38(図3参照)は、共に水平面上に位置し、設置平面の高さは異なり、高さは不明となっている。前記第1設置地点37に測量装置1を設置した際、前記第2設置地点38に前記測量装置1を設置した際に、それぞれ整準が行われる。
又、第2の実施例では、操作部21により、前記第1設置地点37と前記第2設置地点38からそれぞれ第1測定部4で測定可能な同一の任意の基準測定点49を指定する。前記第1設置地点37及び前記第2設置地点38から前記基準測定点49を視準した場合の第1測距光の光軸(第1測距光軸)は水平とは限らず、所要の鉛直角を有する。又、前記基準測定点49を通過する水平線(壁面39上の第1測距光の軌跡48)には、出入り口43と窓44が存在しない様に設定する。
先ず、前記第1設置地点37に於いて、制御部18は、指定した前記基準測定点49に第1測距光が照射される鉛直角、水平角となる様、前記第1測定部4を制御する。該第1測定部4は、前記基準測定点49を視準し、該基準測定点49を測定して前記基準測定点49の3次元座標を取得する。該3次元座標から、前記第1設置地点37に対する前記基準測定点49の高さが求められる。
更に、前記水平回転軸8を中心に測量装置本体3が回転され、前記第1測定部4による測定が実行され、平行して第2測定部5による測定が実行され、第1測定データ、第1点群データが取得される。
第1測定データの取得に於いて、前記制御部18は、第1測距光の照射点、即ち測定点が、前記基準測定点49の高さとなる様、測距結果に基づきリアルタイムで前記第1測定部4の光軸の鉛直角を制御する。又、該第1測定部4は、全周回転中、所定時間間隔、所定角度ピッチで測定する。従って、第1測定データは、前記基準測定点49を通過する前記壁面39の水平線の3次元データとなり、前記基準測定点49の高さの第1断面データ45(図5参照)が得られる。
又、該第1断面データ45の他の取得方法としては、第1点群データから前記第1測定部4で取得した前記第1断面データ45の水平角、鉛直角と一致又は略一致する測定点を抽出し、前記第1断面データ45を求めてもよい。
更に他の取得方法としては、前記第1測定部4で取得した前記基準測定点49の高さと一致又は略一致する測定点を第1点群データから全て抽出し、抽出した測定点に基づき前記第1断面データ45としてもよい。この場合、前記第1測定部4は、前記基準測定点49のみを測定すればよく、前記部屋36全周を測定する必要がない。
次に、前記測量装置1を前記第2設置地点38に移動し、該第2設置地点38に於いて同様に第2測定データと第2点群データを取得する。更に、第2測定データと第2点群データに基づき第2断面データ46(図6参照)を演算する。前記第1断面データ45と前記第2断面データ46は、前記部屋36の同一高さの断面データであるので、同一形状の外形データとなる。
前記制御部18は、前記第1断面データ45と前記第2断面データ46の形状マッチングを実行する。又、形状マッチングの際のX軸及びY軸方向の移動量と、前記第1設置地点37と前記第2設置地点38に於けるZ軸方向の回転量に基づき、前記第1設置地点37に於ける第1点群データと、前記第2設置地点38に於ける第2点群データとのレジストレーション(結合)を実行する。
第2の実施例に於いては、前記出入り口43、前記窓44から外れた任意の高さにある前記基準測定点49を指定し、該基準測定点49を含む水平面内の前記第1断面データ45と前記第2断面データ46とし、前記第1断面データ45と前記第2断面データ46に前記出入り口43と前記窓44による抜けが生じない様になっている。
従って、前記第1断面データ45と前記第2断面データ46との形状マッチングの精度を向上させることができ、前記第1点群データと前記第2点群データとのレジストレーションの精度を向上させることができる。
次に、図1、図9及び図10のフローチャートを参照し、本発明の第3の実施例について説明する。尚、図9中、図4中と同等のものには同符号を付し、その説明を省略する。
第3の実施例では、第1設置地点37(図3参照)の設置面と第2設置地点38(図3参照)の設置面は水平又は傾斜し、又は2つの設置面の高さが異なっている。又、第2測定部5による第2測距光軸の水平角は、第1測定部4による第1測距光軸の水平角よりも、托架部7の回転方向に所定角度、例えば0.6°だけオフセットされている。従って、前記第2測定部5は、第1測距光軸に対して0.6°水平方向に回転している鉛直平面内を回転照射(走査)する。
STEP:11 先ず、測量装置1を前記第1設置地点37に設置する。又、前記制御部18は、水平回転軸8の軸心8aが鉛直となる様、整準部2に整準させる。尚、前記測量装置1の整準は、作業者が手動で行ってもよい。
STEP:12 前記制御部18は、水平回転モータ11及び第1鉛直回転モータ15を駆動させ、前記第1測定部4により第1測定データを取得させると共に、第2鉛直回転モータ26を駆動させ、前記第2測定部5により第1点群データを取得させる。
STEP:13 ここで、前記第2測定部5の第2測距光軸は、前記第1測定部4の第1測距光軸よりも前記托架部7の回転方向に所定角度オフセットされている。即ち、前記第1測定部4による測定に先行して、前記第2測定部5による測定が行われる。
前記制御部18は、前記第2測定部5が同一スキャンライン上で測定した距離データの値が増加から減少へ、又は減少から増加へと転じた箇所を検出し、該箇所の鉛直角を求める。該箇所は鉛直面と水平面の境界であり、該境界は水平で且つスキャンラインと直交する。該境界の鉛直角及び測距結果に基づき、前記第2測定部5の第2測定基準位置に対する前記境界の高さが測定される。測量装置本体3が全周回転し、前記制御部18は、スキャンライン毎に前記境界を求めることで、壁面39と天井41の境界線47を検出する。
STEP:14 前記制御部18は、前記境界線47から予め設定した所定鉛直角α(αに相当する距離d1)だけ下方を前記第1測定部4に測定させる。例えば、該境界線47より10cm下方の前記壁面39に望遠鏡部17を視準させ、第1測距光軸が前記境界線47から10cm下方を水平に移動する様、前記測量装置本体3を前記水平回転軸8を中心に水平方向に回転させつつ、前記第1測定部4の鉛直角を制御し、前記第1測定部4に測定させる。図9中、48は、前記境界線47と平行且つ該境界線47よりもd1だけ下方に位置する第1測距光の軌跡を示している。
尚、d1については、窓44等の開口部がない高さに設定される。又、高さの設定については、設計データ等から事前に設定してもよく、或は現場で状況を見ながら設定してもよい。
又、前記制御部18は、取得した前記第1点群データと、検出した前記境界線47よりもd1下方に位置する測定点の測定結果(高さ)に基づき、前記軌跡48に沿った第1断面データ45(図5参照)を作成する。
STEP:15 該第1断面データ45が作成されると、次に前記測量装置1を移動させ、前記第2設置地点38に設置する。又、前記制御部18は、前記水平回転軸8の前記軸心8aが鉛直となる様、前記整準部2に整準させる。尚、前記測量装置1の整準は、作業者が手動で行ってもよい。
STEP:16 前記制御部18は、前記水平回転モータ11及び前記第1鉛直回転モータ15を駆動させ、前記第1測定部4により第2測定データを取得させると共に、前記第2鉛直回転モータ26を駆動させ、前記第2測定部5により第2点群データを取得させる。
STEP:17 前記第2測定部5による測定は、前記第1測定部4による測定に先行して行われているので、前記制御部18は、前記第2測定部5が測定した距離データの値が増加から減少へ、又は減少から増加へと転じた箇所を前記境界線47として検出する。又、該境界線47の鉛直角、及び測距結果に基づき、第2測定基準位置に対する前記境界線47の高さが測定される。
STEP:18 前記制御部18は、検出した前記境界線47と、予め設定した距離d1、例えば10cmに基づき、該境界線47より10cm下方の前記壁面39に前記望遠鏡部17を視準させ、前記測量装置本体3を水平回転させつつ前記第1測定部4に測定させる。
又、前記制御部18は、取得した前記第2点群データと、測定した前記境界線47よりもd1下方に位置する測定点の測定結果に基づき、前記軌跡48に沿った第2断面データ46(図6参照)を作成する。
尚、第3の実施例に於いて、前記境界線47の高さは、部屋36全周に亘って一定である。従って、前記境界線47からd1だけ下方の高さは、各設置地点の傾斜、或は高さに拘わらず一定であり、前記第1断面データ45と前記第2断面データ46は同一の高さの断面データとなる。又、前記第1断面データ45と前記第2断面データ46は、前記部屋36の同一高さの断面データであるので、同一形状の外形形状を有する外形データとなる。
STEP:19 前記第1断面データ45と前記第2断面データ46が作成されると、前記制御部18は、前記第1断面データ45と前記第2断面データ46の形状マッチングを実行する。
上記した様に、前記第1断面データ45と前記第2断面データ46は同一の高さの断面データであるので、形状マッチングは、X軸及びY軸方向の移動と、Z軸を中心とした回転のみにより実行することができる。即ち、前記第1断面データ45と前記第2断面データ46の形状マッチングは、2次元の形状マッチングとなる。
STEP:20 最後に、前記制御部18は、形状マッチングの際の、X軸方向及びY軸方向の移動量と、Z軸を中心とした回転量に基づき、前記第1点群データと前記第2点群データとをレジストレーションする。
前記第1点群データと前記第2点群データとのレジストレーションにより、前記部屋36内の欠損のない全周の3次元点群データが作成され、レジストレーション処理を終了する。
第3の実施例では、前記第1測定部4による測定に先行して前記第2測定部5による測定が行われ、該第2測定部5の測定結果から検出された前記境界線47の高さと、予め設定された距離d1に基づき、前記第1測定部4による測定位置(測定高さ)が決定される。
従って、該第1測定部4の測定位置が自動で決定され、作業者が該第1測定部4の測定位置を指定する必要がないので、作業工数が低減され、作業性を向上させることができる。
尚、第3の実施例では、前記第2測定部5による第2測距光軸の水平角は、前記第1測定部4による第1測距光軸の水平角よりも、前記托架部7の回転方向に所定角度オフセットされているが、第1の実施例と同様、前記第1測距光軸の水平角と前記第2測距光軸の水平角とを一致させてもよい。
この場合、先ず前記第2測定部5のみを駆動させ、前記部屋36全周の3次元点群データを取得した後、該3次元点群データに基づき前記境界線47を検出し、該境界線47からd1だけ下方に位置する任意の測定点を前記第1測定部4で測定し、測定結果に基づき点群データから断面データを作成すればよい。
又、第3の実施例では、前記第1設置地点37、前記第2設置地点38でそれぞれ前記測量装置1を整準しているが、前記境界線47が水平である場合には整準動作は省略してもよい。
前記第2測定部5により取得された点群データから、前記境界線47を検出できるので、該境界線47に対する前記軸心8aの傾斜、即ち水平に対する前記測量装置1の傾斜を求めることができる。従って、前記制御部18は、前記測量装置1が整準されていない状態で各測定データ、点群データを取得した場合であっても、前記測量装置1の傾斜に基づき点群データを補正することができ、補正した点群データに基づき断面データを作成することができる。即ち、測量装置1の整準動作が省略できるので、該測量装置1を概略設置すればよく、作業工数を更に低減させることができる。
尚、各設置地点が傾斜しており、前記測量装置1の整準動作を省略した場合には、前記第1測定部4は、鉛直角を変更させつつ水平回転し、前記軌跡48上の点を測定して測定データを取得する。或は、前記第2測定部5により点群データを取得し、前記測量装置1の傾斜に基づき前記点群データを補正した後、前記境界線47よりd1だけ下方に位置する任意の点を前記第1測定部4で測定して測定データを取得してもよい。
更に、第3の実施例では、前記壁面39と前記天井41の境界を前記境界線47として検出しているが、前記壁面39と床面40との境界を境界線47として検出してもよい。
次に、図1、図11及び図12のフローチャートを用い、本発明の第4の実施例について説明する。尚、図11中、図4中と同等のものには同符号を付し、その説明を省略する。
第4の実施例に於いても、第3の実施例と同様、第1設置地点37(図3参照)の設置面と第2設置地点38(図3参照)の設置面は水平又は傾斜し、2つの設置面の高さが異なっている。又、天井41は水平面となっている。更に、第2測定部5による第2測距光軸の水平角は、第1測定部4による第1測距光軸の水平角よりも、托架部7の回転方向に所定角度、例えば0.6°だけオフセットされている。従って、前記第2測定部5は、第1測距光軸に対して0.6°水平方向に回転している鉛直平面内を回転照射(走査)する。
STEP:21 先ず、測量装置1を前記第1設置地点37に設置する。又、制御部18は、水平回転軸8の軸心8aが鉛直となる様、整準部2に整準させる。尚、前記測量装置1の整準は、作業者が手動で行ってもよい。
STEP:22 前記制御部18は、水平回転モータ11及び第1鉛直回転モータ15を駆動させ、前記第1測定部4により第1測定データを取得させると共に、第2鉛直回転モータ26を駆動させ、前記第2測定部5により第1点群データを取得させる。
STEP:23 ここで、前記第2測定部5の第2測距光軸は、前記第1測定部4の第1測距光軸よりも前記托架部7の回転方向に所定角度オフセットされている。即ち、前記第1測定部4による測定に先行して、前記第2測定部5による測定が行われる。前記制御部18は、第3の実施例に於けるSTEP:13と同様の手順により、壁面39と天井41との境界線47を検出する。
STEP:24 前記制御部18は、前記境界線47から予め設定した所定鉛直角α(αに相当する距離d2)だけ手前を前記第1測定部4に測定させる。例えば、該境界線47より10cm手前の前記天井41に望遠鏡部17を視準し、第1測距光軸が前記境界線47の10cm手前を水平に移動する様、前記測量装置本体3を前記水平回転軸8を中心に水平方向に回転させつつ、前記第1測定部4の鉛直角を制御し、該第1測定部4に測定させる。図11中、48は、前記境界線47と平行且つ該境界線47よりもd2だけ手前に位置する第1測距光の軌跡を示している。尚、d2については、設計データ等から事前に設定してもよく、或は現場で状況を見ながら設定してもよい。
又、前記制御部18は、取得した前記第1点群データと、検出した前記境界線47よりもd2手前に位置する測定点の測定結果に基づき、前記軌跡48に沿った第1外形データ(図示せず)を作成する。該第1外形データは、前記境界線47により形成される、前記天井41の外形よりも小さい相似した形状となる。
STEP:25 前記第1外形データが作成されると、次に前記測量装置1を移動させ、前記第2設置地点38に設置する。又、前記制御部18は、前記水平回転軸8の前記軸心8aが鉛直となる様、前記整準部2に整準させる。尚、前記測量装置1の整準は、作業者が手動で行ってもよい。
STEP:26 前記制御部18は、前記水平回転モータ11及び前記第1鉛直回転モータ15を駆動させ、前記第1測定部4により第2測定データを取得させると共に、前記第2鉛直回転モータ26を駆動させ、前記第2測定部5により第2点群データを取得させる。
STEP:27 前記第2測定部5による測定は、前記第1測定部4による測定に先行して行われている。前記制御部18は、第3の実施例に於けるSTEP:17と同様の手順により、前記壁面39と前記天井41との前記境界線47を検出する。
STEP:28 前記制御部18は、検出した前記境界線47と、予め設定した距離d2、例えば10cmに基づき、該境界線47より10cm手前の前記天井41に前記望遠鏡部17を視準させ、第1測距光軸が前記境界線47の10cm手前を水平に移動する様前記測量装置本体3を水平回転させつつ、前記第1測定部4の鉛直角を制御し、該第1測定部4に測定させる。
又、前記制御部18は、取得した前記第2点群データと、測定した前記境界線47よりもd2手前に位置する測定点の測定結果に基づき、前記軌跡48に沿った第2外形データ(図示せず)を作成する。
尚、前記第1設置地点37と前記第2設置地点38で同一の前記境界線47が検出される。従って、前記第1外形データと前記第2外形データは、同一高さ且つ同一形状のデータとなる。
STEP:29 前記第1外形データと前記第2外形データが作成されると、前記制御部18は、前記第1外形データと前記第2外形データの形状マッチングを実行する。
上記した様に、前記第1外形データと前記第2外形データは同一高さ且つ同一形状の外形データであるので、形状マッチングは、X軸及びY軸方向の移動と、Z軸を中心とした回転のみにより実行することができる。即ち、前記第1外形データと前記第2外形データの形状マッチングは、2次元の形状マッチングとなる。
STEP:30 最後に、前記制御部18は、形状マッチングの際の、X軸方向及びY軸方向の移動量と、Z軸を中心とした回転量に基づき、前記第1点群データと前記第2点群データとをレジストレーションする。
第4の実施例に於いても、点群データから検出した前記境界線47に基づき、前記第1測定部4の測定位置が自動で決定され、作業者が該第1測定部4の測定位置を指定する必要がないので、作業工数が低減され、作業性を向上させることができる。
尚、第4の実施例では、前記第2測定部5による第2測距光軸の水平角は、前記第1測定部4による第1測距光軸の水平角よりも、前記托架部7の回転方向に所定角度オフセットされているが、第1の実施例と同様、前記第1測距光軸の水平角と前記第2測距光軸の水平角とを一致させてもよい。
又、第3の実施例と同様、前記壁面39と床面40との境界を前記境界線47として検出してもよいのは言う迄もない。
尚、第1の実施例~第4の実施例では、前記第1設置地点37にて第1断面データ45或は第1外形データを作成した後、前記第2設置地点38に前記測量装置1を移動させ、第2断面データ46或は第2外形データを作成しているが、前記第1設置地点37と前記第2設置地点38にそれぞれ前記測量装置1を設置し、前記第1断面データ45と前記第2断面データ46、或は前記第1外形データと前記第2外形データとを作成してもよい。
1 測量装置
2 整準部
3 測量装置本体
4 第1測定部
5 第2測定部
7 托架部
8 水平回転軸
11 水平回転モータ
12 水平角エンコーダ
13 第1鉛直回転軸
15 第1鉛直回転モータ
16 第1鉛直角エンコーダ
17 望遠鏡部
18 制御部
24 第2鉛直回転軸
26 第2鉛直回転モータ
27 第2鉛直角エンコーダ
28 走査鏡
29 第2測距部
36 部屋
37 第1設置地点
38 第2設置地点
39 壁面
41 天井
45 第1断面データ
46 第2断面データ
47 境界線
48 軌跡
49 基準測定点

Claims (3)

  1. 室内に設置され、複数の設置地点で測定を行う測量装置であって、托架部に設けられた第1測定部と第2測定部とを具備し、前記第1測定部は、前記托架部を鉛直軸心を中心に水平回転させる水平回転駆動部と、前記托架部の水平角を検出する水平角検出器と、所定の測定点を視準し第1測距光を発して測距する第1測距部を内蔵する望遠鏡部と、該望遠鏡部を水平軸心を中心に鉛直回転させる第1鉛直回転駆動部と、前記望遠鏡部の鉛直角を検出する第1鉛直角検出器と、制御部とを具備し、前記第2測定部は、パルス光である第2測距光を発しパルス光毎に測距を行う第2測距部と、前記第2測距光を鉛直面内に偏向する走査鏡と、該走査鏡を水平軸心を中心に鉛直回転させる第2鉛直回転駆動部と、前記走査鏡の鉛直角を検出する第2鉛直角検出器とを具備し、前記第2測距光の光軸の水平角は、前記第1測距光の光軸の水平角よりも前記托架部の回転方向に所定角度オフセットされ、前記制御部は、各設置地点毎に前記第2測定部により前記室内全周の点群データを取得すると共に、先行して取得された点群データから前記室内の鉛直面と水平面の境界を検出し、前記第1測定部が前記境界から予め設定された距離だけ下方の前記鉛直面を測定する様前記第1測定部を制御し、該第1測定部又は前記第2測定部の測定結果に基づき各設置地点毎に同一高さ且つ同一形状の外形データを作成し、各外形データを形状マッチングさせ、形状マッチングの際の移動量及び回転量に基づき各点群データをレジストレーションする様構成された測量装置。
  2. 室内に設置され、複数の設置地点で測定を行う測量装置であって、托架部に設けられた第1測定部と第2測定部とを具備し、前記第1測定部は、前記托架部を鉛直軸心を中心に水平回転させる水平回転駆動部と、前記托架部の水平角を検出する水平角検出器と、所定の測定点を視準し第1測距光を発して測距する第1測距部を内蔵する望遠鏡部と、該望遠鏡部を水平軸心を中心に鉛直回転させる第1鉛直回転駆動部と、前記望遠鏡部の鉛直角を検出する第1鉛直角検出器と、制御部とを具備し、前記第2測定部は、パルス光である第2測距光を発しパルス光毎に測距を行う第2測距部と、前記第2測距光を鉛直面内に偏向する走査鏡と、該走査鏡を水平軸心を中心に鉛直回転させる第2鉛直回転駆動部と、前記走査鏡の鉛直角を検出する第2鉛直角検出器とを具備し、前記第2測距光の光軸の水平角は、前記第1測距光の光軸の水平角よりも前記托架部の回転方向に所定角度オフセットされ、前記制御部は、各設置地点毎に前記第2測定部により前記室内全周の点群データを取得すると共に、先行して取得された点群データから前記室内の鉛直面と水平面の境界を検出し、前記第1測定部が前記境界から予め設定された距離だけ手前の前記水平面を測定する様前記第1測定部を制御し、該第1測定部又は前記第2測定部の測定結果に基づき各設置地点毎に同一高さ且つ同一形状の外形データを作成し、各外形データを形状マッチングさせ、形状マッチングの際の移動量及び回転量に基づき各点群データをレジストレーションする様構成された測量装置。
  3. 前記鉛直面は壁面であり、前記水平面は天井である請求項1又は請求項2に記載の測量装置。
JP2017226752A 2017-11-27 2017-11-27 測量装置 Active JP7009180B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017226752A JP7009180B2 (ja) 2017-11-27 2017-11-27 測量装置
US16/195,988 US11143505B2 (en) 2017-11-27 2018-11-20 Surveying instrument
EP18208658.7A EP3489625B1 (en) 2017-11-27 2018-11-27 Surveying instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017226752A JP7009180B2 (ja) 2017-11-27 2017-11-27 測量装置

Publications (2)

Publication Number Publication Date
JP2019095371A JP2019095371A (ja) 2019-06-20
JP7009180B2 true JP7009180B2 (ja) 2022-01-25

Family

ID=64500300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017226752A Active JP7009180B2 (ja) 2017-11-27 2017-11-27 測量装置

Country Status (3)

Country Link
US (1) US11143505B2 (ja)
EP (1) EP3489625B1 (ja)
JP (1) JP7009180B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11048964B2 (en) 2018-09-28 2021-06-29 Topcon Corporation Survey data processing device, survey data processing method, and survey data processing program
US10891769B2 (en) * 2019-02-14 2021-01-12 Faro Technologies, Inc System and method of scanning two dimensional floorplans using multiple scanners concurrently
US11604065B2 (en) 2019-05-17 2023-03-14 Hexagon Technology Center Gmbh Fully automatic position and alignment determination method for a terrestrial laser scanner and method for ascertaining the suitability of a position for a deployment for surveying
EP3764057A1 (de) * 2019-07-09 2021-01-13 Hexagon Technology Center GmbH Verfahren zum ermitteln der eignung einer position als vermessungsstationierung
CN110276790A (zh) * 2019-06-28 2019-09-24 易思维(杭州)科技有限公司 基于形状约束的点云配准方法
JP7311342B2 (ja) * 2019-07-18 2023-07-19 株式会社トプコン 3次元測量装置、3次元測量方法および3次元測量プログラム
JP7324097B2 (ja) 2019-09-13 2023-08-09 株式会社トプコン 3次元測量装置、3次元測量方法および3次元測量プログラム
JP7307667B2 (ja) 2019-12-03 2023-07-12 株式会社熊谷組 シールドトンネルの測量システムおよびシールドトンネルの測量方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013190272A (ja) 2012-03-13 2013-09-26 Kyushu Univ 3次元レーザ測量装置及び3次元レーザ測量方法
US20130314688A1 (en) 2012-05-27 2013-11-28 Alexander Likholyot Indoor surveying apparatus
JP2015087319A (ja) 2013-10-31 2015-05-07 三菱重工業株式会社 3次元形状計測装置および方法ならびにプログラム
JP2016223840A (ja) 2015-05-28 2016-12-28 株式会社トプコン 測量装置
US20170123066A1 (en) 2011-12-21 2017-05-04 Robotic paradigm Systems LLC Apparatus, Systems and Methods for Point Cloud Generation and Constantly Tracking Position

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4212944B2 (ja) * 2003-04-15 2009-01-21 株式会社トプコン 測量機
JP4898176B2 (ja) * 2005-09-26 2012-03-14 株式会社トプコン 測量装置及び測量方法
US8879828B2 (en) 2011-06-29 2014-11-04 Matterport, Inc. Capturing and aligning multiple 3-dimensional scenes
DE102012109481A1 (de) 2012-10-05 2014-04-10 Faro Technologies, Inc. Vorrichtung zum optischen Abtasten und Vermessen einer Umgebung
EP3226029A1 (en) 2016-03-30 2017-10-04 Hexagon Technology Center GmbH Laser scanner with referenced projector
JP6773503B2 (ja) 2016-09-27 2020-10-21 株式会社トプコン レーザスキャナシステム及び点群データのレジストレーション方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170123066A1 (en) 2011-12-21 2017-05-04 Robotic paradigm Systems LLC Apparatus, Systems and Methods for Point Cloud Generation and Constantly Tracking Position
JP2013190272A (ja) 2012-03-13 2013-09-26 Kyushu Univ 3次元レーザ測量装置及び3次元レーザ測量方法
US20130314688A1 (en) 2012-05-27 2013-11-28 Alexander Likholyot Indoor surveying apparatus
JP2015087319A (ja) 2013-10-31 2015-05-07 三菱重工業株式会社 3次元形状計測装置および方法ならびにプログラム
JP2016223840A (ja) 2015-05-28 2016-12-28 株式会社トプコン 測量装置

Also Published As

Publication number Publication date
EP3489625B1 (en) 2023-06-07
US20190162853A1 (en) 2019-05-30
US11143505B2 (en) 2021-10-12
JP2019095371A (ja) 2019-06-20
EP3489625A1 (en) 2019-05-29

Similar Documents

Publication Publication Date Title
JP7009180B2 (ja) 測量装置
US11150346B2 (en) Measuring method and laser scanner
US10520307B2 (en) Surveying instrument
US10281580B2 (en) Surveying system
EP3264134B1 (en) Laser scanner system and registration method of point cloud data
US9207078B2 (en) Device for measuring and marking space points along horizontally running contour lines
US10895632B2 (en) Surveying system
US9989353B2 (en) Registering of a scene disintegrating into clusters with position tracking
US8355118B2 (en) Laser scanner, laser scanner measuring system, calibration method for laser scanner measuring system and target for calibration
EP3258212A1 (en) Surveying system
EP3258290B1 (en) Survey system
JP2013190272A (ja) 3次元レーザ測量装置及び3次元レーザ測量方法
US11500096B2 (en) Surveying instrument
JP6982424B2 (ja) 測量システム
US20230305152A2 (en) Three-dimensional survey apparatus, three-dimensional survey method, and three-dimensional survey program
JP2021039013A (ja) 壁面のひび割れ測定機および測定方法
EP4067819A1 (en) Surveying system, point cloud data acquiring method, and point cloud data acquiring program
JP7289252B2 (ja) スキャナシステムおよびスキャン方法
WO2023190301A1 (ja) 測量システム
JP2023048409A (ja) 測量システム
JP2023109404A (ja) レーザースキャンデータ処理装置、レーザースキャン方法およびプログラム
JP2019144119A (ja) 三次元レーザー光走査装置
JP2017181428A (ja) 測量装置の位置取得方法及び測量装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220112

R150 Certificate of patent or registration of utility model

Ref document number: 7009180

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150